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Abstract
We study the action of the mapping class group on the subspace of de Rham classes in the
degree-two bounded cohomology of a hyperbolic surface. In particular, we show that the
only fixed nontrivial finite-dimensional subspace is the one generated by the Euler class. As
a consequence, we get that the action of the mapping class group on the space of de Rham
quasimorphisms has no fixed points.
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1 Introduction

Let � be a group. A quasimorphism on � is a map f : � → R for which there is a D ∈ R≥0

such that

| f (g) + f (h) − f (gh)| ≤ D

for every g, h ∈ �. A quasimorphism is homogeneous if it restricts to a homomorphism on
every cyclic subgroup of�. Thefirst examples of nontrivial quasimorphismswere constructed
for free groups by Brooks [9]. Notice that a quasimorphism is considered trivial if it is at
bounded distance from a homomorphism.

The group of automorphisms of a group acts naturally on the space of (homogeneous)
quasimorphisms by precomposition. In 2010, Miklós Abért asked whether for n ∈ N≥2
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there exist nonzero Aut-invariant homogeneous quasimorphisms on the free group with n
generators Fn ; he comments “probably not” [1, Question 47]. In [18] Hase proved that
the action of Aut(Fn) on the space of Brooks quasimorphisms (which is invariant under the
action ofAut(Fn)) has no nontrivial fixed points. On the other hand, in [7] Brandenbursky and
Marcinkowski answered this question affirmatively for n = 2. Finally, in [13] Fournier-Facio
and Wade proved that for a large class of groups (which includes non-elementary Gromov
hyperbolic groups and infinitely-many-ended groups) there exists an infinite-dimensional
space of Aut-invariant homogeneous quasimorphisms. However, their construction is not
very explicit; therefore, it makes sense to restrict to some particular Aut-invariant subspaces
of quasimorphisms — coming, for example, from geometric or combinatorial constructions
— and ask whether they contain nontrivial fixed points or not.

We focus our attention on de Rham quasimorphisms, which are considered by Calegari in
[12, Subsection 4.2] and defined as follows. Let� be an oriented closed connected surface of
genus at least two and denote by � its fundamental group. Let α ∈ �1(�) be a 1-form andm
be a hyperbolic metric on�. For every γ ∈ � \ {1}, we denote by ρm

γ the free oriented closed
geodesic (with respect to the metricm) in the homotopy class of γ . Then, the (homogeneous)
de Rham quasimorphism associated to m and α is defined by setting

qmα (γ ) =
∫

ρm
γ

α

for every γ ∈ � \ {1}, and qmα (1) = 0. A quasimorphism on � is a de Rham quasimorphism
if it is of the form qmα for some m and α as above.

The vector space generated by de Rham quasimorphisms is Aut(�)-invariant (see Sect. 5).
We prove the following result.

Theorem 1 The action of Aut(�) on the space of quasimorphisms generated by de Rham
quasimorphisms has just one nonzero finite-dimensional invariant subspace, that is the one
consisting of homomorphisms.

Notice that Hom(�, R) has dimension 2g, where g is the genus of the surface. In partic-
ular, since there are no 1-dimensional Aut(�)-invariant subspaces, we deduce the following
corollary.

Corollary 2 The action of Aut(�) on the space of quasimorphisms generated by de Rham
quasimorphisms has no nonzero fixed points.

Remark 1.1 Our results should be read as the analogue for surface groups of Hase’s ones [18]
for free groups.

Remark 1.2 The result by Fournier-Facio and Wade ( [13, Theorem B]), together with
Corollary 2, readily implies that there is an infinite-dimensional subspace of homo-
geneus quasimorphisms that cannot be described as (a linear combination of) de Rham
quasimorphisms.

In order to establish Theorem 1 we adopt the point of view of bounded cohomology, which
in degree two is strictly related to quasimorphisms. Bounded cohomology of groups was
introduced by Johnson in [20], where he proved that it vanishes in all positive degrees for
amenable groups. Pioneering works in this area were those of Gromov [17] and Ivanov [19],
where bounded cohomology of topological spaces was also introduced. Since then, it has
played a fundamental role in various fields of mathematics, such as geometric group theory
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[23], simplicial volume [17, 26], circle actions [16], rigidity theory [6] and stable commutator
length [12].

The connection with quasimorphisms comes from the fact that the space of homogeneous
quasimorphisms on � modulo homomorphisms canonically injects into the second bounded
cohomology H2

b (�). The image of this map coincides with the set of bounded classes that
vanish in standard cohomology, which are also called exact bounded cohomology classes
(e.g., [15, Section 2.3]). The group Aut(�) acts naturally on H2

b (�), and the just mentioned
injection is equivariant with respect to this action.

From this point of view, de Rham quasimorphisms correspond to de Rham classes, which
are bounded cohomology classes defined via differential 2-forms and hyperbolic metrics on
�: in 1988, Barge and Ghys [4] proved that, given a hyperbolic metric m on �, the second
bounded cohomology of � contains an infinite-dimensional subspace given by differential
2-forms on �. Namely, they showed that the map

�m : �2(�) → H2
b (�),

defined by integrating differential forms over geodesic triangles (with respect to the metric
m), is injective (see Sect. 2 for the precise definition). We call de Rham classes the bounded
cohomology classes of H2

b (�) (or, equivalently, of H2
b (�)) which lie in the image of �m for

some hyperbolic metric m. These classes have been intensively studied, also in recent years
[2, 11, 21, 22]. We refer to Sect. 5 for a detailed description of the relationship between de
Rham quasimorphisms and de Rham classes. Notice that the Euler class of � is a multiple
of the de Rham class corresponding to any metric and its corresponding volume form.

Since we are dealing with a geometric construction, it is helpful to rethink the action
of Aut(�) in more geometric terms. First, recall that inner automorphisms act trivially on
(bounded) cohomology [10, Section II.6]. Therefore, the action of Aut(�) factors through
an action of Out(�) = Aut(�)/ Inn(�). On the other hand, a celebrated theorem by Dehn,
Nielsen and Baer affirms that the (positive) mapping class group, denoted by MCG(�),
is naturally isomorphic to a subgroup of index 2 of Out(�). Therefore, MCG(�) acts on
bounded cohomology. Go to Sect. 3 for a description of this action, which clarifies also why
the subspace of H2

b (�) ∼= H2
b (�) generated by the de Rham classes is invariant under the

action of the mapping class group.
We prove the following result.

Theorem 3 The subspace of H2
b (�) generated by de Rham classes has only two finite-

dimensional subspaces preserved by MCG(�): the trivial one and the 1-dimensional
subspace generated by the Euler class.

In order to prove the previous theorem, we study the action of MCG(�) on a bigger
subspace of H2

b (�), which we denote by CH2
b(�); it is still MCG(�)-invariant and contains

all the deRhamclasses (see Sect. 2.4 for the definition). In this context,we prove the following
theorem, of which Theorem 3 is an immediate corollary.

Theorem 4 The subspace generated by the Euler class is the only finite-dimensional
nontrivial subspace preserved by the action MCG(�) � CH2

b(�).

Remark 1.3 By translating [13, Theorem B] in the bounded cohomology framework, one
obtains that H2

b (�) has an infinite-dimensional subspace consisting of points fixed by the
action of MCG(�). In particular, the map �m is highly nonsurjective, in the sense that there
is an infinite-dimensional subspace of H2

b (�) not contained in the image of �m .

123



106 Page 4 of 21 Geometriae Dedicata (2024) 218 :106

It is not clear to us how the image �m(�2(�)) depends on the chosen hyperbolic metric
m. In particular, even if the space of de Rham classes (varying the hyperbolic metric) is
MCG(�)-invariant, we do not know if, keeping fixed the hyperbolic metric m, the subspace
�m(�2(�)) is invariant under the action of MCG(�).

Question 5 How does the subspace of H2
b (�) given by �m(�2(�)) depend on the chosen

hyperbolic metric m on �?

Question 6 Let m be a hyperbolic metric on �. Is the subspace �m(�2(�)) of H2
b (�)

invariant under the action ofMCG(�)?

Plan of the paper

In Sect. 2, we recall the definition of bounded cohomology of groups and spaces and define
de Rham classes following [4]. Then we introduce the space CH2

b(�) and show that it
contains every de Rham class. In Sect. 3 we describe how the action of the mapping class
group on H2

b (�) descends to an action on CH2
b(�), focusing in particular on the action of

Dehn twists. We devote Sect. 4 to the proof of Theorem 4. Finally, in Sect. 5 we explain the
relationship between deRhamquasimorphisms and deRhamclasses andwe proveTheorem1
and Corollary 2.

2 Bounded cohomology and differential forms

2.1 Bounded cohomology of groups

Let � be a discrete group. The real bounded cohomology of �, denoted by H•
b (�), is defined

as the cohomology of the following complex of vector spaces:

0 → C0
b (�)� → C1

b (�)� → C2
b (�)� → · · · ,

where Cn
b (�)� denotes the space of set-theoretic bounded �-invariant maps from �n+1 to

R, and the differential maps are defined by (δ f )(γ0, . . . , γn) = ∑n
i=0(−1)i f (. . . , γ̂i , . . . ).

Here, the action of� on functions is defined by (γ · f )(γ0, . . . , γn) = f (γ −1γ0, . . . , γ
−1γn).

The group of automorphisms of � naturally acts of Cn
b (�): for every ϕ ∈ Aut(�) and

every f ∈ Cn
b (�) we set

(ϕ · f )(g0, . . . , gn) = f (ϕ−1(g0), . . . , ϕ
−1(gn)).

Since Aut(�) acts on C•
b(�) by �-equivariant chain maps, we get a well-defined action

Aut(�) � H•
b (�). Moreover, being trivial on inner automorphisms [10, Section II.6], this

action factors through Out(�).

2.2 Bounded cohomology of spaces

Let X be a topological space. The real bounded cohomology H•
b (X) of X is the cohomology

of the complex

0 → C0
b (X) → C1

b (X) → C2
b (X) → · · · ,
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where Cn
b (X) denotes the space of bounded singular cochains of X , the differential maps are

the restrictions of the boundary maps of the usual singular cochain complex C•(X) and a
cochain f ∈ Cn(X) is called bounded if

‖ f ‖∞ = sup
{| f (σ )|, σ is a singular n-simplex

}
< ∞.

2.3 Bounded cohomology and differential forms

From now on, � will be a closed oriented surface of genus at least two. We fix a base point
p ∈ � and let � = π1(�, p) be the fundamental group. We also fix a base point p̃ in the
universal cover of �, projecting to p ∈ � via the universal covering map, so that � can be
identified to the group of deck transformations.

Letm be a hyperbolicmetric on�; the universal cover, endowedwith the pull-backmetric,
can be isometrically identified with the hyperbolic plane H

2 and, accordingly, � can be seen
as a subgroup of Isom(H2). The hyperbolic metric allows us to perform a straightening
procedure of singular simplices: if s̃ is a singular simplex of H

2, its straightening str(s̃) is a
geodesic singular simplex in H

2 having the same vertices as s̃ (for the details see, e.g., [26,
Section 6.1] and [15, Section 8.4]).

Let�2(�) be the space of differential 2-forms on�. Every ω ∈ �2(�) defines a singular
2-cochain cω ∈ C2(�) in the following way: for every singular 2-simplex s, cω(s) is the
integral of ω̃ on the straightening of any lift of s, where ω̃ denotes the pull-back of ω to the
universal cover.

Since the area of geodesic triangles inH
2 is bounded from above by π , cω actually defines

a bounded singular 2-cochain cω ∈ C2
b (�). It was proven by Barge and Ghys in [4] that cω

is actually a cocycle and that the map

�m : �2(�) →H2
b (�)

ω 	→[cω]
is injective. We are keeping the metric m as a subscript, since it plays an important role in
the definition of the map.

Definition 2.1 WecalldeRhamclasses the cohomology classes in H2
b (�)of the form�m(ω),

for some hyperbolic metric m and ω ∈ �2(�).

Consider the map θ : C2
b (�) → C2

b (�)� defined by the formula

(θ( f ))(γ0, γ1, γ2) = f̃ (str(γ0 · p̃, γ1 · p̃, γ2 · p̃)),
where f̃ ∈ C2

b (H
2)� ∼= C2

b (�) denotes the �-invariant lift of f ∈ C2
b (�) to H

2,
and str(γ0 · p̃, γ1 · p̃, γ2 · p̃) denotes the geodesic singular triangle of H

2 with vertices
γ0 · p̃, γ1 · p̃, γ2 · p̃ ∈ H

2. It is well known that θ induces an isomorphism in bounded coho-
mology and that this isomorphism is independent of the chosen metric (see [15, Corollary
4.15]); for this reason, this time we are omitting m in the notation (we denote by θ also the
isomorphism in cohomology). The classes in H2

b (�) corresponding to the de Rham classes
via the isomorphism θ will be also called de Rham classes.

The linear subspace θ(�m(�2(�))) ⊆ H2
b (�) can also be described, as done byBarge and

Ghys, by integrating 2-forms on ideal triangles in H
2. Recall that, as � acts by isometries on

H
2, it also acts on the boundary at infinity ∂∞H

2 ∼= S1 by homeomorphisms. Fix ξ ∈ ∂∞H
2

and, for ω ∈ �2(�), let ω̃ ∈ �2(H2) be the pull-back of ω to H
2. Define cω,ξ ∈ C2

b (�)� by
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setting

cω,ξ (γ0, γ1, γ2) =
∫
str(γ0·ξ,γ1·ξ,γ2·ξ)

ω̃ (1)

for every γ0, γ1, γ2 ∈ �, where str(ξ0, ξ1, ξ2) ⊂ H
2 denotes the oriented ideal triangle with

vertices ξ0, ξ1, ξ2 ∈ ∂∞H
2. Here, by oriented we mean that the ideal simplex str(ξ0, ξ1, ξ2)

is furnished with the same (resp. opposite) orientation of H
2 whenever the triple (ξ0, ξ1, ξ2)

is ordered counter-clockwise (resp. clockwise) on S1. If γi · ξ = γ j · ξ for some i �= j , then
the ideal simplex is degenerate, thus cω,ξ (γ0, γ1, γ2) = 0.

In the following lemma, the cochains θ(cω) and cω,ξ in C2
b (�)� are defined using the

same hyperbolic metric m.

Lemma 2.2 ( [4, Lemma 3.10]) For every ω ∈ �2(�) and ξ ∈ ∂∞H
2, the cochain θ(cω) is

cohomologous to cω,ξ , therefore they define the same class in H2
b (�).

2.4 Bounded cohomology 2-classes as measurable functions

Let nowm0 be a hyperbolic metric on�, and choose an isometry between the universal cover
of � and H

2, so that � acts on ∂∞H
2 ∼= S1 by homeomorphisms. We are using a different

notation for m0, since this metric will serve a different purpose compared to the metric m
of the previous subsection. If we equip S1 with the Lebesgue probability measure (on the
σ -algebra of Borel subsets) the action � � S1 is doubly ergodic [6, Example 4]. Hence, we
have an identification [6, Theorem 2]

H2
b (�) ∼= ZL∞

alt

(
S1 × S1 × S1

)�
, (2)

where ZL∞
alt

(
S1 × S1 × S1

)
is the space of �-invariant alternating measurable bounded

cocycles (up to equality almost everywhere) from S1 × S1 × S1 to R. Here, by alternating
we mean that if we permute the entries of the cocycle, then the sign of the output changes
according to the sign of the permutation. Again, the superscript � denotes taking the space
of �-invariant cochains with respect to the diagonal action on S1 × S1 × S1.

Remark 2.3 The elements of ZL∞
alt

(
S1 × S1 × S1

)
are not functions, but classes of func-

tions. This being said, we will occasionally also write f ∈ ZL∞
alt

(
S1 × S1 × S1

)�
with f

a function, meaning that it represents a class that belongs to ZL∞
alt

(
S1 × S1 × S1

)�
. Notice

that such an f is not necessarily �-invariant as a function, even if its class is, and the cocycle
condition δ f = 0, in general, only holds almost everywhere.

Definition 2.4 Let � ⊂ S1 × S1 × S1 be the multidiagonal, consisting of triples in which
at least two points coincide. We denote by CH2

b(�) the linear subspace of H2
b (�) ∼=

ZL∞
alt

(
S1 × S1 × S1

)�
whose elements can be represented by cocycleswhich are continuous

on (S1 × S1 × S1) \ �.

Since � has measure 0, and since two continuous functions on (S1)3 \ � are equal if and
only if they coincide almost everywhere, the space CH2

b(�) can be identified with

{ f : (S1)3 \ � → R alternating �-invariant continuous bounded cocycle}.
An example of an element inside CH2

b(�) is the orientation cocycle

Or : (S1)3 \ � → {−1,+1},
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which assigns+1 to every positively oriented triple (i.e., ordered counter-clockwise) and−1
to every negatively oriented triple. Being a multiple of the orientation cocycle, also the Euler
class of � lies in CH2

b(�).
Since the action of � on H

2 (and therefore on ∂∞H
2 ∼= S1) depends on the chosen

hyperbolic metric m0 and on the chosen isometry between H
2 and the universal cover of �,

the space CH2
b(�) could also a priori depend on this data. In the following lemma, we show

that this is not the case.

Lemma 2.5 The space CH2
b(�), understood as a linear subspace of H2

b (�), is independent
of the choice of the metric m0 and the isometry between H

2 and the universal cover of �.

Proof Consider two hyperbolic metricsm0 andm0 on�, and two isometries from the univer-
sal cover of � (endowed with the lifts of m0 and of m0) to H

2. By the fundamental property
of universal coverings, we have a �-equivariant isometry h : H

2 → H
2, where the actions of

� on the domain and the codomain depend on the two identifications corresponding to m0

andm0. We denote by ∂h : S1 → S1 the �-equivariant homeomorphism induced by h on the
boundary at infinity. We have two resolutions

0 → R → L∞
alt

(
S1

) → L∞
alt

(
S1 × S1

) → L∞
alt

(
S1 × S1 × S1

) → . . .

of R by normed �-modules — what changes between the two is the action of �. How-
ever, they are both strong resolutions by relatively injective �-modules; therefore, any
�-equivariant chain map from them to the standard resolution C•

b(�), extending the identity
on R, induces a canonical isomorphism in cohomology, independent of the chain map [15,
Corollary 4.15]. For example, we consider the chain maps ψ•

m0
: L∞

alt

(
(S1)•+1

) → C•
b (�)

and ψ•
m0

: L∞
alt

(
(S1)•+1

) → C•
b(�) defined by the following formula:

ψn( f )(γ0, . . . , γn) =
∫

(S1)n+1
f (γ0 · x0, . . . , γn · xn) dμ(x0, . . . , xn), (3)

whereμ denotes the Lebesgue probabilitymeasure on (S1)n+1. Again, what changes between
them is the action of � on S1. Since they are �-equivariant chain maps, they both induce the

isomorphism in (2). Let Fm0 ∈ ZL∞
alt

(
(S1)3

)�
be a �-invariant cocycle admitting a continu-

ous representative fm0 : (S1)3\� → R. We want to show thatψ2
m0

(Fm0) is cohomologous in
C•
b (�)� to some cocycle of the formψ2

m0
(Fm0), where Fm0 is a�-invariant cocycle admitting

a continuous representative fm0 : (S1)3\� → R. To this end, we can simply define fm0 as
the push-forward of fm0 via ∂h:

fm0(ξ0, ξ1, ξ2) = fm0(∂h
−1(ξ0), ∂h

−1(ξ1), ∂h
−1(ξ2)).

Since ∂h−1 is continuous and�-equivariant, it follows that fm0 is�-invariant and continuous
on (S1)3 \ �. Moreover, as δ fm0 ≡ 0 (since fm0 is a continuous cocycle) and the map
(ξ0, ξ1, ξ2) 	→ (∂h−1(ξ0), ∂h−1(ξ1), ∂h−1(ξ2)) preserves the multidiagonal �, it follows
that δ fm0 ≡ 0. It remains to show that ψ2

m0
(Fm0) and ψ2

m0
(Fm0) are cohomologous in

C•
b (�)� . We have that

(ψ2
m0

(Fm0) − ψ2
m0

(Fm0))(γ0, γ1, γ2)

=
∫

(S1)3
fm0(γ0x0, . . . , γ2x2) dμ −

∫
(S1)3

fm0(γ0x0, . . . , γ2x2) dμ

=
∫

(S1)3

(
fm0(γ0x0, . . . , γ2x2) − fm0

(
∂h−1(γ0x0), . . . , ∂h

−1(γ2x2)
))

dμ.
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Therefore, if we set

β(γ0, γ1) =
∫

(S1)3

(
fm0

(
γ0x0, γ1x1, ∂h

−1(γ1x1)
)

− fm0

(
γ0x0, ∂h

−1(γ0x0), ∂h
−1(γ1x1)

))
dμ,

it follows from the fact that fm0 is a cocycle that β ∈ C1
b (�) is a �-equivariant bounded

cochain such that ψ2
m0

(Fm0) − ψ2
m0

(Fm0) = δβ. ��

Lemma 2.6 For every hyperbolic metric m on the surface �, the subspace �m(�2(�)) ⊆
H2
b (�) ∼= H2

b (�) is contained in CH2
b(�).

Proof By Lemma 2.5, we can assume that the metric m used to inject �2(�) into H2
b (�)

coincides with the one that gives the inclusion of CH2
b(�) into H2

b (�). We know that the
isomorphism in (2) is induced by any �-equivariant chain map between the resolutions
C•
b (�) and L∞

alt

(
(S1)•

)
[15, Corollary 4.15], in particular it is induced by the chain map

ψ : L∞
alt

(
(S1)•+1

) → C•
b(�) defined in (3). For everyω ∈ �2(�)wedefine fω ∈ ZL∞

alt(S
1×

S1 × S1)� as

fω(ξ0, ξ1, ξ2) =
∫
str(ξ0,ξ1,ξ2)

ω̃.

Since ω̃ ∈ �2(H2) is continuous and bounded, it is straightforward to check that the cocycle
fω is continuous on (S1)3 \ �, that is, fω ∈ CH2

b(�).
The cocycle cω,ξ , defined in (1), is cohomologous to ψ( fω): this can be seen by using the

same prism construction as in [4, proof of Lemma 3.9]. Thus, putting together these facts
with Lemma 2.2, one gets that ψ( fω) ∈ CH2

b(�) is cohomologous to the de Rham class
θ(cω). ��

3 Action of themapping class group on the second bounded
cohomology

The (positive) mapping class group MCG(�) of � is the group of orientation-preserving
self-diffeomorphisms of � considered up to isotopy. Since homotopic continuous functions
induce equal maps in bounded cohomology, we have a natural action ofMCG(�) on H2

b (�).

Remark 3.1 The linear subspace of H2
b (�) generated by de Rham classes is invariant under

the action of the mapping class group. Indeed, consider ϕ ∈ MCG(�) and let h denote a
self-diffeomorphism of � that represents ϕ. Recall that h acts on �2(�) and on Hyp(�) by
pull-backs, where Hyp(�) denotes the space of hyperbolic metrics on �. Now, if we have a
de Rham class �m(ω) ∈ H2

b (�), where m ∈ Hyp(�) and ω ∈ �2(�), it’s straightforward
to verify that

ϕ · �m(ω) = �h·m(h−1 · ω).

Therefore ϕ · �m(ω) is still a de Rham class. Notice that some degree of flexibility with the
metrics is required in order to prove our claim (see Question 5 and Question 6).

Recall from Sects. 2.3 and 2.4 that we have isomorphisms H2
b (�) ∼= H2

b (�) ∼=
ZL∞

alt((S
1)3)� , so MCG(�) acts on all these vector spaces.
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Remark 3.2 As already recalled in the introduction, the Dehn-Nielsen-Baer theorem gives
a canonical isomorphism between MCG(�) and a subgroup of index 2 of Out(�) =
Aut(�)/ Inn(�) [14]. The natural action Out(�) � H2

b (�) restricts to MCG(�) < Out(�);
an element of MCG(�) represented by a diffeomorphism h (fixing the basepoint of �) acts
on H2

b (�) as the induced automomorphism h∗ : � → �.

We now describe more directly the action on ZL∞
alt((S

1)3)� . We fix, once and for all, a
hyperbolic metric (denoted by m0 in Sect. 2.4) on � and an isometry between its universal
cover andH

2. Any diffeomorphism h : � → � representing an elementϕ = [h] ∈ MCG(�)

can be lifted to amap h̃ : H
2 → H

2. Notice that the lift of the representative h is not canonical,
but it is uniquely determined up to post-composition with elements of �. Since h̃ is a quasi-
isometry [24, Section 2], it extends to the boundary at infinity, and we call ∂ h̃ the induced
homeomorphism on S1 = ∂∞H

2. Up to composing with an isometry in �, ∂ h̃ does not
depend on the chosen representative h of the mapping class [24].

Remark 3.3 The space S1 × S1 × S1 \ � can be identified with the disjoint union of two
copies of the unit tangent bundle T 1

H
2, and its quotient by � with the disjoint union of two

copies of T 1�. The corresponding action of MCG(�) on this space has also been studied in
[25].

Wewant to give a convenient description of the action ofMCG(�) on ZL∞
alt((S

1)3)� . The
candidate formula is the following: given ϕ ∈ MCG(�), f ∈ L∞

alt((S
1)3)� and (ξ0, ξ1, ξ2) ∈

(S1)3, we set

(ϕ · f )(ξ0, ξ1, ξ2) = f
(
∂ h̃−1(ξ0), ∂ h̃

−1(ξ1), ∂ h̃
−1(ξ2)

)
,

where h is any diffeomorphism representing ϕ and h̃ is any of its lifts on H
2. However,

this formula is not well defined, since ∂ h̃, albeit continuous, might not preserve the Lebesgue
measure-class, i.e., images of subsets of zeroLebesguemeasuremight have positiveLebesgue
measure.1 With the following lemma we show however that the formula in fact holds for
cocycles in CH2

b (�). Recall that there is a natural �-equivariant chain map

ψ : L∞
alt((S

1)3) → C2
b (�),

defined in (3), which induces the isomorphism in (2).

Lemma 3.4 Let f : (S1)3 \� → R be a map in CH2
b (�) and consider ϕ ∈ MCG(�), h any

diffeomorphism representing ϕ and h̃ any of its lifts on H
2. Then the function g : (S1)3\� →

R defined by the formula

g(ξ0, ξ1, ξ2) = f (∂ h̃−1(ξ0), ∂ h̃
−1(ξ1), ∂ h̃

−1(ξ2))

is an element in CH2
b (�) representing the class of ϕ · ψ( f ) in H2

b (�). In particular, the
subspace CH2

b(�) ⊆ H2
b (�) is preserved by the actionMCG(�) � H2

b (�).

Proof Because of continuity, we have that f is�-invariant and satisfies the cocycle condition
δ f ≡ 0 (everywhere, not just almost everywhere). We denote by h∗ the automorphism of
� induced by h. The following formula can be deduced from standard covering theory: for
every γ ∈ � and every ξ ∈ S1

h∗(γ ) · ∂ h̃(ξ) = ∂ h̃(γ · ξ).

1 We thank the referee for having pointed out this issue, which we had overlooked in the first version of the
paper.
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Thus, the map g : (S1)3 \ � → R is a bounded �-invariant continuous map rep-
resenting an element in L∞

alt((S
1)3)� . Moreover, as the map sending (ξ0, ξ1, ξ2) to

(∂ h̃−1(ξ0), ∂ h̃−1(ξ1), ∂ h̃−1(ξ2)) preserves�, we have that δg ≡ 0. In particular, g represents
an element in CH2

b (�).
It remains to show that ϕ · ψ( f ) and ψ(g) are cohomologous in C•

b (�)� . We have that

(ϕ · ψ( f ) − ψ(g))(γ0, γ1, γ2)

= ψ( f )((h−1)∗(γ0), (h−1)∗(γ1), (h−1)∗(γ2)) − ψ(g)(γ0, γ1, γ2)

=
∫

(S1)3

(
f
(
(h−1)∗(γ0), . . .

) − g(γ0 · x0, . . . )
)
dμ

=
∫

(S1)3

(
f
(
∂ h̃−1(γ0 · ∂ h̃(x0)), . . .

) − g(γ0 · x0, . . . )
)
dμ.

If we set

β(γ0, γ1) =
∫

(S1)3

(
g
(
γ0 · ∂ h̃(x0), γ1 · ∂ h̃(x1), γ1 · x1

)

− g
(
γ0 · ∂ h̃(x0), γ0 · x0, γ1 · x1

))
dμ,

then it follows from δg = 0 that β ∈ C1
b(�) is a �-equivariant bounded cochain such that

ϕ · ψ( f ) − ψ(g) = δβ. ��
Remark 3.5 The previous lemma can also be derived as a consequence of [5, Proposition 1,
Corollary 2], where a chain complex of Borel regular functions on the boundary (not function
classes but actual functions) is considered. In the same way, we could have streamlined part
of the proof of Lemma 2.5. We thank the referee for this observation.

Since we are considering orientation-preserving maps, it clearly follows from Lemma 3.4
that the Euler class is a fixed point of the action MCG(�) � CH2

b(�). The main result of
this work states that the multiples of the Euler class are, in fact, the only fixed classes of this
action; even more, the subspace generated by the Euler class is the only finite-dimensional
nontrivial MCG(�)-invariant subspace.

Theorem 4 The subspace generated by the Euler class is the only finite-dimensional
nontrivial subspace preserved by the action MCG(�) � CH2

b(�).

We devote the next sections to the proof of this result.

3.1 Action of a Dehn twist

Let σ be a simple closed geodesic in �. With a sligth abuse of notation (but for a better
readibility), we denote by τσ ∈ MCG(�) both a Dehn twist in � along the geodesic σ and
the corresponding mapping class in MCG(�) (specifying what we mean when this notation
might be ambigous).

To understand the behaviour at infinity of a lift of a τσ (as a homeomorphism of S1 =
∂∞H

2), it is enough to understand its coarse action on H
2. In order to do that, we describe

some (discontinuous) maps from the hyperbolic plane to itself, which are called earthquakes
along σ (see, e.g., [24, Section 2], where some wonderful pictures are displayed). Every
earthquake along σ will be close to a lift of τσ ; hence, it will induce on ∂∞H

2 the same
homeomorphism induced by that lift.
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Fig. 1 The white region
represents the central plate; the
grey regions are the affected
regions

Consider the preimage inH
2 of the geodesic σ ⊂ �. It consists of countablymany disjoint

lines, dividingH
2 into many pieces that are called plates. Choose one of these plates, and call

it the central plate; we denote it byP . The boundary ofP consists of infinitelymany geodesic
lines, corresponding to the components of the complement of P . We call these components
affected regions. Every affected region is a halfplane containing infinitely many plates (see
Fig. 1).

An earthquake τ̃σ along σ can be described as follows:

• It is the identity on the central plate P;
• If Q is a plate adjacent to P along a geodesic σ̃ (a lift of σ ), then the earthquake acts on

Q as the orientation-preserving hyperbolic isometry with axis σ̃ and translation length
equal to the length of σ , in the direction that moves σ̃ counter-clockwise around P;

• It is extended �-equivariantly on the other plates.

We remark once again that τ̃σ stays at bounded distance from a lift of the map τσ . However,
it cannot be a lift of τσ itself, as it is discontinuous.

The boundaries at infinity ofP and of an affected regionR are denoted by ∂∞P and ∂∞R
respectively. Both these sets are closed subsets of S1. In particular, ∂∞R is a closed interval,
while ∂∞P is a Cantor set. Note that the union of the boundaries at infinity of the affected
regions is dense in S1. Moreover, wheneverR1 andR2 are two distinct affected regions, then
∂∞R1 ∩ ∂∞R2 is empty.

The dynamics of ∂τ̃σ : S1 → S1 can be described in the following way. The set of fixed
points of ∂τ̃σ is given by ∂∞P . For every affected region R, the closed interval ∂∞R is
preserved by ∂τ̃σ , but not pointwise. The endpoints of ∂∞R, that are also contained in ∂∞P ,
are the only fixed points in the interval: one of them is attractive, while the other is repulsive.
In particular, if ξ is any point contained in the interior of ∂∞R, then (∂τ̃σ )k(ξ) converges to
the attractive fixed point as k goes to +∞, while it converges to the repulsive fixed point as
k goes to −∞.

Remark 3.6 Different choices of P yield different earthquakes along σ , and any two of these
earthquakes differ by the composition with an isometry in �. We point out (even though this
does not play any role in our arguments) that not every composition of an earthquake with
an isometry in � is an earthquake along σ , because for it to be an earthquake it must fix
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pointwise one of the plates, which is not guaranteed in general. Accordingly, not every lift
of a Dehn twist is close to an earthquake.

Definition 3.7 We say that f ∈ CH2
b(�) has the 3-region property if, for every simple closed

geodesic σ of �, for every earthquake τ̃σ along σ , and for every triple R1, R2, R3 of
distinct affected regions (with respect to the central plate of τ̃σ ), we have that f is constant
on ∂∞R1 × ∂∞R2 × ∂∞R3 ⊆ (S1)3.

Lemma 3.8 If f ∈ CH2
b(�) belongs to a finite-dimensional subspace V of CH2

b(�) that is
invariant under the action ofMCG(�), then f has the 3-region property.

Proof We consider two norms on V :

• The sup-norm, denoted by ‖·‖∞;
• The �1-norm with respect to a fixed basis B = { f1, . . . , fk} of V , defined as

‖β1 f1 + . . . + βk fk‖1,B =
k∑

i=1

|βi |.

Fix a simple closed geodesic σ of �, a Dehn twist τσ along σ , an earthquake τ̃σ along σ ,
and a triple R1, R2, R3 of distinct affected regions.

Let f ∈ V . Since V is τσ -invariant, for every n ∈ Z there are real numbers α
(n)
1 , . . . , α

(n)
k

such that

τ nσ · f = α
(n)
1 f1 + . . . + α

(n)
k fk .

By the description of the action given in Lemma 3.4, we also have that ‖ f ‖∞ = ‖τ nσ · f ‖∞.
Since all norms on a finite-dimensional vector space are equivalent, there exists K > 0 such
that ‖τ nσ · f ‖1,B ≤ K ·‖τ nσ · f ‖∞ = K ·‖ f ‖∞. Therefore, the constant M f = K ·‖ f ‖∞ > 0

(depending only on f ) satisfies
∣∣∣α(n)

i

∣∣∣ ≤ M f , for every i ∈ {1, . . . , k} and n ∈ Z.

For j ∈ {1, 2, 3}, let a+
j ∈ ∂∞R j be the attractive point of ∂∞R j and let ξ j be any point

in the interior of ∂∞R j . Since the affected regionsR j are distinct, then also the points a
+
j are

pairwise distinct. Therefore the triple (a+
1 , a+

2 , a+
3 ) ∈ (S1)3 does not lie in the multidiagonal

�. By Lemma 3.4, for every n ∈ Z we have that

f (ξ1, ξ2, ξ3) = (τ−n
σ · f )(∂τ̃ nσ (ξ1), ∂τ̃ nσ (ξ2), ∂τ̃ nσ (ξ3)).

Since fi ∈ B ⊂ CH2
b(�) is continuous on (S1)3 \ �, for every ε > 0 there exists n0 ∈ Z

such that, for each i ∈ {1, . . . , k} and for each n ∈ Z≥n0 we have that∣∣ fi (∂τ̃ nσ (ξ1), ∂τ̃ nσ (ξ2), ∂τ̃ nσ (ξ3)
) − fi

(
a+
1 , a+

2 , a+
3

)∣∣ ≤ ε

k · M f
.

Using the fact that a+
1 , a+

2 and a+
3 are fixed by ∂τ̃ nσ , it follows that∣∣ f (ξ1, ξ2, ξ3) − f
(
a+
1 , a+

2 , a+
3

)∣∣
= ∣∣(τ−n

σ · f )
(
∂τ̃ nσ (ξ1), ∂τ̃ nσ (ξ2), ∂τ̃ nσ (ξ3)

) − (τ−n
σ · f )

(
a+
1 , a+

2 , a+
3

)∣∣

=
∣∣∣∣∣

k∑
i=1

α
(−n)
i

(
fi

(
∂τ̃ nσ (ξ1), ∂τ̃ nσ (ξ2), ∂τ̃ nσ (ξ3)

) − fi
(
a+
1 , a+

2 , a+
3

))∣∣∣∣∣

≤M f ·
k∑

i=1

∣∣ fi (∂τ̃ nσ (ξ1), ∂τ̃ nσ (ξ2), ∂τ̃ nσ (ξ3)
) − fi (a

+
1 , a+

2 , a+
3 )

∣∣
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≤M f · ε

M f
= ε.

Since ε was arbitrary, we obtain that f (ξ1, ξ2, ξ3) = f
(
a+
1 , a+

2 , a+
3

)
, and therefore f is

constant on the interior of ∂∞R1 × ∂∞R2 × ∂∞R3 ⊆ (S1)3. By continuity, f is constant on
∂∞R1 × ∂∞R2 × ∂∞R3. ��

4 Proof of Theorem 4

In this section we prove that if f ∈ CH2
b(�) has the 3-region property, then it is locally

constant (Lemma 4.5), and then deduce Theorem 4. The strategy is to “separate” triples of
distinct points in ∂∞H

2, trying to put them in distinct affected regions with respect to some
earthquake, so that the 3-region property can be applied. But we cannot accomplish this
for every triple; once a triple of points is given, the best we can do in general is to find an
earthquake so that we fall in one of the following three situations:

• The three points belong to three distinct affected regions;
• Two of the points belong to two distinct affected regions, and the remaining one is in the

boundary at infinity of the central plate;
• One of the points belongs to an affected region, while the other two are in the boundary

at infinity of the central plate.

In the first case, the 3-region property readily implies that f is constant in a neighbourhood of
the triple. In the other two cases, we have to resort to more involved arguments (Lemmas 4.4
and 4.5).

We start by proving the following general result, stating that for every finite subset G of
closed geodesics in a compact Riemannian manifold M , every geodesic ray γ : [0,∞) → M
is either definitely close to an element of G or far apart from every element of G for arbitrarily
large times t ∈ [0,∞).

Lemma 4.1 Let M be a closed connected Riemannian manifold, and let G = {σ1, . . . , σk} be
a finite set of closed geodesics in M. Then there is a constant ε > 0 (which can be taken as
small as desired) such that, for every geodesic ray γ : [0,+∞) → M, one of the following
holds:

(1) There are arbitrarily large times t ∈ [0,+∞) such that the point γ (t) has distance at
least ε to each of the geodesics in G;

(2) There are a closed geodesic σi ∈ G and a time t0 such that, for every t ≥ t0, the point
γ (t) has distance strictly smaller than ε from σi .

Proof To begin with, notice that if the geodesics in G are disjoint then the conclusion follows
by taking ε smaller than half the smallest distance between two geodesics in G. This is
indeed positive as the geodesics are closed. We now consider the case in which there are
intersections.

Let I ⊂ M be the set of intersections between (at least two) geodesics of G; it is a finite set
of points. For every p ∈ I fix a small closed convex neighbourhood Np , in such a way that
Np ∩ Nq = ∅ whenever p �= q . Define Tp to be the maximal length of a geodesic segment
contained in Np , and for every pair (p, q) ∈ I × I, define Tpq as follows:

• If p �= q , then Tpq is the distance between Np and Nq ;
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• If p = q , then Tpp is the infimumof the lengths of geodesic (locally distance-minimizing)
segments with endpoints in Np and not completely contained in Np . Let Tpp = ∞ if
there is no such geodesic.

Let T1 = max{Tp : p ∈ I} and T2 = min{Tpq : (p, q) ∈ I × I}. If the neighbourhoods
have been chosen small enough (as we assume), then T1 < T2. We denote by V the (disjoint)
union of the neighbourhoods Np . Let ε0 > 0 be such that, for every σi ∈ G and for every
point lying on σi , but not belonging to V , its distance to geodesics in G \ {σi } is greater than
2ε0.

We prove the statement by contradiction, assuming that there is a sequence {εn}n∈N≥1 of
positive numbers converging to 0 and a sequence of unit-speed geodesic rays γn such that:

(1) The ray γn is definitively εn-close to the union σ1 ∪ · · · ∪ σk ;
(2) For every σi ∈ G and every n ∈ N≥1, the ray γn is outside the εn-neighbourhood of σi

for arbitrarily large times.

We can assume that εn < ε0 for every n ∈ N≥1. Putting together these two conditions with
the definition of ε0, one gets that the geodesic ray γn must enter V infinitely many times:
indeed γn is (definitely) always close to at least one geodesic of G (1), but not always the
same geodesic (2); this means that there are infinitely many times in which γn is close to at
least two geodesics of G (this certainly happens when γn switches the geodesic to which it is
close). More precisely, the set

{t ∈ [0,+∞) : γn(t) ∈ V }
is an infinite disjoint union of closed intervals of length at most T1, and any two of these
intervals are at distance at least T2 apart.

Let T be a real number such that T1 < T < T2. The discussion above implies the existence
of an ∈ [0,+∞) such that the two points γn(an), γn(an + T ) do not belong to V and are
εn-close to two distinct geodesics of G. Up to precomposing the rays with translations of
[0,+∞), we can assume that an = 0 for every n ∈ N≥1 (i.e., we redefine the domain of γn
in such a way that this ray starts at γn(an)).

By passing to a subsequence if necessary, we can assume (by the Ascoli-Arzelà Theorem)
that the sequence of rays γn converges pointwise to a geodesic ray γ . Since εn goes to 0, this
limit ray must be contained in σ1 ∪ · · ·∪σk but, being a geodesic itself, it has to be contained
in some σi . On the other hand, γ (0) = limn→∞ γn(0) and γ (T ) = limn→∞ γn(T ) cannot
belong to the same σi , otherwise γn(0) and γn(T ) would be both ε0-close to σi , for n big
enough. This provides a contradiction. ��
Lemma 4.2 Let ξ1, ξ2 and ξ3 be three pairwise distinct points of ∂∞H

2. Then, there exists
a simple closed geodesic in � such that one of its lifts in H

2 separates ξ1 and ξ2 from ξ3,
meaning that the endpoints of this lift divide ∂∞H

2 into two open arcs, one containing ξ3
and the other containing ξ1 and ξ2. Moreover, σ can be chosen in such a way that none of
its lifts in H

2 is asymptotic to ξ1, ξ2, or ξ3.

Proof Let G = {σ1, . . . , σk} be a finite set of simple closed geodesics in� cutting the surface
into polygons (e.g., hexagons). We denote by G̃ the (infinite) set of geodesic lines in H

2 that
project onto geodesics in G. Notice that a point in ∂∞H

2 can serve as the endpoint for at most
one geodesic projecting to a simple closed geodesic on the surface �. Consequently, there
can be a maximum of three simple closed geodesics admitting a lift asymptotic to ξ1, ξ2, or
ξ3. In particular, we can assume, up to changing the choice of G, that none of the lines in G̃
is asymptotic to ξ1, ξ2 and ξ3.
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Fig. 2 Cartoon of the proof of
Lemma 4.2. The grey geodesics
represents some geodesics in G̃;
the area in grey represents one lift
of one polygon in which the
surface is cut; the two blue angles
represents α1(t) and α2(t); the
red angle is the visual angle β

that γ (t) sees when looking to
one of the grey geodesic in G̃

ξ3

ξ1
ξ2

π − δ <

> π − δ

< π − δ

γ̃

Let ε > 0 be such that the conclusion of Lemma 4.1 holds and suppose it is small enough
so that pairs of distinct geodesics in G̃ projecting onto the same geodesic in G are at distance
at least 2ε apart.

The following construction is described in Fig. 2. Let γ̃ : [0,+∞) → H
2 be a geodesic

ray asymptotic to ξ3. For i ∈ {1, 2}, we denote by αi (t) ∈ [0, π] the angle between the rays
that, starting at γ̃ (t), go towards ξi and ξ3. We have that α1(t) → π and α2(t) → π as
t → +∞.

There are arbitrarily large times t ∈ [0,+∞) such that γ̃ (t) has distance at least ε from
the union of the lines in G̃: indeed, if this were not the case, then the projection of γ̃ on �

would stay definitively ε-close to G, and by Lemma 4.1 it would stay definitively ε-close to
some specific σi ∈ G. But this would imply that γ̃ stays ε-close to some lift of σi (recall that
two different lifts are at distance at least 2ε apart), and this lift would then converge to ξ3, a
situation that we excluded at the beginning of the proof.

Let t ∈ [0,+∞) be such that the point γ̃ (t) has distance at least ε from the union of the
lines in G̃. We claim that there exists a δ > 0, depending on ε, that satisfies the following
property: for every geodesic σ̃ in G̃, the angle β centered in γ̃ (t) between the extrema
ξ+, ξ− ∈ ∂∞H

2 of σ̃ , is smaller than π − δ. Indeed, the geodesic ideal triangle T with
vertices ξ+, ξ−, γ (t) satisfies

π − β = Area(T ) > Area(T ∩ Bε(γ (t))) = β · Area(Bε(γ (t)))

2π
,

where the first equality holds because two of the angles of T are 0 and the last one is β. This
inequality proves the claim.

If t is big enough, we can assume that α1(t) > π − δ and α2(t) > π − δ. The point γ̃ (t)
lies inside a convex polygon whose sides are segments of lines in G̃. If � ∈ G̃ is one of these
lines, its endpoints divide ∂∞H

2 into two connected components: a “big” one, corresponding
to the half-plane containing γ̃ (t), and a “small” one, corresponding to the other half-plane
into which H

2 is cut by �. The small one, seen from γ̃ (t), is less than π − δ wide.
Among the lines forming the polygon, there must be one such that the corresponding

“small” component of ∂∞H
2 contains ξ3. This component cannot contain ξ1 or ξ2, since
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Fig. 3 The geodesic σ̃ is the last
lift of σ intersecting the path s
and separating ξ3 from ξ1 and ξ2

s(1)

s(0)

s(t)

ξ1ξ2

ξ3

α

σ̃

from the point of view of γ̃ (t) they are at distance greater than π − δ from ξ3, and, on the
other hand, the component is less than π − δ wide. Thus, this line is a lift of a geodesic in G
that satisfies all the requirements of the statement. ��
Lemma 4.3 Let ξ1, ξ2, ξ3 ∈ S1 be three distinct points. Then there is an earthquake τ̃σ along
a simple closed geodesic σ ⊂ � such that:

(1) There is an affected region T of τ̃σ such that ξ3 is contained in the interior of ∂∞T and
ξ1, ξ2 /∈ ∂∞T ;

(2) The points ξ1 and ξ2 do not belong to the boundary at infinity of the same affected region
of τ̃σ .

Note that ξ1 and ξ2 might either belong to the boundaries at infinity of two different affected
regions, or (one of them or both) to the boundary at infinity of the central plate.

Proof By Lemma 4.2, there exist a simple closed geodesic σ ⊂ � and an earthquake τ̃ ′
σ

along σ satisfying Condition (1). Furthermore, we can assume that no lift of σ in H
2 is

asymptotic to ξ1, ξ2, or ξ3. We prove that, changing suitably the central plate, there is a
(possibly different) earthquake along σ satisfying also Condition (2).

Let α be the geodesic line with endpoints ξ1 and ξ2. Let s : [0, 1] → H
2 be a geodesic

segment with s(0) ∈ T and s(1) ∈ α. By compactness, the path s intersects a finite number
of lifts of σ . Let t ∈ [0, 1] be the largest time t for which the following happens: the point s(t)
belongs to some lift of σ whose points at infinity separate ξ3 from ξ1 and ξ2, as in Lemma 4.2
(see Fig. 3). Note that this happens at least once (when s exits T ). Call σ̃ the lift of σ that
intersects s in s(t).

Consider the earthquake τ̃σ along σ whose central plate contains s(t + ε) for small values
of ε > 0. Now, τ̃σ satisfies also Condition (2). Indeed, if ξ1 and ξ2 were still contained in
the boundary at infinity of the same affected region R of τ̃σ , then the geodesic bounding R
would be a lift of σ lying between α and σ̃ , thus it would intersect s in s(t ′), with t ′ > t , and
we would get a contradiction. ��
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Fig. 4 The affected regions
T1,T2 and T3 of η are distinct.
Moreover, for i ∈ {1, 2}, the
boundary at infinity of Ti has
nonempty intersection with
∂∞Ri

ξ1
ξ2

ξξ3

R2
R1

T1

T2

T3

Lemma 4.4 Let R1 and R2 be distinct affected regions of an earthquake τ̃σ along a closed
geodesic σ ⊂ �. Let I be one of the two connected components of S1\(∂∞R1 ∪ ∂∞R2). If
f ∈ CH2

b(�) has the 3-region property, then f is constant on ∂∞R1 × ∂∞R2 × I ⊆ (S1)3.

Proof Let R3 be an affected region of τ̃σ whose boundary at infinity is contained in I , and
for i ∈ {1, 2, 3} fix a point ξoi in the interior of ∂∞Ri . The set

S = {ξ3 ∈ I | f (ξ1, ξ2, ξ3) = f (ξo1 , ξo2 , ξo3 ) ∀(ξ1, ξ2) ∈ ∂∞R1 × ∂∞R2}
is nonempty (by the 3-region property) and closed in I , since the map f is continuous on
∂∞R1×∂∞R2 × I . We want to show that, under our assumptions, S is also open: this would
imply S = I , proving the lemma.

Let ξ3 ∈ S. We want to find a neighbourhood U ⊆ I of ξ3 contained in S.
By applying Lemma 4.3 to the triple (ξo1 , ξo2 , ξ3), we find an earthquake η relative to a

simple closed geodesic in � such that the following conditions hold:

• There is an affected region T3 of η such that ξ3 is contained in the interior of ∂∞T3 and
ξo1 , ξo2 /∈ ∂∞T3;

• ξo1 and ξo2 are not contained in the boundary at infinity of the same affected region of η.

Since the union of the boundaries of affected regions of a given earthquake is dense in ∂∞H
2,

there are two distinct affected regions T1 and T2 of η such that ∂∞Ti ∩ ∂∞Ri is nonempty
for i ∈ {1, 2} (see Fig. 4). Let us set U = ∂∞T3 ∩ I , take an affected region R of τ̃σ whose
boundary at infinity intersects U , and consider ξ ∈ U ∩ ∂∞R.

Since R1,R2 and R are distinct and f has the 3-region property, we get, for every
(ξ1, ξ2) ∈ ∂∞R1 × ∂∞R2,

f (ξ1, ξ2, ξ) ≡ f
∣∣
∂∞R1×∂∞R2×∂∞R

≡ f
∣∣
∂∞(R1∩T1)×∂∞(R2∩T2)×∂∞(R∩T3)

≡ f
∣∣
∂∞T1×∂∞T2×∂∞T3

≡ f (ξ ′
1, ξ

′
2, ξ3) = f (ξo1 , ξo2 , ξo3 ),
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where the symbol ≡ means that the function is constant and equal to the other side. In the
last line, (ξ ′

1, ξ
′
2) is any pair in ∂∞(R1 ∩ T1) × ∂∞(R2 ∩ T2). Using again the fact that the

union of the boundaries at infinity of affected regions of a given earthquake is dense in ∂∞H
2

(and so in the open subset U ), the continuity of f ensures that f (ξ1, ξ2, ξ ′) = f (ξo1 , ξo2 , ξo3 )

holds for every point ξ ′ ∈ U . Therefore, U ⊂ S. ��
Lemma 4.5 Let f ∈ CH2

b(�). If f has the 3-region property, then it is locally constant on
(S1)3 \ �.

Proof Let (ξ1, ξ2, ξ3) ∈ (S1)3 \ � and let τ̃σ be an earthquake along σ provided by
Lemma 4.3. Let us call R3 the affected region of τ̃σ such that ξ3 is contained in the
interior of ∂∞R3 and ξ1, ξ2 /∈ ∂∞R3. We assume the triple (ξ1, ξ2, ξ3) to be ordered
counter-clockwise, the other case being completely analogous. Since boundaries at infin-
ity of affected regions of τ̃σ are dense in S1, there exist two affected regions R1,R2 of τ̃σ

such that ξ1, ∂∞R1, ∂∞R2, ξ2, ∂∞R3 are in counter-clockwise order on S1. Let U1 be the
connected component of S1\(∂∞R1 ∪∂∞R3) containing ξ1, and similarly letU2 be the con-
nected component of S1\(∂∞R2 ∪ ∂∞R3) containing ξ2. IfR′

1 andR′
2 are affected regions

of τ̃σ such that ∂∞R′
i ⊆ Ui , we have that

f
∣∣
∂∞R′

1×∂∞R′
2×∂∞R3

≡ f
∣∣
∂∞R′

1×∂∞R2×∂∞R3

≡ f
∣∣
∂∞R1×∂∞R2×∂∞R3

,

where we used that f has the 3-region property and applied Lemma 4.4 multiple times.
Using again the fact that the boundaries at infinity of affected regions are dense in S1 and
that f is continuous on (S1)3 \ �, we obtain that f is constant onU1 ×U2 ×R3, which is a
neighbourhood of (ξ1, ξ2, ξ3). This proves that the map f is locally constant on (S1)3 \�. ��

We can now conclude the proof of Theorem 4. Assume that there is a finite-dimensional
subspace V of CH2

b(�) that is invariant under the action MCG(�) � CH2
b(�) and let

f ∈ V . By Lemma 3.8, f has the 3-region property. We know that (S1)3 \ � has two con-
nected components: one corresponding to positively oriented triples and one corresponding
to negatively oriented triples. By Lemma 4.5, f is constant on these connected components,
and, since it is alternating, it takes opposite values on them. Therefore f is a multiple of the
orientation cocycle, or equivalently, of the Euler class.

5 Quasimorphisms and exact bounded cohomology

In this section we give some details which may be helpful to the reader to have a better
understanding of the relationship between de Rham quasimorphisms and de Rham classes in
bounded cohomology. Finally, we show how Theorem 1 and Corollary 2 are consequences
of Theorem 4.

Let �k(�) be the space of k-forms on �, k ∈ {1, 2}. We denote by EH2
b (�) the exact

second bounded cohomology of� in degree 2, i.e., the kernel of the comparisonmap comp2� :
H2
b (�) → H2(�). It is well known that EH2

b (�) is isomorphic to the space of homogeneous
quasimorphisms Qh(�) on � modulo homomorphisms [15, Corollary 2.11]:

EH2
b (�) ∼= Qh(�)/Hom(�, R).

Moreover, since � is (a model of) the classifying space of �, there is a natural isomorphism
H2
b (�) ∼= H2

b (�).
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We delve now in our specific framework. Fix a hyperbolic metricm on�. Recall from the
introduction that there is a map �1(�) → Qh(�), associating to each 1-form α ∈ �1(�)

the homogeneous quasimorphism qmα defined, for every γ ∈ �, as

qmα (γ ) =
∫

ρm
γ

α,

where ρm
γ is the closed geodesic in the free homotopy class of γ according to the metric m.

The following diagram is commutative:

�1(�) Qh(�)

EH2
b (�)

�2(�) H2
b (�),

d

�m

where the left map is the exterior derivative, while �m is defined in Sect. 2.3. It follows
that de Rham quasimorphisms in Qh(�) are sent to de Rham classes in H2

b (�). Moreover,
a de Rham quasimorphism is mapped to zero in H2

b (�) if and only if it is trivial (i.e., a
homomorphism).

Recall that the Euler class in H2
b (�) is the image under �m of (a multiple of) the volume

form associated to the metricm. Since the volume form is closed but not exact, it follows that
the Euler class does not lie in ker(comp2�) = EH2

b (�) (we refer the reader to [22, Section
2.2] for more details). On the other hand, every closed 2-form is the sum of an exact form
and a multiple of the volume form. This implies, using the commutativity of the diagram,
that every de Rham class in H2

b (�) is the sum of a multiple of the Euler class and a class
coming from a (de Rham) quasimorphism.

Since MCG(�) acts both on Qh(�) and H2
b (�), and the map Qh(�) → H2

b (�) is
equivariant with respect to this action, we can now easily deduceCorollary 2 fromTheorem 4.
If a finite-dimensional subspace V ⊆ Qh(�) generated by de Rham quasimorphisms is
invariant under the action of Aut(�), then its image V in H2

b (�) is also invariant. It follows
from Theorem 4 that V is either trivial or 1-dimensional, generated by the Euler class. In
conclusion, since the latter case is excluded, we deduce that V consists of homomorphisms.

In order to deduce Theorem 1, we just need to make the following observations. First of
all, the space Hom(�, R) is clearly Aut(�)-invariant. Moreover, by Hurewicz theorem, we
know that Hom(�, R) ∼= R

2g , where g denotes the genus of�. Therefore V can be identified
as a linear Aut(�)-invariant subspace of R

2g (and, hence, also MCG(�)-invariant). Since
MCG(�) acts onR

2g by symplectic matrices and the representationMCG(�) → Sp(2 g, Z)

is surjective [14, Theorem 6.4], Theorem 1 follows from the fact that the obvious action of
Sp(2g, Z) on R

2g is irreducible [3, Theorem 2.8], [8, Proposition 3.2].
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