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Abstract

We investigate codimension-one vacua arising from low energy effective actions inspired by string theory, 
with an eye to their consistency when localized sources are allowed in the equations of motion. We draw 
some inspiration from Sugimoto’s USp(32) model, the simplest setting for brane supersymmetry breaking, 
and from the 0’B model, with their Dudas-Mourad solutions. Although the sources that one can thus identify 
do not have a clear role in string theory, this type of investigation is naturally suggested by the singularities 
that appear at the endpoints of internal intervals. We also discuss the introduction of sources in deformed 
D8-like solutions in type IIA, pointing out an analogy with one of the non-supersymmetric models. Finally, 
we show that an appropriate choice of frame can simplify computations in models with tadpole potentials.
© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
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1. Introduction

Superstring theory can recover results from both general relativity and quantum field theory 
in a consistent way, but appears to require spacetime supersymmetry in any construction that 
is reasonably under control. The problem is of wide importance, since there is usually no clear 
separation between the consequences of supersymmetry and those of UV consistency. In order to 
settle these puzzling issues, one would probably need a deeper reformulation and further under-
standing of the string landscape. At present, the Swampland program [1–4] can provide partial 
answers to these questions by addressing effective field theories with gravity. It advocates the 
use of the known machinery of general relativity and quantum field theory to conjecture general 
statements about consistency under the guidance of limited regions of moduli space.

In this paper, we follow a different route. We focus on the gravity side to explore string-
inspired effective actions in settings without supersymmetry, thus using string theory as a guide 
to constrain their content. In our analysis, we shall also encounter sources without a UV inter-
pretation and a clear fate. They might well become inconsistent once higher order corrections are 
taken into account, but they could also represent novel types of objects, in the spirit of [5].

Our main references are Sugimoto’s USp(32) model [6] with “brane supersymmetry break-
ing” [7–10] and the 0’B model [11,12], which arise as orientifold projections [13–20] of the 
type IIB and type 0B strings [21]. These are tachyon-free models in ten dimensions, and their 
prototype solutions [22] display some of the difficulties ascribable to the lack of supersymmetry. 
For instance, although perturbative stability holds in some cases [23], non-perturbative effects 
are unknown and curvature singularities, together with occasional strong coupling regions, cast 
doubts on their ultimate consistency.

Our contribution will be to examine codimension-one objects in string models not arising from 
supersymmetry, which are domain walls in a ten-dimensional spacetime interpolating between 
different vacua.1 Three different cases will be the subject of our investigations, and each will 
occupy a different section.

In section 2 we start with a toy model where only gravity and the dilaton are turned on. We 
use that section to fix our notation and to display some of the critical issues we shall encounter 
later. In section 3 we focus on (the bosonic part of) massive IIA supergravity and its sources, 
as indicated by string theory [25], looking for non-supersymmetric deformations of D8 branes. 

1 A similar analysis can be performed for other branes. The 7-brane case has been recently studied in [24]. Part of 
that paper, that appeared while this was in preparation, probes brane constructions similar to ours, but the main focus is 
different since they are concerned with T-dual versions of what we study here.
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In the same section we shall also notice peculiar analogies with the effective action of the non-
supersymmetric so(16) × so(16) heterotic model in ten dimensions [26,27]. In section 4 we turn 
to our main subject: the two non-supersymmetric orientifold models and their codimension-one 
vacua. After a brief review of known solutions, we reframe them in the presence of sources, look 
for generalizations and present the construction in simpler terms.

2. Uncharged solutions

As explained in the Introduction, we begin by looking for solutions of the Einstein-dilaton 
equations in 10 dimensions, that follow from the Einstein-frame action

S = 1

2α′4

∫
d10x

√
g

[
R − 1

2
(∂φ)2

]
. (2.1)

We are interested in cases where a nine-dimensional Poincaré isometry remains. This translates 
into the codimension-one ansatz

ds2 = e2A(y)ημνdxμdxν + e2B(y)dy2 ,

φ = φ(y) ,
(2.2)

that will be our focus throughout this paper. As is clear from eq. (2.2), there remains some 
freedom to redefine y, resulting in different choices of B that we shall call “gauge fixing” in 
order to conform with the literature.

Taking the above ansatz into account, the equations of motion become

A′′ + A′(9A′ − B ′) = 0 ,

A′′ + (A′)2 − A′B ′ + 1

18
(φ′)2 = 0 ,

φ′′ + φ′(9A′ − B ′) = 0 .

(2.3)

From the first two it is clear that φ′ = ±12A′, and one can also set B = 0 with a suitable choice 
of the y variable. The trivial flat case is a solution, as expected, but there is also a non-trivial 
option: possibly rescaling the x coordinates, one can see that

A = 1

9
log(y0 ± 9y) , φ = φ0 ± 4

3
log(y0 ± 9y) (2.4)

solve eqs. (2.3). The double sign inside the logarithm is meant to emphasize that both choices 
are viable, and, as we shall see, one can combine them to describe extended sources. Note that 
in φ there is an independent sign ambiguity.

Taking for instance the positive signs in the arguments, spacetime would end at y = −y0/9
and the curvature scalar would diverge as the inverse of the squared distance from that point. 
The solution would then extend to arbitrary positive values of y with decreasing scalar curvature. 
The two choices available for φ grant two distinct behaviors for the “string coupling” eφ : with 
the upper one it diverges at infinity, while with the more interesting lower one it diverges at the 
curvature singularity and vanishes at infinity.

The timelike curvature singularity and the remaining isometries have the flavor of a localized 
source with (8 +1) dimensions. In order to investigate the possible presence and the properties of 
this 8-brane, one can add a localized contribution to the action and solve the resulting equations. 
We fix our notation by calling s(φ) the brane coupling in the Einstein frame:
3
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−
∫

d9x
√−γ s(φ) . (2.5)

In the string frame,2 this would become s(φ)e− 9
4 φ .

In the following, we shall always work in the Einstein frame and then translate the results into 
the string-frame in search for a possible string interpretation.

The addition of the localized source in eq. (2.5) to the action makes the first derivatives of the 
metric and the dilaton not continuous. The equations of motion with a nine-dimensional defect 
located at y = 0 are indeed eqs. (2.3) with a localized source contribution, but remarkably the 
relation φ′ = ±12A′ still holds and leads to s′(φ(0)) ∝ s(φ(0)). In principle nothing determines 
the functional form of s(φ), but we shall focus on exponential couplings, partly because they 
make the above condition more natural, but also because perturbative dilaton couplings from 
string theory usually have this form. The equations of motion are then equivalent to

A′′ + 9(A′)2 = − 1

16
δ(y)s(φ) , s(φ) = τe∓ 3

4 φ . (2.6)

The coupling s(φ) can have two possible forms, whose counterparts in string frame are

e−3φ, e− 3
2 φ . (2.7)

These are not perturbative (open or closed) string couplings and therefore one cannot argue for 
a string origin of this object. Nevertheless, solving eq. (2.6) and requiring that A be continuous 
leads to

A = 1

9
log(y0 ± 9|y|) , (2.8)

now valid for y ∈ R, and the jump discontinuity becomes

± 2

y0
= − τ

16
e∓ 3

4 φ0
1

y0
. (2.9)

In this fashion, one is gluing two different vacua, one with y0 − 9y and the other with y0 + 9y. 
This perspective will become relevant in the following sections. The overall sign choice for τ in 
eq. (2.9) descends from the choices of eq. (2.8) on the two sides of the defect.

An additional issue in eq. (2.9) is that the tension depends on φ0. That is also troublesome 
for a string interpretation, where one would expect no φ0 dependence.3 If one wanted to take 
these defects seriously, they would correspond to some exotic 8-branes, outside the realm of 
string perturbation theory. They might afford an explanation in terms of cobordism defects in 
type II theories, along the lines of [5], but our construction does not interpolate between two 
constant-dilaton vacua, which makes the interpretation as domain walls at best not transparent.

Let us conclude this section by stressing that the inclusion of a non-vanishing y0 has an addi-
tional physical consequence: it makes the solution not divergent at the source. That is reminiscent 
of what happens for D branes in string theory, which host curvature singularities at the source for 
p < 8 (excluding the peculiar p = 3 case), while the D8 metric is smooth at the brane location, 
with a curvature singularity at a finite distance from it.

2 In this paper our conventions are such that the metric in the string frame is e
1
2 φ times that in the Einstein frame, and 

not e
1
2 (φ−φ0). The latter would be more appropriate for branes with lower dimensions, where the asymptotic value of 

the dilaton is a well-defined concept. Clearly, both provide the same results once we turn to the string frame.
3 Our convention for the Einstein frame in instrumental to fully understand this statement.
4
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2.1. D dimensions

One can also consider the toy model in a general number of dimensions, still with a 
codimension-one ansatz. The equations of motion with a source coupling s(φ) are a simple 
generalization of eqs. (2.3) with localized contributions. Insisting on an exponential coupling, 
the solution takes the form

s = τ exp

{
∓

√
D − 1

2(D − 2)
φ

}
,

A = 1

D − 1
log [y0 ± (D − 1)|y|] ,

φ = φ0 ±
√

2(D − 2)

D − 1
log [y0 ± (D − 1)|y|] .

(2.10)

Amusingly, the square root is a rational number if4

• D is even and

D = 1

4

[(
3 − 2

√
2
)2n +

(
3 + 2

√
2
)2n + 6

]
(2.11)

for n ∈Z, so that D = 10, 290, . . .
• D is odd and

D = 1

8

[(
2 + √

2
)(

3 − 2
√

2
)n +

(
2 − √

2
)(

3 + 2
√

2
)n]2 + 1 (2.12)

for n ∈Z, so that D = 3, 51, . . .

It is intriguing to see that D = 10 is singled out somehow from these considerations.

2.2. Spherically symmetric solution

As a warm-up exercise for what we shall see in section 4.3, let us now consider the Euclidean 
version of our problem, in the more general case of a curved nine-dimensional manifold, so that

ds2 = e2A(r)gmn(x)dxmdxn + e2B(r)dr2 ,

φ = φ(r) .
(2.13)

The equations of motion from the action (2.1) imply that gmn must be the metric on an Einstein 
manifold. Let us thus define R(9)

mn = 8
9gmn, so that for the sphere 
9 would be the inverse of 
the squared radius, and let us work in a different gauge, B = 9A. The dilaton equation remains 
the same as in (2.3), so that

φ = φ0 + φ1r , (8A′)2 − 64
9e
16A = c2

1 , (2.14)

where c1 = 2
3 |φ1|.

In particular, for 
9 = 0 one thus recovers the results of section 2. If 
9 > 0, after adding an 
appropriate constant to A, eq. (2.14) becomes of the form

4 After playing with prime factors and solving a Pell’s equation.
5
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(f ′)2 − 1 = c2
1f

2 , (2.15)

where f = e−8A, and consequently

A = −1

8
log

[
8
√


9 sinh (c1r + r0)

c1

]
. (2.16)

When 
9 < 0 a similar argument leads to

A = −1

8
log

[
8
√−
9 cosh (c1r + r0)

c1

]
. (2.17)

For example, the 
9 > 0 case with a nine-dimensional sphere interpolates between a flat space-

time and a singular metric of the form du2 + u
2
9 d�2

9.

3. Massive IIA, D8 branes and non-supersymmetric analogies

Let us now turn our attention to a different string-inspired construction. The type IIA string 
theory has charged codimension-one sources, which are indeed BPS D8 branes and O8 planes 
acting as domain walls between vacua with different Romans masses [28] in the bulk.

The effective actions of interest involve gravity, dilaton and the R-R nine-form of type IIA. 
Source terms describing the low energy effective contribution of branes and orientifolds are nine-
dimensional integrals with a coupling to the R-R field and a tension term.

The equations of motion with sources are to be supplemented with Bianchi identities. Their 
content is the counterpart of R-R tadpole cancellations in 2d CFTs and they enforce a global R-R 
charge cancellation for compact solutions. In fact, non-zero Romans mass arises precisely in the 
absence of local R-R charge cancellation. It is a piecewise constant function between charged 
codimension-one sources, whose jump discontinuities are dictated by

dm0 = −2
∑

i

qiδ(y − yi) , (3.1)

where we included a factor of 
√

α′ in the definition of the R-R charges qi with respect to the 
standard notation, so as to avoid α′ factors in the following equations.

After integrating out the R-R field, the Einstein-frame action of interest, with the addition of 
a D8 brane-like source at y = 0 and with our codimension-one ansatz, becomes

S = 1

2(α′)4

∫
d10x

√
g

[
R − 1

2
(∂φ)2 − 2

q2

16
e

5
2 φ − τe

5
4 φ δ(y)√

gyy

]
. (3.2)

The reason for taking out a factor of 2 will become clear in section 3.2. In what follows, we shall 
always isolate the factors q4 for the same purpose.

3.1. Bulk analysis

Our first step is now to find all possible vacua of eq. (3.2) without sources with the ansatz 
in eq. (2.2), which may be even generalized by considering a nine-dimensional Ricci-flat metric 
instead of the flat one. We already know one example, the D8 brane, which in the Einstein frame 
takes the form

ds2 = (1 − h8y)
1
8 dx2

(9) + (1 − h8y)
9
8 dy2 ,

eφ = (1 − h y)−
5
4 .

(3.3)

8

6
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In our codimension-one setting, the equations of motion can be presented as

A′′ + (9A′ − B ′)A′ + 1

4

q2

16
e2B+ 5

2 φ = 0 ,

144(A′)2 − (φ′)2 + 4
q2

16
e2B+ 5

2 φ = 0 ,

φ′′ + (9A′ − B ′)φ′ − 5
q2

16
e2B+ 5

2 φ = 0 .

(3.4)

It is certainly possible to use the B = 9A gauge, so as to recover the D8 brane solution in (3.3)
and to try to explore whether generalizations exist. However, we shall take a different route, also 
inspired by the way we have written eqs. (3.4).

The gravity and dilaton terms in the action of massive IIA, after integrating out the R-R field, 
are the same as in one of the tachyon-free non-supersymmetric string models in ten dimensions, 
specifically the so(16) × so(16) heterotic model. This simple comment is actually convenient 
for our setup since the techniques of [22] are then available. For that reason, we choose our 
coordinate y such that B = − 5

4φ and define

f (y) = log

(√
1 + 16

q2 (6A′)2 + 4

q
(6A′)

)
, (3.5)

in terms of which A′ and φ′ become5

A′ = 1

6

q

4
sinhf , φ′ = ±2

q

4
coshf . (3.6)

The equations of motion reduce to

f ′ + 3

2

q

4
coshf ± 5

2

q

4
sinhf = 0 . (3.7)

The simplest f that satisfies eq. (3.7) is actually f = ∓ log 2, where the signs are in one-
to-one correspondence with those in eq. (3.7) and eq. (3.6). The two solutions in the bulk are 
thus

ds2 = e∓ 1
4

q
4 ydx2

(9) + e− 5
2 φ0e∓ 25

4
q
4 ydy2 ,

eφ = eφ0e± 5
2

q
4 y .

(3.8)

One can recast these in the gauge B = 9A, resorting to the following reparametrization, up to 
additive constants:

z = 1

2

4

q
e− 5

4 φ0e∓2 q
4 y . (3.9)

Both signs, related by a coordinate transformation, yield the D8 brane bulk spacetime

ds2 =
[
2
q

4
e

5
4 φ0z

] 1
8
dx2

(9) +
[
2
q

4
e

5
4 φ0z

] 9
8
dz2 ,

eφ = eφ0
[
2
q

4
e

5
4 φ0z

]− 5
4

.

(3.10)

5 We shall remain agnostic about the sign of q . In fact, both cases of q > 0 and q < 0 in our notation are meaningful, 
as they imply that every solution with y0 + y has a partner solution with y0 − y. Had we worked with |q|, an additional 
± sign ambiguity would make the notation more cumbersome.
7
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For the second type of non-constant f satisfying eq. (3.7), we refer to [22] for the derivation 
and simply quote the result, using |q|

4 instead of 
√

βE in that paper. The basic relation is

ef = ±2∓1 e
q
4 y + εe− q

4 y

e
q
4 y − εe− q

4 y
, (3.11)

where ε, without loss of generality, can be only ±1. When one computes A′ and φ′ using 
eq. (3.6), the sign ambiguity of (3.11) results in a sign flip for ε, so that one can pass from 
one choice to the other by simply sending ε → −ε. We decide to keep the upper sign in what 
follows, and then, if ε = 1

ds2 =
(

sinh
q

4
y
) 1

12
(

cosh
q

4
y
)− 1

3
dx2

(9) + e− 5
2 φ0

(
sinh

q

4
y
)− 5

4
(

cosh
q

4
y
)−5

dy2 ,

eφ = eφ0
(

sinh
q

4
y
) 1

2
(

cosh
q

4
y
)2

.

(3.12)

If ε = −1, the resulting solution is eq. (3.12), after interchanging cosh with sinh. In the gauge 
B = 9A, letting

z = − 4

q
e− 5

4 φ0 log tanh
(q

4
y
)

, (3.13)

the two solutions are

ds2 = exp

{
∓ 5

24

q

4
e

5
4 φ0z

}[
2 sinh

(q

4
e

5
4 φ0z

)] 1
8
dx2

(9)+

+ exp

{
∓15

8

q

4
e

5
4 φ0z

}[
2 sinh

(q

4
e

5
4 φ0z

)] 9
8
dz2 ,

eφ = eφ0 exp

{
±3

4

q

4
e

5
4 φ0z

}[
2 sinh

(q

4
e

5
4 φ0z

)]− 5
4

.

(3.14)

In this form, these were already displayed in [29].

3.2. A comment on a heterotic case

As we already stressed, the bulk equations of motion for gravity and dilaton in massive IIA, 
after integrating out the R-R 9-form, coincide with those of the non-supersymmetric so(16) ×
so(16) heterotic model in ten dimensions [26,27]. Using the notations of [22], our IIA solutions 
can thus be mapped to the heterotic ones letting |q|

4 → √
βE. Since we kept q

4 explicitly in the 
expressions for metrics and dilatons, it is straightforward to compare the two cases.

We can actually add something that was not noticed in the original work for the so(16) ×
so(16) heterotic vacua, namely the existence of a solution with f ′ = 0, eq. (3.10).6 It corresponds 
to the D8 brane in type IIA, therefore describes a defect whose coupling to the dilaton is e−φ

in string frame. By adding an integration constant and reintroducing the sign ambiguity, one can 
recover the known properties of the D8 solution. While the mapping exists, it is unclear how this 
consideration can play a role in the non-supersymmetric heterotic case. No D branes exist in that 
model, so that the e−φ coupling is not singled out by string arguments, and so far this result is 
merely an artifact of the lowest-order terms in the effective actions.

6 This exists in any dilaton-gravity model with an exponential potential whose exponent is greater than the critical one.
8
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3.3. Sources in the deformed solutions

Returning to type IIA, let us investigate the possible addition of 8-branes to the three new 
solutions that we have found (for eq. (3.10) we already know the answer). To this end, we add in 
eqs. (3.4) the source term from eq. (3.2), still in the convenient gauge B = − 5

4φ.
Taking into account eq. (3.12), one must demand that A and φ be continuous, while enforcing, 

for the derivatives, the jump discontinuities

�A′ = − 1

16
τ , �φ′ = 5

4
τ . (3.15)

From eq. (3.15) one would need �φ′ = −20�A′, but, as the reader may notice from the expo-
nents of eq. (3.12), this condition turns out to be equivalent to demanding (coshy0)

2 = (sinhy0)
2, 

which rules out this source.
There remains the possibility of gluing different types of solutions. We shall not glue the D8 to 

other solutions since it has a physical meaning by itself. Rather, we focus on the two non-trivial 
vacua in eq. (3.12), where the result will be physically more interesting. We take for y > 0

A = A1 + 1

24
log cosh

(
y1 + q

4
y
)

− 1

6
log sinh

(
y1 + q

4
y
)

,

φ = φ1 + 1

2
log cosh

(
y1 + q

4
y
)

+ 2 log sinh
(
y1 + q

4
y
)

,

(3.16)

and for y < 0

A = A0 + 1

24
log sinh

(
y0 − q

4
y
)

− 1

6
log cosh

(
y0 − q

4
y
)

,

φ = φ0 + 1

2
log sinh

(
y0 − q

4
y
)

+ 2 log cosh
(
y0 − q

4
y
)

.

(3.17)

Continuity fixes A1 and φ1 in terms of the other parameters, while one can set A0 = 0 with 
a global redefinition of xμ. The condition �φ′ = −20�A′ becomes simply y1 = y0, while the 
other matching in eq. (3.15) is

τ = cosh (2y0)

sinh (2y0)
q . (3.18)

Two sign options are actually available in eq. (3.18), depending on how one glues the two solu-
tions of eq. (3.12), but in any case this condition tells us that |τ | > |q|.

Wrapping up, in this section we have found two possible sources consistent with the equations 
of motion of massive IIA. One is the D8 brane, while the other is a different object, still coupled 
with e−φ in the string frame. We have once more no string interpretation, but at least the object 
behaves as if it were some kind of non-supersymmetric deformation of a D8 brane. This deformed 
source has two fundamental properties that one should expect for sources in the absence of 
supersymmetry, a tension greater than charge signaling a potential instability for decay into a 
supersymmetric D8, and the gravitational backreaction that forbids multiple static sources.

4. Vacua for the ten-dimensional orientifolds

In this section we turn to the main topic of this paper, which is the search for possible 
codimension-one variants of the Dudas-Mourad vacua for orientifold models. These are solutions 
9
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to the equations of motion of the two ten-dimensional tachyon-free orientifold strings without su-
persymmetry: the USp(32) model [6] and the 0’B model [11,12]. They have the same low-energy 
effective actions, insofar as only gravity and the dilaton are taken into account, and for definite-
ness we shall refer to the former, which affords an interpretation in terms of more familiar (anti) 
BPS branes and orientifolds, mirroring the usual type I construction. After a brief review of their 
known codimension-one vacua, we shall be concerned with 8-branes in these models, along the 
lines of what we did in section 2.

The USp(32) model arises as a different orientifold projection from the type IIB string. In the 
spacetime picture, it includes an orientifold O9+ and 32 D9 branes. The total R-R charge van-
ishes, so that the model is anomaly free,7 but there is a leftover NS-NS contribution, which results 
in a scalar potential for the dilaton proportional to e−φ in the string frame, hinting at the open 
string origin of “brane supersymmetry breaking” [7–10]. We shall not review the construction 
here, but refer to [30,31] for more details.

Adding a scalar potential has a dramatic consequence: the classical background cannot be a 
ten-dimensional Minkowski spacetime. However, the string-generated potential for the dilaton 
can conspire with fluxes to yield AdS solutions with a stabilized φ [23,32,33].

Without fluxes turned on, one must give up something to find a solution, as can be seen 
from purely dimensional reasons: the scalar potential ∝ ∫

T e−φ carries an extra factor 1/α′ with 
respect to the closed string contributions. Therefore, T must enter the solution together with some 
of the spacetime coordinates, which signals the necessary breaking of the full ten-dimensional 
Poincaré symmetry. This result was originally found by Dudas and Mourad in [22], and we now 
briefly review it.

4.1. The Dudas-Mourad orientifold vacua

In the Einstein frame, the effective action for the orientifold models of [6,11,12], considering 
only metric and dilaton contributions, takes the form8

S = 1

2α′4

∫
d10x

√−g

[
R − 1

2
(∂φ)2 − 2αEe

3
2 φ

]
. (4.1)

With the usual ansatz in eq. (2.2), choosing the gauge B = − 3
4φ, the equations of motion become

A′′ + 9(A′)2 + 3

4
A′φ′ + 1

4
αE = 0 ,

72(A′)2 − 1

2
(φ′)2 + 2αE = 0 ,

φ′′ + φ′
(

9A′ + 3

4
φ′

)
− 3αE = 0 .

(4.2)

Letting

f (y) = log

⎛
⎝

√
1 + 36(A′)2

αE

+ 6A′
√

αE

⎞
⎠ , (4.3)

7 However, the possible presence of global anomalies is still an open problem. We thank I. Basile and A. Debray for 
discussions on the topic.

8 We use the definition of αE from [22]. In the USp(32) model it is the sum of tensions from (anti) BPS branes and 
orientifold, multiplied by α′4, and similarly with the 0’B model, where branes and orientifolds are not BPS.
10
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one of the equations becomes clearly redundant and one is left with

A′ =
√

αE

6
sinhf , φ′ = ±2

√
αE coshf . (4.4)

A single non-trivial condition for f follows, with a sign ambiguity inherited from eq. (4.4):

2f ′ + 3
√

αE coshf ± 3
√

αE sinhf = 0 , (4.5)

solved by

f = ∓ log

(
y0 ± 3

2

√
αE y

)
. (4.6)

One is free to choose either the upper or lower signs, but this ambiguity disappears after one 
integration to obtain A and φ, from which one can write metric and dilaton as (for y > 0 and 
with y0 = 0)

ds2 = (
√

αE y)
1
9 e− 1

8 αEy
2
dx2

(9) + e− 3
2 φ0(

√
αE y)−1e− 9

8 αEy
2
dy2 ,

eφ = eφ0(
√

αE y)
2
3 e

3
4 αEy

2
.

(4.7)

This is the solution originally found in [22], in which two timelike curvature singularities exist at 
y = 0 and y → ∞, and the proper length in the internal y direction is finite. The string coupling 
eφ vanishes at y = 0 and diverges at infinity.

From a physical perspective, since the proper length is finite, one would like to interpret 
eq. (4.7) as a metric on an interval, including the two singular endpoints as end-of-the-world 
defects. The singularities are timelike, and it is natural to regard them as two codimension-one 
branes, backreacting on the ten-dimensional geometry. This interpretation is supported by various 
arguments involving the pinch-off singularity at finite distance [34–36], but no conclusive answer 
from string theory is known.

In what follows, we shall address the problem by explicitly adding a source term to the action.

4.2. Gluing with branes

The sign choice in eq. (4.6) allows one to glue two vacua with opposite signs and different 
parameters y0 and y1. To this end, one must deform the action, including a localized source with 
a generic coupling s(φ), so that

S ∝
∫

d10x
√−g

[
R − 1

2
(∂φ)2 − 2αEe

3
2 φ

]
−

∫
d9x

√−γ s(φ) , (4.8)

up to the common 2α′4 factor.
The equations of motion with the source at y = 0 are those in eqs. (4.2) with an additional 

localized contribution, which introduces jump discontinuities in the first derivatives of A and φ:

�A′ = − 1

16
e− 3

4 φ(0)s(φ(0)) , �φ′ = e− 3
4 φ(0)s′(φ(0)) . (4.9)

We should understand how to glue the two vacua and whether one can regard the resulting 
geometry as a domain wall separating them. One is free to choose one of eq. (4.6) for y < 0 and 
the other for y > 0. With one choice, our bulk solution is, in the region 3√

αE y + y0 > 0,
2

11
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A = A0 − 1

16

(√
αE y + 2

3
y0

)2

+ 1

18
log

(√
αE y + 2

3
y0

)
,

φ = φ0 + 3

4

(√
αE y + 2

3
y0

)2

+ 2

3
log

(√
αE y + 2

3
y0

)
.

(4.10)

The other choice applies to the region y1 − 3
2
√

αE y > 0 and can be written as

A = A1 − 1

16

(
2

3
y1 − √

αE y

)2

+ 1

18
log

(
2

3
y1 − √

αE y

)
,

φ = φ1 + 3

4

(
2

3
y1 − √

αE y

)2

+ 2

3
log

(
2

3
y1 − √

αE y

)
.

(4.11)

One can remove an additive constant in A by performing an overall redefinition of the spacetime 
coordinates xμ on the two sides of the source.

We now make two additional assumptions in order to explicitly identify a source term. The 
first one is A0 = A1 = 0, so that the continuity of A translates into the relation

y2
0 − 2 logy0 = y2

1 − 2 logy1 , (4.12)

between y0 and y1, with two possible solutions. One solution is y1 = y0, and guided by the 
expectation that y0,1 should have a physical meaning related to the source we select this as the 
second assumption, but the reader should be aware of this subtlety. Then, the continuity of φ at 
y = 0 fixes φ1 = φ0. Jump discontinuities are still present in the first derivatives, but there will 
be differences with respect to section 2.

Let us work out the case of an exponential source s(φ) = τeβφ , taking for instance eq. (4.10)
for y > 0 and eq. (4.11) for y < 0 (we need y0 > 0). Matching the discontinuities gives the 
conditions

−1

6

(
y0 − 1

y0

)√
αE = − τ

16
eβφ(0)e− 3

4 φ0e− 1
4 y2

0

√
3

2y0
,

2

(
y0 + 1

y0

)√
αE = βτeβφ(0)e− 3

4 φ0e− 1
4 y2

0

√
3

2y0
.

(4.13)

Hence, the complete coupling to the dilaton is

s(φ) = τ exp

{
3

4

y0 + 1
y0

y0 − 1
y0

φ

}
, (4.14)

with an explicit dependence on the parameter y0, and the tension is given by

τ = 8

3

√
αE

(
y0 − 1

y0

)
exp

{
1

y2
0 − 1

[
−3

2
φ0 − 1

2
y2

0 − log

(
2

3
y0

)]}
. (4.15)

The coupling is not completely fixed by the equations of motion, and the ambiguities arise since 
A′ and φ′ are not proportional. The dilaton potential rules out φ′ ∝ A′ in the equations of motion, 
making the matching non-trivial.

The reader should note how the tension depends on the dilaton zero-mode and on α′. Recall 
that there is a factor of 2α′4 hidden in τ and that, in our conventions, αE ∼ (α′)−1 without powers 
of φ0 (there would be an e−φ0 in the other Einstein frame convention). Hence, in string frame
12
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s(φ) ∼ (α′)−
9
2 e− 3

2 φ0 exp

{
3

4

(
y0 + 1

y0

y0 − 1
y0

− 3

)
(φ − φ0)

}
, (4.16)

which should be compared with (α′)− 9
2 e−φ0e−(φ−φ0), the expression that would apply to BPS D 

branes. The unusual dependence of the tension of φ0 leads us to believe that φ0 may be a measure 
of how many sources are backreacting on the geometry.

The coupling can become proportional to e−φ in the string frame if y0 = 2, but obtaining no 
φ0 dependence in the tension is impossible. Alternatively, one could allow y0 to depend on φ0, so 
as to cancel the φ0 dependence in τ , but then one would be left with a complicated exponential 
coupling to the dilaton from eq. (4.14).

In view of these difficulties, one could be tempted to relax some assumptions that we made, 
in particular not demanding that A1 = A0 (therefore y1 
= y0), while insisting that the tension be 
independent of φ0. Using eq. (4.9) with an exponential coupling, a natural choice is

s(φ) = τe
3
4 φ . (4.17)

However, the jump discontinuities would become inconsistent since they require that y−1
0 +

y−1
1 = 0, while y0,1 > 0 for the solution to exist. Alternatively, the relevant coupling for D branes, 

that is s(φ) = τe
5
4 φ , can be attained by requiring y0 y1 = 4, while allowing a complicated func-

tional form for y0 in terms of φ0.
To summarize the content of this section, the sources that we find in the Dudas-Mourad ori-

entifold vacua have peculiar properties. They rule out a perturbative string origin, although near 
y = 0 neither high curvature nor strong coupling are generically present. The most disturbing 
feature is probably the dependence of the tension on φ0, which calls for a better understanding 
of the role of φ0 in these vacua.

4.3. Remarks on curved manifolds

Let us now turn to the Euclidean equations of motion for the orientifold models, where the 
ansatz becomes eq. (2.13). Since gmn must be the metric on an Einstein manifold, we define 
Rmn = 
9gmn.

The approach that we are about to follow can be summarized by saying that we try to “com-
pensate the tadpole with internal curvature”. This can be done by restricting our ansatz so that9

A = −3

4
φ , (4.18)

which simplifies the equations, turning them into


9 + 2αE = 0 , (φ′)2 = −αE

2
e

3
2 φ+2B . (4.19)

The latter is inconsistent with the sign of the tadpole potential, and therefore a solution of this 
type does not exist.

Interestingly, however, these steps become relevant in a time-dependent setting, where

ds2 = −e2B(t)dt2 + e− 3
2 φ(t)gmn(x)dxmdxn ,

φ = φ(t) .
(4.20)

9 This is an ansatz, and not a gauge choice. In fact, we are not fixing B for the moment.
13
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Some signs change in the equations of motion with respect to the Euclidean case, because of the 
time signature. The two cases differ only in the contributions of αE and 
9, and the solution now 
exists. Summarizing, we have an internal hyperbolic space with 
9 = −2αE and

A = −3

4
φ , (φ′)2 = αE

2
e

3
2 φ+2B . (4.21)

Note that, even before gauge-fixing, the metric can be expressed in terms of φ alone as

ds2 = e− 3
2 φ

[
− 2

αE

(φ′)2dt2 + gmndxmdxn

]
. (4.22)

For instance, in the B = 0 gauge

ds2 = −dt2 +
(

t0 ± 3

4

√
αE

2
t

)2

gmndxmdxn ,

eφ =
(

t0 ± 3

4

√
αE

2
t

)− 4
3

.

(4.23)

4.4. A tale of frames

Working in the Einstein frame is convenient both from a practical perspective, because the 
gravity equations are simpler and more familiar, and from a physical perspective, because the 
Einstein frame metric contains only gravitational degrees of freedom while the dilaton has a 
canonical kinetic term. On the other hand, the equations of motion in string theory arise natu-
rally in string frame. Nevertheless, is the Einstein frame the best option from a computational 
standpoint? In this section, we show that for the ten-dimensional orientifold models another 
frame may be useful.

One can indeed simplify the exponential potential in eq. (4.1) by a change of frame. If gE
MN

is the Einstein-frame metric, letting

gMN = e
3
2 φgE

MN (4.24)

the action takes the form

S =
∫

d10x
√

g e−6φ
[
R + 40(∂φ)2 − 2αE

]
, (4.25)

and the equations of motion, after some simplifications, become

RMN + 6∇M∂Nφ + 4∂Mφ∂Nφ + 2αEgMN = 0 ,

�φ − 6(∂φ)2 − 3αE = 0 .
(4.26)

There are no dilaton exponentials in the tadpole terms of these equations, but the metric equation 
is more complicated than in the Einstein frame. Note, however, that the Ricci scalar is simply

R = −40(∂φ)2 − 38αE . (4.27)

We want to see how the new cosmological solution of section 4.3 and the Dudas-Mourad 
vacua emerge in this framework.

The first of eqs. (4.26) simplifies considerably if Rmn = −2αEgmn, and therefore let us con-
centrate on a product metric with a nine-dimensional gmn and no warp factors, without specifying 
14
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the signature of the remaining direction. The Ricci scalar is then R = −18αE and eq. (4.27) re-
duces to

(∂φ)2 = −1

2
αE . (4.28)

This calls for a time-dependent φ, and we are thus led to

ds2 = −dt2 + gmndxmdxn ,

φ = φ(t) ,
(4.29)

only constrained by eq. (4.28). This is the cosmological solution of section 4.3, here recovered 
in a simpler fashion.

The Dudas-Mourad solution is not as simple, but the final form of the metric is still simpler 
than that in the Einstein frame. Let us choose our coordinates so that B = 0 in eq. (2.2), and 
define the following two combinations

X = 3

2
A − φ , Y = 2A − 5

3
φ , (4.30)

which reduce eqs. (4.26) to

X′′ + 6(X′)2 = 0 , X′Y ′ + αE

12
= 0 . (4.31)

The final expression for the bulk metric and dilaton is

ds2 = e
3
2 φ0(

√
αE y)

10
9 eαEy

2
ημνdxμdxν + dy2 ,

eφ = eφ0(
√

αE y)
2
3 e

3
4 αEy

2
.

(4.32)

This is indeed the Dudas-Mourad solution in this frame, as can be seen by comparing with 
eq. (4.7). We hope to have convinced the reader with these simple examples that our different 
frame choice simplifies computations in the presence of a tadpole potential.

A natural question would be to ask whether this is still true beyond codimension-one cases. 
For instance, as a generalization, one could consider metrics that are fibered over an interval. 
This has been explored recently [37] and, as the reader can verify, many solutions without form 
fluxes in that work take a simpler form in this frame. Unfortunately, eq. (4.24) does not simplify 
terms involving R-R fluxes. In the language of [29,37] the contributions from R-R (p + 2)-form 
field strengths are accompanied by a dilaton exponential

exp

{(
−2βp + 3

2
(p + 1)

)
φ

}
, (4.33)

and no relevant simplifications arise since βp = p−3
4 , both for the USp(32) model and for the 

type 0’B model. Hence, a (p + 2)-forms will carry an e(p+3)φ factor, and solving the equations 
in the presence of the tadpole potential is not any simpler than solving them in the potential-free 
case.

5. Conclusions

In this paper we have studied codimension-one vacua and defects interpolating between them, 
drawing some inspiration from string theory models. These are subjects that are attracting in-
creasing attention in the string literature, in particular due to the Swampland program. Our 
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gravitational analysis may be useful in complementing the works of [24,35,36,38] about end-
of-the-world branes, and consequently those of [39,40], where the aim was to verify Swampland 
conjectures in the models of interest here. One could also consider generalizations of these set-
tings with internal tori, along the lines of [41].

Our investigation of codimension-one sources has not led to conclusive answers, as was to 
be expected, since a full string theory analysis is impossible with present technology. It would 
also be interesting to extend the analysis to T-dual versions of the non-supersymmetric ten-
dimensional strings, even with no local R-R tadpole cancellation, starting from [42,43]. The 
work of [24] is a first step in this direction.

In section 3 we have also found sources that could represent non-supersymmetric deformation 
of D8 branes. Although these objects lack, at present, a proper string theory interpretation, in 
codimension one the equations of motion and the supersymmetry conditions have very similar 
content, which allows some potentially useful steps. In fact, we have extended the work of [22]
for the non-supersymmetric so(16) × so(16) model with a previously unnoticed solution.

While our solutions have a meaning in field theory, it is unclear whether they should be rec-
ognized as physically relevant, in particular because of their unexpected source couplings. The 
idea we want to convey is that our knowledge of the supersymmetric vacua can provide in princi-
ple some insight into models without supersymmetry. In our study, that meant using similarities 
between portions of the so(16) × so(16) effective action and that of massive IIA. This particu-
lar map is lost once one considers more terms, for instance the NS-NS 2-form field, but we are 
currently investigating how to extend the strategy to other models, in particular those of section 4.

Although it is possible to explore the perturbative stability of the new vacua that we have 
found, there is apparently no natural way to address non-perturbative stability. However, some 
simple cases have proved tractable, as in the case of brane nucleation instabilities in vacua with 
R-R fluxes [34]. Similarly, sources of instability like bubbles of nothing [44] could exist for the 
flux-less solutions [45], and the Dudas-Mourad vacuum, while perturbatively stable [23], might 
suffer from non-perturbative instability.10 Further tools to explore solutions in models without 
supersymmetry may provide new strategies to investigate stability, along the lines of [46].
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