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ABSTRACT This paper introduces an innovative approach utilizing Google Colaboratory for the versatile analysis of phasor
fluorescence lifetime imaging microscopy (FLIM) data collected from various samples (e.g., cuvette, cells, tissues) and in
various input file formats. In fact, phasor-FLIM widespread adoption has been hampered by complex instrumentation and
data analysis requirements. Wemean to make advanced FLIM analysis more accessible to researchers through a cloud-based
solution that 1) harnesses robust computational resources, 2) eliminates hardware limitations, and 3) supports both CPU and
GPU processing. We envision a paradigm shift in FLIM data accessibility and potential, aligning with the evolving field of arti-
ficial intelligence-driven FLIM analysis. This approach simplifies FLIM data handling and opens doors for diverse applications,
from studying cellular metabolism to investigating drug encapsulation, benefiting researchers across multiple domains. The
comparative analysis of freely distributed FLIM tools highlights the unique advantages of this approach in terms of adapt-
ability, scalability, and open-source nature.

WHY IT MATTERS?
Fluorescence lifetime imagingmicroscopy (FLIM)holds
transformative potential in biology, enabling the study
of diverse molecular processes. However, its wide-
spread adoption is hindered by complex instrumenta-
tion and data analysis. This paper addresses these
challengesby introducingan innovative approachusing
Google Colaboratory. This cloud-based solution pro-
vides robust computational resources, eliminates hard-
ware limitations, and supports both CPU and GPU
processing,makingadvancedFLIManalysis accessible
to researchers. The result is a paradigm shift in FLIM
data accessibility and potential, aligning with the
evolving field of artificial intelligence-driven FLIM anal-
ysis. This approach simplifies FLIM data handling and
opens doors for diverse applications, from cellular
metabolism to drug encapsulation studies, benefiting
researchers across multiple domains.
INTRODUCTION

Fluorescence lifetime imaging microscopy (FLIM) can
be counted among the techniques with a transforma-
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tive potential in the field of biological sciences, as in
principle it enables the investigation and quantifica-
tion of a multitude of molecular quantities and pro-
cesses: exemplary applications encompass the
measurement of intracellular parameters (e.g., meta-
bolism (1–7), temperature (8–11), viscosity (12–14)),
resolving the physical state of encapsulated fluores-
cent drugs (15–19), biomedical diagnostics (20–22),
and neuroscience research (23–25). Yet, its wide-
spread use and exploitation is still hampered by a
number of limitations and bottlenecks. From a techno-
logical point of view, it should be noted that FLIM typi-
cally requires custom instrumentation, which is
difficult to find embedded into commercial instru-
ments. Another issue limiting the adoption of FLIM
by a broad audience is the requirement for complex
a-posteriori data analysis. Indeed, for decades, extract-
ing quantitative information from FLIM data implied
that lifetime decay curves were interpolated to a vari-
ety of mathematical models, in turn requiring exten-
sive knowledge and expertise. In this regard, the idea
to represent FLIM data in the Fourier space by the pha-
sor plot represented a crucial achievement in the field
(26–28). The phasor representation reduces the fluo-
rescence lifetime decay to a vector in a polar plot
(with information on the phase and modulation of
the fluorescence lifetime). As such, it offers a graph-
ical and intuitive vocabulary to guide data analysis
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TABLE 1 Comparative analysis of publicly available tools for FLIM (fluorescence lifetime imaging microscopy) data analysis

Software Hardware OS Big data handling Parallelization Open source Data formats

Phasor Identifier not limited not limited suitable suitable completely commercial* and SimFCS
generated

SimFCS limited to local CPU Windows not suitable not suitable no commercial and proprietary
PAM limited to local CPU Windows

MacOS
not suitable not suitable partially proprietary only

The benchmarking process was conducted by aligning the tools with scientifically pertinent criteria, which were derived from the specific re-
quirements of the FLIM field and contemporary data analysis standards. These criteria encompass computational power adaptability, oper-
ating system compatibility for analysis execution, flexibility concerning input file formats, data processing capabilities, and open-source
nature. (*Note: currently, the tool reads .ifli raw data from VistaVision in addition to .ref and .R64 formats, with ongoing open-source develop-
ment efforts to support various other formats.)
and interpretation in a model-free manner. In a micro-
scopy image, for instance, pixels with similar decay
curves will have similar coordinates in the phasor
plot; also, pixels containing a combination of two (or
more) distinct lifetime decays will be mapped accord-
ing to the weighted linear combination of these contri-
butions, in light of the so-called “phasor composition
rules” originally introduced by Gregorio Weber in
1981 (29) and then refined by others (26,30,31). The
inherently transformative nature of phasors is now
also pushing at least two new research trends in the
field: 1) optimization of the multicomponent-analysis
strategies to move toward blind resolution of lifetime
components in individual pixels (32–34) and 2) combi-
nation of lifetime to spectral phasor analysis to move
toward a new paradigm of fast and robust spectral
fluorescence lifetime imaging (35,36). In this rapidly
evolving context, a lingering bottleneck still affects
FLIM adoption by a broad audience, as recently
pointed out by Prof. Leonel Malacrida (37); i.e.,
handling and processing the large amount of data
generated by FLIM can be challenging, particularly
for researchers without extensive expertise in data
analysis. Although some commercial closed-source
software packages (such as those provided by
Becker & Hickl, PicoQuant, or Leica) and a few freely
distributed ones (not always open source) such as
SimFCS (31), FLUTE (38), and PAM (39) were devel-
oped to this aim, the handling and processing of large
datasets in a quantitative, easy, fast, and interactive
manner remains demanding in terms of resources.

In this context, we present an innovative approach
that leverages the computational capabilities of Goo-
gle Colaboratory (Colab) for state-of-the-art phasor-
FLIM analysis (see Table 1). Google Colab provides ac-
cess to robust computational resources, such as
GPUs, substantial RAM, and ample disk space, thus
obviating the necessity to make substantial invest-
ments in expensive hardware. This is particularly ad-
vantageous for those looking to seamlessly integrate
artificial intelligence tools designed for FLIM (40–42)
and work with big data.
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Furthermore, our solution delivers a powerful tool to
researchers, enabling them to operate within a cloud-
based environment, effectively eliminating constraints
related to computational power and operative system
limitation. Our solution stands out for two key rea-
sons: 1) it functions without any limitations associ-
ated with hardware, ensuring adaptability and
scalability across a diverse range of computing re-
sources. 2) It seamlessly supports both CPU and
GPU processing, enabling parallelization, a feature
that sets it apart from the software previously
mentioned. These features align closely with the cen-
tral objective of our research, which is to catalyze a
paradigm shift in the accessibility and potential of
FLIM data.
MATERIALS AND METHODS

Materials

Liposomal Irinotecan Onivyde was donated to Scuola Normale
Superiore by the Medical Affair Department of Servier Italia. One
10-mL vial of sample contains 43 mg irinotecan anhydrous free
base in the form of irinotecan sucrosofate salt in a pegylated
liposomal formulation. The liposomal vesicle is composed of
1,2-distearoyl-sn-glycero-3- phosphocholine 6.81 mg/mL (1:1.6),
cholesterol 2.22 mg/mL (1:0.5), and methoxy-terminated polyeth-
ylene glycol (MW 2000)-distearoylphosphatidyl ethanolamine
(MPEG-2000-DSPE) 0.12 mg/mL (1:0.03). Each mL also contains
2-[4-(2-hydroxyethyl) piperazin-1-yl] ethanesulfonic acid (HEPES)
as a buffer 4.05 mg/mL and sodium chloride as an isotonicity re-
agent 8.42 mg/mL. Irinotecan hydrochloride (powder), purchased
from Sigma Aldrich (Milan, Italy), and Onivyde were both stored
at 4�C in compliance with the datasheet. In this study, we evalu-
ated the impact of pH variation on the characteristic lifetime of
irinotecan and its metabolite SN-38, purchased from TCI Europe
N.V. (Zwijndrecht, Belgium). The pH range studied was from 2.0
to 12.0, and the buffer used was PBS due to its compatibility
with living cells and broad buffering capacity. To simplify the
methodology, we opted to use PBS rather than more complex
buffer mixtures, despite their higher buffering capacity. Nine
PBS solutions were prepared with the desired pH, starting from
stock solutions of irinotecan and SN-38 in DMSO. 1 mM solutions
in PBS were then prepared for each pH point, and the final solu-
tions were stirred to maintain the pH control. For additional in-
sights into the case study on doxorubicin, readers are referred



to Tentori et al. (15). The Doxoves used in this study was pur-
chased from FormuMax Scientific (Sunnyvale, CA, USA).
Cell culture

Insulinoma 1E (INS-1E) cells were a kind gift from Professor C. Woll-
heim from the University of Geneva. These cells were kept in a
climate-controlled incubator set to 37�C and 5% CO2, where they
were grown in RPMI 1640 medium containing 11.1 mmol/L
D-glucose, 10 mmol/L HEPES, 2 mmol/L L-glutamine, 100 U/mL peni-
cillin-streptomycin, 1 mmol/L sodium-pyruvate, and 50 mmol/L b-mer-
captoethanol. To conduct lifetime experiments, the cells were
allowed to grow until they reached 70% confluence on sterilized mi-
croscopy-compatible dishes (IbiTreat m-Dish 35-mm, Ibidi) for a
period of 24–48 h. Then, the cells were exposed to either irinotecan
or Onivyde diluted in complete medium. To serve as a control, the
cells were simply refreshed with a fresh batch of complete medium.
FLIM measurements

A drop of approximately 20 mL of Onivyde was diluted 50x in 980 mL
of saline per intravenous administration protocol. The solution was
poured on the glass of a WillCo plate, without any further dilution.
For what concerns the free drug, the 1 mM irinotecan stock solution
in DMSO was diluted in different buffers before FLIM at a final con-
centration of �10 mM. Irinotecan precipitate and spin-coated lipo-
somes were obtained on the glass of a WillCo plate and black
glass-bottom 96-well plate, respectively, as described above. No
aqueous solution was added before FLIM to avoid any possible
drug re-suspension. FLIM measurements were performed by an
Olympus FVMPE-RS microscope coupled with a two-photon Ti:sap-
phire laser with 80-MHz repetition rate (MaiTai HP, SpectraPhysics)
and a FLIM box system for lifetime acquisition (ISS, Urbana Cham-
paign) in digital frequency domain (DFD). Onivyde and irinotecan
were excited at 760 nm, and the emission collected by using a
30X planApo silicon immersion objective (NA ¼ 1.0) in the 380- to
570-nm range. Calibration of the ISS Flimbox systemwas performed
by measuring the known monoexponential lifetime decay of fluores-
cein at pH ¼ 11.0 (i.e., 4.0 ns upon excitation at 760 nm, collection
range: 570–680 nm). To prepare the calibration sample, a stock of
100 mmol/L fluorescein solution in EtOH was prepared and diluted
in NaOH at pH ¼ 11.0 for each calibration measurement. For each
measurement, a 512 � 512 pixels image of FLIM data was collected
until 30 frames were acquired. In the context of phasor-FLIM meta-
bolic investigations, living INS-1E cells were observed after 24 h of
cytokine exposure in the standard maintenance conditions. These
conditions involved RPMI 1640 medium supplemented with
11.1 mmol/L D-glucose, 10% heat-inactivated FBS, 10 mmol/L
HEPES, 2 mmol/L L-glutamine, 100 U/mL penicillin-streptomycin,
1 mmol/L sodium-pyruvate, and 50 mmol/L b-mercaptoethanol, all
maintained at 37�C. We then utilized two-photon excitation at
740 nm to capture images of the same cell clusters under both
low and high glucose concentrations. Regarding the FLIM measure-
ments related to doxorubicin, an approximately 50-mL droplet of Dox-
oves stock solution was carefully positioned on the glass surface of
a WillCo plate. Notably, no further dilution was carried out. In this
case, FLIM was performed using a Leica TCS SP5 confocal micro-
scope (Leica Microsystems, Germany). A pulsed diode laser oper-
ating at a frequency of 40 MHz was employed for excitation at
470 nm. The emitted light was captured between 520 and 650 nm
using a photomultiplier tube, which was linked to a time-correlated
single-photon counting card from PicoQuant in Berlin, designated
as PicoHarp 300. Raw data were internally processed into .bin
format and then to .R64 format within SimFCS.
Phasor plot computations

Equations (1a) and (1b) describe the computation of the coordinates
considering T, n, and u, the period of the laser pulse, harmonic, and
angular frequency, respectively.

gfi;jgðuÞ ¼
ZT

0

IðtÞ $ cos ðnutÞdt
,ZT

0

IðtÞdt (1a)

ZT ,ZT
sfi;jgðuÞ ¼
0

IðtÞ $ sin ðnutÞdt
0

IðtÞdt (1b)

In the frequency domain for each pixel, one can rely on modulation
mi;j and phase shift 4i;j of the signal as reported in Eqs. (2a) and (2b):
gfi;jg ¼ mi;j$cos
�
4i;j

�
(2a)

s ¼ m $sin
�
4

�
(2b)
fi;jg i;j i;j

The phasors lie within the semicircle, also known as “universal
semicircle” (43–45), centered at (½,0) with radius ½ and positive
x, where the zero lifetime is located at (1,0) and the infinite lifetime
at (0,0). Specifically, in the instance of the point (0,0), the fluorescent
species remains unexcited, resulting in an infinite lifetime. This is
due to the absence of light emission, as the species does not expe-
rience excitation. On the other hand, at the coordinate (1,0), the fluo-
rescence lifetime converges to zero, indicating a scenario in which
the fluorescent species instantaneously reaches its ground state.
In a concise explanation, it is noteworthy to underline that the fluo-
rescence lifetime of a given species denotes the temporal duration
during which the species remains in its excited state, whereas the
amplitude represents the quantity of emitted light during the excita-
tion phase. Indeed, by taking the Fourier transformation of a
measured decay curve, the lifetime can be estimated relying solely
on the position of the phasor inside the universal circle. The distribu-
tion of phasor points originating from FLIM measurements is found
on the universal semicircle for monoexponential decays or within
the universal semicircle for multiexponential decays (44,46). In
fact, in the case of a monoexponential decay, the intensity can be ex-
pressed according to Eq. (3a), whereas multiexponential decay in-
tensity can be expressed as a sum over multiple components.
Specifically, a tri-exponential mode, Eq. (3b), often offers an effective
representation for a wide array of fluorescence decay profiles, strik-
ing a balance between computational feasibility and accuracy. In Eq.
(3b), subscripts f, b, and p indicate different physical states of the
fluorescent compound (e.g., irinotecan in free, membrane-associ-
ated, and gelated/precipitated forms). Recent research endeavors
have ventured into noncustomary scenarios where the computation
of four components is explored (33). Notably, when considering
more than three components, measurements at different harmonics
become essential to accommodate the increased complexity of the
analysis.

ImonoðtÞ ¼ Afe� t=t (3a)

� t=tf � t=tb � t=tp
ImultiðtÞ ¼ Afe þ Abe þ Ape (3b)

If two molecular species are coexisting in the same pixel, for
instance, all the possible weighting combinations of the two molec-
ular species give phasors distributed along a straight line joining the
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characteristic phasors of the two pure species. In the case of three
molecular species, all the possible combinations of the system form
a triangle where the vertices correspond again to the characteristic
phasors of the pure species.

Apparent lifetimes, associated with multiexponential component
decay, can be determined using nonlinear least squares analysis
of phase delay and modulation. Equations (4a) and (4b) describe
the estimation of lifetimes in individual pixels with regard to both
phase and modulation. Notably, monoexponential lifetimes produce
identical values, whereas multiexponential lifetimes yield different
results. This review does not cover the specific instrumentation or
data analysis typically applied in time or frequency domain
measurements.

t4 ¼ 1
u
tanð4Þ (4a)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi� �s

tm ¼ 1

u

1
m2

� 1 (4b)

As shown in Fig. S1, given an experimental phasor that is the com-
bination of two (or more) species and the phasors of the isolated
pure components, intensity fractions can be graphically visualized
and easily quantified.
RESULTS AND DISCUSSION

Phasor-FLIM data analysis: General workflow

In this study, experimental lifetime acquisitions under-
went phasor analysis using custom Python 3.6 rou-
tines within the “Phasor Identifier” notebook in the
Google Colab environment. The input parameters
allow the specification of the file extension and anal-
ysis type, which can be configured as either cumula-
tive, enabling the aggregation of multiple replica files
into a single data set, or single file for the analysis of
individual files. The file name format comprises the
date, sample name, and replica number (e.g.,
2023_experiment 1_1). As of today, allowed file for-
mats are the following: “.R64,” “.ref,” and “.ifli.” These
formats can be generated directly as raw data within
commercial software for both DFD and frequency
domain acquisitions or as processed data in the
time domain. With the cumulative analysis setting,
the code identifies samples by name and stitches im-
ages based on replica numbers. For each pixel in the
FLIMbox-generated image, the fluorescence decays
can be measured in the time domain (Fig. 1 A) and
mapped onto a "phasor" plot (Fig. 1 B). The phasor
plot has two coordinates, which are the real and imag-
inary parts of the Fourier transform of the fluores-
cence lifetime decay. This calculation is performed
at the angular repetition frequency of the excitation
laser. Consequently, pixels with similar decay curves
exhibit similar coordinates on the phasor plot. Fig. 1
B demonstrates monoexponential decays, indicated
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by all points lying on the phasor plot. In the case of
pixels containing a combination of two or more
distinct lifetime decays, they are mapped based on
the combination of these contributions. Interpreting
the data in three dimensions (Fig. 1 C) is of utmost
importance since there are inevitably regions in the
phasor plot that exhibit varying degrees of population.
Effective sampling of the phasor plot (47) goes
beyond identifying an individual phasor position,
contingent upon the specific characteristics of the
sample. To facilitate an informed and appropriate se-
lection of parameters, users are furnished with essen-
tial phasor characteristics. These include the number
of sampled data points, indicating the analysis's sig-
nificance, and the principal component analysis vari-
ability ratio of the identified region of interest (ROI),
reflecting the phasor's directional qualities. These
metrics can be harnessed to fine-tune the input param-
eters for the analysis. In Fig. 1 C, the characteristic
luminescence signal is projected in 2D for visualiza-
tion purposes and sampled with 100 bins in both di-
mensions. It is noteworthy that commonly available
open-source codes generate contour plots using ellip-
tical approximation of contour lines. However, this
code analyzes the signal through frequency levels of
a 3D distribution. The lowest level corresponds to
the bottom frequency level attainable after intensity
thresholding, and the top level identifies as the 95th
percentile. Bottom and top level can be adjusted to
facilitate frequency noise removal and improve the
analysis quality.

The intensity threshold, as shown in Fig. 2 A on lipo-
somal irinotecan (Onivyde) samples, can be set
through three different approaches: custom threshold
value, Otsu threshold, or multi-Otsu threshold. The
default option is the multi-Otsu threshold, but setting
a custom threshold would be straightforward as inten-
sity values are normalized to 1 before data processing.
Additionally, users have the option to import masks to
restrict the analysis to a specific portion of the image,
especially when focusing on a particular morpholog-
ical feature; the code allows for masking cells via
the cellpose (48) Python library also, leveraging deep
learning-based segmentation method (in this case, it
is advised to set the threshold to 0 to appreciate at
the best the lifetime distribution within cells). Cellpose
doesn't need extra training or adjusting settings, as it
learned from over 70,000 cell images (49). It uses the
common U-Net method to break down and rebuild im-
ages for accurate segmentation. Indeed, deep
learning-driven segmentation methodologies have
been readily deployed within the framework of FLIM
analysis, yielding remarkable outcomes, as evidenced
in pioneering studies pertaining to metabolic hetero-
geneity (50) and the impact of prolonged UVA-induced



FIGURE 1 Phasor analysis of FLIM data. (A) A fluorescence decay is measured in the time domain in each pixel of the image. (B) The fluo-
rescence lifetime decay Fourier transform coordinates are mapped onto a phasor plot, revealing distinct clusters for different decay patterns.
(C) A 2D projection of the phasor plot helps visualize regions with varying population, highlighting the importance of interpreting the data in
three dimensions for comprehensive analysis (the data shown are representative of a cellular phasor of encapsulated doxorubicin).
metabolic stress on reconstructed human skin (51).
After setting the intensity threshold, the relevant
pixels for the analysis are automatically detected. By
saving the pixel numbers to be processed, access to
the phase and magnitude matrices is restricted to
only these relevant pixels, ensuring that the analysis
focuses on the desired data points. These points un-
dergo spatial domain filtering (Fig. 2 B), giving users
the choice between a linear or nonlinear filter: namely
Gaussian or median filter. The strength of a median fil-
ter refers to the window size used for filtering, where
larger values yield stronger smoothing effects. Simi-
larly, the strength of a Gaussian filter is determined
by the standard deviation (sigma), with larger sigma
values resulting in stronger smoothing. By default,
the code sets a median filter strength to 3 x 3 as it is
common practice in phasor-FLIM analysis (43).
Furthermore, we have incorporated a "morphology
and lifetime visualization" module to allow direct
observation of how median filters and thresholding
impact the sample. It's worth noting that applying an
overly aggressive or an inappropriate median filter
could inadvertently remove crucial spatial features
(43) relevant to lifetime analysis, as well as employing
excessive thresholding. The contour analysis function
performs a comprehensive analysis of the phasor plot-
generated FLIM data. It iterates through each fre-
quency level detected in the 3D histogram (Fig. 2 C)
and its corresponding contours, creating a Polygon
object for each contour. It then checks if a contour be-
longs to a previously identified ROI or if it is a new one.
A new ROI that satisfies the criteria for a valid contour
is added to the perimeters list, which contains the con-
tour data of the identified ROI, as shown in Fig. 2 D.
Similarly, if the contour belongs to an existing ROI,
the function updates the corresponding phasor if it
is contained within any previously stored phasors;
otherwise, it adds the contour as a new phasor as
shown in Fig. 2 E. The valid contour criteria can be
set manually. By default, new ROIs must contain at
least 5000 data points, and new phasors must contain
at least 500 data points. These default values are sub-
ject to adjustment based on the quality and nature of
the sample being analyzed. As a result, the function
generates two lists: phasors containing the contour
data of identified subregions in the phasor plot and pe-
rimeters containing the contour data of identified
ROIs. These lists provide a comprehensive representa-
tion of the ROIs and subregions in the phasor plot,
facilitating further analysis and interpretation of the
FLIM data. As reported in Fig. 2 F, the code maintains
two distinct data frames: one, "df_dataset," storing
each data point's data, and another, "df," documenting
phasor properties. These data frames can be saved as
CSV files and accessed beyond the Google Colab note-
book for further analysis and visualization.
Biophysical Reports 3, 100135, December 13, 2023 5



FIGURE 2 Analysis process with filtering and relevant pixel selection. (A) Automatic detection of relevant pixels based on the set intensity
threshold (custom, Otsu, or multi-Otsu threshold). (B) Spatial filtering of pixels using amedian or Gaussian filter with user-defined strength (i.e.,
3 x 3 median filter; 1s Gaussian filter). As it can be seen, it is of the main importance to visually check the effect of spatial filtering as it may
lead to a loss of resolution. (C) 3D visualization of multiphasor-FLIM signal. (D) Distinct ROIs identification from phasor-FLIM signal in a single
sample measurement. (E) Phasors' extraction from phasor-FLIM-identified ROI. (F) The primary objective of the code's main block is to pre-
process and organize data into user-friendly datasets, facilitating subsequent manipulation in subsequent modules. (The data shown are
representative of a cellular phasor of the INS1-E cell line and its extracellular medium upon liposomal irinotecan administration).
Evolution of phasor-FLIM signals

FLIM is frequently employed, in light of its sensitivity to
chemical, physical, and biological variations. Fig. 3 A
shows these effects considering the phasor position
of irinotecan at physiological pH as a reference. A basi-
fication of the chemical environment results in longer
irinotecan characteristic lifetime signal; irinotecan
metabolic enzymatic cleavage into the very potent
SN-38 compound leads to shorter lifetime, whereas iri-
notecan liposomal encapsulation (Onivyde liposomal
formulation) leads to a combination of physical states
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(16) and interactions with the liposomal membrane
that promote longer lifetime values. Interestingly,
both metabolic cleavage and encapsulation lead to
multiexponential phasors (hence not lying on the semi-
circle in the phasor plot) since the molecule is not
found in a single physical state. In fact, as shown in
Fig. 3 B, SN-38 shows an intrinsically multiexponential
phasor as the result of a very dynamic chemical equi-
librium (52). The code allows the evolution of the
FLIM signal for each of the three scenarios mentioned
above to be monitored (see Table S1). However, to
keep things straightforward, herein we focus on



FIGURE 3 Phasor-FLIM detection and analysis of changes in lifetime. (A) Phasor-FLIM promptly detects changes in lifetime values stem-
ming from chemical alterations (e.g., basification, depicted in cyan), biological transformations (e.g., metabolic cleavage, highlighted in red),
or physical adaptations (e.g., nanoscale encapsulation, in green). In this context, irinotecan (marked with a star) at physiological pH serves
as a reference point. (B) The evolution of SN-38 within the phasor plot is elegantly portrayed, illustrating its response across varying pH levels.
(C) Depicting the pH against lifetime nonlinear curve of SN-38, the representation reveals the intricate relationship. Utilizing the seaborn library,
the code generates a boxplot derived from data frames, meticulously stored within the code.
tracking the lifetime of SN-38 in relation to pH (for SN-
38 and irinotecan values, see Fig. S2; Table S2). This
choice is made because the change in irinotecan life-
time is less apparent, as outlined in Fig. S2. We initially
employed a linear interpolation fit as it appears visually
that it is a suitable model based on the data. However,
fitting the SN-38 signal in the phasor plot with a linear
interpolation (R2 z 0.80) is not very satisfactory. It is
rather more convenient to move out of the phasor
plot in one variable (i.e., pH) against lifetime space to
appreciate a proper nonlinear fit (power law –R2 z
0.98). As shown in the boxplot of Fig. 3 C, the code
stores all the data points, relying on pandas data
frames, and those can be used to visualize lifetime dis-
tributions, in this case as a function of pH. The code
stores two different data frames, one containing the
data of each data point named df_dataset and one
another accounting for the properties of phasors
named df. Both can be saved as csv format and ac-
cessed outside of Google Colab.
Morphological and statistical analysis: A glimpse
into cellular analyses

Once all the ROIs have been detected, the code en-
ables morphological analysis on selected ROIs of
each sample, chosen through a drop-down menu.
The analysis includes computing lifetime and poten-
tially its average weighted over intensity values by
determining the phasor barycenter, along with respec-
tive standard deviations. Additionally, it calculates G
and S coordinates with corresponding errors, principal
component analysis variability ratio, and the number
of points sampled to define the phasor. Identifying
distinct lifetime regions in a single image is often
crucial, so the code facilitates an analysis of intensity,
lifetime, and clustering mapping of the sample. Clus-
tering is performed using a Gaussian mixture model,
which is recommended for phasor-FLIM data due to
the inherent presence of a normal component in pha-
sor distributions stemming from noise in measure-
ments (53). The users have the flexibility to manually
specify the number of clusters, with the default set
to two clusters.

Application to cell metabolism is reported in Fig. 4
using insulinoma 1E cells (INS-1E). INS-1E cells have
been extensively characterized as a mammalian rat
cell line that stores and secretes insulin in response
to a wide range of glucose concentrations, and they
are, therefore, widely used to study the mechanisms
of insulin secretion (5,55). Fig. 4 A and B presents a
comparison of INS-1E autofluorescence lifetime sig-
nals after incubation with fresh medium (CTRL) and
cytokines (CTKs). The phasor plot reveals a significant
shift in multicomponent lifetime (measured as tm,
modulation lifetime), and there are subpopulations
Biophysical Reports 3, 100135, December 13, 2023 7



FIGURE 4 Phasor-FLIM comparative statistical and morphological analysis. (A) INS-1E autofluorescence lifetime signals after incubation
with fresh medium (CTRL) FLIM analysis: in the phasor plot (left panel, color-coded), intensity (middle panel), and lifetime (right panel, color-
coded) images. (B) INS-1E autofluorescence lifetime signals after incubation with cytokines (CTKs) FLIM analysis: in the phasor plot (left panel,
color-coded), intensity (middle panel), and lifetime (right panel, color-coded) images. Arrows indicate the presence of long-lifetime species, pre-
viously demonstrated to be the result of reactive oxygen species production. (C) Assessment of multimodality using nonparametric fitting
(kernel density estimate with Gaussian kernel) on the lifetime data from both CTRL and CTK, with visualization through the cumulative dis-
tribution function and boxplot to highlight significant differences (red arrow indicates the presence of LLM). (D) A linear fit is performed for
metabolic assessment by considering the reference free NADH phasor and the cellular phasor. This entails fitting the phasors for both control
and cytokine-treated samples. (E) The violin plot illustrates the distribution of the fraction of bound NADH in INS1-E cells, revealing significant
differences in response to cytokine treatment. (Data are extrapolated from the work of Pugliese et al. (54)).
spreading out of the contour plot core. CTRL and CTK
study cases were mapped in lifetime, both on the pha-
sor plot and morphologically, leveraging the data set
established by Pugliese et al. (54). This allows us to
visually conclude that the CTK treatment has an effect
on cellular lifetimes, triggering a shift in both nuclear
8 Biophysical Reports 3, 100135, December 13, 2023
and cytoplasmic signals toward longer lifetimes.
Indeed, as can be viewed in Fig. 4 B (and further dis-
cussed in (54)), the phasor cluster in the condition of
exposure to cytokines clearly shows an elongation
toward longer lifetimes with respect to control,
presumably owing to the increased contribution of



long-lifetime species, previously demonstrated to be
the result of reactive oxygen species production. Spe-
cifically, CTK shows a nuclear lifetime subpopulation
with a shorter lifetime, whereas CTRL shows a cyto-
plasmic lifetime subpopulation with a longer lifetime.
In Fig. 4 C, we assess this multimodality by sampling
the computed lifetime (tm) distribution using nonpara-
metric fitting (kernel density estimate with Gaussian
kernel, bandwidth ¼ 0.01 ns). Subsequently, we
conduct two nonparametric statistical tests,
Kolmogorov-Smirnoff and Mann Whitney U with Bon-
ferroni correction, to test the null hypothesis that the
distributions for CTRL and CTK are the same. The
code enables us to perform these statistical tests
and reveals significant differences in terms of percen-
tile distributions, central tendency, skewness, and
spread (see Table S3). Additionally, Fig. 4 C includes
the cumulative distribution function and boxplot,
which facilitate the visualization of these statistical
differences. In conclusion, the morphological and sta-
tistical modules demonstrated in Fig. 4 provide a
robust framework for conducting FLIM-based assess-
ments, enabling the analysis of cellular environments
based on cell autofluorescence signals. In the work of
Pugliese et al. (54), we investigated fluorescent mole-
cule metabolism or interactions within the cellular
environment. In this particular scenario, the alteration
in the FLIM pattern of cellular autofluorescence can be
attributed to the increase of both enzyme-bound
NAD(P)H molecules and oxidized lipid species (54).
To fulfill this objective, Phasor Identifier is equipped
with a module for calculating the fraction of NADH
that is in the free and bound states (see Fig. S3 for
spatial mapping of free and bound NADH levels),
consistent with established literature. Fig. 4 D illus-
trates the fundamental concept behind this module:
phasors are subjected to linear fitting, originating
from the reference phasor representing NADH in its
free state, with a lifetime well documented in the liter-
ature, typically around 0.37 ns (56,57). This fitting pro-
cedure allows the discernment of the NADH bound
state's lifetime. In fact, it's important to note that the
fluorescence lifetime of bound NADH can vary consid-
erably, ranging from 1 to 9 ns (58,59). This variability is
primarily influenced by the specific enzyme to which
NADH binds and the presence of allosteric molecules
(60). The distribution comparison and analysis are
particularly useful for detecting changes in lifetime
that may result from interactions or variations in the
sample environment, such as temperature fluctua-
tions or pH changes, thereby offering valuable insights
into cellular dynamic and metabolic processes. In pur-
suit of the metabolic shift assessment, Fig. 4 E pre-
sents a violin plot depicting the proportion of bound
NADH in INS1-E cells after cytokine treatment.
From intensity to molar fractions: A case study on
liposomal doxorubicin

FLIM can be used to resolve multiexponential signals,
where two or more molecular species with distinct life-
times are coexisting simultaneously. Here we build on
a recently demonstrated case study that deals with
the presence of three molecular species, i.e., the
FDA-approved liposomal nanoformulation Doxoves,
which encapsulates doxorubicin as free in solution,
crystallized, and associated to the liposome mem-
brane (15). Deconvoluting the multiexponential signal
is relatively straightforward, as it involves a linear
combination of the three monoexponential phasors
characteristic of the pure species (free, crystallized,
and bound to membrane). However, it is essential to
note that this method provides the “fractional inten-
sity” of each pure physical state: due to differences
in molar extinction coefficient (ε) and quantum yield
(QY) among pure species, the fractional intensities
can be very different from the actual molar fractions.
To address this point, we have incorporated a molar
fraction module where users can input the name, life-
time (in ns), ε, and QY of each physical state they wish
to consider.

In Fig. 5, we present the potential of this approach
through a case study involving the storage of Doxoves
at different temperatures (4�C and 37�C) for a duration
of 120 days. This study provides valuable insights into
the behavior of the three molecular species under vary-
ing storage conditions (61). In Fig. 5 A, in particular, we
observe that increasing the temperature to 37�C pro-
motes the transformation of doxorubicin physical
state, leading it toward both the membrane-bound
and free-in-solution states. The evolution of the phasor
plot at 37�C suggests that doxorubicin crystalline
structure within Doxoves gets nearly completely dis-
solved, with Doxoves phasor lying along the trajectory
between the membrane-bound and free-in-solution re-
maining species. This effect becomes evident after
120 days and reflects into a neat change in the average
lifetime (Fig. 5 B). Indeed, both storage conditions
trigger a monoexponential decay in the values of in-
verse lifetime (1/lifetime), characterized by compara-
ble decay times: t4�C z 15 days and t37�C z
19 days. However, the 4�C storage condition maintains
a more consistent lifetime signal in the phasor plot,
along with a relatively minor increase in lifetime over
the 120-day period (�6%). Conversely, at 37�C under
the same storage conditions, a marked increase in life-
time (�36%) is observed. As detailed in Table 2, the
fractional intensity of crystallized Doxoves at 37�C ex-
periences a significant decline over 120 days. The San-
key diagram fluxes in Fig. 4 C (see also Table 2) reveal
changes in the nanoparticle composition, primarily
Biophysical Reports 3, 100135, December 13, 2023 9
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FIGURE 5 FLIM analysis of storage-induced
changes in nano encapsulated drugs: lipo-
somal doxorubicin case study. (A) The phasor
plot showcases the lifetimes of liposomal
doxorubicin (Doxoves) within the manufac-
turer's solution. Monitoring occurred over a 0-
to 120-day period under two distinct storage
conditions: 4�C (depicted in the blue palette)
and 37�C (depicted in the red palette). The star
denotes the initial FLIM signal of Doxoves on
day 0. (B) The progression of 1/lifetime values
over time unveils a consistent monoexponen-
tial decay pattern in both storage conditions,
despite the significant variations between the
two. (C) Sankey diagram of the molar composi-
tional changes of Doxoves nanoparticles after
120 days of storage at 37�C.
driven by the dissolution of crystallized doxorubicin.
This results in a new molar composition of the lipo-
somal drug (refer to Table S4 for doxorubicin QY and
ε values in the relevant physical states).
CONCLUSIONS

In this study, we introduce an innovative approach to
capitalize on the computational capabilities of Google
Colab to conduct advanced phasor-FLIM analysis.
Google Colab grants access to robust computational
resources, including GPUs, substantial RAM, and
ample disk space, thereby eliminating the need for
substantial investments in costly hardware. This is
10 Biophysical Reports 3, 100135, December 13, 2023
especially beneficial for those seeking a seamless
integration of artificial intelligence tools designed for
FLIM and working with large datasets. Indeed, within
the artificial intelligence-driven FLIM analysis commu-
nity, significant efforts are underway. These encom-
pass a broad spectrum of advancements, including
automatic clustering (36), denoising techniques for
fluorescence imaging (62), and enhancements in
time domain fitting (41).

Mannam et al. have reviewed the applicability of
various machine learning (ML) techniques to fit time
domain decay. The majority of them exhibit substan-
tial improvements in processing speed when con-
trasted with conventional methodologies.



TABLE 2 Fractional intensities and molar fractions of Doxoves in different storage conditions

Sample
Intensity fraction

“crystal”
Intensity fraction

“free”
Intensity

fraction “bound”
Molar fraction

“crystal”
Molar fraction

“free”
Molar fraction

“bound”

Doxoves 0.459 0.125 0.416 0.988 0.007 0.005
Doxoves 4�C (120 days) 0.373 0.163 0.464 0.982 0.011 0.069
Doxoves 37�C (120 days) 0.024 0.227 0.749 0.701 0.173 0.126

All results are obtained from six replicas, and the error on both fractional intensity and molar fraction was systematically<0.005 (median filter
extent ¼ 3).
In the realm of phasor-FLIM, Vallmjtiana et al. (53)
have harnessed ML clustering algorithms, such as
the Gaussian mixture model, which are already imple-
mented in the present notebook. Clustering, a subset
of ML techniques, finds utility in scenarios where a
collection of N-dimensional data points lacks prede-
fined labels. Furthermore, there are notable instances
of FLIM-based, label-free NAD(P)H imaging's poten-
tial in distinguishing different cell types through the
application of artificial neural network-based ML.
For their specific biological use case, Sargal et al.
focused on the challenge of distinguishing microglia
from other glial cell types within the brain (63). Never-
theless, it is important to note that most of the exist-
ing software in this domain lacks cloud accessibility,
is dependent solely on CPU processing, lacks GPU ac-
cess crucial for large-scale data processing, and is
confined to local hardware limitations. Indeed, our so-
lution empowers researchers to operate within a
cloud-based environment, effectively eradicating
constraints associated with computational power.
Our approach distinguishes itself for two funda-
mental reasons: it comes without hardware limita-
tions, ensuring flexibility and scalability across a
wide spectrum of computing resources; it accommo-
dates both CPU and GPU processing, enabling paral-
lelization. These features closely align with the core
objective of our research, which is to trigger a trans-
formative shift in the accessibility and potential of
FLIM data. In this context, our demonstration sig-
nifies the remarkable flexibility and enhanced acces-
sibility achievable with FLIM data. We further
validated by analyzing three compelling case studies
involving cellular metabolism, nanoscale drug encap-
sulation (doxorubicin), and the impact of pH and
metabolic cleavage on small fluorescent drugs (irino-
tecan), showcasing extensive analysis capabilities.
The file formats included in this notebook are preva-
lent within the phasor-FLIM community, spanning
both frequency domain and DFD analyses. In the
future, we contemplate incorporating the capability
to directly convert time domain raw data within the
notebook. As of now, such conversions primarily
occur within proprietary or freely distributed software
platforms.
DATA AND CODE AVAILABILITY

The archived version of the code described in this
manuscript can be freely accessed through GitHub
(https://github.com/Mariochem92/PhasorIdentifier;
https://doi.org/10.5281/zenodo.8282839). The code
is extensively documented in the GitHub README
file: (https://github.com/Mariochem92/PhasorIdentifier/
tree/main#readme), and a test data set including
data from this work is accessible at https://zenodo.
org/records/10054812.
SUPPORTING MATERIAL

Supporting material can be found online at https://doi.org/10.1016/
j.bpr.2023.100135.
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