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We demonstrate an asymmetry between the beneficial effects one can obtain using nonlocal operations
and nonlocal states to mitigate the detrimental effects of environmental noise in the work extraction process
from quantum battery models. Specifically, we show that using nonlocal recovery operations after the noise
action can, in general, increase the amount of work one can recover from the battery even with separable
(i.e., nonentangled) input states. On the contrary, employing entangled input states with local recovery
operations will generally not improve the battery performance.
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Introduction.—Quantum thermodynamics is a rapidly
growing field that seeks to understand the behavior of small
quantum systems at the nanoscale [1]. Of particular interest
is the use of quantum effects to improve the charging
processes of batteries [2–8], which could potentially lead
to technological advancements in a variety of sectors. A
crucial aspect of the problem is to assess the stability of
these models when in contact with environmental noise, as
this represents a more realistic scenario and it may have a
significant impact on the efficiency of the energy recovery
or storage. In noiseless regimes, capacities for quantum
battery models have been proposed in Refs. [8–10] while,
from a resource theoretical point of view, the thermo-
dynamic capacity (in the sense of simulability) of quantum
channels has been defined [11]. Concerning energy mani-
pulation in more realistic scenarios where environmental
noise is acting on the system, a few results have been
obtained in specialized settings (see, e.g., Refs. [12–20]),
and various schemes have been proposed to stabilize
quantum batteries in the presence of specific types of
perturbations [1,21–29]. In this Letter, we tackle this
problem using the work capacitance functionals introduced
in Ref. [30]. These quantities gauge the efficiency of the
work extraction process from quantum battery models
formed by large collections of identical and independent
noisy elements (quantum cells, or q-cells in brief), targeting
optimal state preparation schemes (encoding operations
performed before the action of noise) and optimal recovery
transformations (decoding operations performed after the
noise). Formally, they are defined as the asymptotic limit of
the ratio between the work extracted from the system and
the initial energy stored in the quantum battery, and for a
given quantum battery model, their values strongly depend
on the type of constraints one enforces on the trans-
formations allowed on the system—see Fig. 1. Our main

finding is to provide evidence that, irrespective of the noise
model, the mere use of nonlocal resources at the level of the
encoding (i.e., employing quantum correlated states to
store the initial energy of the battery) does not improve
the efficiency of the model. On the contrary, we show that
employing nonlocal transformations at the recovering stage
will, in general, increase the work extraction performance
of the battery. The key ingredient to attain such results
is the derivation of a single-letter formula that allows
us to simplify the evaluation of the local-ergotropy capac-
itances [30] for arbitrary noise models.
Preliminaries.—We model noisy quantum batteries

(QBs) as collections of n identical and independent
(noninteracting) elements (quantum cells, or q-cells in

FIG. 1. Resource accounting for work extraction in noisy QB
models composed of n q-cells (green elements of the figure)
affected by local noise (gray). From left to right: separable-input,
local ergotropy capacitance Cloc;sepðΛ; eÞ (maximum work
extractable per unit cell, when both the state preparation of the
QB and the recovery operations applied after the noise action are
restricted to local resources); local ergotropy capacitance
ClocðΛ; eÞ (here, locality is enforced only at the recovery level);
separable-input capacitance CsepðΛ; eÞ (locality is enforced only
at the state preparation level); ergotropy capacitance CEðΛ; eÞ (no
local restrictions imposed). As shown in Theorem 1, irrespective
of the noise model, ClocðΛ; eÞ and Cloc;sepðΛ; eÞ always coincide.
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brief), each capable of storing energy in the internal degrees
of freedom associated with their local Hamiltonians
ĥ1; ĥ2; � � � ; ĥn, all of which are locally identical to a single
q-cell Hamiltonian ĥ, and perturbed by the same local
noise source, which we describe in terms of a linear,
completely positive and trace-preserving (LCTP) super-
operator Λ [31–33]. The work extraction efficiency in these
systems can be measured using as a figure of merit the work
capacitances introduced in Ref. [30]. A first example is
provided by the ergotropic capacitanceCEðΛ; eÞ. Ergotropy
is a well-established measure of the maximum work
one can extract from a quantum state ρ̂ by means of
unitary operations that preserve the total energy of the
system [9,34,35]. For a d-dimensional system characterized
by a Hamiltonian Ĥ, it can be expressed as

Eðρ̂; ĤÞ ≔ max
Û∈UðdÞ

fEðρ̂; ĤÞ − EðÛ ρ̂ Û†; ĤÞg; ð1Þ

where Eðρ̂; ĤÞ ≔ Tr½ρ̂ Ĥ� is the average energy of a
quantum state ρ̂ and UðdÞ is the d-dimensional representa-
tion of the unitary group. In view of this definition, a
reasonable way to gauge the maximum work one can
retrieve from the QB after the action of the noise Λ is
obtained by considering

EðnÞðΛ;EÞ ≔ max
ρ̂ðnÞ∈SðnÞ

E

EðΛ⊗nðρ̂ðnÞÞ; ĤðnÞÞ; ð2Þ

where ĤðnÞ ≔ ĥ1 þ � � � þ ĥn represents the battery
Hamiltonian and where the maximization is performed

on the setSðnÞ
E , which is the set of all the n q-cell states ρ̂ðnÞ

with average energy Eðρ̂ðnÞÞ ≤ E. The ergotropic capaci-
tance CEðΛ; eÞ is now defined as the proper regularization
of EðnÞðΛ;EÞ for n → ∞, under the assumption that (on
average) each of the n q-cells stores no more than a fraction
e ∈ ½0; kĥk∞� of the total input energy [30], i.e.,

CEðΛ; eÞ ≔ lim
n→∞

EðnÞðΛ;E ¼ neÞ
n

; ð3Þ

where, without loss of generality, we set to zero the ground-
state energy of the local Hamiltonians ĥ. In the absence of
noise (i.e., Λ is the identity channel), CEðΛ; eÞ is equal to e,
signaling that, by properly preparing the input state of the
q-cells, we can retrieve all the energy we have initially
stored in the battery. Dissipation and decoherence will
instead tend to produce smaller values of CEðΛ; eÞ, indicat-
ing that the performance of the model gets degraded
irrespective of the choice we make at the level of state
preparation of the QB. Setting restrictions on the allowed
operations one can perform on the battery will also reduce
the value of CEðΛ; eÞ. For instance, assuming the maxi-
mization in Eq. (2) to run only on separable input states of

the q-cells will lead us to replace EðnÞðΛ; neÞ with

EðnÞ
sepðΛ;neÞð≤EðnÞðΛ;neÞÞ, which, regularized as in Eq. (3),

gives the separable-input capacitance CsepðΛ; eÞ of the
model. This, in turn, expresses the asymptotic work we
can extract per q-cell in the absence of initial entanglement
between these elements [30]. Similarly, by restricting the
optimization in Eq. (1) to include only unitary operations
acting locally on the q-cells [i.e., replacing Eðρ̂; ĤÞwith the
local ergotropy [36] ]will lead us to identifyEðnÞ

loc ðΛ; neÞwith
its regularized limit ClocðΛ; eÞ. Finally, assuming the
optimizations to be restricted to separable states and to

local unitary operations, one can define EðnÞ
loc;sepðΛ; neÞ and

Cloc;sepðΛ; eÞ. See Ref. [37] for the formal definitions.
Simple resource counting arguments can be used to show
that a natural partial ordering exists among these functionals
[30] which identifies CEðΛ; eÞ and Cloc;sepðΛ; eÞ as the
largest and smallest terms, respectively, leaving the role
of intermediate quantities to CsepðΛ; eÞ and ClocðΛ; eÞ, i.e.,

CEðΛ;eÞ≥CsepðΛ;eÞ; ClocðΛ;eÞ≥Cloc;sepðΛ;eÞ: ð4Þ

As we shall see, one of the main goals of the present work is
to refine Eq. (4), showing that, for all noise models,
no gap exists between Cloc;sepðΛ; eÞ and ClocðΛ; eÞ, and that
CsepðΛ; eÞ ≥ ClocðΛ; eÞ.
Closed formulas and bounds.—We now show that,

regardless of the LCPT map Λ, the separable-input, local
ergotropy capacitance Cloc;sepðΛ; eÞ and the local ergotropy
capacitance ClocðΛ; eÞ coincide and admit a simple single-
letter expression in terms of the single-shot (n ¼ 1)
maximal output ergotropy functional (2).
Theorem 1: For any LCPT map Λ, and for any

e ∈ ½0; kĥk∞�, we can write

ClocðΛ; eÞ ¼ Cloc;sepðΛ; eÞ ¼ χðΛ; eÞ; ð5Þ

χðΛ; eÞ ≔ sup
fpj;ejg

X

j

pjEð1ÞðΛ; ejÞ; ð6Þ

where the supremum is taken over all the distributions
fpj; ejg of input q-cell energy ej ∈ ½0; kĥk∞� that fulfill the
constraint

X

j

pjej ≤ e: ð7Þ

Proof.—In view of Eq. (4), to derive Eq. (5), it is
sufficient to show that χðΛ; eÞ is (i) a lower bound for
Cloc;sepðΛ; eÞ and (ii) an upper bound for ClocðΛ; eÞ.
A proof of inequality (i) follows by observing that given

e ∈ ½0; kĥk∞� and the n integer, we have that the maximum

output local ergotropy of the model EðnÞ
loc;sepðΛ;E ¼ neÞ is

certainly smaller than the output local ergotropy computed
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on the (factorized) state of the form ρ̂ðnÞfact ≔ ρ̂1 ⊗ ρ̂2 ⊗
� � � ⊗ ρ̂n, where for i ¼ 1;…; n, ρ̂i is a density matrix of
the ith q-cell with input energy ẽi ∈ ½0; kĥk∞� fulfilling the

constraint
P

n
i¼1 ẽi=n ≤ e. In other words, EðnÞ

loc;sepðΛ;E ¼
neÞ ≥ ElocðΛ⊗nðρ̂ðnÞfactÞ; ĤðnÞÞ ¼ P

n
i¼1 EðΛðρ̂iÞ; ĥÞ, where in

the second part we use the fact that the local ergotropy for
noninteracting systems is additive [30,36]. In particular,
selecting the ρ̃i so that they maximize the single-shot
maximal output ergotropy Eð1ÞðΛ; ẽiÞ, we can translate the
above inequality into

EðnÞ
loc;sepðΛ;E ¼ neÞ

n
≥
Xn

i¼1

Eð1ÞðΛ; ẽiÞ
n

: ð8Þ

In the n → ∞ limit, the lhs converges toward Cloc;sepðΛ; eÞ.
On the contrary, given an arbitrary distribution fpj; ejg that
fulfills the constraint (7), we can force the rhs of Eq. (8) to
converge to

P
j pjEð1ÞðΛ; ejÞ. Accordingly, we can write

Cloc;sepðΛ; eÞ ≥
P

j pjEð1ÞðΛ; ejÞ, which, upon optimiza-
tion over all choices of fpj; ejg, shows that the rhs of
Eq. (5) is indeed a lower bound for Cloc;sepðΛ; eÞ.
We now prove property (ii). For this purpose, consider

the optimal state ρ̂ðnÞ� , which allows us to saturate the

maximization of EðnÞ
loc ðΛ;E ¼ neÞ for fixed n and e. Using

the additivity of the local ergotropy, we can write

EðnÞ
loc ðΛ;E¼neÞ

n
¼ElocðΛ⊗nðρ̂ðnÞ� Þ;ĤðnÞÞ

n

¼
Xn

i¼1

EðΛðρ̂iÞ; ĥÞ
n

≤
Xn

i¼1

Eð1ÞðΛ;eiÞ
n

; ð9Þ

where for i ∈ f1;…; ng, ρ̂i is the reduced density matrix of

ρ̂ðnÞ� associated with the ith q-cell and where ei indicates its
mean energy, which, by construction, must fulfill the
condition

P
n
i¼1 ei=n ≤ e. Next, we observe that since

fpi ¼ 1=n; eig is a special instance of energy distribution
satisfying Eq. (7), the last term of Eq. (9) is certainly
smaller than or equal to χðΛ; eÞ. Taking the n → ∞ limit,
we finally arrive at the thesis. ▪
Remark 1: For noise models where the single-shot

(n ¼ 1) maximal output ergotropy Eð1ÞðΛ; eÞ is a concave
function of the energy parameter e, the optimization in
Eq. (5) can be explicitly performed, leading to a more
compact expression:

ClocðΛ; eÞ ¼ Cloc;sepðΛ; eÞ ¼ Eð1ÞðΛ; eÞ: ð10Þ

Since Cloc;sepðΛ; eÞ is certainly not larger than CsepðΛ; eÞ,
the result of Theorem 1 allows us to introduce a definite
ordering among CsepðΛ; eÞ and ClocðΛ; eÞ, i.e.,

CsepðΛ; eÞ ≥ ClocðΛ; eÞ: ð11Þ

Physically, this implies that, at variance with what happens
in other quantum information settings like those of quan-
tum communication [38], in the case of work extraction
tasks, the use of nonlocal resources at the decoding stage is,
in principle, always preferable to their use at the encoding
stage. In order to strengthen this statement, we next derive a
nontrivial lower bound for CsepðΛ; eÞ, which, for QB
models made of q-cells of dimension larger than 2, is
typically larger than χðΛ; eÞ.
Corollary 1: For any LCPT map Λ, and for any

e ∈ ½0; kĥk∞�, we can write

CsepðΛ; eÞ ≥ χtotðΛ; eÞ ≔ sup
fpj;ejg

X

j

pjE
ð1Þ
tot ðΛ; ejÞ; ð12Þ

where Eð1Þ
tot ðΛ; eÞ is the single-shot, energy-constrained,

maximum total ergotropy [9] that one can get at the output
of the channel Λ; here, as in the case of Eq. (5), the
supremum is taken over all the distributions fpj; ejg of
input q-cell energies ej ∈ ½0; kĥk∞� satisfying the con-
straint (7).
Ultimately, the inequality (12) is a consequence of the

property shown in Ref. [30] that CsepðΛ; eÞ coincides with
Csep;totðΛ; eÞ [the latter being obtained by replacing the

ergotropy appearing in EðnÞ
sepðΛ;EÞ with the total ergotropy].

For the sake of completeness, however, we provide an
independent proof of the corollary in Ref. [37].
Under special circumstances, we can show that the rhs of

Eq. (12) provides the exact value of CsepðΛ; eÞ.
Corollary 2: Suppose that Λ is a LCPT map such that,

for all e ∈ ½0; kĥk∞� and n integers, it admits a single-site
state σ̂e, possibly dependent on n, with mean energy
Eðσ̂; ĥÞ ≤ e, such that

EðΛ⊗nðjΨðnÞ
factihΨðnÞ

factjÞ; ĤðnÞÞ ≤ EððΛðσ̂eÞÞ⊗n; ĤðnÞÞ; ð13Þ

for all factorized pure states jΨðnÞ
facti with mean energy

EðjΨðnÞ
facti; ĤðnÞÞ ≤ ne. Then, the inequality (12) is satu-

rated, i.e.,

CsepðΛ; eÞ ¼ χtotðΛ; eÞ: ð14Þ

Proof.—Let fPk; jΨðnÞ
factðkÞig be an ensemble of factor-

ized states allowing us to express a given separable density

matrix ρ̂ðnÞsep of the QB, i.e., ρ̂ðnÞsep ¼
P

k PkjΨðnÞ
factðkÞi

hΨðnÞ
factðkÞj. Notice that if ρ̂ðnÞsep has mean energy

Eðρ̂ðnÞsep; ĤðnÞÞ ≤ ne, then we must have
P

k Pkek ≤ e, with

nek being the mean energy of jΨðnÞ
factðkÞi, i.e.,

EðjΨðnÞ
factðkÞi; ĤðnÞÞ ¼ nek. Thanks to the convexity of the

ergotropy functional, it follows that
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1

n
EðΛ⊗nðρ̂ðnÞsepÞ; ĤðnÞÞ ≤ 1

n

X

k

PkEðΛ⊗nðjΨðnÞ
factðkÞiÞ; ĤðnÞÞ

≤
1

n

X

k

PkEððΛðσ̂ekÞÞ⊗n; ĤðnÞÞ

≤
X

k

Pksup
n0

EððΛðσ̂ekÞÞ⊗n0 ; Ĥðn0ÞÞ
n0

¼
X

k

PkEtotðΛðσ̂ekÞ; ĥÞ

≤
X

k

PkE
ð1Þ
tot ðΛ; ekÞ ≤ χtotðΛ; eÞ;

where, in the second inequality, we used Eq. (13), while in
the last three formulas, we invoked the definitions of
total ergotropy and of maximum energy-constrained,
output total ergotropy. Observing that fPk; ekg is a special
instance of the ensembles entering the supremum of
the rhs of Eq. (14), we can hence conclude that

ð1=nÞEðΛ⊗nðρ̂ðnÞsepÞ; ĤðnÞÞ ≤ χtotðΛ; eÞ, which holds true
for all separable inputs that have mean energy smaller
than or equal to ne. The thesis finally follows by taking the

supremum with respect to all ρ̂ðnÞsep and taking the n → ∞
limit. ▪
Examples.—Since the total-ergotropy functional and the

ergotropy always coincide for systems of dimension 2 (see
Ref. [37]), in view of Theorem 1 and Corollary 1, the best
option to identify QBs that exhibit a finite gap ΔC between
CsepðΛ; eÞ and ClocðΛ; eÞ is to focus on models with q-cell
elements having dimension d ≥ 3. A first example of this
kind can be found in Ref. [30], which solved the values of
CsepðΛ; eÞ and ClocðΛ; eÞ for depolarizing maps of arbitrary
dimension. In what follows, we present a couple of extra
cases. In panel (a) of Fig. 2, for instance, we plot the gap we
obtained by numerically solving the optimizations in
Eqs. (5) and (12) for a three-level system subject to the
action of a multilevel amplitude damping channel [39,40].
Another example is obtained by focusing on QB models
formed by the collection of independent (infinite-
dimensional) harmonic oscillators affected by noise models
described by phase-insensitive bosonic Gaussian channels
(PI-BGCs) [38,41]. Thanks to the results of Ref. [42], we
know that, in these systems, the maximal output ergotropy
and maximal total ergotropy are obtained using coherent
states as input configurations for the q-cells. If Λ corre-
sponds to a single-mode PI-BGC Φ1, this implies that
CEðΦ1; eÞ ¼ CsepðΦ1; eÞ for all input energies e, leading to
no gap between CsepðΦ1; eÞ and ClocðΦ1; eÞ. In parti-
cular, we have CEðLλ;N ; eÞ ¼ λe, CEðAμ;N ; eÞ ¼ μe, and
CEðN N ; eÞ ¼ e, where Lλ;N is the thermal attenuator, Aμ;N

is the thermal amplifier, and N N is the additive noise
channel [38,41]. The situation becomes more interesting if
Λ represents a multimode PI-BGC. As a matter of fact, here
we can observe cases where Csep and Cloc exhibit a gap.

For instance, in panel (b) of Fig. 2, we consider a two-mode
PI-BGC Φ2 ¼ Lλ;N ⊗ L0;0, which acts as a thermal attenu-
ator on one of the modes and outputs the vacuum state on
the other mode. For this channel, the optimal output
ergotropy Eð1ÞðΦ2; eÞ and the optimal output total ergotropy

Eð1Þ
tot ðΦ2; eÞ are both affine but with different functions

of the input energy e, implyingClocðΦ2; eÞ ¼ Eð1ÞðΦ; eÞ and
CsepðΦ2; eÞ ¼ Eð1Þ

tot ðΦ; eÞ. As shown in Ref. [37], the
resulting gap ΔC is a constant with respect to the input
energy and only depends on the noise parameters of the
model (i.e., the constants λ andN) via an implicit functional
of λ and N.
Discussion.—We have observed an asymmetry in the

role of nonlocal resources in the investigation of work
extraction from noisy QBmodels. Specifically, our findings
indicate that when energy is recovered through local

(a)

(b)

FIG. 2. Capacitance gap ΔC ≔ CsepðΛ; eÞ − ClocðΛ; eÞ. (a) Plot
of the lower bound on ΔC derived from Eqs. (5) and (12) for the
MAD channel Φγ1;γ2;γ3 [39] and the ReMAD channel Γγ1;γ2;γ3
[40], both acting on a qutrit system of Hamiltonian
ĥ ¼ ε0ðj1ih1j þ 2j2ih2jÞ. Here, the energy is rescaled by the
factor ε0, and the noise parameters have been fixed equal to
γ1 ¼ 0.3, γ2 ¼ 0.2, and γ3 ¼ 0.6. (b) Plot of ΔC for the two-
mode Gaussian attenuator Φ2 ¼ Lλ;N ⊗ L0;0 as a function of the
effective temperature βλ;N [see Eq. (30) in Ref. [37] ]; in this case,
ΔC is independent on the average input energy e. In the plot, the
value of ΔC has been rescaled by ℏω, with ω being the mode’s
frequency.

PHYSICAL REVIEW LETTERS 131, 060402 (2023)

060402-4



operations, the use of entangled input states of the q-cells
does not enhance the QB’s resistance to noise. Conversely,
through the examination of a few examples, we demon-
strate that incorporating nonlocality in the extraction
operations can be advantageous. This implies that non-
locality provides a distinct benefit in energy retrieval but
may not be beneficial if employed in state preparation.
Moving forward, we plan to extend these results to models
where the QB Hamiltonian exhibits interactions among the
individual q-cells.
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