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Quantum sensors offer flexibility in con-
trol during estimation, allowing manipulation
across various parameters by the experimenter.
For each sensing platform, determining the op-
timal controls to enhance the sensor’s precision
remains a challenging task. While an analytical
solution may be unattainable, machine learn-
ing presents a promising approach for many
systems of interest, especially considering the
capabilities of modern hardware. We introduce
a versatile procedure capable of optimizing a
wide range of problems in quantum metrology
and estimation by combining model-aware rein-
forcement learning (RL) with Bayesian estima-
tion via particle filtering. To achieve this, we
addressed the challenge of integrating the many
non-differentiable steps of the estimation pro-
cess, such as measurements and particle filter
resampling, into the training routine. Our RL-
based approach is suitable for optimizing both
non-adaptive and adaptive strategies using a
neural network. We provide an implementa-
tion of this technique in the form of a Python
library called qsensoropt, along with several
pre-built applications for relevant physical plat-
forms, including NV centers, photonic circuits,
and optical cavities. Using our method, we have
achieved results that surpass the current state-
of-the-art in experimental design for numerous
tasks. Beyond Bayesian estimation, by leverag-
ing model-aware RL, it is also possible to find
optimal controls for minimizing the Cramér-
Rao bound, based on Fisher information.

1 Introduction
In recent years, the synergy between machine learn-

ing and quantum information has attracted increas-
ing attention. These two technological fields can
complement each other in various ways. On the
one hand, quantum technologies, particularly quan-
tum computers, have the potential to address clas-
sical machine learning challenges, such as classifica-
tion and sampling, using both classical and quantum

data [1, 2, 3]. On the other hand, traditional machine
learning can enhance quantum information tasks, in-
cluding state preparation [4, 5, 6, 7], optimal quan-
tum feedback [8], error correction [9], device calibra-
tion [10, 11, 12, 13], characterization [14], and quan-
tum tomography [15, 16, 17]. This work falls within
the latter category, utilizing model-aware reinforce-
ment learning [18, 19, 20, 8] (RL) to identify opti-
mized adaptive and non-adaptive control strategies
for application-relevant tasks in quantum metrology
and estimation [21]. The problem of optimal experi-
mental design [22] has already been addressed using
machine learning techniques [23, 24, 25, 26, 27, 28].
In this manuscript, we advance further by proposing a
tool applicable to a broader range of problems, provid-
ing control solutions that are either superior to or eas-
ier to implement than their model-free counterparts.
We present the theory, along with two relevant exam-
ples, and the details of the mathematical approach,
while in [29], the full range of optimization problems
we have solved with this technique is discussed.

1.1 Model-based and model-free reinforcement
learning.

The purpose of this section is to briefly review the
key definitions in the field of reinforcement learning
(RL) to better convey the novelty of our approach
and clarify the associated terminology. Reinforcement
learning is a mathematical framework for modeling
decision-making in environments where outcomes are
random but can be influenced by the actions of an
agent, which is the mechanism making decisions. RL
provides a systematic approach to optimizing the ac-
tions of the agent, taking into account both immediate
and future consequences.

The objective of the actions and observations per-
formed by the RL agent is to execute a task within
the environment. After each execution, a loss func-
tion is computed, and the agent’s strategy is updated
based on this loss value. This process is referred
to as training. If the model of the environment is
known, it can be incorporated into the gradient of
the loss function to update the agent’s parameters.
This forms the basis of model-based RL. Conversely,
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if the dynamic of the environment is completely un-
known, the agent must implicitly learn how the en-
vironment responds to its actions in order to mini-
mize the loss. While several studies have applied RL
to quantum metrology [30, 31, 32, 33, 34], the inno-
vation introduced here is the use of a model-aware
approach, which, as we demonstrate through com-
parison with the results of [34], offers a more effec-
tive method for training optimized strategies. For
further clarification on terminology and the distinc-
tion between RL and other decision-making frame-
works, we refer to [35]. While the term “model-based
reinforcement learning” typically refers to scenarios
where the model of the system and the optimization of
the strategy occur simultaneously, in this manuscript,
we rely on a pre-characterized model of the system,
hence we adopt the term “model-aware RL”. Our use
of model-aware RL is akin to the concept of digi-
tal twins in industry, where a complete model of a
product or system is simulated on a computer to opti-
mize its performance. We provide evidence that incor-
porating the system model into the training process
enhances efficiency, enabling better control solutions
than those derived from model-free RL. With our tool,
we achieve high-performance Bayesian experimental
design, where high performance refers to the ability
of our methods to surpass strategies obtained through
other techniques.

1.2 Review of the literature
In the following paragraph, we review the field of

optimization in quantum metrology, discussing the
strengths and limitations of various approaches in
comparison to the framework we propose. Similar
challenges to those addressed by our method have
been studied previously. These works on optimizing
quantum metrology can be broadly categorized into
four classes, which we will now present one by one.

The first class includes well-established competitor
frameworks, such as the toolbox proposed by Meyer
et al., which employs a variational approach for opti-
mizing measurements and states [36]. In this work,
the authors introduce a scheme to optimize probe
state preparation and measurements to maximize the
classical Fisher information obtained from the pro-
cess. They demonstrate the success of this approach
by applying it to multiphase estimation with GHZ
states and to the problem of triangulating the posi-
tion of a spin with three NV centers. In contrast to
our approach, the variational toolbox introduced by
Meyer et al. does not allow for Bayesian estimation or
consider adaptive strategies. A similar approach can
be found in the library QuantEstimation [37], which
implements different bounds for quantum metrolog-
ical tasks (Fisher information, Holevo-Cramér-Rao
bound, quantum Ziv-Zakai bound, and Bayesian esti-
mation), along with various optimization algorithms

that we have not considered (particle swarm optimiza-
tion and differential evolution). However, both Quan-
tEstimation and the variational toolbox studied by
Meyer et al. do not account for the use of neural
networks for adaptive experiments, unlike our frame-
work. We now turn to the two libraries, QInfer [38]
and Optbayesexpt [39], which are similar tools that
optimize Bayesian experimental design for a range
of experimental situations, but only consider greedy
optimizations, i.e., one measurement at a time, via
an approximation of the information gain per mea-
surement. In contrast, the approach we present in
this manuscript can plan measurements several steps
ahead, potentially for the entire duration of the esti-
mation. Another important tool recently introduced
in the domain of optimal quantum metrology is a
quantum comb-based approach for the simultaneous
optimization of states, measurement, and estimator
in one-shot Bayesian experiments, as proposed in [40].
Here, the authors consider a single encoded probe
and a single measurement, from which they perform
Bayesian estimation. Using the formalism of higher-
order quantum operations, they develop a mechanism
based on semidefinite programming to find the op-
timal probe, quantum measurement, and estimator
function in both single- and multi-parameter scenar-
ios. The main limitation of this approach is its exten-
sion to the multi-shot scenario, where the complexity
of quantum comb optimization grows exponentially.

The second class of papers concerns those based
on the optimization of Fisher information [41, 42, 43,
44, 32, 45, 33, 46]. Most of these approaches rely
on some form of reinforcement learning or GRAPE,
but the Fisher information analysis is limited to local
estimation, and these works typically lack coverage
of adaptive measurements or are only applicable to
specific platforms (e.g., NV centers).

The third class includes theoretical works that ad-
vocate for the necessity of optimal control in quantum
metrology and conceptually shape the working princi-
ples of our approach, though without presenting any
concrete implementation [24, 25, 20, 47, 48]. In [24],
the authors introduce MODE (Machine-learning Op-
timized Design of Experiments), a collaborative re-
search program aimed at leveraging modern machine
learning and statistical programming tools across dif-
ferent scientific domains.

The fourth class consists of applications of vari-
ational quantum circuits to specific platforms and
tasks. These are generally non-adaptive (with two
exceptions [49, 50]) and can be Bayesian [51, 52, 53,
54, 55] or based on the quantum Fisher informa-
tion [56, 57, 58]. The work [56] is particularly notewor-
thy, as it studies the optimization of super-resolution
imaging for observing Earth.

Among all the works discussed in this literature re-
view, none present a framework capable of address-
ing both Bayesian and frequentist estimations, adap-
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tive and non-adaptive metrology, across different plat-
forms. This manuscript introduces a new framework
designed to fill this gap through an innovative combi-
nation of techniques from statistics and machine learn-
ing. We have chosen an approach to Bayesian estima-
tion based on particle filtering (or sequential Monte
Carlo) due to the speed of the estimation performed
in this manner and the ability to parallelize multiple
simulations of the experiment. This approach involves
many non-differentiable steps, such as simulating mea-
surements and resampling from the posterior distribu-
tion, which we needed to account for when computing
gradients.

2 Quantum metrology with reinforce-
ment learning

In this section, we discuss how reinforcement learn-
ing (RL) is applied to quantum metrology. After pro-
viding a general overview of our scheme’s working
principle, we discuss how parameters of interest are
encoded in quantum metrology, followed by a descrip-
tion of the Bayesian inference technique we employ.
We then introduce two fundamental concepts in our
approach: the measurement loop and the resources-
loss paradigm. Finally, we define the loss function for
various estimation tasks and comment on the techni-
cal aspects of the training process.

Given a specific physical platform and metrological
task, the set of tunable parameters in the experiment
is identified. These are the parameters that can be
adjusted using various experimental controls, such as
knobs and dials. The agent’s role is to decide the op-
timal settings for these controls before each measure-
ment on the system. We train the agent to optimally
control these parameters, minimizing the error metric
through a gradient descent optimization procedure,
using backpropagation to compute the derivatives
throughout the entire history of the estimation pro-
cess. The loss function minimized during the training
is related to the final estimation error obtained after
completing the experiment and performing Bayesian
inference. In the examples presented in this paper, the
agent is a small neural network, while the environment
it interacts with encompasses the entire experimental
setup, including the system that stores the estimation
results and performs the Bayesian inference. In other
words, the processed information extracted from the
experiment is considered part of the environment.

This estimation procedure has been abstracted and
decoupled from the specifics of any particular sensor
or physical platform, allowing our tool to function
as a versatile optimization method for quantum sen-
sors. We demonstrate the broad applicability of our
methodology by optimizing a wide range of estima-
tion tasks on the nitrogen-vacancy (NV) center plat-
form [59, 43], for both single- and multi-parameter

metrology, including DC magnetometry [34], AC mag-
netometry, decoherence estimation [60], and hyperfine
coupling characterization [61]. In the domain of pho-
tonic circuits, we studied tasks such as multiphase
discrimination, the agnostic Dolinar receiver [62], and
coherent state classification, both for cases where the
states are classically known and where they must be
learned from a quantum training set. For frequen-
tist estimation, we explored the sensing of detuning
frequency in a driven optical cavity [31]. In this pa-
per, we present the applications to DC magnetome-
try and quantum communication, while other applica-
tions to NV centers (AC-field, decoherence, hyperfine
coupling estimation) and photonic circuits (quantum
machine learning with photonic circuits, multiphase
estimation, coherent state classification) are discussed
in [29].

Encoding of the probe
In quantum metrology, we deal with an environ-

ment or process characterized by a fixed number of
parameters, denoted as θ ∈ Θ. These parameters are
unknown, and our goal is to estimate them. To ac-
complish this, a quantum probe with known dynamics
interacts with the environment or undergoes the pro-
cess of interest. By measuring the state of the probe,
which now depends on θ, we can extract informa-
tion about these parameters, assuming the dynamic
of the interaction is completely understood. In this
context, quantum probes are systems that are well-
characterized, easily manipulable, and often quite sim-
ple. Further details on the encoding of the probe
can be found in the Supplementary Information Ap-
pendix A.

For the purpose of optimizing control strategies, the
evolution of the probe and the measurement outcomes
are simulated. The training phase is separated from
the deployment, where the measurement process takes
place on the actual sensor during in the experiment.

Bayesian estimation and particle filter
Bayesian estimation is a step-by-step method for

updating information about the unknown parameters
of a system we are measuring, by refining a proba-
bility distribution after each measurement. The pro-
cess begins with the definition of a prior distribution
π(θ) over the parameters θ, which encapsulates our
initial belief about the value of the unknown param-
eters before any measurements are taken. After the
first measurement, this prior is updated to form the
posterior distribution, denoted as P (θ). To represent
the posterior distribution, we use the particle filter
method [63, 64, 65] (PF), which approximates it as an
ensemble of points {θj}N

j=1 in the parameter space Θ,
with each point assigned a weight {wj}N

j=1, where N is
the number of particles. Essentially, we approximate
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the posterior distribution with a sum of δ-functions,
as follows:

P (θ) ≃
N∑

j=1
wt

jδ(θ − θj) , (1)

Initially, the particles are sampled from π(θ) and the
weights are set to wj = 1

N . As new information be-
comes available, the weights are updated accordingly.
From the particle filter, we derive an estimator θ̂ ∈ Θ
for θ, which in our application is either the mean of
the posterior or the most likely value for θ. When the
measurements on the quantum probe are weak (as op-
posed to projective), it is also necessary to account for
the measurement backaction for each possible value of
the unknown parameters θ. For further details, refer
to the Supplementary Information Appendix B.

Input and output of the controlling agent
A “summary” of the information encapsulated in

the Bayesian posterior represented by the particle fil-
ter (PF)—such as the mean and covariance matrix
of the distribution P (θ)—is provided as input to the
neural network agent, which subsequently outputs the
control settings. It is crucial for the agent to be specif-
ically trained on the experiment it is designed to opti-
mize. This necessitates that precise values for param-
eters like decoherence rates and visibilities are known
and integrated into the simulation, unless these pa-

rameters are included in the set of θ to be estimated.
In this manner, the knowledge gained about θ through
measurements can be adaptively utilized by the agent
to control both the evolution of the system and the
measurements performed on the probe, with the ob-
jective of maximizing the final precision of the esti-
mation. We envision conducting experiments using a
small, trained agent deployed on fast hardware, such
as a Field Programmable Gate Array (FPGA), situ-
ated in close proximity to the experimental setup.

The precision-resources paradigm
In our framework, each measurement conducted on

the probe consumes a certain amount r of a specific
“resource”, which is considered costly within the con-
text of the experiment and must be defined by the
user based on the limitations of the setup. Once the
total available resources R are exhausted, the estima-
tion process concludes, and the final value of the esti-
mator θ̂ is computed. Examples of resources include
the total estimation time, which is relevant for the
NV center platform, the average number of photons
consumed, or the amplitude of a signal, as seen in
the Dolinar receiver. For optimizing the metrological
task, defining the resource is as crucial as establishing
the precision figure of merit. There is no universally
correct or incorrect resource for an estimation task; it
ultimately depends on the experimentalist’s choices
and their understanding of the laboratory limitations
in implementing the task.

The measurement loop
The metrological task is simulated as a sequence

of consecutive operations, referred to as the measure-
ment loop, as illustrated in Fig. 1. Within this loop,
for each iteration numbered from t = 0 to M − 1, a
single measurement is conducted. We proceed by de-
scribing the generic iteration of the loop (specifically
the t+1-th iteration), which consists of three steps. As
indicated in the caption of Fig. 1, we denote the con-
trols generated by the agent for the evolution of the
probe and the settings for its measurements as xt+1.
The outcome of the measurement is denoted by yt+1,
both obtained at the t+1-th iteration of the loop. The
objects xt := (x0, x1, . . . , xt) and yt := (y0, y1, . . . , yt)
are tuples containing the controls and measurement
outcomes up to time t. The distribution P (θ|xt,yt)
represents the Bayesian posterior updated with the
outcomes up to step t of the measurement loop.

1. In the case of the adaptive strategy, the selection
of xt+1 by the agent can be expressed, without
loss of generality, through the mapping

xt+1 := Fλ{P (θ|xt,yt);yt;Rt; t} , (2)

where rj denotes the resource consumption at
the j-th step of the protocol, and the total re-
source consumed up to the t-th step is computed

as Rt :=
∑t

j=0 rj . Non-adaptive strategies are
described by mappings F that do not depend
functionally on P (θ|xt,yt) or yt, expressed as

xt+1 := Fλ{Rt; t} . (3)

The mapping Fλ depends on the trainable param-
eters of the strategy, collectively denoted as λ,
which are later optimized. In the context of the
non-adaptive strategies discussed here, the agent
simply consists of a list of controls that are ap-
plied sequentially in the measurement loop, lead-
ing to λ = xM−1. For all the examples discussed
in this manuscript, the neural network has five
hidden layers with 64 neurons each, and the acti-
vation function used is tanh, known for its effec-
tiveness in approximating smooth functions [66].

2. Assuming the measurements are projective and
the probe’s state is reinitialized after each iter-
ation, the probability of observing the outcome
yt+1 at the t+1-th step is given by p(yt+1|xt+1,θ),
which is computed using the Born rule according
to the known quantum dynamics of the probe
coded in the simulation. This probability, hence-
forth referred to as the “model” relies solely on
the controls xt+1 and the parameters to be esti-
mated, θ. At this second step of the measure-
ment loop, the outcome yt+1, a stochastic vari-
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Figure 1: Schematic representation of the three steps of information flow within the measurement loop. The labels correspond
to the (t+ 1)-th iteration. In the first step (pink region of the figure), the summary information computed from the particle
filter is input into the agent (depicted here as a neural network), which determines the control parameters for both the evolution
and measurement of the probe during this iteration, collectively represented by the variable xt+1. In the second step (green
region), the parameters θ are encoded in the probe state, and the measurement is performed, yielding the outcome yt+1. In the
third step (yellow region), this outcome is fed into the particle filter, leading to an update of the Bayesian posterior distribution
on the parameters θ and the state of the probe (if applicable).

able, is drawn from the model distribution, ex-
pressed as

yt+1 ∼ p(yt+1|xt+1,θ) . (4)

If the probe is subjected to a weak measurement,
then the outcome probability depends on the en-
tire sequence of previous controls and outcomes
because of the measurement backreaction. In this
case the sampled outcome is expressed as

yt+1 ∼ p(yt+1|xt+1,yt,θ) . (5)

3. The observation of yt+1 is subsequently incorpo-
rated into the posterior using Bayes’ rule, formu-
lated as

P (θ|yt+1,xt+1) ∝ p(yt+1|xt+1,θ)P (θ|xt,yt) .
(6)

During the first iteration, the prior π(θ) is uti-
lized in place of the posterior. If the measure-
ments are weak, the model probability takes the
form described in Eq. (5).

The stopping condition of the measurement loop can
be trivial, such as setting a maximum number of it-
erations M , or based on the available resources, for
example, imposing a limit on Rt.

Training with model-aware reinforcement learn-
ing

The figure of merit for precision depends on the
specific metrological task. In the examples concerning
the NV center platform, where the parameters θ are
continuous, the mean square error (MSE) is employed.
The loss for a single estimation is expressed as follows:

ℓ(θ̂,θ) := tr
[
G · (θ̂ − θ)(θ̂ − θ)⊺

]
, (7)

where G ≥ 0 represents a positive semidefinite weight
matrix, and θ̂ denotes the mean of the posterior distri-
bution. The weight matrix G determines the contribu-
tion of various errors to the loss ℓ(θ̂,θ) and delineates
the parameters of interest from the nuisance param-
eters, with the latter being assigned corresponding
entries of zero in the G matrix.

In discrete estimation tasks, as illustrated subse-
quently for a photonic platform, both θ and θ̂ are dis-
crete, such that θ, θ̂ ∈ Θ = {θ1,θ2, . . . ,θk}. The loss
for a single instance of this task can be represented
using a Kronecker delta:

ℓ(θ̂,θ) := 1− δ(θ̂,θ) , (8)

where
θ̂ := arg max

θ
P (θ|xt,yt) , (9)

denotes the maximum a posteriori estimator. Opti-
mizing the control strategy involves identifying the
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agent that minimizes the average loss E[ℓ(θ̂,θ)], aver-
aged over all potential choices of θ and all stochastic
processes involved in the estimation of θ, as detailed
in the Supplementary Material Appendix D.

Each potential agent is characterized by a set of
trainable variables, denoted as λ, which influence the
individual losses of the problem as well as the asso-
ciated E[ℓ(θ̂,θ)]. The optimal strategy can be ab-
stractly defined by the value λ⋆ := argminλE[ℓ(θ̂,θ)]
that minimizes the average loss. The training of the
agent is implemented as an iterative algorithm aimed
at discovering a strategy that closely approximates
the performance of the optimal λ⋆ through a sequence
of recursive updates, denoted as TS(1), TS(2), · · · ,
TS(I), where “TS” stands for “training step”:

λ0
TS(1)−→ λ1

TS(2)−→ · · · TS(I)−→ λI ≃ λ⋆ , (10)

with λ0 representing the initial weights of the neural
network, initialized using the normal Glorot initial-
izer, and the initial bias set to zero.

The construction of the learning trajectory in
Eq. (10) relies on the computation of an estimation
L(λ) of the average loss E[ℓ(θ̂,θ)] associated with an
agent λ. This is typically accomplished by simulating
in parallel B estimations of randomly selected values
θ1, · · · ,θB of the parameters θ. Consequently, we can
express:

L(λ) := 1
B

B∑
k=1

ℓ(θ̂k,θk) ≃ E[ℓ(θ̂,θ)] , (11)

where ℓ(θ̂k,θk) denotes the local loss of the k-th esti-
mation, which possesses a functional dependence on
λ due to the multiple controlling actions of the agent.

Exploiting this dependence, we can compute the
gradient G(λ) := d

dλL(λ) of L(λ) using automatic dif-
ferentiation (AD), executed in reverse through all op-
erations of the measurement loop. The agent parame-
ters are updated at each training step using stochastic
gradient descent, as follows:

λi
TS(i+1)−→ λi+1 = λi − αG(λi) , (12)

with α ∈ (10−4, 10−1) representing the learning rate.
In the reported examples, the Adam optimizer [67] is
utilized. This algorithm accumulates past gradients
observed during training and uses them to adaptively
modify the learning rate for each parameter. The
purpose of this modified gradient descent approach
is to enhance the training process by smoothing up-
dates, allowing the optimizer to gain momentum in
directions with consistent gradients while mitigating
oscillations in others. This aids the algorithm in con-
verging more rapidly and prevents it from becoming
trapped in areas with noisy or minimal gradients. The
algorithm accepts an external learning rate, which
serves as a baseline for the adaptive learning rates.

Since the derivatives are propagated through the
model for the sensor as described in Eq. (4), this train-
ing constitutes a form of model-aware policy gradient
reinforcement learning. The gradient descent training
of λ will converge to a minimum of the loss; however,
there is no guarantee that this minimum will be λ⋆.
Given that the loss is defined in terms of the stochas-
tic outcomes yt, special precautions are required to
compute an unbiased estimator for its gradient [8],
which entails incorporating the log-likelihood terms
log p(yt+1|xt+1,yt,θ) into the loss. For further details
regarding the loss definition and its gradient, refer to
the Supplementary Material Appendix D.

When conducting an estimation with a fixed num-
ber of measurements Mmax or a fixed maximum
amount of resources Rmax, selecting a loss L(θ) that
is sensitive solely to the performance of the estimator
θ at the conclusion of the estimation does not nec-
essarily yield optimal strategies for M < Mmax and
R < Rmax. A straightforward solution would be to
repeat the optimization for each smaller Rmax that re-
quires characterization. However, it is possible to find
an approximate solution for all R ≤ Rmax through a
training that optimizes the cumulative loss instead of
Eq. (11), expressed as:

Lcum(λ) := 1
MmaxB

Mmax−1∑
t=0

B∑
k=1

ℓ(θ̂k,t,θk) . (13)

This cumulative loss encourages the agent to learn a
strategy that is optimal for all R ≤ Rmax and has
been employed in the examples involving the NV cen-
ter platform. An alternative version of the loss is
the logarithmic loss, which employs the logarithm of
the average loss on the batch rather than the aver-
age loss in Eq. (13). Further details can be found in
Appendix D.4.

Differentiability of the particle filter
The primary component of our approach is the in-

tegration of particle filter (PF) Bayes updates with
model-based reinforcement learning. This presents a
challenge, as PF updates encompass steps where the
differentiability necessary for gradient computation is
not immediately apparent. As the estimation pro-
gresses, the weights of the PF become concentrated
on a limited number of particles. To optimize mem-
ory utilization, we implement a resampling procedure
that, when invoked, extracts a new set of particles
{θ′

j}N
j=1 in accordance with the posterior distribution

P (θ), resetting the weights to w′
j = 1

N . This re-
sampling procedure comprises three steps, which can
be toggled on and off at discretion. These steps in-
clude: resampling from the posterior P (θ), perturb-
ing the newly extracted particles, and proposing new
particles. We have optimally integrated these steps
through a trial-and-error procedure, as detailed in
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Supplementary Information Appendix B.3. All these
steps entail the extraction of discrete stochastic vari-
ables, an operation that, in principle, lacks differ-
entiability and would substantially hinder the sub-
sequent gradient propagation necessary for reinforce-
ment learning.

While the latter two steps can be made differen-
tiable using the reparametrization trick (see Supple-
mentary Information Appendix C.1), addressing the
challenge of resampling the discrete PF ensemble ne-
cessitates modifying the loss function by incorporat-
ing the log-likelihood of the stochastic outcomes, as
we do for the measurements. However, for a large
number of particles N , this modification would ad-
versely affect the variance of the estimated gradient
during simulations. Instead, we utilize importance
sampling to extract the new particles from a distribu-
tion Q(θ) distinct from the posterior, and we set the
new weights proportional to the factor P (θ)

Q(θ) , ensuring
that the PF consistently represents the posterior [68].
In this manner, the gradient can propagate through a
resampling event via the term P (θ) in the weights.
Along with the importance sampling, we have im-
plemented the correction introduced by Ścibior and
Wood [69] to achieve differentiable resampling, demon-
strating its efficacy for the mean square error loss (see
Supplementary Information Appendix C.2). This cor-
rection complements importance sampling and aims
to add the fewest possible log-likelihood terms for par-
ticle extraction events to the loss, thereby maintain-
ing the stability of the training. The Bayes rule, being
the product of the model probability and the previous
posterior, is trivially differentiable.

3 Applications
In this section, we present two applications of

model-aware reinforcement learning (RL) to static
field magnetometry using nitrogen-vacancy (NV) cen-
ters and to quantum communication utilizing the
Dolinar receiver. We provide a brief overview of the
two distinct problems to demonstrate the utility of
our approach.

• Magnetometry. In this example, we address mag-
netic field estimation employing solid-state quan-
tum sensors, specifically a single qubit in dia-
mond known as an NV center. We estimate a
single, continuous parameter, which is the preces-
sion frequency of the spin, that is proportional to
the external magnetic field we want to measure.

• Quantum communication. In this example we
evaluate the application of RL to the agnostic
Dolinar receiver. This task entails the discrim-
ination of two coherent states transmitted by a
distant laboratory. There are two variables to
be estimated: one is discrete and contains infor-
mation regarding the message, while the other is

continuous, representing the intensity of the sig-
nal to be detected. The latter parameter is a
nuisance.

For both problems, we successfully identified adap-
tive and non-adaptive strategies that surpassed the
results previously reported in the literature.

Magnetometry with NV centers
The nitrogen-vacancy (NV) centre in diamond is

a point defect that enables initialization, detection,
and control of its electronic spin, featuring very
long quantum coherence time, even at room temper-
ature. As such, it has been used in applications
such as magnetometry, thermometry, and stress sens-
ing [70, 71, 59, 72, 73]. The electronic spin is sensi-
tive to magnetic fields; for example, static fields de-
termine the electron Larmor frequency, which can be
measured as an accumulated phase by a Ramsey ex-
periment. These experiments are realized by applying
two π/2 pulses to the spin, followed by illumination
with green light and detection of the photolumines-
cence. A single measurement has a binary outcome,
yielding ±1 with probabilities

p(±1|ω, T ⋆
2 , τ) := 1

2 ±
1
2e

−τ/T ⋆
2 cos (ωτ) . (14)

The free evolution time τ is controlled by a trainable
agent, while ω := γB represents the unknown preces-
sion frequency to be estimated, which is proportional
to the static magnetic field B with γ ≃ 28 MHz/mT.
The parameter T ⋆

2 denotes the transverse relaxation
time, serving as the time scale for the dephasing in-
duced by magnetic noise. The optimization of the NV
center as a magnetometer has been extensively stud-
ied in the literature with analytical tools [74, 75], with
numerical methods [76, 77, 78, 79, 80, 81, 82, 83, 84,
85, 86, 87, 88], and with machine learning [89, 34, 90].
We conducted multiple estimations over the same
parameter ranges chosen in the work of Fiderer et
al. [34], in order to facilitate an easy comparison of
the results. The prior for the frequency ω is uniform
in (0, 1) MHz. Fig. 2 compares the performances of
the optimized adaptive (NN) and non-adaptive strate-
gies against the Particle Guess Heuristic (PGH) [91],
which is a commonly referenced strategy in the liter-
ature. According to this strategy, the evolution time
is then computed as τ = (||θ1 − θ2||2 + ε)−1 with
ε := 10−5 µs−1. The concept behind it is to gauge
the width of the probability distribution by extract-
ing two particles from it at random, i.e. θ1 and θ2.
There is also another common approach to assess this
dispersion of the posterior, which is the use of the σ−1

strategy, i.e., the evolution time τ is selected adap-
tively as the inverse of the standard deviation of the
posterior distribution. Additionally, we introduced
a variant of the σ−1 strategy [75], named σ−1&T−1,
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which accounts for the finite coherence time. Accord-
ing to the σ−1&T−1 strategy, the next evolution time

τ is computed from the covariance matrix Σ of the cur-
rent posterior distribution as τ =

[
tr(Σ) 1

2 + 1/T ⋆
2

]−1
.
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Figure 2: These plots refer to the static field magnetometry with an NV center, conducted under different conditions. The
mean squared error (MSE) on ω is plotted as a function of the total number of consumed resources, which are either the
maximum number of measurements Mmax or the maximum total free evolution time of the probe, i.e., Tmax ≥

∑M−1
t=0 τk. The

adaptive and non-adaptive strategies are optimized using model-aware reinforcement learning. The formula used to compute
the evolution time when employing the σ−1&T−1 and Particle Guess Heuristic (PGH) strategies can be found in the main text.
With the label “Model-free RL”, we denote the performances obtained in [34] using model-free RL, which are never better than
the non-adaptive strategy optimized with our techniques. The shaded grey area represents the (non-tight) ultimate precision
bound, computed either from the Cramér-Rao bound (CRB) or from bit-counting arguments, as detailed in the Supplementary
Information Appendix G.3. The title of each plot includes the transverse relaxation time T ⋆

2 , which is the time scale of the
dephasing noise, along with the maximum amount of resources utilized in the simulations. The number of particles in the
particle filter was N = 480 for the first and third rows, and N = 1024 (left) and N = 1536 (right) for the second row, which
are significantly smaller numbers than those used in [34].

For each plot, the better performance between our
optimized adaptive and non-adaptive strategies out-
performs all the other approaches, as illustrated in
Fig. 2. There are two comparisons to be made: on
one hand, we have the optimized adaptive versus the
non-adaptive strategies, which are both original re-
sults of this work; on the other hand, we have model-
free versus model-aware reinforcement learning (RL),
where the application of the latter to NV center mag-

netometry has been studied in [34]. We shall begin
with the first comparison. Notably, the optimal re-
sults for extended coherence times (T ⋆

2 = 100µs,∞)
are achieved using non-adaptive strategies, which of-
fer several practical advantages in experimental im-
plementation. Primarily, since the controls are fixed
offline before the experiment, there is no requirement
for real-time feedback via rapid electronics. Further-
more, there is also no need to update the Bayesian
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posterior on the fly due to the absence of adaptivity.
Instead, the measurement outcomes can be processed
offline, post-measurement, using more powerful hard-
ware. This would significantly reduce online memory
usage as there is no need for real-time updates to the
particle filter. In the third row of Fig. 2, we observe
a gap between the performances of “Adaptive” and
“Non-adaptive”, and in [21] we provide additional ex-
amples of the usefulness of adaptivity for NV centers.
Regarding the second comparison of model-aware and
model-free RL, we observe that no strategy trained
with model-free RL can surpass even the non-adaptive
strategy, indicating that the results of [34], although
similar to ours, cannot prove that the neural network
has been trained to exploit adaptivity and that it has
not simply learned an optimal non-adaptive sequence
of measurement times τ . Moreover, we notice that our
“Adaptive” strategy and the “Model-free” approach
yield results that are closer toward the end of the esti-
mation, while they differ for intermediate times. This
is attributed to our use of cumulative loss. In the sim-
ulation with T ⋆

2 = ∞, Mmax = 20, the NN strategy
performs worse than the non-adaptive one because it
becomes stuck in a local minimum during training.
In Fig. 3, we present five examples of optimal adap-
tive trajectories for the estimation of ω = 0.2 MHz
corresponding to T ⋆

2 = 10, along with the optimal
non-adaptive strategy. We observed also that multiple
runs of the agent training will yield consistent perfor-
mance but not necessarily the same optimized agent.
In conclusion, we aim to provide an explanation for
why adaptive control appears to offer limited advan-
tage compared to the optimized non-adaptive strategy.
For adaptivity to be beneficial, the phase ωτ must be
known to some extent. As the error on ω decreases,
the evolution time increases, resulting in the uncer-
tainty on ωτ not approaching zero even after many
measurements, which leaves very little room for adap-
tivity to enhance estimation precision. We also wish
to point out that the Cramér-Rao (CR) bound (the
gray area in the plot of Fig. 2) is not achievable with-
out entanglement in the probes and measurements,
and even then, the gap cannot be fully closed.

Agnostic Dolinar receiver

In this section, we address the challenge of distin-
guishing between two known coherent states, |−α⟩
and |α⟩, where α ∈ R and α > 0, using a single
copy of the signal |±α⟩. The Dolinar receiver op-
timally addresses this problem through linear optics
and photon counting [92, 93, 94, 95, 96, 97, 98]. For
this device, multiple machine learning approaches can
be found in the literature [99, 100]. In some recent
studies [62, 101], a variant of this device was intro-
duced that does not require a local oscillator (LO) on
the receiver side, which must be in phase with the
sender’s laser. This is the agnostic Dolinar receiver,
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Figure 3: Control strategies for the estimation of ω in direct
current (DC) magnetometry. For the time-limited estimation
(in the upper panel), five instances of the trajectory of the
control τ produced by the neural network (NN) are plotted
for ω = 0.2 MHz. The optimized strategies proposed by the
NN start from the same point but gradually diverge over
time as more data accumulates due to the stochastic nature
of the measurement outcomes. The observed ”diffusion“ is
attributed to the NN following the estimation adaptively. In
the lower panel, the optimal non-adaptive strategy for the
measurement-limited estimation is presented. This prescribes
an increasing τ with a random pattern superimposed, which
is interpreted as beneficial for compensating for the non-
adaptivity of the strategy compared to the upper panel, with
the multiple adaptive trajectories.

in which, instead of the LO, n copies of |α⟩, referred
to as the reference states, are sent to the receiver from
the sender, alongside the signal |±α⟩. We furthermore
assume that classical knowledge about the state |α⟩
is absent, i.e., α is an unknown parameter of the es-
timation. In Fig. 4, we schematically represent this
device, which leverages the states |α⟩⊗n to perform
the discrimination task on the sign of the signal |±α⟩.
The signal |±α⟩ enters from the left and is sequentially
combined with one of the reference states |α⟩ on a pro-
grammable beam splitter with adjustable reflectivity
θi. At each beam splitter, one of the two ports un-
dergoes measurement by a photon counter, while the
residual signal |ψi⟩ from the other port is fed forward
to the subsequent beam splitter. The photon count-
ing result is used to update the Bayesian posterior on
α and on the signal’s sign, from which the reflectivity
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for the upcoming beam splitter is determined via a
neural network. In this task, which combines estima-
tion and discrimination, there are two undetermined
parameters: one continuous, i.e., the signal’s ampli-
tude α ∈ R, and one discrete, i.e., the signal’s sign.

The receiver’s performance is assessed based on the
error probability in the task of signal classification,
with the loss being defined in Eq. (8), while the am-
plitude α is a nuisance parameter. See [21] for details
regarding the loss and the input to the NN.

Figure 4: Schematic representation of the agnostic Dolinar receiver: each thick diagonal line symbolizes a beam splitter with
programmable reflectivity θi. Each ”D“ device denotes a photon counter. On the left side of the figure, the fundamental
building block of this apparatus is illustrated. Here, the input state at step i, denoted as |ψi⟩, is combined with one of the
n training states |α⟩. One of the two ports undergoes a measurement via photon counting. At the device’s end, the second
output port is also measured, ensuring that no information is left unused. It is important to note that the values of the control
θi for the i-th measurement are determined based on the outcomes of all previous measurements.
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Figure 5: Comparison of error probabilities for various strategies with different numbers of copies of |α⟩, specifically n = 4
and n = 8. The shaded gray area represents the region excluded by the Helstrom bound [102, 103], which is the lowest error
probability theoretically achievable when assuming access to an infinite number of reference states (n = ∞). The solid red
and violet lines are the Helstrom bound calculated for a finite number of copies of |α⟩ [62], specifically n = 4 and n = 8. For
details on the computation of the Helstrom bound, see [21]. The black dashed line showcases the lowest error found in the
earlier work [62], without machine learning, while the black solid line represents the performance achieved using the neural
network (NN). The performances of the optimal non-adaptive strategies have not been reported as they cannot rival those of
the NN. For both the training and the performance evaluation, we used N = 512 particles. The weights and biases of the NN
have been initialized randomly.

The simulation results are presented in Fig. 5,
where we compared the performances of our adaptive
procedure with the current state-of-the-art solution
for this problem [62]. In each scenario, we achieved
superior results with the neural network (NN). No-
tably, we nearly reached the theoretical bound in our
primary area of interest, relevant for long-distance
communications, which is the full quantum limit with

α ≲ 1, and a small number of reference states (specif-
ically, n = 4). For large α, the error probability is
already very small, placing us in the classical limit.
See Fig. 6 for an example of series of trajectories for
the control of the beam splitter phase, as it is deter-
mined by the network. For completeness, we mention
that we have chosen a prior on α that is uniform in
the interval [0.05, 1.50], and the sign is also uniform
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in ±1. Additionally, we report the trajectory for five
executions of the state discrimination.

1 2 3 4

0.5

1

M

θ
|α| = 1.00, n = 4

Figure 6: Examples of trajectories for the control sequence
in the Dolinar receiver are presented. The plots illustrate
the selected values for θ as a function of the measurement
step M . The total number of measurements is n = 4, and
the intensity of the signal is |α| = 1. The different shades
of blue represent the five distinct trajectories that are being
considered.

Choice of the hyperparameters
In this section, we provide a brief commentary on

the selection of hyperparameters for the examples pre-
sented. These parameters include the batch size B,
the number of particles in the particle filter N , and
the initial learning rate α0. The selection of these
parameters must align with the memory limitations
of the computer during training. Specifically, we first
empirically determine the number of particles to a
value sufficient to ensure that the discretization of the
posterior does not compromise the precision of the
estimation. This choice subsequently influences the
batch size, i.e., the number of simulations that can
be executed in parallel. The batch size, in conjunc-
tion with the type of loss function, then determines
the initial learning rate. For instance, in Fig. 2, we
utilized B = 128 and α0 = 10−2 for the cumulative
loss, and B = 1024 and α0 = 10−3 for the logarithmic
loss. The batch size can also be increased through
gradient accumulation, which involves averaging the
gradients from multiple executions of a batch of sim-
ulations for the update in Eq. (12). For the Dolinar
receiver, we employed α = 10−2 and B = 4096. Refer
to Appendix E for further information.

4 Technical remarks
We emphasize that our technique for optimizing

sensors is fundamentally based on two steps. First, a
model for the system must be constructed; this model
can be analytical if the physics of the system is well
understood and characterized, or numerical if neces-
sary. Subsequently, based on the constructed model,

the optimal strategy for estimation can be derived
through reinforcement learning, as demonstrated in
this work. An online approach that involves learning
the model concurrently with the training of the strat-
egy exceeds the scope of our current achievements. In
both examples presented, we provided the neural net-
work with a summary of the information extracted
via Bayesian estimation. A straightforward extension
of this approach would involve supplying the network
with higher moments of the posterior distribution, al-
lowing the network to learn more intricate details of
the optimal estimation strategy. In theory, it is feasi-
ble to input the entire posterior distribution into the
NN in the form of all particles and their correspond-
ing weights. However, this is rarely practical if the
parameters are continuous, although this method is
employed in those examples discussed in [29], which
involve the estimation of discrete parameters only.

5 Conclusions

In this section, we summarize the results obtained
from applying model-aware reinforcement learning to
metrology and draw conclusions regarding the utility
of this approach. Overall, our research underscores
the advantages of integrating machine learning with
modern quantum technologies. We have introduced
a framework, complemented by a versatile library, ca-
pable of addressing a wide range of quantum parame-
ter estimation and metrology challenges within both
Bayesian and frequentist frameworks, applicable to
various platforms. Our methods possess the poten-
tial to expedite the development of practical applica-
tions in quantum metrology. The ability to accurately
estimated physical parameters through quantum sys-
tems could revolutionize multiple sectors, including
biology, fundamental physics, and quantum commu-
nication. Through the application of model-aware
reinforcement learning, we aim to facilitate progress
in these domains, easing the transition of quantum-
based metrology from proof-of-principle experiments
to industrial applications. This work aims to acceler-
ate the search for optimal control strategies in quan-
tum sensors, potentially speeding up their widespread
industrial adoption. The technique of model-aware
RL for agent optimization can, in principle, be ap-
plied to a broad spectrum of problems in quantum
information, including quantum error correction and
entanglement distillation, though this would necessi-
tate engineering different loss functions. The primary
challenge in extending this approach to other fields of
quantum information beyond metrology is the rapidly
increasing dimensionality of the quantum state spaces
that would need to be simulated.
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6 Methods
The library qsensoropt has been implemented in

Python 3 on the Tensorflow framework. All of the
simulations have been done on the High-Performance
Computing cluster of Scuola Normale Superiore. The
simulations ran on an NVIDIA Tesla GPU with 32GB
of dedicated VRAM. The training and evaluation of
each strategy took O(1) hours.

7 Data availability
All the data referenced in this work can

be found in the GitLab repository, in the
folders qsensoropt/examples/nv center dc
and qsensoropt/examples/dolinar. The
repository can be found at the URL https:
//gitlab.com/federico.belliardo/qsensoropt.

8 Code availability
The open source library qsensoropt can be found in

the GitLab repository and can be installed with pip
following the instruction in the README file. The
repository can be found at the URL https://gitlab.
com/federico.belliardo/qsensoropt. The pack-
age is also available on PyPI at https://pypi.org/
project/qsensoropt/.
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A. González-Tudela. “Photonic quantum
metrology with variational quantum optical
non-linearities” (2023).

[58] Jing Yang, Shengshi Pang, Zekai Chen, An-
drew N. Jordan, and Adolfo del Campo. “Vari-
ational principle for optimal quantum controls
in quantum metrology”. Phys. Rev. Lett. 128,
160505 (2022).

[59] Ming Chen, Chao Meng, Qi Zhang, Changkui
Duan, Fazhan Shi, and Jiangfeng Du. “Quan-
tum metrology with single spins in diamond un-
der ambient conditions”. National Science Re-
view 5, 346–355 (2018).

[60] Muhammad Junaid Arshad, Christiaan Bekker,
Ben Haylock, Krzysztof Skrzypczak, Daniel
White, Benjamin Griffiths, Joe Gore, Gavin W.
Morley, Patrick Salter, Jason Smith, Inbar Zo-
har, Amit Finkler, Yoann Altmann, Erik M.
Gauger, and Cristian Bonato. “Real-time
adaptive estimation of decoherence timescales
for a single qubit”. Phys. Rev. Appl. 21,
024026 (2024).

[61] Timo Joas, Simon Schmitt, Raffaele Santagati,
Antonio Andrea Gentile, Cristian Bonato, An-
thony Laing, Liam P. McGuinness, and Fedor
Jelezko. “Online adaptive quantum characteri-
zation of a nuclear spin”. npj Quantum Infor-
mation 7, 1–8 (2021).

[62] Fabio Zoratti, Nicola Dalla Pozza, Marco
Fanizza, and Vittorio Giovannetti. “An
agnostic-Dolinar receiver for coherent states
classification”. Physical Review A 104,
042606 (2021).

[63] Pierre Del Moral. “Nonlinear filtering: Inter-
acting particle resolution”. Comptes Rendus de
l’Académie des Sciences - Series I - Mathematics
325, 653–658 (1997).

[64] M.S. Arulampalam, S. Maskell, N. Gordon, and
T. Clapp. “A tutorial on particle filters for
online nonlinear/non-Gaussian Bayesian track-
ing”. IEEE Transactions on Signal Processing
50, 174–188 (2002).

[65] Jun S. Liu and Rong Chen. “Sequential Monte
Carlo Methods for Dynamic Systems”. Jour-
nal of the American Statistical Association 93,
1032–1044 (1998).

Accepted in Quantum 2024-11-18, click title to verify. Published under CC-BY 4.0. 15

https://dx.doi.org/10.1038/s42254-022-00552-1
https://dx.doi.org/10.1038/s42254-022-00552-1
https://dx.doi.org/10.1109/QCE52317.2021.00063
https://dx.doi.org/10.1109/QCE52317.2021.00063
https://dx.doi.org/10.1103/PhysRevApplied.22.044058
https://dx.doi.org/10.1103/PhysRevApplied.22.044058
https://dx.doi.org/10.1103/PhysRevX.11.041045
https://dx.doi.org/10.1038/s41586-022-04435-4
https://dx.doi.org/10.1103/PRXQuantum.4.020333
https://dx.doi.org/10.1103/PRXQuantum.4.020333
https://dx.doi.org/10.1103/PRXQuantum.3.020350
https://dx.doi.org/10.1103/PRXQuantum.3.020350
https://dx.doi.org/10.1038/s41586-024-07913-z
https://dx.doi.org/10.1038/s41586-024-07913-z
https://dx.doi.org/10.1103/PhysRevA.107.032607
https://dx.doi.org/10.1103/PhysRevA.107.032607
https://dx.doi.org/10.1103/PhysRevLett.128.160505
https://dx.doi.org/10.1103/PhysRevLett.128.160505
https://dx.doi.org/10.1093/nsr/nwx121
https://dx.doi.org/10.1093/nsr/nwx121
https://dx.doi.org/10.1103/PhysRevApplied.21.024026
https://dx.doi.org/10.1103/PhysRevApplied.21.024026
https://dx.doi.org/10.1038/s41534-021-00389-z
https://dx.doi.org/10.1038/s41534-021-00389-z
https://dx.doi.org/10.1103/PhysRevA.104.042606
https://dx.doi.org/10.1103/PhysRevA.104.042606
https://dx.doi.org/10.1016/S0764-4442(97)84778-7
https://dx.doi.org/10.1016/S0764-4442(97)84778-7
https://dx.doi.org/10.1016/S0764-4442(97)84778-7
https://dx.doi.org/10.1109/78.978374
https://dx.doi.org/10.1109/78.978374
https://dx.doi.org/10.2307/2669847
https://dx.doi.org/10.2307/2669847
https://dx.doi.org/10.2307/2669847


[66] Tim De Ryck, Samuel Lanthaler, and Sid-
dhartha Mishra. “On the approximation of func-
tions by tanh neural networks”. Neural Net-
works 143, 732–750 (2021).

[67] Diederik P. Kingma and Jimmy Ba. “Adam:
A Method for Stochastic Optimization”. In
Yoshua Bengio and Yann LeCun, editors, 3rd In-
ternational Conference on Learning Representa-
tions, ICLR 2015, San Diego, CA, USA, May 7-
9, 2015, Conference Track Proceedings. (2015).
url: http://arxiv.org/abs/1412.6980.

[68] Peter Karkus, David Hsu, and Wee Sun Lee.
“Particle Filter Networks with Application to Vi-
sual Localization”. In Proceedings of The 2nd
Conference on Robot Learning. Pages 169–178.
PMLR (2018). url: https://proceedings.mlr.
press/v87/karkus18a.html.
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A Schematization of physical systems in qsensoropt
Encoding of the probe
Following the standard nomenclature in quantum metrology, we define a quantum probe as a quantum system

initialized in a reference state ρ. This probe encodes the d-dimensional vector of parameters θ ∈ Θ of interest,
undergoing a controllable evolution determined by the controls x, i.e., ρ→ ρx,θ = Ex,θ(ρ), where Ex,θ is a general
linear completely positive trace-preserving (LCPT) map. A control is a tunable parameter that can be adjusted
during the experiment, which may include factors such as measurement duration, laser frequency detuning in
a cavity, or a tunable phase in an interferometer. In a figurative sense, control parameters encompass all the
controls on the experimental electronics. A control can be continuous if it takes values within an interval, or
discrete if it assumes only a finite set of values (e.g., on and off). The encoded parameters θ may represent
properties of the environment, such as a magnetic field acting on a spin in the NV center platform, or certain
degrees of freedom of the probe’s initial state, such as the parameter α of a coherent state of light |α⟩ in the
agnostic Dolinar receiver.

This scheme can also be framed as a communication protocol, wherein Alice transmits the state ρθ to Bob,
who is tasked with decoding the vector θ. For the sake of generality, we will continue to refer to the quantum
system as a probe in these contexts. The objective is to perform a measurement on ρx,θ to extract information
regarding θ. It is essential to distinguish that the term quantum parameter estimation in the literature pertains
to situations where the encoded probe ρθ is provided, meaning we start from this state and cannot act on the
encoding. In contrast, quantum metrology provides access to the encoding process Ex,θ, not merely to the final
result. The implicit assumption in parameter estimation [104] is that the encoding occurs externally to the
observed framework.

In both metrology and parameter estimation, we assume that the encoding Ex,θ is applied multiple times
or that we are given numerous copies of ρθ, allowing us to gather statistically relevant data by measuring all
copies from which we infer the value of θ. Quantum metrology represents a more general setting than parameter
estimation, and since the techniques developed here apply to quantum metrology, they are also applicable to
parameter estimation. An example of parameter estimation is receiving radiation emitted by a distribution of
currents on a plane, which depends on the properties of the source, such as temperature [56]. In this scenario,
the quantum probe is the radiation. As the radiation is assumed to be emitted from a distant and inaccessible
region, we lack direct access to the quantum channel performing the encoding, receiving only the encoded states,
which is the state of the radiated field upon detection.

An example of a quantum metrological task is the estimation of an environmental magnetic field using
a spin, where we can select the initial state and the interaction duration. Parameters can be continuous
or discrete. Continuous parameters include the magnetic field and temperature, while examples of discrete
parameters encompass signal sign and the type of interaction between two quantum systems [105]. When
discrete parameters are involved, we operate within the realm of value discrimination. In a metrological task,
we may encounter a mixture of continuous and discrete parameters, as observed in the agnostic Dolinar receiver
in Section 3. A parameter can also be classified as a nuisance parameter, which is an unknown variable that
requires estimation, though we do not evaluate the precision of the procedure with respect to it, as we are not
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directly interested in its value. An example of a nuisance parameter is the fluctuating optical visibility of an
interferometer when our primary interest lies in the phase. Estimating nuisance parameters is often necessary
and beneficial for estimating parameters of interest.

Measurement on the probe
To obtain information on θ, it is necessary to perform a measurement on the encoded probe ρx,θ, represented

by a positive operator-valued measure (POVM) M := {Mx
y }, where x denotes the control parameters and y

signifies the measurement outcome. For simplicity, we will use the notation x to refer to both the controls of
the evolution and those of the measurement. The probability of obtaining outcome y can be computed using
the Born rule, yielding

p(y|θ, x) := tr
(
Mx

y ρθ,x

)
. (15)

If the measurement is projective, the system transitions to a known state, thereby extracting the maximum
possible amount of information from ρx,θ. The probe is subsequently reinitialized in the reference state ρ,
encoded, and measured again, with the outcome probability given by the same expression in Eq. (15). In
the case of weak measurement (non-projective), information about θ remains encoded in the probe state, and
reinitialization is not performed. The probe may or may not undergo evolution Ex′,θ again, potentially with
different controls x′. Following this, the probe is measured again using a different POVMM′ := {Mx′

y′ }, leading
to the outcome y′. This procedure can be iterated multiple times until a projective measurement is performed
on the probe, at which point its state is reinitialized. For weak measurements, the Born rule prescribes an
outcome probability that depends on the entire trajectory of previous controls and measurement outcomes. We
denote by xt := (x0, x1, . . . , xt) and yt := (y0, y1, . . . , yt) the tuples containing the controls and outcomes up to
the t-th iteration, respectively. The probability of obtaining yt+1 at the (t+ 1)-th step is given by

p(yt+1|xt+1,yt,θ) := tr
(
Mxt+1

yt+1
ρxt,yt,θ

)
. (16)

The case of continuous measurement can be simulated by taking the appropriate limits, though it is beyond
the scope of this work.

B Implementation of the particle filter
B.1 Bayesian update

If we perform a projective measurement on the probe at each step, the probability of observing outcome y,
given the control x and the true value θ of the unknown parameters, is reported in Eq. (4). To recover the
value of θ, we apply the principles of Bayesian estimation. Starting from the prior distribution π(θ) on θ, we
calculate the posterior probability distribution using Bayes’ rule, expressed as

P (θ|x, y) = p(y|x,θ)π(θ)
P (y) = p(y|x,θ)π(θ)∫

p(y|x,θ)π(θ) dθ
. (17)

The denominator serves as the normalization required for P (θ|x, y) to qualify as a probability density. For a
series of measurements, we apply Bayes’ rule iteratively, using the posterior computed at the previous step as
the prior for the next one. Given the tuples of controls xt+1 and outcomes yt+1, we compute the posterior at
the (t+ 1)-th step from the posterior at the t-th step using the formula

P (θ|xt+1,yt+1) = p(yt+1|xt+1,θ)P (θ|xt,yt)∫
p(yt+1|xt+1,θ)P (θ|xt,yt) dθ

. (18)

It is important to note that for each measurement, the probability of obtaining yt+1 is independent of
the outcomes and controls up to that point and depends solely on xt+1. This independence arises from the
reinitialization of the probe following projective measurements. To efficiently perform the Bayesian update on
a computer, we utilize the particle filter method (PF). This method represents the posterior distribution using
a discrete set of points in the parameter space Θ, each associated with a weight. Essentially, this approximates
the posterior distribution as a sum of δ-functions, expressed as

P (θ|xt,yt) ≃
N∑

j=1
wt

jδ(θ − θj) , (19)
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where the values {θj}N
j=1 are referred to as particles and {wt

j}N
j=1 are the weights at step t. The values of the

particles are sampled from the initial prior π(θ), while the weights are initialized uniformly across all particles,
i.e., ω0

j := 1
N . The weights vary with each step due to the Bayesian update of the posterior in Eq. (18), which

corresponds to the transformation

wt+1
j =

p(yt+1|xt+1,θj)wt
j∑N

j=1 p(yt+1|xt+1,θj)wt
j

. (20)

The particles {θj}N
j=1 may also vary with the step t. We will introduce a resampling procedure that, when

triggered, generates a new set of particles, meaning they do not necessarily remain constant throughout the
estimation process. For notational simplicity, we will not include a time index on θj . We denote the set of
particles and their weights as pt := {θj , w

t
j}N

j=1, referred to as the PF ensemble.

B.2 Moments of the posterior
Computing the first moments of the posterior, namely the mean value and the covariance matrix, corresponds

to straightforward linear algebra operations on the PF ensemble, expressed as

θ̂t :=
∫

θP (θ|xt,yt) dθ ≃
N∑

j=1
wt

jθj , (21)

and

Σt :=
∫

(θ − θ̂t)(θ − θ̂t)⊺P (θ|xt,yt) dθ ≃
N∑

j=1
wt

j(θj − θ̂t)(θj − θ̂t)⊺ . (22)

The mean value of the posterior θ̂ serves as our estimator for all continuous parameters throughout this
paper. As the estimation progresses, the weights typically concentrate on a limited number of particles, while
the remaining particles become negligible for the estimation and may only consume memory. The precision of
the estimation is limited by the average distance between the points θj , which depends on the prior distribution
π(θ) and the number of particles N . The next section will demonstrate how the introduction of a resampling
scheme can address this issue by generating a new set of particles {θ′

j}N
j=1, which should be situated in regions

where the posterior distribution is concentrated. This leads to an increased density of particles in that region,
enhancing the resolution in distinguishing close values of θ. Throughout the paper, we utilize the same symbols
for the “theoretical” moments of the posterior (which are not directly accessible) and the approximations of
these quantities computed from the PF. The context will clarify which quantities are being referenced at any
given time.

B.3 Resampling scheme
While for a small number of unknown parameters we could still obtain good performances even if no resampling

procedure is performed, it is essential for larger dimensions. Indeed the density of particles, i.e. the resolution
in θ, after the initialization, is inversely proportional to the volume of the parameter space, which grows
exponentially in the number d of dimension of the Θ space. To solve this problem it is typical to perform during
the estimation a resampling of the particles according to the posterior distribution, which is triggered by the
condition

Neff := 1∑N
j=1(wi

j)2
< rtN , (23)

where rt is the resampling threshold that is kept fixed at rt = 0.5 in all the simulations of the paper. The
left-hand side of Eq. (23) is sometimes called the effective number of particles Neff.

Soft resampling

The simplest resampling scheme prescribes the extraction of N samples with repetitions from the set of
indexes J = {1, · · · , N}, each weighted with the corresponding wj , j ∈ J . We will call ϕ(j) : J → J the map
that gives the outcome of the j-th extraction event. The indexes j ∈ J corresponding to the particles θj that
have large weights are extracted more frequently, while the particles with small weights tend to disappear. In
our implementation, we considered a slightly more general version of this procedure which goes under the name

Accepted in Quantum 2024-11-18, click title to verify. Published under CC-BY 4.0. 20



of soft resampling [68], that is, we mix the probability distribution represented by the weights {wj}N
j=1 with a

uniform distribution on {θj}N
j=1 by constructing the soft-weights qj defined as

qj := αwj + (1− α) 1
N

, (24)

where α ∈ [0, 1] is a parameter characterizing the effectiveness of the resampling. With α = 1 we have the
traditional procedure, while with α = 0 no actual resampling is performed, because we extract the new particles
from a uniform distribution, just like at the beginning. With α = 0 the particles with low weights are not
cut away from the ensemble but persist after the process. With an intermediate value of α (by default we set
α = 0.5) only a fraction α of the particles are effective for the resampling, because the other fraction (1− α) is
expected to be distributed uniformly. We call θ′

j the new particles extracted from qj , i.e.

θ′
j = θϕ(j) . (25)

Their corresponding weights are chosen, so that the ensemble of the PF represents the same distribution as
before the resampling. These are

w′
j ∝

wϕ(j)

qϕ(j)
=

wϕ(j)

αwϕ(j) + (1− α) 1
N

, (26)

that still need to be normalized. With this choice for w′
j the PF represents the correct posterior even though

the particles have been sampled from a different distribution. The probability density function represented by
the PF is, roughly speaking, proportional to the product of the weights w′

j and the density of particles at the
position θ′

j , i.e. qϕ(j), which with our choice for w′
j is exactly wϕ(j), i.e. the weight of the particle θ′

j prior to the
resampling step. In the next section, we detail this relation. The reader that is interested in the successive steps
of the resampling can however skip it. The soft resampling scheme, which is based on importance sampling [106],
will be crucial in making the PF differentiable [107, 108]. We might want, in general, to perform a subsampling
of the particles, that is, we sample from the distribution in Eq. (24) not N but γN particles, with 0 < γ ≤ 1.
We will later in the resampling routine propose (1 − γ)N new particles that will help us in representing the
posterior better, so that we have in total after the resampling step N particles again. In this case the weights
in Eq. (26) will be normalized as w′

j →
w′

j

C , where C is such that

1
C

γN∑
j=1

wj = γ , (27)

By default we set γ = 0.99, that is, only 1% of the particles after the resampling are new.

Particle filters and importance sampling

In this section we review the core ideas underlying the functioning of a particle filter and the principle of
importance sampling, as it is applied in our implementation of the soft resampling. Consider a distribution
P (θ), from which we sample N particles θj with j = 1, · · · , N . Let us define an hypercube C of volume dθ
centred around θ, and let us call n(θ, dNθ) the number of particles in the said hypercube, i.e.

n(θ,dθ) :=
N∑

j=1
χC(θj) (28)

with χC being the characteristic function of the hypercube. We can write

1
N
n(θ, dNθ)→ P (θ) dθ for N →∞ , (29)

that is in the limit of large N the fraction of particles in the hypercube tends to the probability in such volume
element. In a PF we associate to each particle θi a weight wi and we can define the total weight in the hypercube
C as

P (θ) dθ ≃ w(θ, dNθ) :=
N∑

j=1
wjχC(θj) . (30)

This total weight is the probability distribution actually represented by the PF. In the limit of large N , for a
smooth distribution, we can consider the weight a function of the point w(θ), which varies smoothly in space
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and is approximatively constant in the hypercube C. This leads us to write

P (θ) dθ ≃ w(θ)
N∑

j=1
χC(θj) = w(θ)n(θ,dθ) . (31)

This means that the distribution represented by the particle filter is proportional to the product of the weights
and the density of the particles. This is however not the only way to represent P (θ). Suppose that for whatever
reason we sample the particles θj from Q(θ), but that we actually want to represent the distribution P (θ).
Then we can multiply the weights wj = 1/N of each particle θj with the corrective factor P (θj)/Q(θj), which
remains approximately constant inside the region C, i.e.

w(θ, dNθ) = 1
N

N∑
j=1

P (θj)
Q(θj)χC(θj) ≃ P (θ)

Q(θ)
1
N

N∑
j=1

χC(θj) = P (θ)
Q(θ)

n(θ, dNθ)
N

, (32)

since now the particles are distributed spacially according to Q(θ) the density of particles will tend to Q(θ) for
large N that, according to Eq. (29), gives w(θ, dNθ)→ Q(θ), therefore we have w(θ, dNθ) ≃ P (θ). In the case
of soft resampling the distribution Q(θ) is constructed from P (θ) as

Q(θ) dθ :=
[
αw(θ) + (1− α) 1

N

]
n(θ,dθ) , (33)

and the factor that multiplies the weights is P (θ)/Q(θ) = w(θ)/
[
αw(θ) + (1− α) 1

N

]
. The factor used in

Eq. (26) for the particle at θ′
j contains wϕ(j) , which is the weight at this point in the original distribution

P (θ).

Gaussian perturbation

After the soft resampling, we add a perturbation to the particles as proposed in [78], that is, we define

θ′′
j := βθ′

j + (1− β)θ̂t + δ , (34)

where β ∈ (0, 1], θ̂t is the mean of the posterior approximated in Eq. (21) and δ is a random variable distributed
according to

δ ∼ N (0, (1− β2)Σt) . (35)
With this expression we move the particles toward the mean of the posterior, which is our estimator for θ
and at the same time we lift the degeneracy of the θ′

j , that comes about because the particle θj with high
weights appear many times in the new particles ensemble. Were the degeneracy not removed, all these copies
of the same particle wouldn’t contribute much to improving the resolution of the PF. This holds true unless
they are perturbed, at which point they can encode the small scale behavior of the posterior. Because of
the perturbation in Eq. (34) the PF does not represent anymore the posterior P (θ|xt,yt) exactly. We now
compute the probability distribution for θ′′

j after the perturbation step. The particles are distributed in the
space according to the qj weights in Eq. (24) and we call this distribution Q(θ′). Let us write Eq. (34) as
θ′′

j = βθ′
j + δ′ with

δ′ ∼ N ((1− β)θ̂t, (1− β2)Σt) , (36)
being a perturbation with non-null mean value. Then the probability density for θ′′

j is the convolution of the
probability of a particle being at position θ′ and the probability of the noise causing a displacement δ′ = θ′′−βθ′,
i.e.

Q̃(θ′′) =
∫
Q(θ′)gβ(θ′′ − βθ′) dθ′ =

γN∑
j=1

qϕ(j)gβ(θ′′ − βθ′
j) , (37)

where gβ is the Gaussian probability density associated to δ′, i.e.

gβ(θ) := (2π)− d
2 (1− β2)− 1

2 det(Σt)− 1
2 exp

[
− 1

2(1− β2)

(
θ − (1− β)θ̂t

)⊺
Σ−1

t

(
θ − (1− β)θ̂t

)]
. (38)

In Eq. (37) we also substituted the integral with a summation being the probability Q(θ′) discrete. According
to the principles of importance sampling the distribution represented by a PF is the product of the weights and
the density of particles, which reads

P̃ (θj) ∝ P (θ)
Q(θ) Q̃(θj) ≃ P (θ) , (39)

In principle, we could correct the distribution for this perturbation by computing exactly Eq. (37) and accounting
for it in the weights w′

j , in our implementation we don’t do it however, since it would be very small anyway.
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New particles proposal

We still need to produce (1−γ)N new particles and we do it by extracting them from the Gaussian distribution
with the same two first moments of the PF ensemble, i.e.

θ
′′

j ∼ N
(
θ̂,Σ

)
, (40)

for j = γN, · · · , N . The mean and the covariance matrix are defined in Eq. (21) and Eq. (22) respectively. This
is done again to increase the density of particles in the region of high probability, but it works properly only for
unimodal distributions. The weights of these new particles are set to w′

j = 1
N , so that their normalization is

N∑
j=γN

w′
j = 1− γ . (41)

This extra particles and weights are concatenated directly to {θ′′
j }

γN
j=1 and {w′

j}
γN
j=1. We then rename the new

weights and particles, i.e. w′
j → wj and θ′′

j → θj , and with that the resampling procedure is concluded. In
doing the last step of proposing new particles we are mixing the distribution represented by the PF P (θ) as it
comes out of the perturbation step in Eq. (39) with the distribution g0 in Eq. (38). At the end the PF ensemble
represents the distribution

P ′(θ) = γP (θ) + (1− γ)g0(θ) . (42)

Again we do not correct for this distortion, which could be done by modifying the weights properly.

Resampling of the batch

In order to compute the precision of the estimation, we need the results of many runs of the simulation,
possibly executed in parallel on a GPU. In these circumstances the resampling is performed on all the instances
of the estimation as soon as the condition Eq. (40) holds true for at least a fraction f of the estimations in
the batch, which by default is set to f = 0.98. The premature resampling of an estimation run will have a
quite strong detrimental effect on the goodness of the posterior represented by the PF, on the contrary a late
resampling is much less probable to distort the distribution, this is the reason why we set f so close to one,
that is, we want to limit as much as possible the number of simulations that are prematurely resampled. With
the current implementation at each step either all the simulations is the batch are resampled or none. An
improvement to the PF would be to resample selectively only those runs that are in need of resampling, and
leave the other untouched until they satisfy Eq. (40), so that whatever number of runs could be resampled at
each step. The complete resampling cycle, including the extraction and the new particle and the importance
sampling is represented in Fig. 7.

B.4 State particle filter
In this section we describe what happens when we are acting with weak (non-projective) measurements on

the probe. In this case the probability to observe the outcome yt+1 at the step t+ 1 depends on all the string
of previous outcomes and controls, that is on the whole trajectory τ := (xt,yt), as well as on the current
control xt+1. This means we must substitute p(yt+1|xt+1, vtheta) with p(yt+1|θ,xt+1,yt) in Eq. (20). Since we
avoid the reinitialization of the probe, its state depends on all the evolution history. With this change in the
outcome probability all the formulas of the previous section remain valid. To compute p(yt+1|θ,xt+1,yt), we
need to keep track of the state of the probe. In order to do so we introduce the state particle filter. In this data
structure we save for each particle θj the state of probe had the system evolved under the action of Eθj ,x, with
the controls and the outcomes being the ones actually applied/observed in the evolution, we indicate this state
with ρθj ,τt

. To this state we associate the weight wj of the particle θj . The state particle filter represents the
posterior probability distribution for the state of the probe conditioned on the trajectory τt. The expression for
ρθj ,τt reads

ρθj ,τt =Mxt
yt
◦ Eθj ,xt ◦Mxt−1

yt−1
◦ Eθj ,xt−1 ◦ · · · ◦Mx1

y1
◦ Eθj ,x1(ρ) , (43)

where

Mxt
yt

(ρ) :=
Mxt

yt
ρMxt†

yt

tr
[
Mxt

yt ρM
xt†
yt

] , (44)
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Figure 7: The ensemble of the PF before the resampling is represented in a), the scatter plot are the points (θj , wj). This
plot doesn’t represent directly the posterior, because it doesn’t take into account the density of particles. In all the plots, the
inserted histogram is the actual posterior represented by the PF. Once the condition Eq. (23) is satisfy the first step of the
resampling is executed, which is the transformation (1) and corresponds to sampling with repetitions from Eq. (24), the plot b)
is the spatial density of particles after this action. The scatter plot c) is the distribution of the PF after the weights have been
corrected according to Eq. (26) (transformation (2)). (3) is the application of the Gaussian noise in Eq. (34) and (4) is the
sampling of the extra proposed particles in Eq. (40). Plot e) is the distribution represented by the PF when the resampling
routine is complete, where in red the contribution of the new particles is highlighted. At last (5) is the repeated application of
the Bayes rule Eq. (20), following some new measurement on the probe, that leads to the ensemble of the PF being again in
need of resampling. To emphasise the effect of each transformation we have set α = 0.5, β = 0.9, γ = 0.8. The total number
of particles was N = 103 and the effective number of particles in a), that is before the resampling, was Neff = 93.8. In the
histograms the interval [0, 1] of the scatter plots has been mapped to [0, 100].

is the backreaction of the measurement on the state of the probe. The estimator for the probe state at the step
t is

ρ̂τt
:=

N∑
j=1

wjρθj ,τt
, (45)

that is, the mean of the state on the posterior distribution for the parameters. The estimator ρ̂τt can then be
fed to the agent, to contribute to the computation of the next control. When the resampling is performed on
the PF ensemble we get a new set of particles θ′

j and their corresponding states must be also updated. This
means we have to keep track of the vectors xt and yt in the simulations and recompute the evolution of the
whole state particle filter from the beginning, so that we get ρθ′

j
,τt

. From the computational point of view,
the fact that we need these rather memory intensive structures of the PF and the state PF tells us that the
optimization loop presented here can be applied only to rather small and simple quantum sensors.

B.5 Multimodal posterior distributions
The resampling procedure presented in the previous section has some limitation in dealing with multimodal

distributions. In this case the mean of the posterior may lay in a region of relatively low probability between
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two peaks and the accumulation of particles in this region after a resampling would be detrimental to the
precision of the estimation. From its own design it would be difficult to modify the PF so that it accounts for
multiple maxima. The informations that we can easily extract from the PF are its moments and from them
the actual positions of the maxima are not straightforward to obtain. Multimodal posterior distributions are
however common in quantum metrology. For example in multiphase estimation, like the measurement of the
hyperfine interaction in NV-13C. To promote the preservation of secondary features in the posterior distribution
we can use multiple particle filter at once. In this situation a set of PFs, with different priors, are updated in
parallel and only together represent the full Bayesian posterior. To reduce the memory requirement of such
approach we could consider simple Gaussian distributions instead of full PFs. We start by approximating the
prior distribution π(θ) with as a sum of L Gaussians:

π(θ) ≃
L∑

l=1

wlN (µl,σl) . (46)

If the parameters µl,σl are fixed then the Bayesian update step can be done by solving a linear regression
problem to find the best new values for {wl}L

l=1 that represent the posterior. In this way the PF has however a
limited resolution, determined by the initial Gaussian. If we also let µl,σl change during the Bayesian update
step, then we solve the problem of having limited resolution, but we now have to deal with a non-linear regression
problem.

C Differentiability of the particle filter
In this section we discuss what happens when the resampling routine of the particle filter is switched on,

and, in particular, what we need to do to assure that the gradient produced by the automatic differentiation is
correct.

C.1 Differentiable PF through reparametrization and soft resampling
Differentiability of the soft resampling

As seen in Appendix D.3, the gradient can’t be propagated through randomly extracted variables, therefore
when the categorical resampling is executed, the particles θ′

j in Eq. (25) don’t have any connection with the
controls, i.e.

dθ′
j

dλ = 0 . (47)

Similarly, the weights are reinitialized and loose every dependence on the history of the estimation. At the
moment of taking the gradient we won’t be able to account for anything that happened before the last resampling.
This means that the training routine optimizes the agent only for the later steps, although what has been learnt
in this context may be useful also for the earlier measurements. The soft resampling with α < 1, introduced
in Appendix B, is able to partially remove this obstacle. With this trick the dependence on λ is passed from
the old weights to the new ones through Eq. (26). However, the gradient doesn’t backpropagate entirely but
it is attenuated by the factor 1 − α. The price to pay for propagating the gradient is that the N particles are
not all fully effective for the resampling, instead only a fraction α of them participate to it. As discussed in
Appendix D.3, since we are extracting stochastic variables from the distribution in Eq. (24), we should also add
the corresponding log-likelihood terms

∑
j log qϕ(j) to the loss. However adding so many terms would increase

too much the variance of the gradient. Either we don’t account for these log-likelihoods and we accept the
gradient to have a bias, or we use the correction introduced in [69], that prescribes to substitute the definition
of the new weights w′

j with an appropriate surrogate expressions. Introducing this correction is the default
behaviour of our code but it can be applied only if the loss ℓ(θ̂,θ) is of a certain form. It can be proved that
for the MSE defined in Eq. (7) this gives the correct gradient. See Appendix C.2 for a complete discussion.

Differentiability of the perturbation

The next transformation on the particles is the perturbation of Eq. (34). Again we would be unable to
propagate the gradient through the perturbation δ′, if we extracted it directly from the Gaussian N (µ,Σ), with
µ = (1− β)θ̂t and Σ = (1− β2)Σt. For this reason we apply the reparametrization trick and write

δ′(yt,λ) = Σ(yt,λ)u + µ(yt,λ) , (48)
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where u is extracted from the multivariate standard Gaussian u ∼ N (0,1). The perturbation is now a differ-
entiable functions of λ. For the extraction of u we do not need to add a corresponding log-likelihood term, as
discussed in Appendix D.3, because its probability density function doesn’t depend on λ.

Differentiability of the proposed particles

For the last step of the resampling, which consists in proposing new particles θ′′
j , extracted from N (θ̂t,Σt),

we again exploit the reparametrization trick and write

θ′′
j (yt,λ) = Σt(yt,λ)uj + θ̂t(yt,λ) , (49)

which is again differentiable and doesn’t require a log-likelihood term.

Differentiability of the state particle filter

Regarding the differentiability of the state particle filter discussed in Appendix B.4, we observe that its
elements are functions of λ through the trajectory τt(λ) = (xt(yt,λ),yt):

ρj(λ) := ρθj ,τt(λ) . (50)

Under the assumption that the encoding and the measurements appearing in Eq. (43) are differentiable we can
propagate the gradient through the evolution of the probe in Eq. (43) . When the particles are resampled and
the new states are computed, the dependence of the new state ρj(λ) on the old weights of the PF, and therefore
on λ, persists through the measurement backreaction operators Myt

xt(λ). A new dependence on λ appears in
the evolution map Eθj(λ),xt(λ), coming from the new particles θj(λ), so that we can write

ρ′
j(λ) := ρθj(λ),τt(λ) . (51)

C.2 Differentiable PF through the correction of Ścibior and Wood
In [69] a correction was introduced to make the resampling procedure in a PF differentiable. This can be

implemented in place of the soft resampling, or alongside with it. The default behaviour of our software is to
perform the soft resampling with α = 0.5 alongside the Ścibor and Wood correction. With this choice only
half of the gradient is backpropagated through soft resampling, the other half is done by the Ścibor and Wood
correction. The former prescribes to modify the normalized weights w′

j of Eq. (26) to

w̃′
j ← w′

j

qϕ(j)

sg
[
qϕ(j)

] , (52)

where the meaning of the symbols is that of Appendix B.3. In this formula we are using the stop gradient
operator sg [·], which is an instruction that tells the automatic differentiation frameworks not to compute the
derivatives of the expression inside the operator. This correction has no effects in the forward pass, but produces
additional gradient terms in the backward pass. We see in this section, that for a MSE loss the extra terms in
the gradient appearing because of this surrogate expression are exactly the log-likelihoods that we would have
to insert following the conclusions of Appendix D.3, although this observation can’t be extended to a generic
loss. Let us start from the expression for the MSE, when one and only one resampling is performed in the whole
experiment, at step t, i.e.

∆2θ̂ =
∫
ℓ(θ̂,θ)P (τt+1:M−1|θ′

j ,θ)

 N∏
j=1

P (θ′
j |τ0:t)

P (τ0:t|θ)π(θ) dτM−1

 N∏
j=1

dθ′
j

 dθ . (53)

We assume for clarity that the perturbation and the extraction of the extra particles, in Eq. (48) and Eq. (49)
respectively, are turned off, i.e. β = γ = 1. The object τα:β with α, β integers in [0,M − 1] is the trajectory
between the steps α and β (extrema included), i.e. τα:β = (xα:β ,yα:β) with xα:β = (xα, xα+1, . . . , xβ) and
yα:β = (yα, yα+1, . . . , yβ). Reading Eq. (53) from right to left we encounter the probability densities for all the
random variable extractions in chronological order. First the extraction of the true values θ for the simulation
instance, then the trajectory up to the resampling point, then the extraction of the new particles θ′

j , and finally
the measurements after the resampling, i.e. the trajectory after the t-th step until the end. This last probability
depends also on the values of the new particles, through the posterior distribution momenta, that are passed to
the agent that decides the next control. We now insert the expression for ℓ(θ̂,θ) found in Eq. (7) in Eq. (53).
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We postpone the computation of the trace to the end and expand the error matrix for the estimator in Eq. (21),
i.e.

(θ̂ − θ)(θ̂ − θ)⊺ =
N∑

i,j=1
w′

iw
′
jθ

′
iθ

′⊺
j − θ

 N∑
j=1

w′
jθ

′⊺
j

−
 N∑

j=1
w′

jθ
′
j

θ⊺ + θθ⊺ . (54)

Each term in the first summation gives a contribution to ∆2θ̂ equal to∫
w′

iw
′
jθ

′
iθ

′⊺
j P (τt+1:M−1|θ)P (θ′

i|τ0:t)P (θ′
j |τ0:t)P (τ0:t|θ)π(θ) dτM−1 dθ′

i dθ′
j dθ , (55)

where we neglect all the integrals on the variables θ′
α with index α ̸= i, j, because they do not appear in

the integrand. The gradient of this term with respect to λ gives rise to the usual likelihood terms for the
measurement plus the following extra terms coming from the resampling:

N∑
i,j

w′
iw

′
jθ

′
iθ

′⊺
j

(
d logP (θ′

i|τ0:t)
dλ +

d logP (θ′
j |τ0:t)

dλ

)
, (56)

for i, j = 1, . . . , N . Similarly the linear terms in Eq. (54) give the following likelihood terms:

−
N∑

j=1
w′

j

(
θ′

jθ
⊺ + θθ′⊺

j

) d logP (θ′
j |τ0:t)

dλ , (57)

plus the same terms with θ′⊺
j . There is no likelihood terms associated to the constant θθ⊺ in Eq. (54). Now

we shall see that deriving the surrogate expression gives the same terms in the gradient. Let us write the total
derivative of the error matrix:

d
dλ (θ̂ − θ)(θ̂ − θ)⊺ = dθ̂

dλ (θ̂ − θ)⊺ + (θ̂ − θ)dθ̂
⊺

dλ

=
(

N∑
i=1

dw̃′
i

dλ θ′
i

) N∑
j=1

w′
jθ

′
j − θ

⊺

+
(

N∑
i=1

w′
iθ

′
i − θ

) N∑
j=1

dw̃′
j

dλ θ′⊺
j

 .

Where the derivative doesn’t act the weights w̃′
j become w′

j . From the definition of w̃′
j in Eq. (52) we compute

the derivative of the surrogate expression, that is

dw̃′
j

dλ =
dw′

j

dλ + w′
j

d log qϕ(j)

dλ . (58)

We know keep track only of the extra likelihood terms coming from the surrogate part of the weights w̃′
j and

organize the terms according to the order in θ′
j . We have the second order terms:

N∑
i,j

w′
iw

′
jθ

′
iθ

′⊺
j

(d log qϕ(i)

dλ +
d log qϕ(j)

dλ

)
, (59)

and the first order ones:
N∑

j=1
w′

j

(
θ′

jθ
⊺ + θθ′⊺

j

) d log qϕ(j)

dλ , (60)

which correspond respectively to Eq. (56) and Eq. (57), once we realize that P (θ′
j |τ0:t) = qϕ(j). One of the

advantages of this approach is the reduce variance of the gradient estimator, which would explode, where we
to insert all the likelihood terms for the new particle extractions at the end of the estimation. The correction,
however, doesn’t produce always the correct gradient for the loss, but only when ℓ(θ̂,θ) is a polynomial function
of the weights w̃′

j . Consider the estimation of single parameter θ ∈ [0, 2π), we might want to use a loss functions
l(θ̂, θ) that respect the circular nature of the parameter, like

l(θ̂, θ) := sin(θ̂ − θ)2 . (61)

Accepted in Quantum 2024-11-18, click title to verify. Published under CC-BY 4.0. 27



The gradient with respect to λ, when the correction is implemented, is

d
dλ l(θ̂, θ) = 2 sin(θ̂ − θ) cos(θ̂ − θ) dθ̂

dλ (62)

= sin(2θ̂ − 2θ)
N∑

j=1

dw̃′
j

dλ θ′
j (63)

= sin(2θ̂ − 2θ)
N∑

j=1

(
dw′

j

dλ θ′
j + w′

jθ
′
j

d log qϕ(j)

dλ

)
, (64)

so that the likelihood term in the gradient is

sin(2θ̂ − 2θ)
N∑

j=1
w′

jθ
′
j

d log qϕ(j)

dλ , (65)

while it should be

sin(θ̂ − θ)2
N∑

j=1

d log qϕ(j)

dλ . (66)

Another example where the correction fails in the loss of Eq. (8). Let us take θ̂ to be the maximum likelihood
estimator, then, since a small perturbation in the posterior distribution won’t change it we have

dθ̂
dλ = dθ̂

dwj

dwj

dλ = 0 , (67)

therefore the correction is useless to backpropagate the gradient through the resampling step and we must rely
only on the importance sampling. Incidentally we notice that the loss for Eq. (8) is a pure-likelihood expression,
analogous to the loss in regular Policy Gradient RL.

D Computation and differentiation of the loss function
As in most optimization problems, the trainable variables of the agent are updated with a version of the

stochastic gradient descent. In this section, we define the loss function for this training, compute its gradient,
and comment on the computational resources required by the training.

D.1 Definition of the loss function
The two scalar losses that we used in this work are the MSE, defined in Eq. (7), used for continuous parameters,

and the discrimination loss of Eq. (8), used for discrete parameters, that converges to the error probability when
averaged. If the parameter to be estimated is a phase we might want to take as loss the circular variance [109].
In the following section we adopt the symbol ℓ(θ̂,θ) for the loss and keep the discussion completely general.
We mention that this analysis would apply also to a more general class of losses, being functions of the of the
PF ensemble, i.e. ℓ(p,θ), provided they are well-behaved as functions. The expected value of the loss on the
trajectory is

∆2θ̂τ :=
∫
ℓ(θ̂,θ)P (θ̂|τM−1,θ) dθ̂ , (68)

with τM−1 := (xM−1,yM−1) indicating the complete trajectory. This definition presumes a stochastic de-
pendence of the estimator θ̂ computed from the PF on the outcomes and the controls of the measurements,
collectively denominated τM−1. This is codified by the probability density P (θ̂|τM−1,θ). This stochasticity can
be due to the resampling routine or, in general, to the construction of the estimator θ̂, which could entail the
sampling from a distribution, which is however never the case in our examples. The quantity ∆2θ̂τ refers to a
single trajectory of the PF, the one indicated with τM−1. We wish however to consider the average of the MSE
over all the possible trajectories τM−1 weighted appropriately. The expectation value over τM−1 is expressed
by the following operator

Eτ [·] :=
∫
·P (xM−1,yM−1|θ) dxM−1 dyM−1 , (69)
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which applied to Eq. (68) gives

Eτ

[
∆2θ̂τ

]
=
∫
ℓ(θ̂,θ)P (θ̂|θ) dθ̂ , (70)

where we have defined

P (θ̂|θ) :=
∫
P (θ̂|τM−1,θ)P (τM−1|θ) dxM−1 dyM−1 . (71)

We also want to take the expectation value of θ̂ on the prior π(θ) through the operator

Eθ [·] :=
∫
·π(θ) dθ , (72)

which applied to Eτ

[
∆2θ̂τ

]
gives the figure of merit for the error

∆2θ̂ := Eθ

[
Eτ

[
∆2θ̂τ

]]
=
∫
ℓ(θ̂,θ)P (θ̂) dθ̂ , (73)

with

P (θ̂) :=
∫
P (θ̂|τM−1)P (τM−1|θ)π(θ) dxM−1 dyM−1 dθ . (74)

This is the probability density for the final estimator θ̂, given that the true value θ is extracted from the
prior π(θ) at the beginning and we average over the trajectory τM−1 that is stochastically generated in the
simulation, through the actions of the agent and the measurements. The expression in Eq. (73) suggests us a
straightforward way to approximate the error from the numerical simulation (à la Monte Carlo), i.e.

∆2θ̂ ≃ 1
B

B∑
k=1

ℓ(θ̂k,θk) , (75)

where θk is the true value of the parameters in the k-th simulation and θ̂k is the corresponding final estimator.
By carrying out the complete estimation in a batch of B simulated experiments, with each θk extracted from
π(θ), we are effectively sampling θ̂ from P (θ̂) so that by the law of large number we can approximate the
expectation value of the loss function in Eq. (73) with the empirical mean on the batch. Each simulation in the
batch follows its particular trajectory, which will be different from the ones of the other simulations, because
the randomly extracted measurement outcomes are different. Notice that in distinction with the notation of the
previous sections the subscript in Eq. (75) doesn’t refer to the step of the measurement cycle, but to the index
of the simulation in the batch: the estimators θ̂k are always evaluated at the last step t = M − 1. We call B
the batchsize of the simulation. The right-hand side of Eq. (75) will be the loss to be minimized by the training
procedure. A natural question that arises here, is why aren’t we using the covariance matrix as estimated from
the PF in the computation of the MSE? The answer is that the PF may be imprecise for the evaluation of the
variance, in particular, it tends to underestimate it, because some tails of the distribution P (θ̂|τM−1) may not
be very well represented. We prefer to estimate the MSE empirically from the sampled θ̂k, extracted from the
true distribution P (θ̂), in order to avoid biases. The loss of Eq. (75) is the closest it can be to the precision we
would observe in an experiment.

Definition of the loss for limited resources
In the previous paragraph we have implicitly assumed that the stopping condition of the estimation was

based on the number of measurement M , i.e. we had a fixed number of measurement in each instance of the
estimation. If, however, the resources are not simply related to the number of measurement steps, since each
estimation in the batch follows its own trajectory, we may have different termination times, which correspond
to the sensor employing a different number of measurement steps to consume all the available resources. In
this section we introduce the notation θ̂k,t, where the first subscript k is the index in the batch, and the second
t is the measurement step. Whatever the nature of the resource chosen, to avoid having infinite loops we
always fix a maximum number of measurement steps M in the simulation, that should to be much larger than
the expected number of iterations before the resources run out. At each step only the PF ensemble of those
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estimations which haven’t terminated yet are updated with the Bayes rule, all the others, which have already
consumed the available amount of resources, remain “freezed”, since no measurement is performed and therefore
no update is applied. Nevertheless all the quantities computed from the PF ensemble, e.g. θ̂k,t and Σk,t are
defined potentially for all the estimation steps t = 0, · · · ,M − 1. To put it simply if t⋆k was the index of the
last measurement for the k-th estimation in the batch before it running out of resources, then θ̂k,t = θ̂t⋆

k
,k,

Σk,t = Σt⋆
k

,k for t ≥ t⋆k. In general, the PF ensemble remains the same if no new measurement outcomes are
incorporated, i.e. pk,t = pt⋆

k
,k for t ≥ t⋆k. The simplest stopping condition for the measurement cycle is now that

all the B estimations in the batch have concluded, but to reduce the simulation time we only ask for at least a
fraction ν = 0.98 of estimations to have terminated. These would exclude those simulations that are taking too
long to terminate. We define M ′ the realized number of iterations in the measurement loop determined by this
condition, so that the loss in Eq. (75) becomes

∆2θ̂ ≃ 1
B′

B′∑
k=1

ℓ(θ̂k,M ′ ,θk) , (76)

where the summation is taken only on those B′ = ⌈νB⌉ estimations in the batch that have terminated.

D.2 Dependence of the loss on the trainable variables
We go on by deriving from Eq. (73) an expression for the MSE, that is more directly related to the quantities

simulated, under the hypotheses that the resampling has been turned off, i.e. rt = 0, and that the computation
of θ̂ from the ensemble of the PF doesn’t require any stochastic operation. These are working hypotheses, which
will allow to make useful observations and generalizations, whose domain of applications is however not limited
by the said hypotheses. We begin observing that the controls xM−1 produced by the agent are deterministic
functions of the ensemble of the PF, for example through the mean and the covariance matrix. Therefore, the
weights of the PF are in turn deterministic functions of the measurement outcomes, as they are computed with
Eq. (20), so that we can write the controls xt and the estimator θ̂t at step t as

xt = g1(yt−1,λ) and θ̂t = g2(yt,λ) , (77)

for two appropriate functions g1 and g2. Beside the outcomes both the controls and the estimators depend on
the trainable variables of the agent, indicated with λ, for the aforementioned reasons. Under these hypotheses
the probabilities appearing in Eq. (74) can be rewritten as

P (xM−1,yM−1|θ) = δ(xM−1 − g1(yM−2,λ))p(yM−1|θ,λ) , (78)

P (θ̂|xM−1,yM−1) = δ(θ̂ − g2(yM−1,λ)) . (79)

Solving the integrals in dxM−1 and in dθ̂ in Eq. (73), we get the following expression for the MSE

∆2θ̂ =
∫
ℓ(θ̂(yM−1,λ),θ)p(yM−1|θ,λ)π(θ) dyM−1 dθ . (80)

This is an expectation value on the probability distribution of the tuple of outcomes yM−1. We introduce
ω := (yM−1,θ) and redefine the loss for the next sections as

ℓ(ω,λ) := ℓ(θ̂(yM−1,λ),λ) . (81)

The object ω contains all the variables that depend on the specific instance of the simulation so that the
empirical approximation of ∆2θ̂ from Eq. (80) is

L(λ) := 1
B

B∑
k=1

ℓ(ωk,λ) , (82)

with ωk := (yk,M−1,θk). The true values θk are sampled from π(θ) at the beginning of the run. In case the
agent is a NN the trainable variables are the weights and the biases, while for the non-adaptive strategy the
variables are directly the tuple of all the controls, i.e. λ = (x1, x2, . . . , xM−1). The average loss in Eq. (82) will
be also named the scalar loss, in contrast to ℓ(ωk,λ), which is the individual loss or the vector loss, since it has
a free index k.
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D.3 Gradient of the loss
The simulation of the quantum sensor, the particle filter, and the evaluation of the NN are implemented in the

chosen automatic differentiation (AD) environment, i.e. TensorFlow (TF), so that at the end of the simulation
we can take the gradient of the loss in Eq. (82) with respect to λ with no effort and obtain

dL(λ)
dλ = 1

B

d
dλ

B∑
k=1

ℓ(ωk,λ) . (83)

The automatic differentiation framework does all the derivatives automatically, that we would need to evaluate
analytically or numerically otherwise. Even if the outcomes yk,M−1 are extracted from a probability distribution
that depends on λ, as it is because each of them is sampled from p(yk,t+1|xk,t+1,yt,θk) and the controls xk,t+1
depend on λ, in TF and other similar frameworks their derivatives with respect to λ are always null by
construction, i.e.

d
dλyk,t+1 = 0 , (84)

in other words, the gradient cannot propagate through the extraction of random variables. This is a consistent
behaviour of automatic differentiation frameworks, and has to do with the fact that the sampled variables are
considered constant tensors in the construction of the graph, on the same level as other numerical constants
fixed by the programmer. We will show now, that much like in [8], the gradient of the loss produced by AD
in Eq. (83) is not correct and will lead to a suboptimal training routine. Another term must be added that
keeps track of the sampled variables during the evolution. To understand why this is so, let us start from the
theoretical definition of ∆2θ̂ in Eq. (80) and take its gradient with respect to λ. The two terms p(yM−1|θ,λ)
and θ̂(yM−1,λ) both depend on λ. The first one can be expanded as follows:

p(yM−1|θ,λ) =
M−1∏
t=0

p(yt|xt,yt−1,θ) , (85)

and the dependence on the controls xt is a dependence on the trainable variables of the agent λ. The second
term θ̂(yM−1,λ) depends on λ through the PF weights, which are updated with the Bayes rule Eq. (20), that
features the term p(yt+1|xt+1,yt,θ), where again the controls xt+1 are λ-dependent. The complete gradient of
the right-hand term of Eq. (80) reads therefore∫ d

dλℓ(θ̂(yM−1,λ),θ)p(yM−1|θ,λ) dyM−1 +
∫
ℓ(θ̂(yM−1,λ),θ)dp(yM−1|θ,λ)

dλ dyM−1 . (86)

The first term is in the form of an expectation value and can be straightforwardly approximated in a Monte
Carlo simulation. It corresponds exactly to the näıve gradient of the loss in Eq. (83) computed by the AD
framework. The second term can be written as∫

ℓ(θ̂(yM−1,λ),θ)d log p(yM−1|θ,λ)
dλ p(yM−1|θ,λ) dyM−1 , (87)

which is now in the form of an expectation value on the trajectories of the simulation and can be evaluated
simultaneously with the first term, provided we keep track of log p(yM−1|θ,λ). This second contribution to the
gradient can be approximated as

1
B

B∑
k=1

ℓ(ωk,λ)d log p(yk,M−1|θk,λ)
dλ , (88)

on a batch of B simulations. The term log p(yk,M−1|θk,λ) is the sum

log p(yk,M−1|θk,λ) =
M−1∑
t=0

log p(yk,t|yk,t−1,θk,λ) , (89)

where we exchanged the dependence on xk,t of the factors p(yk,t|xk,t,yk,t−1,θk) for the dependence on λ.
This logarithm can be accumulated step by step in the simulation, after the extraction of each measurement
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outcome. Notice that for B simulations in the batch, we have to compute B cumulated probabilities, because
each trajectory is different. In conclusion, the total gradient is

1
B

B∑
k=1

[
d

dλℓ(ωk,λ) + ℓ(ωk,λ)d log p(yk,M−1|θk,λ)
dλ

]
. (90)

By introducing the stop gradient operation we can write it in the convenient form

1
B

d
dλ

B∑
k=1

{ℓ(ωk,λ) + sg [ℓ(ωk,λ),θ)] log p(yk,M−1|θk,λ)} , (91)

that requires only one gradient, which makes it more straightforward to implement in the AD framework.
In this formula we are using the stop gradient operator sg [·], which is an instruction that tells the automatic
differentiation frameworks not to compute the derivatives of the expression inside the operator. We are therefore
naturally led to introducing the modified loss L̃(λ), i.e.

L̃(λ) := 1
B

B∑
k=1

ℓ̃(ωk,λ) , (92)

with

ℓ̃(ωk,λ) := ℓ(ωk,λ) + sg [ℓ(ωk,λ)] log p(yk,M−1|θk,λ) . (93)

which is the correct function to be minimized. For a resource limited estimation the modified loss is the average
of the B′ simulations that have terminated. In Appendix E.1 we comment on the gradient descent process, on
the choice of the hyper-parameters, and the typical behaviour of the loss in the training. The second term of the
gradient in Eq. (91) is similar to the loss of the Policy Gradient method in reinforcement learning [110], where
the probabilities arise because of the stochastic extraction of the policy, while here the NN produces directly
the action and the stochasticity comes from the measurement outcome extraction. The necessity of introducing
such terms when dealing with the gradient of expressions involving non-reparametrizable random variables has
been known in the machine learning literature for a while [111] and the expressions involving stop-gradient
operators go under the name of surrogate expressions. However, the first time this has appeared in the physics
literature is in [8], applied to quantum feedback. Had we neglected the log-likelihood term of Eq. (91) we would
have introduced a bias in the gradient. Not adding the log-likelihood terms means not only a slower convergence
in the training but possibly also converging to a worse minimum.

Log-likelihood terms in the loss

We can generalize and say that whatever extraction of random variables we perform during the simulation,
we need to add a corresponding log-likelihood term, but only if the probability distribution from which they
have been extracted depends on λ, implicitly or explicitly. With growing number of extracted variables the
variance of the gradient grows and if the batchsize is too small this can severely affect the training, then we
might loose convergence and end up in a bad local minimum. If possible we advice to reparametrize the random
variables and account for the backpropagation of the gradient in a more direct way. Depending on the quantum
sensor we are simulating we might be able to implement the extraction of the measurement outcomes through
a differentiable reparametrization. If we can write the measurement outcome yt as

yt = g(ut, xt,θ) , (94)

where ut is a random variable extracted from a probability distribution independent on λ, i.e. d
dλp(ut) = 0, then

we can omit the corresponding log-likelihood term in Eq. (91). The gradient propagates now directly through
the measurement outcome, i.e.

d
dλyt ̸= 0 , (95)

and we can differentiate the loss in Eq. (82) as it is. The log-likelihood term would be log p(ut), which is
independent on λ. The reparametrization can however be applied only to continuous variables, see [8] for more
details. In Appendix C we apply this technique in the resampling step of the particle filter.
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Adding a baseline

We can also try to add a baseline to Eq. (91), as suggested in [112] for RL with Policy Gradient. This means
modifying the gradient to

1
B

d
dλ

B∑
k=1

[ℓ(ωk,λ) + sg [ℓ(ωk,λ)− B] log p(yk,M−1|θk,λ)] , (96)

with the standard choice for the baseline B being

B := 1
B

B∑
k=1

ℓ(ωk,λ) , (97)

that is, inside the stop gradient we subtract to each loss in the batch the mean value of the loss on the batch.
It is important for B to be a constant across the simulations indexed by k. We briefly see in the following that
the introduction of B doesn’t change the expected value gradient, while it can be proved that it reduces the
variance of the gradient [112]. Consider the following chain of equalities

0 = d
dλ

∫
p(yM−1|θ,λ) dyM−1 =

∫ 1
p(yM−1|θ,λ)

dp(yM−1|θ,λ)
dλ p(yM−1|θ,λ) dyM−1 , (98)

where the first one comes from the normalization of p(yM−1|θk,λ) and in the second we divided and multiplied
for p(yM−1|θk,λ) upon swapping the integral and the derivate. The rightmost term of Eq. (98) is now in the
form of an expectation value, that can be approximated by the following summation in the simulation:∫ 1

p(yM−1|θ,λ)
dp(yM−1|θ,λ)

dλ p(yM−1|θ,λ) dyM−1 ≃
1
B

B∑
k=1

1
p(yk,M−1|θk,λ)

dp(yk,M−1|θk,λ)
dλ . (99)

Where the term in the right-hand summation is the derivative of the log-likelihood, so that we expect

d
dλ

B∑
k=1

log p(yk,M−1|θk,λ) ≃ 0 , (100)

for large B. Adding the baseline in Eq. (97), means adding a terms proportional to the derivative of the
log-likelihood, with the proportionality constant being B, which has null expectation value.

Discrete control space

In this section we briefly comment on the case in which the control space is discrete, that is, xt can be chosen
only among finitely many elements, i.e xt ∈ χ = {x1, x2, . . . , xR}. This happens for example in the experiment
presented in [113], where the control parameter was the topological charge of the q-plate. In this case the agent
produces a probability distribution on the set χ as outcome, just like in Policy Learning, and a random xt is
extracted from this categorical distribution. In this scenario we need to revisit the Eq. (78) and Eq. (79), that
now need to accommodate also for the probability of extracting a particular xt:

P (xM−1,yM−1|θ) =
M−1∏
t=0

p(yt|xt,yt−1,θ)g(xt|yt−1,xt−1,λ) (101)

P (θ̂|xM−1,yM−1) = δ(θ̂ − g2(yM−1,xM−1)) . (102)

Substituting this expressions in Eq. (73) we get

∆2θ̂ =
∫
ℓ(θ̂(yM−1,xM−1),θ)

M−1∏
t=0

p(yt|xt,yt−1,θ)g(xt|yt−1,xt−1,λ) dxM−1 dyM−1 . (103)

By repeating the derivation of the loss, considering that p(yt|xt,yt−1,θ) doesn’t depend on λ anymore, the
log-likelihood term of Eq. (91) becomes

M−1∑
t=0

sg [ℓ(ωk,λ)] log g(xk,t|yt−1,k,xt−1,k,λ) . (104)
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Stochastic estimator

In all the applications of this work the estimator θ̂ is always a deterministic function of the PF ensemble. Even
for the case of values discrimination, this is computed as the most likely hypothesis at the end of the experiment,
which doesn’t require any sampling. A perfectly valid estimator for θ would be one sample extracted from the
Bayesian posterior P (θ|yM−1,λ). Doing so requires adding a term to the log-likelihood term in the loss in
Eq. (91), which now becomes

M−1∑
t=0

sg [ℓ(ωk,λ)]
[
log p(yk,M−1|θk,λ) + logP (θ̂k|yk,M−1,λ)

]
. (105)

A differentiable expression for the posterior distribution at θ̂ might not be accessible if the parameters are
continuous, but if they are discrete, the term P (θ̂|yM−1,λ) is just the weight corresponding to the discrete
values θ̂.

D.4 Definition of the cumulative and logarithmic losses
When doing a simulation for a certain M , if we want the result of the training to give us the optimal strategy

also for M2 < M we can introduce the cumulative loss, that also takes into account the loss at intermediate
steps. A näıve approach is to extend the MSE to all steps between t = 0 and t = M − 1, and write

Lcum(λ) := 1
MB

M−1∑
t=0

B∑
k=1

ℓ(θ̂k,t,θk) , (106)

where θ̂k,t is the estimator at step t of the k-th simulation. With this loss the agent is incentivized to make
the estimator θ̂ converge to the value θ as soon as possible. However the error on the first time steps of the
estimation dominates the later errors in the summation, and this puts pressure on the agent to optimize the
first steps of the procedure at the expense of the later precision. To solve this problem we divide each terms in
the sum Eq. (106) by a function η(θ, t), i.e.

Lcum(λ) := 1
MB

M−1∑
t=0

B∑
k=1

ℓ(θ̂k,t,θk)
η(θk, t)

, (107)

where η(θk, t) is the expected precision of the estimation at step t given the true value θk, or an approximation
to it, in the form of a lower bound for example, like the Cramér-Rao bound. This new loss measures the relative
variation of the error from the reference value. Even if η(θk, t) is a rigorous lower bound on the MSE we can’t
expect the inequality

ℓ(θ̂k,t,θk) ≥ η(θk, t) , (108)

to hold exactly for every t and k, as there will be fluctuations due to the finite batchsize. From the practical
point of view this means that it is possible for the loss of some training steps to be L(λ) < 1, which doesn’t
necessarily point toward a bug in the implementation of the training. With Eq. (107) we still incentivise the
agent to be as fast as possible in reaching a good precision, and not wait until the end, because then it will be
rewarded by the reduced loss for all the duration of the experiment. Another possibility to account fairly for
the MSE at intermediate times is to take the logarithm of the mean error on the batch and write the cumulative
loss as

Llog(λ) := 1
M

M−1∑
t=0

log
[

1
B

B∑
k=1

ℓ(θ̂k,t,θk)
]
. (109)

The advantage of this approach is that it doesn’t require any prior known reference value for the error. Notice
that this loss is not in the form of an expectation value of ℓ(θ̂,θ) over a batch.

D.5 Cumulative and logarithmic losses for a resource limited estimation
In this section we comment on the form taken by the cumulative and logarithmic losses in the case of a limited

number of resources. Given M ′ the realized number of iterations of the measurement loop Eq. (107) becomes

Lcum(λ) := 1
M ′B

M ′−1∑
t=0

B∑
k=1

ℓ(θ̂k,t,θk)
η(θk, t)

, (110)
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notice, that at difference with Eq. (76) all the simulations in the batch are considerer, not only those B′ that
were already ended as the measurement loop stopped. If one estimation in the batch is ended prematurely
with respect to all the other, with all the resources consumed to obtain a bad estimator for θ this will have a
huge weight in the loss, since the squared error will appear multiple times, until all the other estimations are
ended. This means that an unwise use of the resources, which are consumed early to reach a poor result will
be strongly penalized. One may think, that since the number of iterations M ′ is stochastic then teh cumulative
loss is a form of “existential loss” which would put pressure on th agent to terminate with the smallest number
of measurement step possible, this would be at odd with the actual goal of optimizing with fixed resources
irrespective of the number of measurements, but indeed the loss is normalized according to M ′, so that having
a short or a long cycle doesn’t matter for the computation of L(λ). Similarly to the cumulative loss, the
logarithmic loss for an estimation with a limited number of resources can be expressed as

Llog(λ) := 1
M ′

M ′−1∑
t=0

log
[

1
B

B∑
k=1

ℓ(θ̂k,t,θk)
]
, (111)

where again M ′ is the actual number of executed iterations of the loop.

D.6 Gradients of the cumulative and logarithmic losses
In this section we comment on the expression of the gradient of the cumulative and logarithmic losses, and of

the role of the log-likelihood terms that we had inserted in Eq. (93). The modified cumulative loss, from which
the AD framework can directly compute the gradient, reads

L̃cum(λ) := 1
MB

B∑
k=1

{M−1∑
t=0

ℓ(θ̂k,t,θk) + sg
[

M−1∑
t=0

ℓ(θ̂k,t,θk)
]

M−1∑
t=0

log p(yk,t|θk,yt−1,k,λ)
}
. (112)

Given that the stop gradient operator is linear, we now make the important observation that the gradient of
the log-likelihood terms in the form

sg
[
ℓ(θ̂α,k,θk)

]
log p(yβ,k|θk,yβ−1,k,λ) . (113)

with β > α have null expectation value on the batch of simulations, that is

1
B

B∑
k=1

ℓ(θ̂α,k,θk)d log p(yβ,k|θk,yβ−1,k,λ)
dλ ≃ 0 , (114)

The expression in Eq. (114) is an approximation of the true expectation value∫
ℓ(θ̂α,θ)d log p(yβ |θ,yβ−1,λ)

dλ π(θ)dθ
β∏

t=0
p(yt|θ,yt−1,λ) dyt . (115)

All the integral for yt for t > β can be simplified in the above formula, since the integrand doesn’t depend on
these variables. Let us first solve the integral for dyβ . The loss term doesn’t depend on this variable, so that
we can pull it out of the integral and write

ℓ(θ̂α,θ)
∫ d log p(yβ |θk,yβ−1,λ)

dλ p(yβ |θ,yt−1,λ) dyβ , (116)

which is equal to ∫ dp(yβ |θ,yt−1,λ)
dλ dyβ = d

dλ

∫
p(yβ |θ,yt−1,λ) dyβ = 0 . (117)

Since the summation Eq. (114) tends to zero for large B, we can write the loss as following

L̃cum(λ) := 1
MB

B∑
k=1

{M−1∑
t=0

ℓ(θ̂k,t,θk) +
M−1∑
t=0

sg
[
ℓ(θ̂k,t,θk)

]
log p(yk,t|θk,λ)

}
. (118)

which is the expression implemented in the library. Since we have removed some of the stochastic terms in
the loss, which average to zero, but nevertheless contribute to the fluctuations, using expression Eq. (118) we
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expect to have reduced the variance of the gradient, just like we did with the correction of Ścibior and Wood
for the particle resampling. From this derivation we learn that in general the log-likelihood terms of variables
extracted in the future with respect to the terms they multiply can be simplified. Notice that in this derivation
we haven’t assumed projective measurements, that would have meant p(yt|θk,yt−1,λ) = p(yt|θk,λ), instead
our derivation works in the most general case of a weakly measured probe. We now turn to the gradient of
the logarithm loss of Eq. (111). This is somewhat different from the previous cases since now the mean on the
batch is inside the logarithm. The expectation value of the loss is

1
M

M−1∑
t=0

log
[∫

ℓ(θ̂t,θ)p(yt|θ,λ) dyt

]
, (119)

which has the following gradient

1
M

M−1∑
t=0

∫ d
dλℓ(θ̂t,θ)p(yt|θ,λ) dyt +

∫
ℓ(θ̂t,θ) d log p(yt|θ,λ)

dλ p(yt|θ,λ) dyt∫
ℓ(θ̂t,θ)p(yt|θ,λ) dyt

. (120)

This expression can be obtained on the batch of simulations with the modified loss

L̃log(λ) := 1
M

M−1∑
t=0

∑B
k=1 ℓ(θ̂k,t,θk) +

∑B
k=1 sg

[
ℓ(θ̂k,t,θk)

]
log p(yk,t|θk,λ)

sg
[∑B

k=1 ℓ(θ̂k,t,θk)
] . (121)

To get the results for the resources limited estimation we substitute M with M ′ in the whole section.

E Details on the simulations
E.1 Tuning of the hyperparameters

We mentioned in the main text that the update of the agent’s trainable variables is not actually done through
Eq. (12), but via a more sophisticated optimizator called Adam. We observed empirically that a decaying
learning rate is beneficial when using the Adam optimizer. This is because the agent first learns the rough
features of the optimal solution with a relatively large update step for the variables. Subsequently, with a
smaller learning rate, the solution is fine tuned. The Adam optimized, however, already has an internal adaptive
update step that is different for every variables, therefore the learning rate should be really only understood as
a broad indication of the training speed given to the optimizer. In the original Adam paper [67] the authors
consider a learning rate decaying with the inverse square root of the number of update steps. This was also our
choice. Let us define i = 1, 2, · · · , I the index of the update step in the training process, then the learning rate
at the i-th iteration of the gradient descent is

αi := α0√
i
. (122)

We observe empirically, that the initial value of the learning rate α0 for a NN should depend on the batchsize B.
For B ∼ O(103) we use α0 ∼ O(10−2), while for B ∼ O(102) a value of α0 ∼ O(10−3) is more appropriate. For
the non-adaptive strategy we use an initial learning rate that is one order of magnitude larger than the one used
for the NN at equal batchsize. The minimum number of training steps I depend strongly on the application,
but we observed in all our examples that it should of order I ∼ O(103−104) to reach convergence. We observed
some universal feature in the behaviour of the loss as the training proceeds, which can be associated to three
different phases in the training, see Fig. 8. First we have an initial phase of fast learning, which is the shortest
one, coloured in pink, followed by the fine tuning phase in yellow and the plateau at the end, with the loss
remaining on average constant. As a final note, we mention that when the resampling routine is active we
might expect a slow-down of the simulation speed as the training session proceeds. This happens because as
the agent is perfected and the loss is reduced, it is more probable that a resampling event is triggered (because
the increasing precision means also more concentrated weights in the PF ensemble), which slows down the
simulation. In other words, the amount of code that has to be executed in a run is not fixed a priori, but
depends dynamically on the resampling condition that is checked at run-time. To end the section we briefly
recap the three possible implementations that the trainable variables λ have taken in this work, see Fig. 8. In
the case the agent is a NN λ are the weights and the biases of the network When the agent is a decision tree,
the controls xt are associated to each node of the tree, and they are the λ variables. Finally, for a non-adaptive
strategy, there is no adaptivity and the controls x are codified in a list, indexed by the measurement step t. In
this case the controls and the training variables coincide, i.e. λ = xM−1.
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(a) Three phases of the training. (b) Implementations of the trainable variables.

Figure 8: On the left picture the three phases of the learning process explained in Appendix E.1 are plotted. One tick on the
x-axis corresponds to 500 update steps. The agent first learns the rough form of the optimal strategy and later the fine details,
before converging. On the right the three agents used in this work are represented, i.e a NN, a ternary decision tree, and a
table containing the values of the controls x, indexed by the measurement step t.

(a) Clustering of the precision point cloud. (b) Fit of the precision point cloud.

Figure 9: On the left side we represent the precision plot where the cloud of points has been clustered to obtain the red crosses.
On the right we use a NN to interpolate and get the average loss at a given value of the resources.

E.2 Fit of the precision
In this section we briefly comment on the way the precision plot are realized throughout the work. The

definition of the resources doesn’t only impact the stopping condition of the measurement loop, but it defines
how the performances of an agent are visualized, since by default we plot the mean loss as a function of the
consumed resources. After having trained the agent we simulate many times the estimation and we keep track
of the tuples S := {(Rj ,Lj)}S

j=1 after each measurement step, containing the consumed resources Rt and the
loss L. Since the experiment is a stochastic process we will collect a cloud of points from which a simple relation
between the expected precision and the resources must be obtained, see Fig. 9. The first possibility is to divide
the x-axis of the resources in intervals of size δ, and compute the barycenters of all the points (Rj ,Lj) falling in
this interval, these would be the red crosses of Fig. 9. The second possibility is to fit this cloud of points with
a NN. We set the training loss to be the MSE, i.e.

Lfit := 1
S

S∑
j=1

[Lj − fNN(Rj)]2 , (123)

which, for a single value of the resource, i.e. Rj = R ∀j, would converge to fNN(R) = 1
S

∑S
j=1 Lj , that is a

NN will approximate the mean loss. This won’t be exactly true for a cloud of points, but with Eq. (123) we
incentivise the NN to converge toward the average loss for every value of the resources. All the plots in this
paper have been produced with the first method, choosing an appropriate δ, except for those plots on the NV
center platform with T ⋆

2 = ∞ and referring to the time-limited estimation. In the PGH line of the first plot
in Fig. 2 there is a non-monotonicity for small T , that is a defect in the plot and an artifact on this way of
interpolating with a NN.
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E.3 Scaling of the time and memory requirements
Since the B estimations in a batch can be performed in parallel we will benefit from the use of a GPU or a

TPU (Tensor Processing Unit) in the training of the agent. The main difference between the CPU and the GPU
is that a CPU has fewer (∼ O(10)) faster cores, while a GPU has many (∼ O(103)) slower cores. With a large
batchsize the use of hardware acceleration through a GPU will turn out to be essential and we will first examine
the resource requirements of model-aware RL assuming that everything that can be parallelized has been is
indeed executed in parallel. In this case the time requirement of the simulation is mainly influenced linearly by
the number of measurements M in the training loop, that have to be executed necessarily sequentially. The
update of the PF and the computation of the distributions moments all require O(N) multiplications each but
can be done in parallel, where N is the number of particles. The memory requirement depends on the batchsize
B and the number of particles N in the PF. Nevertheless because of the construction of the gradient, for which
we need to keep in memory the results of all the intermediate computations, the number of measurements M
has also an almost linear influence on the required memory. Finally, the total time used in the training is also
proportional to the number of update steps I. Each update step comprises the complete run of an estimation
batch together with the evaluation of the gradient and the update of the controls. The size of the NN has little
impact on the training time and memory. We can summarise the above considerations as

Memory ∼ O(BMN) , TimePar ∼ O(IM) . (124)

Assuming that nothing can be parallelized (we have a single core) and therefore everything is sequential, if, as
usual, the computational time in the CPU is dominated by the number of floating point multiplications, we
instead have the time scaling

TimeSeq ∼ O(IBMN) , (125)

while the memory requirement is unchanged. Neither a GPU nor a CPU will perfectly reproduce these theoretical
scalings, because the GPU has a limited number of cores, but there is a tendency for a GPU to follow the
scaling of TimePar and for a CPU TimeSeq. If the batchsize B is very large (or the GPU not very powerful)
the simulations in the batch can’t all be executed in parallel and B starts to affect also the time requirements.
If B and N are small a CPU may complete the training before a GPU, because of the smaller proportionality
factor for the time requirement in Eq. (125) with respect to Eq. (124), due to the faster cores of the CPU. This
analysis applies also to the training of a non-adaptive strategy, which is not resource-saving compared to the
training of the NN. In the applications we expect our agent to run on a small controller near the sensor, where
most definitely we won’t have access to a GPU and lots of memory, which anyway are required only in the
training phase. In this situation we have no batch and only one iteration, i.e. I = B = 1. Furthermore there is
no extra M in the memory requirement appearing because of the automatic differentiation, so that the resource
scaling in the application will be

Memory ∼ O(dN +N) , TimeSeq ∼ O(MN) , (126)

where d is the number of parameters. For an estimation limited by the resources instead of the number of
measurements, M must be intended as the average number of measurements employed for a fixed amount of
resources. In general thanks to the resampling routine we can keep the number of particles fixed while increasing
the precision arbitrarily. It is a good practise although to choose N proportional to the number of parameters
to estimate, i.e. N ∼ O(d). In the applications the memory requirement of the NN, and the multiplications
needed to evaluate it at each step contribute respectively with additional O(nlnu) memory and O(nln

2
u) time

(per step), where nl is the number of layers and nu the number of units per layer, so that we have

Memory ∼ O(dN +N + nlnu) , TimeSeq ∼ O(MN +Mnln
2
u) . (127)

If the control is non-adaptive we don’t need this extra computations, and if the PF is removed from the
picture (because we don’t need real time feedback) we have that the memory and time requirements trivialize,
i.e they scale respectively as O(1) and O(M). Of course the total time of estimation would be influenced also
by the time it takes to perform the physical measurement on the probe, but here we are referring only to the
computational time.

F Optimal strategies for frequentist optimization
The qsensoropt library can also optimize the Cramér-Rao bound (based on the Fisher information matrix)

for the local estimation of the parameters θ. This is frequentist inference instead of Bayesian inference, this
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last being the main topic of this work. The multiparameter Cramér-Rao bound (CR bound) is a lower bound
on the Mean Square Error matrix of the frequentist estimator θ̂ at the position θ, expressed in terms of the FI
matrix, i.e.

K := E
[
(θ̂ − θ)(θ̂ − θ)⊺

]
≥ F−1(θ) , (128)

with
Fij(θ) := Ey

[
∂ log pθ(y)

∂θi

∂ log pθ(y)
∂θj

]
. (129)

This result sets the maximum achievable precision of an estimator around θ, in other words, it limits the ability
to distinguish reliably two close values θ and θ + δθ. The expectation value is taken on many realizations of
the experiment, i.e. on the probability distribution of the trajectories for the outcomes and the controls. Let
us introduce the tuple x and y containing respectively the entirety of the controls and the outcomes of the
measurements done in the experiment, then the FI matrix has the following expression

Fij(θ) := Ey

[
∂ log p(y|x,θ)

∂θi

∂ log p(y|x,θ)
∂θj

]
, (130)

being p(y|x,θ) the probability of the observed trajectory of outcomes at the point θ. Notice that the expectation
value is taken on the whole trajectory of the experiment. By contracting Eq. (128) with the weight matrix G ≥ 0
we get the scalar version of the CR bound, i.e.

tr(G ·K) ≥ tr(G · F−1) := L(λ) , (131)

where we have defined the loss to be optimized in the training, as a function of the trainable variables of the
agent λ. The gradient of the loss is

∂L
∂λ

= tr
(
F−1GF−1 · ∂F

∂λ

)
. (132)

The expectation value in the definition of F is approximated in the simulation by averaging the product of the
log-likelihoods derivatives on a batch of estimations, i.e.

F ≃ F̂ = 1
B

B∑
k=1

∂ log p(yk|xk,θ)
∂θi

∂ log p(yk|xk,θ)
∂θj

= 1
B

B∑
k=1

fk . (133)

where (xk,yk) is the trajectory of a particular realization of the experiment in the batch of simulations and fk

is called the observed Fisher information. The unbiased gradient of the loss, that takes into account also the
gradient of the probability distribution in the expectation value, can be computed as following

∂L
∂λ
≃ 1
B

∂

∂λ
tr
{

sg
(
F̂−1GF̂−1

) B∑
k=1

[fk + sg(fk) log p(xk,yk|θ)]
}
. (134)

The sg(·) is the stop gradient operator, and the probability p(xk,yk|θ) is the likelihood of the particular
trajectory, that contains both the probability of the stochastic outcome and that of the control (in case it
is stochastically generated). This is the gradient used in the update step of the stochastic gradient descent
procedure for the optimization of frequentist estimation. We can also introduce the logarithmic loss, i.e.

Llog(λ) := log tr(G · F−1) , (135)

which is particularly useful to stabilize the training when the FI spans multiple orders of magnitude. If we have
a broad prior on θ, but we are stile interested in local estimation, we can introduce the average FI, i.e.

F :=
∫
F (θ)π(θ) dθ , (136)

and optimize the loss
L(λ) := tr

[
G · F−1] ≤ ∫ tr

[
G · F−1(θ)

]
dθ , (137)

which is a lower bound on the expectation value of the CR bound, because of the Jensen inequality applied
to the matrix inverse. In the case of a single parameter the training would maximize the expected value of
the Fisher information on the prior π(θ). It is possible to use a custom distribution p̃(y|x,θ) for extracting
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the measurements outcomes instead of p(y|x,θ) by using importance sampling. In this case the FI matrix is
computed as

Fij(θ) = E
p̃

[
∂ log p(y|x,θ)

∂θi

∂ log p(y|x,θ)
∂θj

· p(y|x,θ)
p̃(y|x,θ, )

]
, (138)

which can be approximated on a batch as

F ≃ 1
B

B∑
k=1

fk
p(yk|xk,θ)
p̃(yk|xk,θ) , (139)

with fk defined in Eq. (133). Also the gradient of F is changed accordingly. Typically the distribution p̃ is some
perturbation of p, for example it can be obtained by mixing p with a uniform distribution on the outcomes. The
importance sampling is useful when some trajectories have vanishingly small probability of occurring according
to the model p but contribute significantly to the Fisher information. If these trajectories have some probability
of occurring sampling with p̃, then the estimator of the FI might be more accurate. The drawback is that
the perturbed probability of the complete trajectory p̃(y|x,θ) might be too different from the real probability
(because of the accumulation of the perturbation at each step), so that the simulation might entirely miss the
region in the space of trajectories in which the system state moves, thus delivering a bad estimate of the FI
and a bad control strategy, upon completion of the training. Whether or not the importance sampling can be
beneficial to the optimization should be checked case by case. The derivative with respect to θ in the definition
of fk in Eq. (133) are computed through automatic differentiation. This means there there are two nested
automatic differentiation environments, one for the parameter and one for the training variables of the agent.

G Precision lower bounds of the examples
In this section we apply the Bayesian Cramér-Rao bound to the estimation of various parameters on the

NV center platform. This bounds will be based on the Fisher information [22], which we briefly define in
the following. Refer to the literature for more details. Consider a stochastic variable y, which is extracted
from a probability distribution pθ(y), where θ is a parameter we want to estimate. This is a model for an
experiment leading to a stochastic outcome. The information on θ available from y can be measured by the
Fisher information (FI), defined as

I(θ) := Ey

[(
∂ log pθ(y)

∂θ

)2
]
, (140)

where the expectation value is taken over the distribution pθ(y). If the experiment allows to be controlled
through the parameter x, then the outcome probability is pθ(y|x) and the FI inherits such dependence, i.e. we
write I(θ|x). If the control parameter x is computed from a strategy h, which could be the Particle Guess
Heuristic the a neural network, then we indicate it explicitly in the control xh.

G.1 Bayesian Cramér-Rao bound
Given θ a single parameter to estimate, we call I(θ|xh) the Fisher information of a sequence of measurements

with controls xh = (xh
0 , x

h
1 , · · · , xh

M−1), which are computed from a strategy h. The quantity I(θ|xh), together
with the Fisher information of the prior π(θ), i.e. I(π), defines a lower bound on the precision ∆2θ̂ of whatever
estimator θ̂, that contains the expectation value of I(θ|xh) on π(θ), and is optimized on the strategy h. This
lower bounds reads

∆2θ̂ ≥ 1
suph Eθ [I(θ|xh)] + I(π) . (141)

This definition appears in the work of Fiderer et al. [34]. For the NV centers the controls are the evolution time
τ and the phase φ, this last however doesn’t play any role in the computation of the lower bound, and it will
be omitted in the following. The Fisher information of a sequence of measurements is always additive, even if
the quantum probe is only measured weakly, but in dealing with projective measurements, as it is the case for
NV center, the advantage is that the measurements are uncorrelated, and the same expression for the Fisher
information applies to all of them, independently on the results of the previous measurements, i.e.

I(θ|τ ) =
M∑

t=1
I(θ|τt) ≤M sup

τ
I(θ|τ) , (142)
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where M is the total number of measurements. The optimization of the single measurement FI gives directly
the precision bound for the measurement-limited estimation:

∆2θ̂ ≥ 1
suph Eθ [I(θ|τh)] + I(π) ≥

1
M Eθ [supτ I(θ|τ)] + I(π) . (143)

If the total evolution time is the limiting resource, then, the expression for the total FI is

I(θ|τ ) = T

M∑
t=1

τt

T

[
I(θ|τt)
τt

]
≤ T sup

τ

I(θ|τ)
τ

, (144)

with
∑M

t=1 τt = T . In this expression the total FI is the weighted sum of the renormalized FI of each measure-
ment, i.e. I(θ|τt)

τt
, and can be manifestly upper bounded by concentrating all the weights on the supremum of

the renormalized FI. This gives the lower bound for the precision of the time-limited estimation:

∆2θ̂ ≥ 1
suph Eθ [I(θ|τh)] + I(π) ≥

1
T Eθ

[
supτ

I(θ|τ)
τ

]
+ I(π)

. (145)

In the following we will apply this general observations to the derivation of the numerical bounds for DC
magnetometry.

G.2 Evaluation of the Fisher information
Since the measurement outcome in the NV center is binary, we can compute the Fisher information for a

parameter θ, given the control τ , as

I(θ|τ) = E

[(
∂ log p(±1|θ, τ)

∂ω

)2
]

=

(
∂p
∂θ

)2

p(1− p) =

(
∂p
∂θ

)2

1
4 − (p− 1

2 )2 , (146)

where we have used the definition in Eq. (140), and where p := p(+1|θ, τ). For example, for a decoherence free
estimation of the precession frequency ω we have p := cos2 (ωτ

2
)
, from which ∂p

∂θ = τ sin( ωτ
2 ) cos( ωτ

2 ), and finally
I(ω|τ) = τ2.

G.3 DC magnetometry
The lower bounds on the estimation of the frequency ω are reported in Table 1, and are represented in Fig. 2

of Section 3 as the shaded grey area. The left column of this table contains the bounds for a finite number of
measurements M , while right column refers to the estimation with a fixed total evolution time T . The first row
refers to the estimation of ω with perfect coherence while the second row refers to the estimation of ω with a
finite and know T ⋆

2 . The symbol I(ω) indicate the FI of the prior for the precession frequency ω. The numerical

Measurement Time

T2 =∞ 2−2(M+1)

3 147 1
T 2+I(ω) 148

T2 <∞ max
{

1
µM(T ⋆

2 )2+I(ω) ,
2−2(M+1)

3

}
149 1

0.5 T T ⋆
2 +I(ω) 150

Table 1: Lower bounds for the precision of the frequency estimation in DC magnetometry on an NV center.

values of the quantities appearing in Table 1, for ω ∈ (0, 1) MHz are: µ = 0.1619, I(ω) = 12µs2. In the following
we derive these four bounds.

• The Fisher information for the decoherence-free precession frequency ω is given by I(ω|τ) = τ2, so that
supτ I(ω|τ) =∞ and the analysis based on the Cramèr-Rao bound doesn’t gives a useful bound. Eq. (147)
can be found by observing that each measurement gives at most one bit of information about the value
of ω, because the measurement has a binary outcomes [34]. This bound is applied also for T ⋆

2 < ∞ in
addiction to the one coming from the Fisher information.
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• With a finite decoherence time T ⋆
2 <∞ the FI for the frequency ω is

I(ω|τ, T ⋆
2 ) =

τ2e
− 2τ

T ⋆
2 cos2 (ωτ

2
)

sin2 (ωτ
2
)[

e
− τ

T ⋆
2 cos2

(
ωτ
2
)

+ 1−e
− τ

T ⋆
2

2

] [
e

− τ
T ⋆

2 sin2 (ωτ
2
)

+ 1−e
− τ

T ⋆
2

2

] , (151)

which, by defining C := cos2 (ωτ
2
)
, can be bounded in the following way

I(ω|τ, T ⋆
2 ) = τ2e

− 2τ
T ⋆

2 C(1− C)[
1
4 − e

− 2τ
T ⋆

2 (C − 1
2 )2
] ≤ τ2e

− 2τ
T ⋆

2

1− e
− 2τ

T ⋆
2

= (T ⋆
2 )2 x2e−2x

1− e−2x
, (152)

where x = τ
T ⋆

2
. The maximization in x ∈ R+ gives supτ I(ω|τ, T ⋆

2 ) = µ(T ⋆
2 )2 with µ = 0.1619. Inserting this

expression in Eq. (143) gives the first term in the maximum of Eq. (149), the second term was explained
in the previous point.

• Regarding the time-constrained lower bounds, for T ⋆
2 = ∞, the total FI is maximized by performing a

single measurement of time duration τ = T , which gives Eq. (148), through the application of Eq. (145).

• For T ⋆
2 <∞ we have to maximize the normalized FI in x ∈ R+, i.e.

I(ω|τ, T ⋆
2 )

τ
≤ τe

− 2τ
T ⋆

2

1− e
− 2τ

T ⋆
2

≤ T ⋆
2
xe−2x

1− e−2x
≤ TT ⋆

2
2 , (153)

from which Eq. (150) follows from Eq. (145).

H Backward recursion method for the optimization of the strategy
In this section we set the stage to understand what function the agent must approximate by formulating the

problem in terms of a backward recursion. In this section we will see how the optimal control could theoretically
be derived in other ways, so that the training will appear less as an unintelligible black-box and more as the
solution to a well-posed problem (though we won’t probably have uniqueness). The output of the agent at the
t+ 1-th steps is xt+1, that is, the control of the current evolutions and measurements. In the following we will
define formally the function that the agent must learn to approximate, in doing this we will assume that the
control x of the quantum sensor is a continuos real variable. Consider an estimation with M measurements, i.e.
t = 0, 1, . . . ,M − 1. Let us focus on the last one only and recall the definition of the particle filter ensemble
before after the last measure M − 1, i.e. pM := {θM−1

j , wM−1
j }N

j=1. Then we can write the ensemble of the PF
at the final step t = M − 1 as

pM = B(pM−1, xM−1, yM−1) , (154)

where B encodes the application of the Bayes rule in Eq. (20). The ensemble pM inherits the stochasticity from
the random measurement outcome yM−1. Per definition p0 is the initial PF ensemble that represents the prior
π(θ). In Appendix D.1 we mentioned that the final loss is a scalar function ℓ(pM ,θ) of the final PF ensemble
and of the true value θ, like the squared derivation of the estimator from the true value. The final loss can
be expressed as ℓ(B(pM−1, xM−1, yM−1),θ) and it’s expectation value on yM−1 (the expected loss), computed
with the density in Eq. (15), reads

ℓ(pM−1, xM−1,θ) :=
∫
ℓ(B(pM−1, xM−1, yM−1),θ)p(yM−1|xM−1,θ)dyM−1 . (155)

If the outcome probability, the prior and the loss are continuos functions we can also expect ℓ(pM−1, xM−1,θ)
to be continuous in its parameters. Without aiming at full rigour, we say that the regularity properties of the
probability densities are passed down to the expectation value. Now we look for the minimum of this function,
which is realized by solving

dℓ(pM−1, x
⋆
M−1,θ)

dxM−1
= 0 . (156)

This equation defines implicitly the optimal control x⋆
M−1 := rM−1(pM−1,θ), where x⋆

M−1 realizes the absolute
minimum of the expected loss. rM−1 inherits some regularity property (at least locally) from ℓ(pM−1, xM−1,θ)
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thanks to the implicit function theorem. The control x⋆
M−1 can still have discontinuities in pM−1 if the expected

loss has multiple competing minima. The dependence on θ is rather inconvenient, because it is unknown, but
we can think of substituting θ with its estimator θ̂M−2 to get x⋆

M−1 = rM−1(pM−1, θ̂M−2). We will however
never do explicit optimizations with this approach, the introduction of machine learning in quantum metrology
serves precisely to avoid these cumbersome computations. Until now we have only optimized the last control,
but fortunately all these operations can be repeated with minor changes for the t = M − 2 measurement step.
Let us start from pM−1 expressed as function of the ensemble pM−2:

pM−1 = B(pM−2, xM−2, yM−2) , (157)

we insert this expression in Eq. (154) to get

pM = B(B(pM−2, xM−2, yM−2), xM−1, yM−1) . (158)

By substituting this in the loss ℓ(pM ,θ) we get ℓ(B(B(pM−2, xM−2, yM−2), xM−1, yM−1),θ), but the optimal
xM−1 has been already computed as a function of the PF ensemble. Whatever control we suggest for the step
t = M − 2 it doesn’t change the optimal control at the following step. In other words whatever control xM−2
gets applied, the optimal action for the last time step is always x⋆

M−1, we can therefore insert it in the loss at
the step M − 2, i.e.

ℓ(pM−2, xM−2, yM−2, yM−1,θ) := ℓ(B(B(pM−2, xM−2, yM−2), rM−1(B(pM−2, xM−2, yM−2),θ), yM−1),θ) ,
(159)

where we have also used the expression for pM−1 of Eq. (157) in the definition of x⋆
M−1, and we have redefined

the parameters of ℓ. Again we take the expectation value on the measurement outcomes, i.e.

ℓ(pM−2, xM−2,θ) :=
∫
ℓ(pM−2, xM−2, yM−2, yM−1,θ)p(yM−1|θ, x⋆

M−1)p(yM−2|θ, xM−2)dyM−1dyM−2 . (160)

By taking the derivative of this expected loss with respect to xM−2, we define implicitly the optimal control
x⋆

M−2 = rM−2(pM−2,θ) as the solution of

dℓ(pM−2, x
⋆
M−2,θ)

dxM−2
= 0 , (161)

where x⋆
M−2 realizes the absolute minimum of ℓ. Notice that this is not a greedy optimization: the value of

xM−2 is not chosen to optimize the loss one step head in the future but the final loss, knowing what the strategy
in the next step will be. We could treat all the previous measurements in the same manner, if it wasn’t for
the expectation values of the loss, that become more and more complicated. In this way we can inductively
proceed in reverse to the start of the estimation t = 0 and find in the process the family of functions rt(pt,θt−1)
that express the optimal controls x⋆

t . As discussed previously we can redefine rt(pt) = rt(pt, θ̂t−1), in order
to get rid of the dependence on the unknown value of the parameters θ. We then introduce r(pt, t) = rt(pt),
which is the function that the agent is trying to approximate in the training, i.e. the map that spits out the
optimal control at a given measurement step t, provided the ensemble PF at the previous step. Heuristically we
expect the optimal control to be inhomogeneous in time because like in many application of RL a good strategy
encompasses a phase of “exploration” followed by a phase of “exploitation” of what has been learned [18, 19].

I Backpropagation of the gradient
With the help of an automatic differentiation framework we compute the gradient of the modified loss in

Eq. (92) in order to perform the training. Let us for the moment neglect the log-likelihood terms in this
expression and concentrate only on the first part. If the loss is computed only from the ensemble at the last
measurement step, then it takes the form

ℓθ ◦BxM−1,yM−1 ◦BxM−1,yM−1 ◦ · · · ◦Bx0,y0(p0) . (162)

where ℓθ(p) := ℓ(p,θ) acts on the ensemble PF and is the individual loss of each simulation, e.g. the square
error. The function Bxt,yt

(p) := B(p, xt, yt) applies the Bayesian update to the PF, which depends on the
outcome of the measurement yt and on the control xt. The initial ensemble of the PF is named p0. From a
theoretical point of view differentiating this expression means applying repeatedly the rule for the derivation
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of the composite function and propagating the derivative through the various stages of the estimation, this
is called backpropagation. Let us compute explicitly the derivative of the loss for the last two steps of the
estimation. We define pM = BxM−1,yM−1(pM−1) and pM−1 = BxM−2,yM−2(pM−2), and apply the chain rule.
We will indicate with the partial derivative symbol the derivatives with respect to the parameters of a function
(which can also appear in the subscript), while the symbol d

dλ is reserved to the total derivative with respect to
λ.

d
dλℓθ(pM ) = ∂ℓθ(pM )

∂p

d
dλBxM−1,yM−1(pM−1) . (163)

The total derivate in the right-hand term an be expanded again with the chain rule:

∂BxM−1,yM−1(pM−1)
∂xM−1

d
dλxM−1(λ, pM−1) +

∂BxM−1,yM−1(pM−1)
∂p

d
dλBxM−2,yM−2(pM−2) a) . (164)

Only the parameters xM−1 and pM−1 can carry a dependence on λ. Regarding the measurement outcomes
yM−1 we already discussed their independence on λ, expressed by Eq. (84). The control xM−1 has an explicit
dependence on λ because it has been produced by the agents, but also has a dependence on λ through the PF
ensemble, so that we can expand the total derivative in the following way

d
dλxM−1(λ, pM−1) = ∂xM−1(λ, pM−1)

∂λ
b) (165)

+ ∂xM−1(λ, pM−1)
∂p

d
dλBxM−2,yM−2(pM−2) c) . (166)

The first piece of the derivative is the dependence on λ that comes from the last application of the agent, while
the second piece represent the backpropagation through the input of the agent and the Bayesian update of
the PF ensemble. In general, the gradient is backpropagated through all the applications of the agent until
it reaches the beginning. We notice that we can write the total derivative of pM as a function of the total
derivative of pM−1, i.e.

d
dλBxM−1,yM−1(pM−1) = QM−1 +HM−1

d
dλBxM−2,yM−2(pM−2) (167)

where

QM−1 :=
∂BxM−1,yM−1(pM−1)

∂xM−1

∂xM−1(λ, pM−1)
∂λ

, (168)

HM−1 :=
∂BxM−1,yM−1(pM−1)

∂xM−1

∂xM−1(λ, pM−1)
∂p

+
∂BxM−1,yM−1(pM−1)

∂p
. (169)

We have arrived to a family of recurrence equations, which have the solution

d
dλBxM−1,yM−1(pM−1) =

M−1∑
t=0

Qt

M−1∏
m=t+1

Hm , (170)

where Qt and Hm are defined analogously to QM−1 and HM−1. The Hm terms have each two summand, and
when multiplied together the number of terms in the gradient grows exponentially in the number of measurement
M , and generates gradient terms corresponding to multiple repeated backpropagations through the agents. This
are a kind of “higher order” gradient terms. In our implementation of the training we simplify the gradient by
introducing a stop gradient operation before the input of the agent, so that Eq. (2) is actually implemented as

xt+1 = F{sg [P (θ|xt,yt);Rt; t]} , (171)

This modification doesn’t change the forward pass, that is, the results of simulations are the same, but it affects
the backpropagation of the gradient, in particular it makes the first term of Hm disappear, because

∂xm (λ, sg [pm])
∂p

= 0 . (172)

Such simplification reduces considerably the training time and doesn’t really affect, at least from a theoretical
point of view, the ability of the agent to learn the optimal strategy, on the contrary it might even improve
it. Before we back up this last assertions we want to recapitulate our analysis of the backpropagation with
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Figure 10: The fat empty arrow in the middle of the picture represents the PF, which is updated via the Bayes rule, indicated
with the function B in the text, after it receive an outcome from the measurement on the probe. The second term of
Eq. (164), underlined in red and labelled with a), corresponds to the backpropagation of the gradient along the history of the
PF ensemble, whose weights and particles inherits a dependence on λ from the actions of the agent. Visually this corresponds
to backpropagation along the red arrow labelled with a). Through the match between the underlined terms in Eq. (166) and
Eq. (164) and the arrows in the figure can visualize the origin of each term of the gradient. The blue term of Eq. (166) labelled
with b) accounts for the dependence on λ that comes from the controls computed by the agent and propagated through
the application of the Bayes rule and the computation of xt. The green term of Eq. (166) labelled with c) is the gradient
propagating from the input of the agent to the previous PF ensemble. This term is responsible for the “higher-order” terms of
the gradient, that propagate multiple times through the agent. Inserting the stop gradient in Eq. (172) means cutting the
green line. The dashed yellow line represents the propagation of the gradient through the state of the probe, when this is not
reinitialized between the measurements.

the help of Fig. 10. A control strategy is called myopic if it optimizes the information gained from the next
measurement only, while it is non-myopic if it optimizes many steps ahead in the future. It might seem that
by cutting the gradient propagation through the green arrows we limit the optimization to the class of myopic
strategies, but this is not true because the optimization is always done for the final precision. The input of the
agent is basically a constant now and the t-th term in the summation of Eq. (170) pulls the weights of the NN to
minimize the final loss given the PF ensemble at the t−1-th step. In order to have non-myopic adaptive strategy
backpropagating the gradient through the green arrows is redundant. The gradient of the log-likelihood terms
in the loss of Eq. (93) is also simplified when the stop gradient is acting in Eq. (172). In the model p(yt|xt,θ)
the only term that depends on λ is the control, and the gradient propagates through a single application of the
agent. Had we not inserted the stop gradient, the gradient of each summands in the log-likelihood would have
been propagated through all the past applications of the agent, a scenario that happens anyway if the probe
state is not reinitialized between measurements. Before ending the discussion on the gradient backpropagation
we want to consider yet another possibility of truncating the gradient. We could indeed image to stop the
flow of the derivative through the evolution of the PF ensemble, which means cutting the red line in Eq. (164).
This eliminates the recurrence equation and trivializes the gradient, which now accounts only for the very last
control. That is, with such modification, the agent will learn to optimize only the last measurement. If the loss
is cumulative however, like in Eq. (106), all the controls will be optimized, but in a myopic way. In this scenario
we introduce the modified logarithmic loss, i.e.

L̃log(λ) := 1
TB

M−1∑
t=1

log

 ∑B
k=1 ℓ(θ̂k,t,θk)

sg
[∑B

k=1 ℓ(θ̂t−1,k,θk)
]
 . (173)

Each term in this summation is the empirical information gain for a Gaussian posterior. In the forward pass the
loss is the total empirical information gain, because the stop gradient operators don’t play any role, and the series
can be resummed. In the computation of the gradient, however, the information gain for each measurement is
optimized greedily, as done in [78] and in the package optbayesexpt [39]. If the stop gradient in the denominator
is applied only every n measurement, then we are optimizing the information gain planning n steps ahead in
the future. It is advisable to put a regularization at the denominator of the loss in Eq. (173) to avoid dividing
by zero.
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