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This paper is devoted to the important yet unexplored subject of crowding effects on market impact,
that we call ‘co-impact’. Our analysis is based on a large database of metaorders by institutional
investors in the U.S. equity market. We find that the market chiefly reacts to the net order flow
of ongoing metaorders, without individually distinguishing them. The joint co-impact of multiple
contemporaneous metaorders depends on the total number of metaorders and their mutual sign cor-
relation. Using a simple heuristic model calibrated on data, we reproduce very well the different
regimes of the empirical market impact curves as a function of volume fraction φ: square-root for
large φ, linear for intermediate φ, and a finite intercept I0 when φ → 0. The value of I0 grows with
the sign correlation coefficient. Our study sheds light on an apparent paradox: How can a non-linear
impact law survive in the presence of a large number of simultaneously executed metaorders?

Keywords: Market microstructure; Market impact model; Large trade execution; Institutional
trading activity

JEL Classification: D4, C6

1. Introduction

The market impact of trades, i.e. the change in price con-
ditioned on signed trade size, is a key quantity character-
izing market liquidity and price dynamics (Bouchaud et al.
2009, 2018). Besides being of paramount interest for any eco-
nomic theory of price formation, impact is a major source of
transaction costs, which often makes the difference between a
trading strategy that is profitable, and one that is not. Hence
the interest in this topic is not purely academic in nature.

One of the most surprising empirical findings in the last
25 years is the fact that the impact of a so-called ‘metaorder’
of total size Q, executed incrementally over time, increases
approximately as the square root of Q, and not linearly in Q,
as one may have naively expected and as indeed predicted
by the now-classic Kyle model (Kyle 1985). Since impact
is non-additive, a natural question concerns the interaction

*Corresponding author. Email: frederic.bucci@sns.it

of different metaorders executed simultaneously—possibly
with different signs and sizes. In particular, one may won-
der whether the simultaneous impact of different metaorders
could substantially alter the square root law; or conversely
whether the square root law might itself result from the
interaction of different metaorders.

Metaorder information is, however, not publicly available,
and earlier analyses were mostly based on (often propri-
etary) data from single financial institutions. These studies
give little insight about effects due to the simultaneous exe-
cution of metaorders from different investors, which we will
call co-impact hereafter. Indeed, even if investors individu-
ally decide about their metaorders, they might do so based
on the same trading signal. Prices can thus be affected by
emergent effects such as crowding. What is the right way to
model the total market impact of simultaneous metaorders
on the same asset on the same day? In order to answer
this question, we will use a rich dataset concerning the
execution of metaorders issued by a heterogeneous set of
investors.

© 2019 Informa UK Limited, trading as Taylor & Francis Group
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Figure 1. (Left panel) Empirical probability distribution of the number N of daily metaorders per asset. (Right panel) Empirical probability
distribution of the absolute value of the volume fraction φ per metaorder, separately for signs ±1, i.e. buy/sell.

The paper is organized as follows. In Section 2 we intro-
duce the ANcerno dataset we used empirically. In Section 3
we discuss the limits of the validity of the square root law on
the daily level. In Section 4 we find that the market impact
of simultaneous daily metaorders is proportional to the square
root of their net order flow. This means that the market does
not distinguish the different individual metaorders. We then
construct a theoretical framework to understand the impact of
correlated metaorders in Section 5. This allows us to under-
stand when a single asset manager will observe a square-root
impact law, and when crowding effects will lead to deviations
from such a behavior. We also compare in Section 5 the results
of our simple mathematical model with empirical data, with
very satisfactory results. Section 6 concludes.

2. The ANcerno database

Our analysis relies on a database made available by ANcerno,
a leading transaction-cost analysis provider.† The unique
advantage of working with such institutional data is that one
can simultaneously analyze the trading of many investors. The
main caveat though is that one has little knowledge about the
motives and style behind the observed portfolio transitions.
For example, a given metaorder can be part of a longer exe-
cution over multiple days. Another possibility is that the final
investor may decide to stop a metaorder execution midway if
prices move unfavorably. Such effects can potentially bias our
results, but we believe that they do not change the qualitative
conclusions below.

In the following, we will define as a metaorder a series
of jointly reported executions performed by a single investor,
through a single broker within a single day, on a given stock
and in a given direction (buy/sell). However, contrarily to
the version of the database used in Zarinelli et al. (2015),
available labels do not allow us to relate different metaorders
executed on behalf of the same final investor by the same or
different brokers during the same day. These should ideally

† ANcerno Ltd. (formerly the Abel Noser Corporation) is a widely
recognized consulting firm that works with institutional investors
to monitor their equity trading costs. Its clients include many pen-
sion funds and asset managers. Previous academic studies that use
ANcerno data include (Chemmanur et al. 2009, Goldstein et al.
2009, 2011, Puckett and Yan 2011, Busse et al. 2012, Zarinelli et al.
2015, Busse et al. 2016, Chakrabarty et al. 2017, Jame 2017). See
www.ancerno.com for details.

be counted as a single metaorder. We will comment later
on the biases induced by such a lack of information. Thus
each metaorder is characterized by a broker label, the stock
symbol, the total volume of the metaorder |Q| and its sign
ε = ±1, and the start time ts and the end time te of the
execution.

Our dataset includes the period January 2007 – June 2010
for a total of 880 trading days. Following the procedure intro-
duced in Zarinelli et al. (2015) we use the following filters to
remove possibly erroneous data:

• Filter 1: We select the stocks which belong to the
Russell 3000 index discarding metaorders executed
on highly illiquid stocks.

• Filter 2: We select metaorders ending before 4:01
p.m.

• Filter 3: We select metaorders whose duration T =
te − ts is longer than 2 mins.

• Filter 4: We select metaorders whose participation
rate (the ratio between their quantity and the vol-
ume traded by the market between ts and te) is
smaller than 30%.

Finally, we retain around 7.7 million metaorders distributed
quite uniformly in time and across market capitalizations.
These filtered metaorders represent around the 5% of the
total reported market volume independently of the year and
of the stock capitalization.‡§ The statistical properties of the
metaorders, in terms of volume fraction, duration, etc., are
broadly in line with (Zarinelli et al. 2015) even though their
data was aggregated at the level of brokers (not shown). A
particularly important statistic for the following analyses is
the number N of simultaneous metaorders in the database,
executed on the same stock during the same day. The prob-
ability distribution p(N) is shown in the left panel figure 1,
indicating that N is broadly distributed with an average
close to 5.

The right panel of figure 1 shows the probability distribu-
tion of the absolute value of the volume fraction φ of the

‡ Without the above filters, this number would rise to about 10%.
Although we believe that the 90% of missing volume is not ‘noise’,
the ANcerno database is representative of the full set of metaorders.
In fact, many of the results discussed below are quantitatively sim-
ilar to those observed on much smaller datasets, such as the CFM
database of executed metaorders.
§ We checked that the results discussed in the present work are still
valid independently of the use of Filter 3 and Filter 4.
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metaorders. This variable plays a key role in the following
and is defined as φ := Q/V where V is the total daily market
volume averaged over the 25 days before the day in which φ

is computed. The figure shows that the volume fraction dis-
tribution is independent of the metaorder side (sign(φ) = ±1,
i.e. buy or sell) and is also very broad.

3. The square root law and its domain of validity

We will quantify market impact in terms of the rescaled log-
price s = log(S)/σ , where S is the market mid-price and σ

is the daily volatility averaged over the 25 days before S is
measured. Daily volatility at day d is estimated as (Shigh,d −
Slow,d)/Sopen,d , a simple metric based on the high, low and
open prices of the day d. In this paper we will define impact
as the expected change of s between the open and the close
of the day. This choice will avoid an elaborate analysis of
when precisely each metaorder starts and ends, how they over-
lap and which reference prices to take in each case. When a
metaorder of total volume Q is executed, its impact will be
defined as

I(φ) := E[sclose − sopen|φ], (1)

for a given metaorder signed volume fraction φ.
Empirically, impact is found to be an odd function of φ,

displaying a concave behavior in |φ|. It is well described
by the square root law (Torre and Ferrari 1998, Almgren
et al. 2005, Moro et al. 2009, Tóth et al. 2011, Engle et al.
2012, Mastromatteo et al. 2014, Bacry et al. 2015, Brokmann
et al. 2015)

I(φ) = Y × φ•δ , (2)

where here and throughout the paper we will denote the sign-
power operation by x•δ := sign(x) × |x|δ . The dimensionless
coefficient Y (called the Y-ratio) is of order unity and the
exponent δ is in the range 0.4–0.7. It is interesting to note that
in equation (2) only the volume fraction φ matters, the time
taken to complete execution or the presence of other active
metaorders is not directly relevant (remember that the volatil-
ity of the instrument has been subsumed in the definition of
the rescaled price s). This formula is surprisingly universal
across financial products, market venues, time periods and the
strategies used for execution.

We first check again this empirical result on our dataset.
In figure 2 we show the market impact curve obtained by
dividing the data into evenly populated bins according to the
volume fraction φ and computing the conditional expecta-
tion of impact for each bin. Here and in the following, error
bars are determined as standard errors. Note that in all the
following empirical plots the price impact curves are normal-
ized by their Y-ratio and we will abuse the notation I(φ) in
order to denote the symmetrized measure I(φ) = E[ε(sclose −
sopen)||φ|], with ε = sign(φ), due to the antisymmetric nature
of I(φ).

While the square root law holds relatively well when
10−3 � φ � 100, two other regimes seem to be present:

(1) For very small volume fractions up to φ � 10−4,
impact appears to saturate to a finite, positive value.

Figure 2. Market impact curve I(φ) = E[sclose − sopen|φ] as a func-
tion of the metaorder size ratio φ = Q/V computed using the filtered
metaorders from the ANcerno dataset in the period from January
2007 – June 2010. We also show the simple fit I(φ) = A

√
φ + B,

which captures some—but not all—of the discrepancy with the
square root law at small φ.

(2) In the intermediate regime 10−4 � φ � 10−3, impact
is closer to a linear function, although the data is very
noisy.

These results are robust across time periods and market capi-
talizations, and consistent with (Zarinelli et al. 2015), where
regimes 1. and 2. were also clearly observed. In the follow-
ing we will seek to understand these three regimes within a
consistent mathematical framework.

Intuitively, the breakdown of the square root law for small
φ comes from the fact that the signs of the metaorders
in our dataset are correlated—particularly so because some
metaorders are originating from the same final investor.
Let us illustrate the effect of correlations on a simplistic
example: Imagine that simultaneously to the considered buy
metaorder (with volume fraction φ > 0), another metaorder
with the same sign and volume fraction φm > 0 is also traded.
Assuming that the square root law applies for the combined
metaorder (a hypothesis that we will confirm on data), the
observed impact should read

I(φ + φm) = Y ×
√

φ + φm. (3)

This tends to the value Y
√

φm when φ → 0, behaves linearly
when φ � φm and as a square root when φ � φm. We show
in figure 2 that this simple fit captures some, but not all, of
the discrepancy with the square root law at small φ. In partic-
ular the intermediate linear region is not well accounted for.
We will develop in the following a mathematical model that
reproduces all these effects.

A way to minimize the effect of correlations is to restrict to
days/assets where there is a unique metaorder in the dataset
(N = 1). As shown in figure 3, impact in this case is almost
perfectly fitted by a square root law. Figure 3, also shows that
as N increases, significant departures from the square root
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Figure 3. Empirical evidence on the effect of the number of
metaorders N on the daily price impact curves IN (φ) normalized
by the prefactor Y-ratio: significant departures from the square root
law can be observed for small φ increasing the number N of daily
metaorders per asset.

law can be observed for small φ, as suggested by our sim-
ple model equation (3). An alert reader may however object
that the ANcerno database represents a small fraction (∼ 5%)
of the total volume. Even when a single metaorder is reported,
many other metaorders are likely to be simultaneously present
in the market. So why does one observe a square root law at
all, even for single metaorders? The solution to precisely this
paradox is one of the main messages of our paper.

4. How do impacts add up?

In the previous section, we showed that the number of
metaorders in the market strongly influences how price impact
behaves, but we have yet to provide insight into why this
is the case. As a first step, we want to determine an explicit
functional form of the aggregated market impact of N simul-
taneous metaorders. As we have emphasized, impact is non-
linear, so aggregation is a priori non-trivial. Should one add
the square root impact of each metaorder, or should one first
add the signed volume fractions before taking the square root?
Since orders are anonymous and indistinguishable, the sec-
ond procedure looks more plausible. This is what we test
now. Consider the average aggregate impact conditioned to
the co-execution of N metaorders:

I(ϕN ) = E[sclose − sopen|ϕN ], (4)

where ϕN := (φ1, . . . , φN ). We make the following paramet-
ric ansatz for this quantity:

I(ϕN ) = Y ×
(

N∑
i=1

φ•α
i

)•δ/α

, (5)

Figure 4. The computed coefficient of determination r2(α, δ) of the
least squares regressions of equation (5) for a grid of (α, δ) pairs.
The coefficient of determination is maximized (r2 = 0.0035) in the
vicinity of the point α = 1.0 and δ = 0.5.

where, again, x•α is the signed power of x. By construction
this formula is invariant under the permutation of metaorders,
as it should be since they are indistinguishable. Y and δ set,
respectively, the scale and the exponent of the impact func-
tion. The free parameter α interpolates between the case when
impacts add up (α = δ) and when only the net traded volume
is relevant (α = 1).

Figure 4 shows the quality of the fit obtained by least
squares regressions of equation (5) for a grid of (α, δ) pairs.
We find that the coefficient of determination r2(α, δ) of the
fit is maximized close to the point α = 1.0 and δ = 0.5,
which suggests that the aggregated price impact I(ϕN ) of N
metaorders at the daily scale only depends on the total net
order flow, i.e.†

I(ϕN ) ≈ Y × �•1/2, (6)

where � =∑N
i=1 φi. In other words, the market only reacts to

the net order flow, not to the way in which this order flow is
distributed across investors.

One can now plot I(�) as a function of � for various N,
see figure 5. One clearly sees that when normalized by the cor-
responding average 〈σ/

√
V 〉N (conditioned on the same range

of N), impact is independent of N and crosses over from lin-
ear to square root behavior as � increases. We now turn to
a theoretical analysis that will allow us to quantify more pre-
cisely the co-impact problem, and how the square root law can
survive at large N.

5. Correlated metaorders and co-impact

5.1. The mathematical problem

Even if an asset manager knows the average impact for-
mula equation (6), this may not be sufficient to estimate his

† We have in fact tested that the assumption α = 1 is also favored for
a general, non parametric shape for the impact function I(�).
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Figure 5. Global market impact I(�) = E[I(ϕN )|∑N
i=1 φi = �]

normalized by the average 〈σ/
√

V 〉N conditioned on the same range
of N, and symmetrized as explained in Section 3.

actual impact which depends strongly on the presence of other
contemporaneous metaorders.

Suppose the manager k wants to execute a volume frac-
tion φk = φ. If all the other N − 1 metaorders were known,
the daily price impact would be given by the global impact
function I(�) determined in the previous section, with � =
φk +∑N

i�=k φi.
However, this information is obviously not available to the

manager k. His best estimate of the average impact given N is
the conditional expectation

IN (φ) = E[I(�)|φk = φ] = E

[
I
(
φk +

N∑
i�=k

φi

)∣∣∣φk = φ
]
(7)

over the conditional distribution P(ϕN |φk = φ) of the
metaorders. Since the number of metaorders is in general not
known either, the expected individual market impact is given
by

I(φ) = Y ×
∑

N

p(N)

∫
dφ1 . . . dφN P(ϕN |φk = φ)

×
(
φk +

N∑
i�=k

φi

)•1/2
, (8)

where we have used equation (6). In such a way to compute
IN (φ) and I(φ) we need to know the joint probability den-
sity function P(ϕN ) := P(φ1, . . . , φN ), which is in general a
complicated and high-dimensional object. Then to create a
tractable model that can be calibrated on data, we must make
some reasonable assumption on the dependence structure of
the φi. In the next subsection we investigate the simple case
where the φi are all independent, and then turn to an empirical
characterization of the correlations between metaorders. We
finally provide the results of our empirically inspired model
and compare them with the empirical market impact curves.

5.2. Independent metaorders

The simplest assumption about the form of P(ϕN ) is that
metaorder volumes are i.i.d., meaning

P(ϕN ) =
N∏

i=1

p(φi). (9)

Assuming for simplicity that each φi is a Gaussian random
variable with zero mean and variance �2

N , where the lower
index indicates an explicit dependence on N. Thus N − 1
simultaneous metaorders generate a Gaussian noise contribu-
tion of amplitude �N

√
N − 1 on top of φk = φ. In appendix

A.1.1 we show analytically that:

• For small metaorders the noise term dominates,
leading to

IN (φ) ∝ φ when φ � φ∗
N := �N

√
N − 1.

• For large metaorders the N − 1 other simultaneous
metaorders can be neglected and thus

IN (φ) ∝
√

φ when φ � φ∗
N .

In appendix A.1.2 we show that the above results remain
valid in the limit of large N independently of the shape of the
volume distribution provided its variance is finite.

The full analytical solutions for different N values, but
fixed �N = �, are shown in the left panel of figure 6. One
clearly sees the cross-over from a linear behavior at small
φ to a square root at larger φ. However, interestingly, one
expects �N to decrease with N, simply because as the num-
ber of metaorders increases, the volume fraction represented
by each of them must decrease.† As shown in the right panel
of figure 6, this is the case empirically since for N � 10,
�N indeed decays as N−1 (as also suggested in figure 7).
Hence, for large N, the crossover value φ∗

N decreases with N
as N−1/2. This explains why the square root law can at all
be observed when a large number of metaorders are present.
If these metaorders are independent, their net impact on the
price averages out, leaving the considered metaorder as if it
was alone in a random flow, as assumed in theoretical models
(Tóth et al. 2011, Mastromatteo et al. 2014). We now turn to
the effect of correlations between metaorders.

5.3. Metaorder correlations

In order to build a sensible model of P(ϕN ) we con-
sider separately the size distribution and the size cross-
correlations. From the right panel of figure 1 we observe
that the marginals p(φi) are to a good approximation
independent of the direction, buy or sell, and moder-
ately fat tailed. The latter observation suggests that the
total net order flow � =∑N

i=1 φi is not dominated by
a single metaorder. A way to quantify this is through
the Herfindahl index (or ‘inverse participation ratio’) ζ ,

† For example, the variance of a flat Dirichlet random vari-
able (X1, . . . , XN ) ∼ Dir(N) describing fractions is V[Xi|N] = (N −
1)/(N2(N + 1)) ∼ N−2.
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Figure 6. (Left panel) Market impact curves IN (φ)/Y for i.i.d. Gaussian metaorders for different N ∈ {2, 10, 30, 60} and fixed
�N = � = 0.8% computed from empirical data. The transition from the square root to the linear regime takes place for φ∗

N � �
√

N − 1.
(Right panel) Empirically estimated φ∗

N as a function of the number N of daily metaorders per asset. This is obtained by computing the
empirical order size’s standard deviation �N = √

V[φ|N] conditioned to N. The dashed red line shows the case in which �N ∼ 1/N for each
N : in the inset we report the standard deviation �N of the order size φ as a function of the number N of daily metaorders per asset.

Figure 7. Average value of the Herfindahl index (or ‘inverse par-
ticipation ratio’) E[ζ |N] as a function of the number N of daily
metaorders per asset computed from the empirical data (blue dot
symbols) and simulating i.i.d. |φi| (red star symbols) extracted from
the empirical distribution illustrated in the right panel of figure 1.

defined as:

ζ :=
∑N

i=1 φ2
i(∑N

i=1 |φi|
)2 . (10)

This quantity is of order 1/N if all metaorders are of com-
parable size, and of order 1 if one metaorder dominates. In
figure 7 we show the dependence of E[ζ |N] as a function of
N, which clearly decays with N. It also compares very well
to the result obtained assuming the absolute volume fractions
|φi| to be independent, identically distributed variables, drawn
according to the empirical distribution shown in figure 1.
We therefore conclude that (a) metaorders in the ANcerno
database are typically of comparable relative sizes φ and (b)
absolute volume correlations do not play a major role, and we
will neglect them henceforth.

Sign correlations, on the other hand, do play an important
role in determining the impact of simultaneous metaorders.

Figure 8. Empirical average sign correlation Cε(N) as a function of
the number N of daily metaorders: the dashed red line represents the
plateau value Cε ≈ 0.025 at large N, which, we believe, is a reason-
able proxy for the correlation of orders submitted by different asset
managers.

The empirical average sign correlation of metaorders simulta-
neously executed on the same asset is defined as

Cε(N) := E[εiεj|N] − E[εi|N]2

E[ε2
i |N] − E[εi|N]2

, (11)

where E[· · · |N] is the average over all days and assets such
that exactly N metaorders were executed. Figure 8 shows
the dependence of Cε on N. We clearly see that on average
the daily metaorders executed on the same asset are posi-
tively correlated. Furthermore, Cε(N) is seen to decrease as
N increases. This is likely due to the fact that there are multi-
ple concurrent metaorders submitted by the same manager,
an effect that becomes less prominent as N increases. The
plateau value Cε ≈ 0.025 at large N is, we believe, a reason-
able proxy for the correlation of orders submitted by different
asset managers.†

† This value is indeed compatible with the value of Cε obtained with
the version of the database used by Zarinelli et al. (2015), which
identified metaorders coming from the same investor.
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5.4. Market impact with correlated metaorders

A natural model would be to consider the φi’s as exchangeable
multivariate Gaussian variables of zero mean, variance �2

N
and cross-correlation coefficient Cφ(N). Appendix A.2 shows
that the qualitative behavior for independent metaorders
remains the same when Cφ(N) > 0. Specifically, one finds
that the average impact IN (φ) can be obtained by making the
substitution

φ → φ[1 + (N − 1)Cφ(N)] (12)

in the expression of IN (φ) for independent Gaussian. This
is expected, as (N − 1)Cφ(N) gives the effective number
of additional volume-weighted metaorders correlated to the
original one. By the same token though, IN (φ) still van-
ishes linearly for small φ, whereas empirical data suggests a
positive intercept when φ → 0.

As an alternative model that emphasizes sign-correlations,
let us assume that the joint distribution of the φi’s can be
written as

P(ϕN ) = P(εN )

N∏
i=1

p(|φi|), (13)

meaning that metaorder sizes are independent, while the signs
are possibly correlated. This specific form is motivated by the
observation that the size of a metaorder is mainly related to
the assets under management of the corresponding financial
institution, while the sign is related to the trading signal. One
can expect that different investors use correlated information
sources, while the size of the trades is idiosyncratic.

We further assume that there is a unique common factor
determining the sign of the metaorders. In other words, the
statistical model for the signs is the following:

P(εi = +1|ε̃) = 1

2
(1 + γεε̃);

P(εi = −1|ε̃) = 1

2
(1 − γεε̃), (14)

where ε̃ is the hidden sign factor, such that P(ε̃ = ±1) = 1/2,
and γε is the sign correlation between each sign εi and the

hidden sign factor ε̃. A simple calculation leads to

Cε(N) = P(εi = εj) − P(εi = −εj) = γ 2
ε , (15)

where we omitted the γε’s explicit dependence on N. Con-
trarily to the Gaussian case, we have not been able to obtain
analytical formulas, but instead relied on numerical simula-
tions to obtain IN (φ) for different combinations of Cε(N)

and N, reported in figure 9. Results for unsigned volumes
generated from a half-normal distribution calibrated on data
are shown in figure 9. We observe that the individual price
impact IN (φ) converges to a positive constant IN (0) > 0 when
φ → 0, despite IN (0) = 0 for a Gaussian model. For interme-
diate φ, IN (φ) is linear and it crosses over at larger φ to a
square root. For fixed N the intercept value increases with
the sign correlation Cε , see the right panel of figure 9. The
intuition is that conditioned to the fact that I buy, and inde-
pendently of the size of my trade, the order flow of other
actors will be biased towards buy as well, and I will suffer
from the impact of their trades. In fact, subtracting the non-
zero intercept of IN (φ) leads to impact curves that look almost
identical to those of figure 6, i.e. a linear region for small φ

followed by a square root region beyond a crossover value
φ∗

N ∼ �N
√

N − 1. Since for large N φ∗
N → 0, one simply

expects a square-root law, shifted by the intercept IN (0).

5.5. Empirical calibration of the model

With the aim to compare the model prediction with empirical
data, we propose a calibration method described in appendix
A.4.1. This is based on the assumption that metaorder signs
are independent random variables sampled from a half-
Gaussian calibrated on empirical data. The metaorder sign
correlation structure can be estimated by introducing a real-
ized sign correlation

ρε := 2

N(N − 1)

∑
1≤i<j≤N

εiεj, (16)

Figure 9. Market impact curves IN (φ)/Y computed for the correlated signs model, where volumes are drawn according to a half-normal
distribution with E[|φi|] = �

√
2/π and � = 0.8% is set equal to its empirical value averaged over N. (Left panel) Numerical simulations

for fixed sign correlation Cε = 0.01 but varying number of metaorders N ∈ {5, 10, 30, 100}. (Right panel) Numerical simulations for fixed
number of metaorders N = 5 but with varying sign correlation Cε ∈ {0.01, 0.05, 0.1, 0.5}: as shown in the inset the intercept IN (0)/Y
decreases linearly with the sign correlation for Cε → 0. Note that the individual price impact IN (φ) values converges to a positive constant
when φ → 0. For intermediate φ, IN (φ) is linear and crosses-over at larger φ to a square root.
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Figure 10. Comparison between calibrated sign-correlated model
(colored lines) and empirical data (circles) for the case N ∈ [2, 10]:
The sample is split into two sub-samples respectively with ρε ≥ 0.05
and 0 ≤ |ρε | ≤ 0.05. The theoretical curves are calculated through
numerical simulations as explained in the main text (see appendix
A.4.1 for all the details of the procedure).

which is then used to estimate the sign correlation Cε(N) of
equation (15). Once the model is calibrated, we use numer-
ical simulations to compute the expected market impact
I(φ), see appendix A.4.1 for the precise details of the
procedure.

Figure 10 shows that imposing correlation only between
the signs leads to a very good prediction of the empirical
curves, justifying the adoption of the sign correlated model.
All the features of the empirical impact curves are qualita-
tively well reproduced, in line with figure 2. This includes
the clear deviations from the square root law for φ ≤ 10−3

with both a linear regime and a constant price impact I0 when
φ → 0.

6. Conclusions

It is a commonly acknowledged fact that market prices move
during the execution of a trade—they increase (on average)
for a buy order and decrease (on average) for a sell order.
This is, loosely stated, the phenomenon known as market
impact. In this paper, we have presented one of the first
studies breaking down market impact of metaorders exe-
cuted by different investors, and taking into account inter-
action/correlation effects. We investigated how to aggregate
the impact of individual actors in order to best explain the
daily price moves. The large number and heterogeneity of
the metaorders traded by financial institutions allows pre-
cise measurements of price impact in different conditions
with reduced uncertainty. We found that both the number of
actors simultaneously trading on a stock and the crowded-
ness of their trade (measured by the correlation of metaorder
signs) are important factors determining the impact of a given
metaorder.

Our main conclusions are as follows:

• The market chiefly reacts to the total net order flow
of ongoing metaorders, the functional form being
well approximated by a square root at least in a
range of volume fraction φ. As expected in anony-
mous markets, impact is insensitive to the way
order flow is distributed across different investors.

• The number N of executed metaorders and their
mutual sign correlations Cε are relevant parame-
ters when an investor wants to precisely estimate
the market impact of their own metaorders.

• Using a simple heuristic model calibrated on data,
we are able to reproduce to a good level of precision
the different regimes of the empirical market impact
curves, as a function of φ, N and Cε .

• When the number of metaorders is not large, and
when Cε > 0, a small investor will observe linear
impact with a non-zero intercept I0, crossing over
to a square-root law at larger φ. I0 grows with Cε

and can be interpreted as the average impact of all
other metaorders.

• When the number of metaorders is very large and
the investor has no correlation with their aver-
age sign, they should expect on a given day a
square-root impact randomly shifted upwards or
downwards by I0. Averaged over all days, a pure
square-root law emerges, which explains why such
behavior has been reported in many empirical
papers.

On the last point, we believe that our study sheds light on
an apparent paradox: How can a non-linear impact law sur-
vive in the presence of a large number of simultaneously
executed metaorders? As we have seen, the reason is that
for a metaorder uncorrelated with the rest of the market,
the impacts of other metaorders cancel out on average. Con-
versely, any intercept of the impact law can be interpreted as
a non-zero correlation with the rest of the market.

Given the importance of the subject, our results present
several interesting applications. Our aggregated price impact
model should be of interest both to practitioners trying to
monitor and reduce their trading costs, and also to regulators
that seek to improve the stability of markets.
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A. Appendix 1. From the bare to the market impact
function.

The expected individual market impact of a metaorder with signed
volume φ is estimated by

I(φ) =
∑

N

p(N)IN (φ), (A1)

where p(N) is the probability distribution of the daily number N of
metaorders per asset and

IN (φ) = E[I(ϕN )|φk = φ] =
∫

dφ1 · · · dφN P(ϕN |φk = φ)

×
⎛
⎝φk +

N∑
i�=k

φi

⎞
⎠•1/2

(A2)

is the market impact computed from the bare impact function
I(ϕN ) := (

∑N
i=1 φi)

•1/2 with fixed N. Assuming that p(N) is known
a priori the market impact IN (φ) is given from the expectation
in equation (A2) done over the conditional probability distribu-
tion P(ϕN |φk = φ) of the volume metaorders. However, in such
a way to do analytical computation it is necessary to assume rea-
sonable hypothesis for the joint distribution function P(ϕN ) :=
P(φ1, . . . , φN ).

For this reason, we start considering the case of i.i.d. metaorders
and we firstly show analytically how the transition from the square
root to a linear market impact is possible in the i.i.d. Gaussian frame-
work. Secondly, we generalize these results in the limit of large N
for any symmetric volume distribution which satisfies the Central
Limit Theorem assumptions. Thirdly, we show that the same results
continue to be valid introducing correlation between the signed
volumes in a Gaussian framework. For last, we describe how to com-
pute numerically the market impact in equation (A2) in the case of
metaorder signs correlated and i.i.d. unsigned volumes.

A.1. Market impact with i.i.d. metaorders.

In the case of i.i.d. signed metaorders, the conditional joint distribu-
tion factorizes as

P(ϕN |φk = φ) =
N∏

i�=k

p(φi); (A3)

this implies that the price impact IN (φ) of a single metaorder φk = φ
out of N is given by

IN (φ) =
∫

dφm
1

2π

∫
dλe−iλφm p̂(λ)N−1

︸ ︷︷ ︸
p(φm)

(φ + φm)•1/2

=
∫

dφmp(φm)(φ + φm)•1/2, (A4)

where φm =∑N
i�=k φi is the net order flow executed simultaneously

to the metaorder φk and p̂(λ) = E[eiλφi ] is the characteristic function

https://www.ilpost.it/wp-content/uploads/2016/12/mutual-fund-transaction-costs-SSRN-id2350583-1.pdf
https://www.ilpost.it/wp-content/uploads/2016/12/mutual-fund-transaction-costs-SSRN-id2350583-1.pdf
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of the signed volume distribution p(φi). Although the introduction of
the characteristic function p̂(λ) in equation (A4) will be a convenient
way to exploit the convergence of the net order flow distribution
p(φm) as discussed in appendix A.1.2, the computation of the market
impact IN (φ) in a analytical closed form is possible only in the
Gaussian case as shown in the next appendix A.1.1.

A.1.1. Independent Gaussian metaorders. In the Gaussian
case, i.e. p(φi) ∼ N (0, �2

N ) with �2
N = V[φi|N], we can go fur-

ther analytically in equation (A4) since p̂(λ) = e−�2
N λ2/2. In fact the

integral representation of the price impact

IN (φ) = 1

�N
√

2π(N − 1)

∫ ∞

−∞
dφme−φ2

m/(2�2
N (N−1))(φ + φm)•1/2

= 1

�N
√

2π(N − 1)

∫ ∞

0
dx

√
x
[
e−(x−φ)2/(2�2

N (N−1))

− e−(x+φ)2/(2�2
N (N−1))

]
(A5)

can be expressed in the following analytical way:

IN (φ) = �(1/4)

2
√

π

φ

(2(N − 1)�2
N )1/4

e
− φ2

2(N−1)�2
N 1F1

×
(

5

4
,

3

2
,

φ2

2(N − 1)�2
N

)
, (A6)

where �(z) = ∫∞
0 xz−1e−xdx is the Gamma function and

1F1

(
5

4
,

3

2
, z

)
= �( 3

2 )

�( 5
4 )

∞∑
j=0

�( 5
4 + j)

�( 3
2 + j)

zj

j!
(A7)

is the Kummer confluent hypergeometric function with z =
φ2/(2(N − 1)�2

N ) (Wolfram and Dubois 1991).
The price impact IN (φ) in equation (A6) is shown in the left

panel of figure 6 for different N and the parameter �N fixed. If
the metaorder volume φ is smaller than the sum of the other N − 1
metaorders, i.e. φ � φm, then price impact is linear. Instead, when
our metaorder dominates, i.e. φ � φm, the price impact follows a
square root function. The transition from the linear to the square root
regime takes place around φ∗

N � �N
√

N − 1, where �N
√

N − 1 is
naturally interpreted as a measure for the market noise, in agreement
with the change of the functional shape of the rescaled market impact
function y(φ̃) = IN (φ)/((N − 1)�2

N )1/4 represented in figure 1 in
function of the adimensional parameter φ̃ := φ/(

√
N − 1�N ). To

note furthermore that the linear regime comes out immediately from
the expansion of IN (φ) in equation (A6) around φ = 0 as follows:

IN (φ) = 1

�N
√

2π(N − 1)

∫ ∞

0
dx

√
xe−x2/(2�2

N (N−1))

×
[
e−(φ2−2xφ)/(2�2

N (N−1)) − e−(φ2+2xφ)/(2�2
N (N−1))

]
�

�
√

2

π

φ

(�2
N (N − 1))3/2

∫ ∞

0
dxx3/2e−x2/(2�2

N (N−1))

= 23/4 �(5/4)

(π2�2
N (N − 1))1/4

φ. (A8)

Remark 1 It follows that for i.i.d. Gaussian metaorders the slope of
the linear price impact region decreases with N (as shown explicitly
in equation (A8)) and the crossover to the square root region happens
in φ∗

N obtained by solving

ξ
φ∗

N

(�2
N (N − 1))1/4

� (φ∗
N )1/2, (A9)

i.e. φ∗
N � ξ−1�N

√
N − 1 with ξ = 23/4�(5/4)/

√
π .

A.1.2. Limit of large N for generally distributed indepen-
dent metaorders. The previous conclusions discussed in the i.i.d.
Gaussian framework are also valid for others i.i.d. volume distribu-
tions as discussed in this appendix: in fact, we can generalize them
in the limit of large N for any symmetric volume distribution p(φi)
which satisfies the Central Limit Theorem assumptions.

In the limit of large N, for which the Central Limit Theorem
applied if certain conditions (discussed below) on p(φi) are sat-
isfied, the symmetric volume distribution p(φm) introduced in
equation (A4) converges to a stable law Gα described by a charac-
teristic function

p̂(λ) = E[eiλφm ] = e−c|λ|α , (A10)

where c ∈ (0, ∞) is the scale parameter and α ∈ (0, 2] is the stability
exponent. In other words we say that the volume distribution p(φi)
belongs to the domain of attraction of the stable distribution Gα if
there exist constants am ∈ R, bm > 0 such that

b−1
m (φm − am) → Gα , (A11)

i.e. the renormalized and recentred sum φm =∑N
i�=k φi converges

in distribution to Gα . The Central Limit Theorem gives the condi-
tions such that this convergence in distribution to a stable law Gα is
guaranteed:

• p(φm) converges to a Gaussian distribution (α = 2 in
equation (A10)) if and only if∫

|φi|≤x
φ2

i p(φi)dφi (A12)

is a slowly varying function L(x), i.e. limx→∞L(tx)/
L(x) = 1 for all t > 0; then it follows that if �2

N =
V[φi|N] < ∞

((N − 1)1/2�N )−1φm −→ N (0, 1), (A13)

while if V[φi|N] = ∞
((N − 1)1/2L1)

−1φm −→ N (0, 1) (A14)

with L1 a slowly varying function and N (0, 1) a Gaussian
distribution with mean zero and variance 1.

• p(φm) converges to a Lévy distribution (for some α < 2
in equation (A10)) if and only if∫ −x

−∞
p(φi)dφi = c1 + o(1)

xα
L(x), 1 −

∫ x

−∞
p(φi)dφi

= c2 + o(1)

xα
L(x), x → ∞, (A15)

where L(x) is a slowly varying function and c1, c2 are
non-negative constants such that c1 + c2 > 0; then it
follows that

((N − 1)1/αL2)
−1φm −→ L(c, α) (A16)

with L2 a slowly varying function and L(c, α) a Lévy
distribution with scale parameter c ∈ (0, ∞) and stability
exponent α ∈ (0, 2).

Remark 2 It follows immediately that for any volume distributions
p(φi) belonging to the domain of attraction of the normal law, i.e.
satisfying the condition in equation (A12), the price impact IN (φ) in
the limit of large N is described by equation (A6) and the transition
from a linear to a square root price impact discussed in the Remark 1
continue to be valid: to note that in the case of V[φi|N] = ∞ it is suf-
ficient to substitute �N in equation (A9) with the appropriate slowly
varying function L1.

Moreover we can show that the transition from a linear to a
square root regime is still present for volume distributions p(φi)
belonging to the domain of attraction of the Lévy distribution, i.e.
that satisfy the condition in equation (A15) with α < 2 and then
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p(φm) → L(c(N − 1)1/α , α). In fact, expanding to first order the
bare impact function I(φ, φm) = (φ + φm)•1/2 around φ = 0 in
equation (A4)

IN (φ) � φ

2

∫
dφmp(φm)|φm|−1/2

= φ

4π

∫
dλp̂(λ)

∫
dφme−iλφm |φm|−1/2, (A17)

introducing the characteristic function of the net order flow φm given
by

p̂(λ) = e−c(N−1)1/α |λ|α (A18)

for large N and taking present that the last integral in equation (A17)
is a known Fourier transform

∫ +∞

−∞
dφme−iλφm |φm|−1/2 =

√
2π

|λ|1/2 (A19)

we obtain a linear price impact

IN (φ) � φ

2
√

2π

∫ +∞

−∞
p̂(λ)|λ|−1/2dλ. (A20)

Though it is not possible to analytically compute the last integral,
its behavior for large N is known using the saddle point approxima-
tion or Perron’s method: since all the conditions of the theorem at
page 105 of Roderick (2001) are satisfied, one can approximate the
integral in equation (A20) as follows:

∫ +∞

−∞
p̂(λ)|λ|−1/2dλ ∼ �

(
1

2α

)
1

αc1/(2α)(N − 1)1/(2α)
. (A21)

Remark 3 In the limit of large N it is then possible to show analyt-
ically that for volume distributions p(φi) belonging to the domain of
attraction of the Lévy distribution the price impact is characterized
by a linear regime described by

IN (φ) � 1

2
√

2π
�

(
1

2α

)
φ

α[c(N − 1)]1/(2α)
, (A22)

followed by a transition to a square root one around φ∗
N � (c(N −

1))1/α .

A.2. Market impact with correlated Gaussian metaorders

With the aim to introduce correlations between the metaorder vol-
umes ϕN = (φ1, . . . , φN ) in the Gaussian framework it is useful to
define the following joint probability distribution:

P(ϕN ) = 1

ZN
exp

⎛
⎝−AN

2

N∑
i=1

φ2
i + BN

N

N∑
i<j

φiφj + μ

N∑
i=1

φi

⎞
⎠ ,

(A23)
where ZN is a normalization function, AN and BN are parameters
depending on N and μ is an external field.

A.2.1. Calibration from data: means and correlations.
The first step to calibrate P(ϕN ) in equation (A23) is to express
the model parameters AN , BN and μ in terms of observable quan-
tities, namely E[φiφj|N] and E[φi|N]. Due to the presence of an
interaction term, the computation of ZN requires the use of a

Hubbard–Stratonovich transformation (valid only for BN > 0):

exp

⎛
⎝BN

2N

N∑
i,j

φiφj

⎞
⎠ =

∫ ∞

−∞
dy√

2π/NBN
exp

×
(

−NBN y2

2
+ BN

N∑
i=1

φiy

)
. (A24)

This allows us to rewrite the probability distribution in equation
(A23) as

P(ϕN ) = 1

ZN

√
NBN

2π

∫
dy

N∏
i=1

exp

[
−1

2

(
AN + BN

N

)
φ2

i

+(μ + BN y)φi − NBN

2
y2
]

. (A25)

The partition function then reads

ZN =
⎡
⎣ 2π(

AN + BN
N

)
⎤
⎦N/2√

AN N + BN

AN N + BN (N − 1)
exp

×
[

N2μ2

2(AN N + BN (N − 1))

]
(A26)

valid only for BN < AN + BN/N . equation (A26) can be used to
derive the following relations:

∂ log ZN

∂μ
= NE[φi|N], (A27)

∂ log ZN

∂AN
= −N

2
E[φ2

i |N], (A28)

∂ log ZN

∂BN
=
(

N − 1

2

)
E[φiφj|N] with (i �= j) (A29)

which assuming symmetric volumes (E[φi|N] = 0, i.e. μ = 0) are
equivalent to

E[φ2
i |N] = AN + 2BN/N − BN

(AN + BN/N − BN )(AN + BN/N)
(A30)

and

E[φiφj|N] = BN/N

(AN + BN/N − BN )(AN + BN/N)
. (A31)

Furthermore, combining equations (A30) and (A31) we can derive
the volume correlation

Cφ(N) = E[φiφj|N] − E[φi|N]2

E[φ2
i |N] − E[φi|N]2

= E[φiφj|N]

E[φ2
i |N]

= BN/N

AN + 2BN/N − BN
. (A32)

Vice versa, from equations (A30) and (A32) we can obtain for the
model parameters

AN = 1 − 2Cφ(N) + NCφ(N)

(1 − Cφ(N))(1 − Cφ(N) + NCφ(N))E[φ2
i |N]

(A33)

and

BN = NCφ(N)

(1 − Cφ(N))(1 − Cφ(N) + NCφ(N))E[φ2
i |N]

, (A34)

which are useful to fit the Gaussian model to data. We will use equa-
tions (A33) and (A34) to estimate AN and BN , replacing correlations
and expectations by their empirical natural counterpart. The proper-
ties of this kind of estimators, belonging to the GMM (Generalized
Method of Moments) is for instance discussed in Hansen (1982).
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A.3. Analytical computation of market impact.

To compute analytically the market impact function IN (φ) from
equation (A2) in the Gaussian correlated framework we adopt the
following strategy:

(1) firstly we factorize the joint probability distribution P(ϕN ) in
equation (A23) with a not-null external field μ �= 0;

(2) secondly we use the trick of the previous point to compute
the market impact IN (φ) in presence of an effective field
μ̃ induced by the correlation of the net order flow φm =∑N

i�=k φi with the known metaorder of size φ.

Step 1 The joint probability distribution in equation (A23) can be
written in the following matrix form:

P(ϕN ) = 1

ZN
exp

(
−1

2
ϕT

N MϕN + μTϕN

)
, (A35)

where

• M is a NxN real and symmetric matrix with the ele-
ments on the principal diagonal equal to AN and the ones
elsewhere equal to −BN/N ,

• μ is a N-dimensional vector with all the elements equal
to the scalar μ �= 0.

Through the orthogonal transformation ϕ̃N = OϕN which diag-
onalizes the matrix M, i.e. O

T
MO = diag(λ1, . . . , λN ), the joint

probability distribution P(ϕN ) factorizes as

P(ϕ̃N ) = 1

ZN

N∏
m=2

exp

[
−λ2

2
φ̃2

m

]
exp

[
−1

2
λ1φ̃

2
1 + μ

√
N φ̃1

]
,

(A36)
where the N eigenvalues of the matrix M

λ1 = AN − (N − 1)
BN

N
= 1

E[φ2
i |N](1 − Cφ(N) + NCφ(N))

(A37)
and

λ2 = λ3 = · · · = λN = AN + BN

N
= 1

E[φ2
i |N](1 − Cφ(N))

(A38)
allow us to rewrite the partition function as

ZN =
√

2π

λ1

[√
2π

λ2

]N−1

exp

[
Nμ2

2λ1

]
. (A39)

In particular, it emerges that the first component of ϕ̃N = OϕN is
equal to

φ̃1 = 1√
N

N∑
i=1

φi, (A40)

which put in evidence that the orthogonal basis change ϕN → ϕ̃N
is a useful trick to compute the market impact in the context of
correlated Gaussian metaorders.

Step 2 To calculate the price impact IN (φ) defined in
equation (A2) with N overall correlated Gaussian metaorders and in
absence of an external field it is necessary to explicit the conditional
probability distribution

P(ϕN |φk = φ) = P(φ1, . . . , φ, . . . , φN )

p(φ)
, (A41)

where P(φ1, . . . , φ, . . . , φN ) is given by equation (A23) setting
μ = 0 while the marginal one is equal to

p(φ) = 1√
2πλ̃1/(λ1λ2)

exp

[
−φ2

2

λ1λ2

λ̃1

]
, (A42)

with λ1 and λ2 respectively given by equations (A37) and (A38) and

λ̃1 = AN − N − 2

N
BN

= 1

E[φ2
i |N][1 − Cφ(N) + NCφ(N)][1 − Cφ(N)]

. (A43)

It follows that the conditional probability distribution is equal to

P(ϕN |φk = φ) =
exp
[
− (N−1)B2

N φ2

2N2λ̃1

]
(2π/λ̃1)1/2(2π/λ2)

N−2
2︸ ︷︷ ︸

�−1
N (φ)

(A44)

× exp

⎡
⎢⎢⎣−AN

2

N∑
i�=k

φ2
i + BN

N

N∑
i<j

i,j �=k

φiφj + φBN

N︸ ︷︷ ︸
μ̃

N∑
i�=k

φi

⎤
⎥⎥⎦ , (A45)

where it emerges that the conditioning to the metaorder with volume
φk = φ is equivalent to the introduction of an effective field μ̃ pro-
portional to φ. This implies that the price impact in equation (A2) is
given solving the following conditional expectation:

IN (φ) = E[I(ϕN )|φk = φ] (A46)

=
∫ ∞

−∞

N∏
i�=k

dφi
P(φ1, . . . , φ, . . . , φN )

p(φ)

⎛
⎝φ +

N∑
i�=k

φi

⎞
⎠•1/2

(A47)

= 1

�N (φ)

∫ ∞

−∞

N∏
i�=k

dφi exp

×

⎡
⎢⎢⎣−AN

2

N∑
i�=k

φ2
i + BN

N

N∑
i<j

i,j �=k

φiφj + μ̃

N∑
i�=k

φi

⎤
⎥⎥⎦

×
⎛
⎝φ +

N∑
i�=k

φi

⎞
⎠•1/2

(A48)

= 1

�N (φ)

∫ ∞

−∞

N∏
i�=k

dφi exp
[
−ϕ∗T

M
∗ϕ∗ + μ̃ϕ∗

]

×
⎛
⎝φ +

N∑
i�=k

φi

⎞
⎠•1/2

. (A49)

Herein

• ϕ∗ = {φi}i�=k
i=1,...,N is a vector that contains the N − 1

unknown metaorders volumes simultaneously executed
with the one known φk = φ,

• M
∗ is a (N − 1) × (N − 1) symmetric and real matrix

with AN on the principal diagonal and −BN/N else-
where: it is easy to check that its eigenvalues are respec-
tively λ∗

1 = λ̃1 as in equation (A43) and λ∗
m = λ2 as in

equation (A38) for m = 2, . . . , N − 1.

As mentioned before, to solve equation (A49) it is useful to use the
trick described in Step 1.: we apply in equation (A49) the orthogo-
nal transformation φ̃

∗ = Hϕ∗ that diagonalizes the matrix M
∗ (i.e.

H
T
M

∗
H = diag(λ̃1, . . . , λ̃N−1)) and since the determinant of the

Jacobian matrix associated to this transformation is equal to one, we
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obtain that

IN (φ) = 1

�N (φ)

∫ ∞

−∞

N∏
m=2

dφ̃∗
m exp

[
−λ2

2
(φ̃∗

m)2
]

×
∫ ∞

−∞
dφ̃∗

1 exp

[
−1

2
λ̃1(φ̃

∗
1 )2 + μ̃

√
N − 1φ̃∗

1

]
× (φ + √

N − 1φ̃∗
1 )•1/2; (A50)

then integrating in φ̃∗
m for m = 2, . . . , N − 1, completing the square

in the argument of the exp[− 1
2 λ̃1(φ̃

∗
1 )2 + μ̃

√
N − 1φ̃∗

1 ] and doing
the variable change x = φ + √

N − 1φ̃∗
1 we derive the following

final expression

IN (φ) = 1√
2π(N − 1)/λ̃1

∫ ∞

0
dx

√
x

×
(

exp

[
− λ̃1

2(N − 1)

(
x − φ(1 + (N − 1)Cφ(N))

)2]

− exp

[
− λ̃1

2(N − 1)

(
x + φ(1 + (N − 1)Cφ(N))

)2]) .

(A51)

Remark 4 From equation (A51) it follows that the price impact
IN (φ) in the correlated Gaussian framework is equivalent to the
one computed in the independent Gaussian case (see equations (A5)
and (A6)) substituting

φ −→ φ[1 + (N − 1)Cφ(N)] (A52)

and

�2
N −→ 1/λ̃1. (A53)

A.4. Market impact with correlated signs and
i.i.d. unsigned volumes

In section 5.4 we have presented a general model in which the
metaorder signs εi = ±1 are correlated while the unsigned vol-
umes |φi| are i.i.d. and described by a generic distribution p(|φi|)
defined on the finite positive support (0, 1). This means that the joint
probability distribution is factorizable as

P(ϕN ) = P(εN )

N∏
i=1

p(|φi|). (A54)

In this theoretical setup we are not able to compute analytically the
price impact IN (φ) and we will use numerical simulations. To this
aim we introduce a latent discrete variable ε̃ in order to simulate N
correlated signs with the following statistical model

P(εi|ε̃) = 1

2
(1 + γεεiε̃), (A55)

where γε can be estimated from data by averaging the realized sign
correlation ρε appearing in equation (16), i.e.

E[ρε |N] = γ 2
ε . (A56)

For clarity we explicitly omit the γε’s dependence on N. Thus to
simulate the model we fix εk = +1, we draw a hidden factor ε̃ from

P(ε̃|εk = +1) = 1

2
(1 + γε ε̃) (A57)

and then we sample N − 1 other correlated signs {εi}i�=k
i=1,...,N with

probability

P(εi|ε̃) = 1

2
(1 + γεεiε̃). (A58)

A.4.1. Numerical computation of market impact. We sum-
marize the main steps for the numerical calibration of the price
impact IN (φ) from data. Given the number N of metaorders per
stock/day pair and fixing |φk | = φ > 0:

(1) We compute the average sign correlation Cε(N) = E[ρε |N]
as to obtain γε through equation (A56).

(2) After fixing the direction εk = +1 we simulate N − 1 corre-
lated signs using equation (A58).

(3) We sample N − 1 random variables |φi| from an half-normal
distribution with mean �N

√
2/π and standard deviation

�N
√

1 − 2/π where �N represents the empirical standard
deviation of signed volumes.

(4) We compute numerically the price impact IN (φ) = E

[I(ϕN )|εk = +1, |φk | = φ] where I(ϕN ) = (
∑N

i=1 φi)
•1/2

and φi = εi|φi|, as defined in equation (6).
(5) Finally, we compute I(φ) averaging IN (φ) over the empirical

distribution p(N) shown in the left panel of figure A11.

Figure A11. Rescaled market impact function y(φ̃) = IN (φ)/
((N − 1)�2

N )1/4 in function of the dimensionless parameter
φ̃ := φ/(

√
N − 1�N ) with IN (φ) given by equation (A6): the ver-

tical dashed red line represents the transition from the linear impact
(left side) to the square-root one (right side).
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