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Abstract

We make an extensive empirical study of the market impact of large orders (metaorders)
executed in the U.S. equity market between 2007 and 2009. We show that the square root
market impact formula, which is widely used in the industry and supported by previous
published research, provides a good fit only across about two orders of magnitude in order
size. A logarithmic functional form fits the data better, providing a good fit across almost five
orders of magnitude. We introduce the concept of an “impact surface” to model the impact
as a function of both the duration and the participation rate of the metaorder, finding again
a logarithmic dependence. We show that during the execution the price trajectory deviates
from the market impact, a clear indication of non-VWAP executions. Surprisingly, we find
that sometimes the price starts reverting well before the end of the execution. Finally we show
that, although on average the impact relaxes to approximately 2/3 of the peak impact, the
precise asymptotic value of the price depends on the participation rate and on the duration of
the metaorder. We present evidence that this might be due to a herding phenomenon among
metaorders.
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1 Introduction

The market impact1 of trades, i.e. the change in price conditioned on signed trade size, is a key
property characterizing market liquidity and is important for understanding price dynamics [1].
As shown theoretically in the seminal work of Kyle [2], the optimal strategy for an investor with
private information about the future price of an asset is to trade incrementally through time.
This strategy allows earlier executions to be made at better prices and minimizes execution cost.
As done in recent papers, we will call the full orders metaorders and the individual trades used
to complete the execution child orders. Here we study the market impact of metaorders and its
dependence on other properties, such as participation rate and execution time.

Kyle’s original model [2] predicts that market impact should be a linear function of the
metaorder size, but this requires a variety of idealized assumptions that may be violated in real
markets. Empirical studies have consistently shown that the market impact of a metaorder is
a non-linear concave function of its size. The concave nature of market impact is robust, being
observed for several heterogeneous datasets in terms of markets, epochs, and style of execution [3].
Most earlier studies have concluded that the market impact of a metaorder is well described by a
“square root law” of market impact [4, 5, 6, 3, 7, 8, 9]. Defining market impact I as the expected
average price return (or difference) between the the beginning and the end of a metaorder of size
Q, the square-root law states that

I(Q) = ±Y σD
(
Q

VD

)δ
(1)

where σD is the daily volatility of the asset, VD is the daily traded volume, and the sign of
the metaorder is positive (negative) for buy (sell) trades. The numerical constant Y is of order
unity and the exponent δ is in the range 0.4 to 0.7, but typically very close to 1/2, i.e. to a
square root. Notice that the only conditioning variable is the total volume Q. This is surprising
because it implies that the time taken to complete the metaorder and the participation rate are not
individually important for explaining market impact – the total order size Q is all that matters.

Most empirical studies of market impact make use of proprietary data of funds or brokerage
firms, since the empirical analysis of metaorder’s impact cannot be performed with public data.
Therefore the vast majority of studies rely on a partial view of the market. Exceptions are Refs.
[10, 11] where the whole market is considered and metaorders are reconstructed statistically from
brokerage data.

In this paper we perform an extensive empirical investigation of the market impact of metaorders,
relying on a dataset of several million metaorders executed in US equity markets on large, medium
and small capitalisation stocks. The dataset is heterogeneous, containing metaorders traded by
many financial institutions for different purposes, and it spans several years (in the present anal-
ysis we consider the period 2007- 2009). The main strengths of our paper are the large number of
metaorders and the heterogeneity of their origin. Market impact is very noisy and larger datasets

1Also called price impact
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Author # of metaorders Institution
Almgren et al. [5] 700,000 Citigroup
Engle et al. [6] 230,000 Morgan Stanley
Tóth et al.[3] 500,000 CFM
Mastromatteo et al. [7] 1,000,000 CFM
Brokmann et al. [8] 1,600,000 CFM
Moro et al. [10] 150,000 inferred
Bershova et al. [13] 300,000 AllianceBernstein LP
Waelbroeck et al. [12] 130,000 various
Bacry et al. [9] 400,000 one broker

Table 1: The approximate number of metaorders considered in previous studies, together with the
corresponding trading institution where the orders originated.

can significantly help in reducing statistical uncertainty; our dataset has almost seven million
metaorders, making it more than a factor of four larger than any previous study. Moreover the
heterogeneity of institutions and brokers in this dataset guarantees that our results are not specific
to a single execution strategy. For comparison in Table 1 we report the approximate number of
metaorders investigated in previous literature. It is clear that our sample is more than an order of
magnitude larger than the typical size investigated so far. Moreover, in contrast to other studies,
the set of funds and brokers is large and heterogeneous.

The main weakness of the dataset is that we have little knowledge and control on the conditions
and characteristics of the execution. We do not know if the metaorders were executed for cash
reasons or were informed trades (as in [12]). Similarly, we do not know the execution algorithm used
by the brokers (even if, as shown below, we can infer some information from the price dynamics
during the metaorder execution). Finally, we do not know if trading size was conditioned on
movement of the price during execution of the metaorder and if the daily metaorder was part of
a longer execution over multiple days. All these effects can potentially bias the sample and have
some role in the observed properties of the impact.

We do several things in this paper, studying the dependence of impact on the ratio of order
size and volume as well as other conditioning variables, the development of impact as a function
of time, and the relaxation of price once the order is completed, as detailed below.

First, we test the limits of validity of the square root impact law by conditioning it on variables
such as the market capitalization of the stock, the participation rate, and the duration of execution.
Because we are able to span more than five orders of magnitude of the ratio Q/VD in Equation 1,
we are able to investigate deviations from the square root law more thoroughly than in previous
studies. Indeed we observe consistent deviations for large and small values of Q/VD, indicating
that the power law relation of Eq. 1 is only approximately valid. Instead we find that a logarithmic
function (which is more concave) fits the data significantly better.

Second, as suggested by a general class of market impact models, we study how market impact

4



depends jointly on the duration F and the participation rate η of the metaorder. Measuring time
in units of traded volume, and letting VP be the volume exchanged by the whole market during the
execution of the metaorder, the duration is the fractional volume F = VP/VD, and the participation
rate is the ratio of the order size Q to the market volume while it is being executed, i.e. η = Q/VD.
This implies that the conditioning variable Q/VD in Equation 1 can be written as

π ≡ Q

VD
=

Q

VP

VP
VD

= F · η (2)

Thus the square root law of Eq. 1 implicitly assumes that the impact depends only on the square
root of the product of F and η. We will show that this assumption is only approximate and that a
more complex functional shape describes the data better. This functional form is described by an
impact surface that takes into account the variation of market impact with both participation rate
and execution time, or alternatively, any two of the three variables π, η and F . We show that the
dependence of impact on these individual variables is better described by logarithms than power
laws.

Third, we consider how the price changes during the execution of the metaorder. Recent studies
[10, 13, 12] find that impact is a concave function of time, i.e. for a given execution size, earlier
transactions of the metaorder change the price more than later transactions. By using a much
larger dataset we confirm this observation, but we find that the pattern followed by the price
during execution does not mirror the dependence of the metaorder on size. To say this more
explicitly, consider two metaorders with the same participation rate, one with double the volume
of the other. When the larger metaorder is halfway through its execution, will the impact at that
point be equal to that of the smaller one that has just completed? The general answer is no: The
impact of the larger metaorder at that point in time will be larger than the impact of the smaller
one. Interestingly, in some cases we find that the price starts reverting even before the end of the
metaorder. We discuss some possible explanations for these findings.

Finally, the fourth question concerns the price dynamics after the conclusion of the metaorder.
This topic (not covered in the original paper of Kyle [2]) has been receiving increasing attention
recently [10, 14, 13, 12, 8]. Several studies indicate that once the metaorder is executed the market
impact relaxes from its peak value and converges to a plateau [10, 13, 12]. The reversion indicates
that not all the impact is permanent. Even stronger, a recent study suggests that, up to a proper
deconvolution of the market impact with respect to the impact of subsequent metaorders and of
the the price momentum, the impact relaxes to zero [8].

The measurement of permanent market impact is difficult for two reasons. First, the price after
the end of the metaorder is very noisy, and a careful determination of the average price dynamics
requires a large sample of metaorders. Second, if successive metaorders (whether by the same or
different traders) are correlated in sign, it might be difficult to isolate the permanent impact of an
individual metaorder [8].

By making use of our large and heterogeneous sample, we perform careful measurements of
the permanent impact of metaorders, considering different participation rates and durations. For
typical metaorder durations and participation rates we find that after the end of the metaorder
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the price decays to a value which on average is roughly 2/3 of the peak impact, as suggested by
[14] and found empirically by [13]. However, we show that the measured price decay depends on
the participation rate and duration of the metaorder. Based on empirical evidence, we postulate
that this dependence can be in part explained by a herding phenomenon accounting for the fact
that metaorders executed in the same time period tend to have similar sign (buy or sell). Thus
correlation between the sign of nearby metaorders might be partly responsible for the level of the
plateau reached by permanent impact.

The paper is organized as follows. In Section 2 we present the definition of the variables and
the averaging procedure. We also discuss the dataset and some descriptive statistics. Section 3
presents some models of the price dynamics during the execution of a metaorder, used later to
understand the empirical findings. In Section 4 we present our empirical results and in Section
5 we discuss the implications of our empirical results on fundamental models of market impact.
Finally, in Section 6 we draw some conclusions.

2 Definitions and Data

In this section we define the parameters we use to describe metaorder execution and the relative
measures we consider to quantify market impact. In a second part we describe the database on
which our analysis relies and we present some summary statistics of metaorders.

2.1 Definitions

One of the well known facts of intraday financial data is the presence of very strong periodici-
ties. In particular, the level of trading activity is known to vary substantially and consistently
between different periods of the trading day, and this intra-day variation affects both the volume
profile and the variance of prices. Therefore one minute at the opening is quite different, in terms
of volume, from a minute in the middle of the day. In order to take into account the intraday
patterns, in this paper we perform all our computations in volume time. This consists in moving
forward time according to the volume traded in the market. For a trading day, let V (t) be the
total volume traded by the market from the opening until (physical) time t. We measure vol-
ume time via v = v(t) := V (t)/V (tc), where tc is the daily closing time and V (tc) is the volume
traded in that day. The relationship between the physical time t and the volume time v is in-
dependent of the total daily volume. In particular, v = 0 at market open and v = 1 at market close.

We introduce three non-local parameters characterising the execution of a metaorder buy-
ing/selling (ε = ±1) Q shares in a physical time interval [ts, te]. The participation rate η is
defined as the ratio between the volume Q traded by the metaorder and the volume traded by the
whole market during the execution interval

η :=
Q

V (te)− V (ts)
. (3)
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The duration F of a metaorder in volume time is defined by

F := v(te)− v(ts) =
V (te)− V (ts)

V (tc)
. (4)

The daily fraction π is defined as the ratio between the volume Q traded by the metaorder and
the volume traded by the market in the whole day, i.e. π := Q/V (tc). The metaorders we consider
are executed within a single trading day, therefore these parameters are between 0 and 1. The
three variables are clearly not independent, because it is π = η · F .

To quantify the market impact of the execution of a metaorder we define s(v) as the logarithm
of the price S(v) at volume time v rescaled by the daily volatility σD, i.e. s(v) := logS(v)/σD.
Letting ε be the sign of the metaorder, and Ω be any set of information upon which the market
impact is conditioned, the market impact at time v of a metaorder that started at time vs < v is

I(v|Ω) := E [ε (s(v)− s(vs))|Ω] . (5)

We will consider conditioning sets Ω involving η, F and π as well as global information like the
market capitalisation of the traded stock or the year when the metaorder is executed. With E [·|Ω]
we refer to the sample average over all metaorders belonging to the same set Ω.

We will consider three types of impact. The immediate market impact quantifies how market
impact builds up during the execution of the metaorder, i.e. vs < v < ve. After the conclusion of
the execution of the metaorder, v > ve, the market impact relaxes toward the permanent market
impact. The temporary market impact is measured at the moment v = ve when the metaorder
is completed, i.e.

Itmp(Ω) := E [ε (s(ve)− s(vs))|Ω] . (6)

The temporary market impact2 conditioned on the daily fraction π defines the market impact
curve Itmp(Ω = {π}). This is the quantity that has received the most attention in previous studies
of market impact. The temporary market impact conditioned on both the participation rate η
and the duration F defines the market impact surface, Itmp(Ω = {η, F}). The immediate market
impact conditioned on both the participation rate η and the duration F defines the market impact
trajectory I(v|Ω = {η, F}), i.e. how the impact reaches the market impact surface Itmp(Ω =
{η, F}) during the execution of the metaorder.

2.2 Metaorder execution data

Our analysis relies on the database made available by Ancerno, a leading transaction-cost analysis
provider (www.ancerno.com)3. The database contains data gathered by Ancerno on metaorder

2This quantity is sometimes also called peak impact. Temporary impact should not be confused with the
temporary component of impact, used for example in the Almgren-Chriss model [15].

3ANcerno Ltd. (formerly the Abel Noser Corporation) is a widely recognised consulting firm that works with
institutional investors to monitor their equity trading costs. Its clients include pension plan sponsors such as
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year raw Filter 1 Filter 2 Filter 3 Filter 4
2007 9,216,333 6,904,656 3,082,767 2,130,045 1,976,382
2008 9,955,238 8,074,103 4,035,043 2,731,572 2,563,674
2009 9,214,993 7,622,703 3,954,355 2,552,092 2,404,827
tot 28,386,564 22,601,462 11,072,165 7,413,709 6,944,883

Table 2: Number of metaorders surviving each filter introduced in the analysis.

JPM XOM MSFT GE PG BAC CSCO AAPL T GS
37,179 36,676 36,112 35,490 34,216 34,163 33,750 32,007 31,652 30,921

QCOM HPQ WMT VZ MRK C PFE GOOG SLB JNJ
30,765 29,915 29,898 27,975 27,106 26,767 26,392 26,202 25,821 25,602

Table 3: Ticker symbol of the most traded stocks and corresponding number of metaorders.

execution from the main investment funds and brokerage firms in the U.S. For each metaorder we
consider the stock symbol, the volume Q, the sign ε, the starting time ts of the metaorder and
the time te when the metaorder is completed. Our analysis has been performed on a subset of the
database, containing metaorders traded on the U.S. equity market from January 2007 to December
2009. Before filtering, this subset contains 28,386,564 metaorders. This is more than an order of
magnitude larger than any previous measurements of this kind (see table 1). All metaorders are
completed within one trading day. We introduce the following filters:

• Filter 1: we select the stocks which belong to the Russell3000 index. This filter is introduced
in order to have the time series of the price for each analysed metaorder. In this way we also
discard metaorders executed on highly illiquid stocks.

• Filter 2: we select metaorders ending before 4:01 PM.

• Filter 3: we select metaorders whose duration is longer than 2 minutes.

• Filter 4: we select metaorders whose participation rate η is smaller than 0.3

the California Public Employees’ Retirement System (CalPERS), the Commonwealth of Virginia, and the YMCA
retirement fund, as well as money managers such as MFS (Massachusetts Financial Services), Putman Investments,
Lazard Asset Management, and Vanguard. Previous academic studies that use Ancerno data include [16, 17, 18, 19,
20, 21, 22]. In particular, the authors of [16] give evidence regarding the existence of weekly institutional herding,
often resulting in intense buying and selling episodes which may affect the efficiency of security prices. The authors
investigate the contemporaneous and subsequent abnormal returns of securities that institutional herds sell or buy.
They bring evidence that stocks that herds buy outperform the stocks that herds sell prior to and during the week
of portfolio formation. Then, intense sell herds are followed by return reversals while the contemporaneous returns
associated with intense buy herds are permanent.
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The number of metaorders surviving each filter is reported in table 2. In table 3 we present
the stock symbols with the largest number of metaorders in the dataset and their number. It is
interesting to note that for the top 20 stocks the metaorders recorded in the Ancerno database are
responsible of around 5% of the daily volume. It is evident that Filter 2 cuts a significant fraction
of metaorders. All these metaorders last exactly 410 minutes, starting at 9:30 AM and ending at
4:20 PM. A detailed investigation of these orders strongly suggests that the initial and final time
of these orders are not reliable, and we suspect that for these orders the times communicated to
Ancerno are not accurate. For example, these orders have systematically lower participation rate
than the other orders, suggesting an effective shorter time span of execution. In order to avoid
introducing data that might be spurious, we drop these metaorders, at the cost of significantly
reducing our sample.

In conclusion, for each metaorder in the dataset we recover the relative daily fraction π, the
participation rate η, and the duration F . By exploiting the price data, we also recover the time
series of the price s(v) during and after the execution of the metaorder.

2.3 Market price data

In order to augment the information in the metaorder data described in the previous subsection we
augment it with market data. The latter are historical data provided by Kibot (www.kibot.com),consisting
of one-minute time series giving the Date, Time, Open, High, Low, Close, Volume of 3, 500 stocks
in the Russell3000 index. We consider as a proxy of the daily volatility σD = (Sh − Sl)/So, where
Sh,l,o are the high-low-open price of the day. Given the time interval [ts, te] and the volume Q
of a metaorder, this dataset makes it possible to compute its participation rate η, daily rate π,
and duration F . We also use this database to measure the price dynamics during and after the
execution of the metaorder.

2.4 Metaorder statistics

We now present some descriptive statistics. In Figure 1 we show the time series of the metaorders
for Apple (AAPL) in the period March-April 2008. There is a significant number of metaorders
active every day. In most trading days there is a “mood”, i.e. on any given day most metaorders
have the same sign, indicating a possible herding effect. Later we will quantify this metaorder
overlap and we will discuss its possible role on the shape of market impact.

We then investigate the distributional properties of the parameters characterising metaorders,
namely the participation rate η, the duration F , and the daily fraction π. The statistics are
performed by aggregating the 6, 944, 883 filtered metaorders.

We find that the participation rate η and the duration F are both well approximated by a
truncated power-law distribution over several orders of magnitude. The estimated probability
density function of the participation rate η is shown in log-log scale in the top left panel of Figure
2. A power law fit in the region 10−4 ≤ η ≤ 0.1, i.e. over three orders of magnitude gives

9
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Figure 1: Time series of metaorders active on the market for AAPL in the period March-April
2008. Buy (Sell) metaorders are depicted in blue (red). The thickness of the line is proportional to
the metaorder participation rate. More metaorders in the same instant of time give rise to darker
colours. Each horizontal line is a trading day. We observe very few blanks, meaning that there
is almost always an active metaorder from our database, which is of course only a subset of the
number of orders that are active in the market.

a best fit exponent a = −0.864 ± 0.001. The top right panel of Figure 2 shows the estimated
probability density function of the duration F of a metaorder. A power law fit in the intermediate
region bounded by the two vertical dashed lines (0.01 ≤ F ≤ 0.5) gives a power-law exponent
a = −0.932 ± 0.003. Thus in both cases the power law is very heavy tailed, meaning that there
is substantial variability in both the partition rate and duration of the orders over a large range.
Note that in both cases the variability is intrinsically bounded (and therefore the power law is
automatically truncated) by the fact that by definition η ≤ 1 and F ≤ 1. In addition, for p(F ),
there is a small bump on the right extreme of the distribution corresponding to all-day metaorders.
The deviation from a power law for small F is forced automatically by our filter retaining only
orders lasting at least 2 minutes, which in volume time corresponds on average to 2/390 ' 0.005.

The bottom left panel shows the probability density function of the daily fraction π. In this
case the distribution is less fat tailed, and in particular it is clearly not a power law. This is
potentially an important result, as the predictions of some theories for market impact depend on
this, and have generally assumed power law behavior [23, 14].

Since two of the three variables characterizing a metaorder are sufficient to derive the third
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Figure 2: Estimation of the probability density function of the participation rate η (top left),
duration F (top right), and daily fraction π (bottom left). All these panels are in log-log scale and
the first two shows also the best fit with a power law function in the region bounded by the two
vertical dashed lines. The bottom right panel shows the logarithm of the estimated joint probability
density function p(η, F ) in double logarithmic scale of the duration F and the participation rate
η.

one (π = η · F ), it is important to study the correlation between them, especially in light of the
multivariate regression we perform below. The bottom right panel of Figure 2 shows the logarithm
of the estimated joint probability density function p(η, F ) in double logarithmic scale as a function
of the duration F and the participation rate η. The linear correlation between the two variables
is very low (−0.022). The main contribution coming from the extreme regions, i.e. η very large,
implies F very small and vice versa. This means, as expected, that very aggressive metaorders are
typically short and long metaorders more often have a small participation rate.
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3 Heuristic models of market impact

Before presenting our empirical results on market impact, we consider some simple heuristic models
of price dynamics. By “heuristic” we mean that these are reduced form models that are chosen
because they are intuitively reasonable and they are useful, e.g. for computing optimal trade
execution strategies. We distinguish these from more fundamental models that try to explain the
form of the market impact function from first principles. These models provide a useful framework
to investigate and to interpret our measures of market impact, presented in the next Section. In
particular it will provide a context to interpret some of the non-intuitive aspects of the relationship
between immediate impact and temporary impact. In Section 5 we return to discuss some of the
implications of our empirical work for fundamental models.

3.1 The Almgren-Chriss model

We consider first a simplified version of the Almgen-Chriss model [15] in continuous time. We
assume that a metaorder with participation rate η is executed incrementally within t ∈ [0, T ]4.
The total traded quantity is Q = ηT and the instantaneous trading rate is q(t) = −ẋ(t), where
x(t) is the metaorder quantity that remains to be traded. The price dynamics is

S(t) = S(0) + a

∫ t

0

q(s)ds+ σ

∫ t

0

dWs , (7)

where Wt is a Wiener process. Due to the linearity of the impact function, the immediate impact
as a function of time is

I(t|Ω = {η, T}) = a(Q− x(t)) = a(ηT − x(t)) . (8)

Assuming that during a buy metaorder the trader only buys and never sells, I(t|Ω = {η, T}) is a
non decreasing function of time converging to the temporary impact Itmp(Ω = {η, T}) = I(T |Ω =
{η, T}) = aQ = aηT , independently of the trading profile followed during the execution. Thus the
temporary market impact is a linear function of metaorder duration T , for fixed participation rate
η (see the red solid line in Figure 3).

What does the immediate impact look like under the Almgen-Chriss model? Even though the
impact is linear, if the optimised execution schedule is risk adverse, the immediate impact trajectory
during the execution does not necessarily overlap with the curve described by the temporary impact
as a function of T (see the blue lines in Figure 3). As a concrete example, consider the optimal
trading profile of the original Almgren-Chriss model for a generically risk averse investor. In this
case the function to be minimized is the expected cost plus λ (> 0) times the variance of the cost.
The optimal solution is [15]

x(t) = Q
sinh k(T − t)

sinh kT
(9)

4Here we do not distinguish volume and physical time.
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Figure 3: Temporary market impact Itmp(Ω = {η, T}) as a function of the metaorder duration
T evaluated in the framework of the simplified version of the Almgren-Chriss model with a = 1,
σ = 1 and η = 1 (red line). We show also the immediate market impact trajectory I(t|Ω = {η, T})
for several values of the risk-aversion parameter λ = {0.1, 0.5, 1} and several metaorder durations
T = {5, 10, 20} (blue lines).

where k =
√
λσ2/a, and σ is the volatility of the price. For a risk neutral strategy (λ = 0), the

solution is a strategy with constant velocity, q(s) = η. This is the simplest (and probably more
widespread) execution strategy, the so called Volume Weighted Average Price (VWAP) scheme.
More risk averse strategies correspond to higher λ and lead to more front loaded executions. We
observe in Figure 3 that for higher levels of risk aversion the immediate impact deviates more from
the temporary impact. In all cases the price reaches the temporary impact from above. This is
due to the front loading property of the strategy. For a strategy where the trading rate increases
during execution, the price would reach the temporary impact from below. Only in the case of
VWAP (i.e. risk neutral strategy) do immediate and temporary impact overlap.

3.2 The propagator model

A more sophisticated model is the propagator model, devised to take into account the non linear
and immediate properties of market impact. The propagator model was initially proposed by
Bouchaud et al. [24] in (discrete) transaction time and independently introduced by Lillo and
Farmer [25] (the latter as a model where price moves in response to the unexpected component
of the order flow, see also Taranto et al. [26]). An interesting extension that goes beyond the
propagator model was very recently proposed in [27].
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The continuous-time version of the propagator model, discussed by Gatheral [28], is

S(t) = S(0) +

∫ t

0

f(q(s))G(t− s)ds+

∫ t

0

σ(s)dWs, (10)

where G(t) is a decaying function describing the temporal dependence of the impact and the
function f(q) is an odd function describing the volume dependence of the impact. The Almgren
and Chriss model can be recovered by setting f(q) = aq and G(t) = 1t≥0. We consider here a small
variation of the Gatheral model where s(t) := log S(t)/σD evolves in volume time v according to

s(v) = s(0) +

∫ v

0

f(q(s))G(v − s)ds+

∫ v

0

dWs. (11)

In order to deal with nondimensional quantities, we rescale the instantaneous trading rate q(s) by
the daily traded volume V (tc). Specifically, we consider the propagator model with power-law im-
pact function f(q) = qδ and power-law decay kernel G(t) = t−γ. For δ = 1 and γ = 0 one recovers
the Almgren-Chriss model. Using this model, Gatheral [28] shows that the condition δ + γ ≥ 1 is
necessary to exclude price manipulation. In the case of linear market impact, f(q) = q, Gatheral
et al. [29] obtained the optimal condition and derived the explicit form of the optimal strategy
in a expected cost minimisation problem. In the general case of non linear impact the problem is
more involved [30, 31]. In this paper we are not interested in solving the optimisation problem but
rather in calculating the market impact for different classes of trading strategies.

For the simple VWAP strategy characterised by trading rate q(s) = η and duration F , the
temporary market impact is

Itmp(Ω = {VWAP, η, F}) :=

∫ F

0

f(q(s))G(F − s)ds = f(η)

∫ F

0

G(F − s)ds. (12)

The factorization between the temporal and the volume dependence hypothesized in the propagator
model immediately leads to a factorization of the temporary impact into a part depending only
on η and a part depending only on F . In the special case f(q) = qδ and G(t) = t−γ this becomes

Itmp(Ω = {VWAP, η, F}) =
1

1− γ η
δF 1−γ. (13)

This relation shows that within the propagator model with a power-law impact function and
a power-law decay kernel, the temporary impact is a factorisable power-law function of both
the participation rate η and of the duration F . The “macroscopic” exponents describing the
shape of the temporary market impact surface Itmp(Ω = {VWAP, η, F}) are inherited from the
“microscopic” exponents describing the market impact function of individual trades δ and the
decaying kernel γ. If the model is at the critical condition according to Gatheral, δ + γ = 1, the
temporary impact does not depend on the duration F and the participation rate η separately,
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but only on their product, i.e. the daily fraction π = η · F . Hence the market impact surface is
fully characterized by the market impact curve. Notice that with γ = δ = 1/2, one recovers the
square-root impact curve, Eq. 1, with Y = 2.

Finally, the immediate and the permanent market impact, as defined by Eq. 5, are

I(z|Ω = {VWAP, η, F}) =

{
1

1−γη
δF 1−γz1−γ if z < 1,

1
1−γη

δF 1−γ (z1−γ − (z − 1)1−γ) if z > 1.
(14)

where z = v/F . For large values of z the impact decays to zero as a power law function with
exponent γ. On the other hand, immediately after the metaorder completion, the price decay
follows a power law with exponent 1− γ.

The calculation of the immediate and temporary market impact becomes more involved if
we consider general execution schemes where the trading velocity is not constant. For purely
illustrative purposes, we consider a class of execution schemes of Q shares characterised by the
instantaneous monotonic trading rate

q(s) =
Q

V (tc)

(α + 1)

Fα+1
(F − s)α, α > −1. (15)

For positive (negative) α the relative trading profile trades more (less) at the beginning of the
period, while α = 0 corresponds to a VWAP scheme. It is possible to show that for this class of
schemes the temporary market impact is

Itmp(Ω = {α, η, F}) = ηδF 1−γ (1 + α)δ

1 + αδ − γ , (16)

while the immediate and permanent market impact are

I(z|Ω = {α, η, F}) = ηδF 1−γ(α + 1)δ
∫ z

0

ds
(1− s)αδ
(z − s)γ 1s≤1 ={

1
1−γη

δ(1 + α)δF 1−γz1−γ 2F1(1,−δα; 2− γ; z) if z < 1,
1

1+αδ
ηδ(1 + α)δF 1−γz−γ 2F1(1, γ; 2 + δα; 1

z
) if z > 1,

(17)

where z = v/F is the rescaled time and 2F1 is the hypergeometric function. In order to avoid the
divergence of the temporary impact (z = 1), one has to impose 1 + αδ − γ > 0.

Figure 4 shows the temporary market impact Itmp(Ω = {α, η, F}) as a function of the metaorder
duration F at fixed participation rate η for different values of trading profiles α in a propagator
model with γ = δ = 1/2. For some values of the duration F we also show the immediate market
impact trajectory I(v|Ω = {α, η, F}), i.e. the trajectories followed by the price to reach the
temporary impact. There are three important comments one can make observing these figures:
(i) The temporary market impact depends on the trading profile (see also Eq. 16). This is a
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Figure 4: Temporary market impact (red line) Itmp(Ω = {α, η, F}) as a function of the metaorder
duration F for fixed participation rate η = 1 and different values of trading rate profiles α for the
propagator model with γ = δ = 1/2. We consider a back loaded profile (α = −1/2, top left), a
VWAP profile (α = 0, top right), and two front loaded profiles (α = 1 and α = 4, bottom). In
each panel we also show the immediate market impact trajectory (blue lines) I(v|Ω = {α, η, F})
for some values of F = 0.25, 0.5, 0.75, 1 as a function of volume time v.

general consequence of the non-linearity of the impact function f . As we have seen before in the
Almgren-Chriss model, the temporary impact is independent of the trading profile. (ii) As in the
Almgren-Chriss model, the more the trading profile deviates from VWAP, the more the immediate
impact trajectories deviate from the temporary impact. For front (back) loaded strategies, α > 0
(α < 0), the trajectories reach the temporary impact from above (below); (iii) Even if the trade
sign is always the same during execution (e.g. buys for a buy metaorder), the impact trajectories
can be non-monotone, since they reach a maximum and decay to the temporary impact, before
the end of the metaorder (see the cases α = 1 and α = 4 in Fig. 4). In other words, the price
reversion, well documented after the end of the metaorder, starts during the metaorder’s execution
if the trading profile is front loaded enough. As we will see below, this is exactly what we observe
for real metaorder executions in some of the data.

4 Measurements of market impact

4.1 Market impact curve: testing the square-root formula

The temporary market impact curve Itmp(Ω = {π}) is defined as the price change conditioned on
the daily fraction π. The square-root impact formula (Eq. 1) states that the temporary market
impact curve is described, at least to a first approximation, by a power-law function:

Itmp(Ω = {π}) = Y πδ . (18)

Previous studies find δ in the range 0.4 to 0.7 [5, 3, 7, 8]. Figure 5 shows the shape of the measured
temporary market impact curve for our data in double logarithmic scale. This plot is obtained
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Figure 5: Measured temporary market impact Itmp(Ω = {π}) of a metaorder as a function of the
daily rate π, defined as the ratio of the traded volume and the daily volume. The scale is double
logarithmic; the dashed read line is the best fit to a power-law and the solid blue curve is the best
fit to a logarithm.

by dividing the data into evenly populated bins according to the daily rate π and computing the
conditional expectation of the impact for each bin. Here and in the other figures of this paper, the
error bars are standard errors. Note that the range of π spans more than five orders of magnitude.
We observe that for π roughly in the range from 10−3 to 10−1 the points, to a first approximation,
lie on a straight line. Nonetheless, a clear concavity is evident, since for large and small π the
impact curve bends down.

Performing a nonlinear regression on the function f(π|Y, δ) = Y πδ, the best fitting parameters
are Ŷ = 0.15 ± 0.01 and δ̂ = 0.47 ± 0.01. The value of the exponent is consistent with that
found in previous work [5, 3, 7, 8]. In order to compare different functional forms, we consider the
Weighted Root Mean Square Error, ERMS, as a measure of the goodness of fit5. For the power
law we find ERMS(f(Ŷ , δ̂)) = 6.70. The concavity of the market impact shape depicted in double-
logarithmic scale suggests that a function more concave than a the power-law might better explain

5The Weighted Root Mean Square Error of a function g(x|a, b) with parameters a and b to reproduce the
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the data. As an alternative we fit a function of the form g(π|a, b) = a log10(1 + bπ). The shape
of g(π|a, b) is linear for values of bπ � 1 and logarithmically concave for bπ > 1. The estimated
best fitting parameters are â = 0.028± 0.001 and b̂ = 465± 33 and the relative goodness of fit and
ERMS(g(â, b̂)) = 2.80, which is quite dramatically better than that for the power law. The light
blue line in Figure 5 is the best fitting logarithmic curve. From the figure and from the values
of ERMS, we conclude that the logarithmic functional form describes our data better than the
power-law (square root) functional form.

We now consider the problem of how the temporary impact curve depends on other conditioning
variables. As suggested in [3], the square-root law of market impact seems to be a very robust
statistical regularity. It does not appear to depend on the traded instrument (equities, futures,
FX, etc.) or time period (from the mid-nineties, when liquidity was provided by market makers, to
present day electronic markets). We verify the robustness of the temporary market impact curve by
conditioning on different time periods present in the database and on the market capitalisation of
the traded instrument. Figure 6 (top panels) shows the results of our analysis: quite remarkably,
the shape of the temporary market impact curve is roughly independent on both the trading
period (2007, 2008 and 2009) and the stock capitalisation (small, medium and large, according to
the classification provided by the Ancerno database). The estimated best fitting parameters and
the relative goodness of fit are reported in table 4. We observe that, with the exception of the
small capitalisation conditioning, the logarithmic function is always better in explaining the data.

We now shift our focus to measuring the temporary market impact curve while conditioning on
the parameters characterising the execution of a metaorder. As pointed out in [28], the square-root
formula depends only on the daily fraction π, which implies that the temporary market impact
is independent of both the duration F and the participation rate η. We investigate this point
by conditioning our measurements on the participation rate and duration of the metaorder. The
bottom panels of Figure 6 show the results of this analysis We notice that in both cases the three
curves are locally approximated by a power law function, essentially because the two types of
conditioning reduce significantly the span of data on the abscissa. However it is clear that the
exponents of the power law are different and, as a consequence, the superposition of the three
subsets gives a logarithmically concave function. In particular the power law exponent decreases
from 0.58 to 0.42 when we condition impact on F , and from 0.74 to 0.47 when we condition on
η. In all cases the error on the expoenent is 0.02. Therefore the exponent, and thus the impact
function, depends on the conditioning variable (F or η).

In conclusion, when plotted as a function of the daily rate π, the temporary market impact
curve Itmp(Ω = {π}) is clearly described by a concave function, well fitted by a logarithmic function

observations {yi}1≤i≤N of the explanatory variables {xi}1≤i≤N is defined by

ERMS(g(a, b)) =

√√√√ 1

N

N∑
i

(
yi − g(xi|a, b)

SE(yi)

)2

(19)

where SE(yi) is the standard error associated with the observation yi. The smaller ERMS , the better the fit.
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Figure 6: Temporary market impact of a metaorder as a function of the daily fraction π, defined as
the ratio of the traded volume and the daily volume. The scale is double logarithmic and the lines
are a best fit with a power-law function f(π|Y, δ) (dashed) and a logarithmic function g(π|a, b)
(solid). The top left panel considers three different years separately, the top right panel considers
the market capitalisation of the traded stock separately, the bottom left panel considers different
subsets of the metaorder duration F , and the bottom right panel considers different subsets of the
participation rate η. The values of the best fitting parameters and the goodness of fit for the power
law and the logarithmic function are reported in table 4 for each year and market capitalisation.

and only locally approximated by a square root function. Interestingly strong concavity for very
large volumes has been quoted for CFM metaorders also in reference [27]. In the next section
we show that the impact does depend on F and η separately, and that the collapse seen here
is significantly due to a compensation effect from the data aggregation of orders with different
conditioning parameters.

4.1.1 Inferring latent order book from market impact

In a recent paper Toth et al. [3] present a theory connecting the shape of the market impact to the
one of latent order book. They argue that true order book does not reflect the actual supply and
demand that are present in the market, due to the fact that participants do not reveal their true
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Year 2007 2008 2009

Power law Ŷ 0.13±0.01 0.12±0.01 0.15±0.01

δ̂ 0.41±0.02 0.41±0.02 0.46±0.01
ERMS 5.47 4.96 3.18

Logarithm â 0.029±0.001 0.025±0.001 0.032±0.001

b̂ 491±29 547±56 316±25
ERMS 1.36 2.11 2.23

Mkt. Cap Large Medium Small

Power Law Ŷ 0.19±0.01 0.15±0.01 0.12±0.01

δ̂ 0.51±0.02 0.46±0.02 0.42±0.02
ERMS 1.38 1.32 0.69

Logarithm â 0.030±0.001 0.030±0.001 0.027±0.001

b̂ 441±21 400±35 428±62
ERMS 0.40 0.69 1.03

Table 4: Estimated values of the best fitting parameters Ŷ and δ̂ for the fitting function f(π|Y, δ) =
Y πδ and â and b̂ for the fitting function g(π|a, b) = a log10(1+ bπ) and the corresponding goodness
of fit. Each fit is performed conditioning the sample data on the execution year (top table) and
market capitalisation (bottom table). In bold face there is the fits with the smallest ERMS.

intensions. Latent order book becomes visible when price moves and thus can be inferred from the
shape of market impact.

Specifically, let V(x|b, n) be the volume available in the latent order book at log price x. A
metaorder of size π will generate a market impact I(π) solving the equation

π =

∫ x0+I(π)

x0

V(x|b, n) dx (20)

where x0 is the log price at the beginning of the metaorder execution. If the profile V is a linear
function of log price, then market impact is a square root function of the traded volume π, as
suggested by [3]. On the other hand, if the profile is constant, the market impact is linear in the
traded volume.

Here we assume a parametric form, and which for the center of the order book allows us to
easily interpolate between a linear vs. a constant order book. We then compute the expected
market impact and we fit the parameters of the latent order book profile on real data of market
impact. Specifically, we consider the normalized function

V(x|b, n) :=
1

Y

xn exp(bx)∫ 1

0
dy yn exp(by)

(21)
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where x ∈ [0, 1], V(0|b, n) = 0 and V(1|b, n) = 1/Y , where Y is a normalizing constant. For
x� 1/b the profile grows as a polynomial, while for x� 1/b it grows as an exponential. We can
invert Eq. 20 to derive I(π|Y, b, n) obtaining the following cases. When n = 0, we can perform
the analytical calculation and recover the previously introduced logarithm function: I(π|Y, b, n =
0) := Y log(1 + cπ)/ log(1 + c) where c = exp(b) − 1. The market impact function grows linearly
for π � 1/c and logarithmically for π � 1/c. When n = 1 we obtain a market impact function
I(π|Y, b, n = 1) that grows as a square root function for small x and logarithmically for large x.
By keeping n as a free parameter we can infer the order book shape near the best by fitting the
impact function.

Because the data set is so large we divide the data in into Nbins evenly populated bins. For
each bin i we measure the average daily rate πi, the average impact Ii, and the standard error
on the sample impact SE(Ii). Then, via a non-linear weighted optimisation, we obtain the best
fitting parameters of the impact models I(π|Y, b, n = 0), I(π|Y, b, n = 1), and I(π|Y, b, n) and we
calculate the Weighted Root Mean Squared Error of each model. The large number of bins in the
fitting procedure compared to the number of parameters minimizes the risk of overfitting6. We
have also tested the conclusions by varying the number of bins and find that for Nbins > 500 the
results are independent of the number of bins.

The results of this procedure are reported in figure 7. We observe that the model I(π|Y, b, n = 0)
describes the data better than the model I(π|Y, b, n = 1). The fitted value of the parameter
1/c discriminating the linear from the logarithmic regime in the impact in the case n = 0 is
π∗ ' 2 × 10−3, indicating that when π � π∗ market impact is linear, while above this value
the impact starts to be logarithmic. The model with three free fitting parameters I(π|Y, b, n)
clearly improves the goodness of fit. The value of the inferred exponent, n̂ = 0.22, is close to
zero, suggesting an almost flat order book profile near the best bid/ask positions, even if the
noise observed in the left part of figure 7 is quite large. From this we conclude that our data
is consistent with an exponential form of the latent order book for large volumes (see also the
discussion in Section X of the recent paper [27]).

4.2 Market impact surface: beyond the square-root formula

We now consider the dependence of the temporary market impact Itmp(Ω = {η, F}) on the par-
ticipation rate η and the duration F of metaorder execution. Please recall that in Figure 2 we
demonstrated that the correlation between these two parameters is quite low.

Figure 8 shows a non parametric estimation of the market impact surface Itmp(Ω = {η, F}) for
the roughly five million metaorders in our database7. The three axes of the plot are in logarithmic
scale to highlight the concave shape of the market impact surface. If the temporary impact is

6The Akaike Information Criterion leads to the same conclusions on the relative performance of the different
functional forms.

7In the present analysis we subset for η > 10−3, in order to avoid a strongly noisy part of the domain. We subset
also for F < 0.5, since the remaining part the plot shows the most discrepant behaviour compared to the square
root.
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Figure 7: The inferred impact function based on a latent order book profile parameterized with
Eq. (21) and solved using Eq. (20). The inferred impact is plotted on double logarithmic scale as
a function of the normalized order size π. See Eq. (21) for the interpretation of the parameters.

described by a power-law function both in η and in F , i.e.

Itmp(Ω = {η, F}) = Y · ηδ · F γ1 (22)

the market impact surface is a plane in logarithmic scale. Figure 8 shows that a linear functional
form is only an approximate representation of the empirical surface. In fact the surface is clearly
concave (in log scale), and almost flattens out in the top left corner. We perform a non-linear
regression of the measured temporary market impact surface Itmp(Ω = {η, F}) with a power law
function f(η, F |Y, δ, γ1) = Y ηδF γ1 , according to equation 22. The best fitting parameters are
Ŷ = 0.207 ± 0.005, δ̂ = 0.52 ± 0.01 and γ̂1 = 0.54 ± 0.01. The Root Mean Square Error for this
model is ERMS(f(Ŷ , δ̂, γ̂1)) = 2.46. Interestingly these values are very close to those predicted by
the critical propagator model with δ = γ = 1/2. The orange plane in Figure 8 is the functional
form f(η, F |Ŷ , δ̂, γ̂1) with the best fitting parameters.

In order to quantify the deviations of the surface from the best fitting power-law function
f(η, F |Ŷ , δ̂, γ̂1), in the left panel of Figure 9 we show the residuals of the fit as a function of η
and F . Positive residuals are in blue, while negative residuals are in red. A clear non-random
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Figure 8: Non-parametric estimation of the impact surface Itmp(Ω = {F, η}) as a function of
the duration F and the participation rate η. The three axes are in logarithmic scale. The or-
ange surface represents the double power-law function f(η, F |Ŷ , δ̂, γ̂1) = Ŷ ηδ̂F γ̂1 with the empir-
ically fit parameters Ŷ , δ̂ and γ̂1. The blue surface represents the double logarithmic function
g(η, F |â, b̂, ĉ) = â log10(1 + b̂η) · log10(1 + ĉF ) with the empirically fit parameters â, b̂ and ĉ.

pattern emerges, since residuals in the center are typically positive, while those in the periphery are
negative. This is an indication of the approximate description provided by Eq. 22 and therefore by
the square root law: the impact surface is concave even in logarithmic scale. This suggests that an
improvement of the parametrisation of the market impact surface could be obtained considering a
logarithmic functional form8 g(η, F |a, b, c) = a log10(1+bη) log10(1+cF ). By means of a non-linear
regression, we obtain the best fitting parameters: â = 0.035 ± 0.001, b̂ = 60 ± 3 and ĉ = 61 ± 2.
The Mean Square Error of the fit is ERMS(g(â, b̂, ĉ)) = 1.44. This last value is much smaller than
the ERMS of the double power law function of Eq. 22 and, as in the previous section, indicates
that logarithmic functions better describe temporary market impact. The blue surface in figure

8Note that the parameters a are b are not necessarily the same as those used in the parametrisation of the impact
curve. The relation between the parameters of the curve and of the surface depends on the joint distribution of F
and η.
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Figure 9: Contour plot of the residuals of the fitting function f(η, F |Ŷ , δ̂, γ̂1) = Ŷ ηδ̂F γ̂1 (left panel)
and of the fitting function g(η, F |â, b̂, ĉ) = â log10(1 + b̂η) · log10(1 + ĉF ) (right panel) as a function
of the plane η – F . Positive (negative) residuals are in blue (red). The power law clearly has
macroscopic structure in the residuals; this is much less so for the logarithm.

8 represents the functional form g(η, F |â, b̂, ĉ) evaluated with the best fitting parameters. In the
right panel of figure 9 we present the residuals of the regression g(η, F |â, b̂, ĉ): the pattern present
on the left panel for the power law fit is very strongly attenuated, indicating once more a better
fit.

The analysis of the residuals also allows us to understand why the square root gives a relatively
good collapse of the data, apparently independent from internal and external conditioning vari-
ables. In fact, consider the structure of the residuals in the left panel of Figure 8. Since π = ηF ,
conditioning on π means taking averages over diagonal strips going from the bottom left to the top
right part of the plane (η, F ). This averaging includes positive and negative residuals that partly
cancel out, giving the observed data collapse. Nonetheless, the disaggregation of the data done
here indicates that there is indeed dependence on F and η separately.

To see deviations of the impact surface from a power law from another point of view, we
measure the exponent δ describing the dependence on η and the exponent γ1 for the dependence
on F via a local non-linear fitting of the functional form f(η, F |Y, δ, γ1) 9. Figure 10 shows the

9 More in detail, we divide the dataset in n1 = 10 (n2 = 10) evenly-populated subsets according to η (F ).
Each measure in the dataset is labelled by an integer i1 ∈ {1, . . . , n1} (i2 ∈ {1, . . . , n2}) according to the subset the
measure belongs to. Each measure in the dataset is then labelled by a couple of integers b = (i1, i2) identifying a bin.
We measure the sample mean of the temporary market impact Irb of the metaorders belonging to the same bin b and
the average of the relative sample mean of ηrb and F rb . We define a square identified by the center c = (c1, c2), where
c1 ∈ {1, . . . , n1}, by considering the bins in the neighbourhood of the center S1 = {c1 − 2, c1 − 1, c1, c1 + 1, c1 + 2}
and S2 = {c2−2, c2−1, c2, c2 +1, c2 +2}. The square is defined by S(c1, c2) = S1×S2. We select the bins belonging
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Figure 10: Contour plot of the best fitting local exponent δ̂(η, F ) (left panel) and γ̂1(η, F ) measured
in the plane η – F adopting the power law function. Green (brown) regions corresponds to locally
fitted exponent δ̂(η, F ) and γ̂1(η, F ) larger (smaller) than 0.5

local estimation of δ and γ as a function of F and η. The structure is very clear. The green
region on the left indicates that the local exponent δ̂(η, F ) is consistently larger for small η, and
consistently smaller than 0.5 for large η. The range of variation is significant, with δ̂ varying from
roughly 0.1 to 0.9.

Similarly, the behavior of the exponent γ̂1(η, F ) describing the power law scaling on F shows
clear structure, though the behavior is a bit more complicated. For small F the exponent γ̂1 is
close to one. For intermediate values of F the exponent is close to 0.3. The behavior for larger
values of F is more complicated, with high exponents for low participation rates and visa versa
for high participation rates.

In conclusion, the non trivial structure appearing in the investigation of the local exponents δ
and γ suggests that the logarithmic function g(η, F |a, b, c) better describes the temporary market
impact surface. The square-root predicted values γ = δ = 0.5 only works well in the central region
of the η − F plane.

4.3 Market impact during the execution of the metaorder

In this section we focus on the immediate market impact, i.e. how the market impact builds up
during the execution of a metaorder. We consider the following question: Given two metaorders

to a square S(c1, c2) and we fit the realised temporary market impact Irb as a function of the relative realised ηrb
and F rb . We consider a fitting function of the form f(η, F ) = CηδF 1−γ . We measure the best fitting parameters

δ̂(c) and γ̂(c) as a function of the center of the square c = (c1, c2).
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Figure 11: Immediate market impact (solid lines) of metaorders of different participation rate
η (increasing from the top left to the bottom right panel). Each solid line corresponds to the
immediate market impact of metaorders with duration Fi < F < Fi+1. The temporary market
impact is marked by a circle.

with the same participation rate η and different durations F1 and F2 (F1 < F2), should we expect
that the market impact reached at time F1 is the same for the two metaorders? A priori, when the
first is at its very end while the second one is still being executed, they should be indistinguishable
from the point of view of market impact, since the public information available up to this time is
the same for both metaorders (see also the discussion in the very recent paper of [9]).

In Figure 11 we show the result of our analysis10. The four panels refer to four different bins
of the participation rate η. In each panel we consider 10 bins of duration Fi. For each of them a
line represents the average price path during the execution I(v|Ω = {η, F}) for metaorders with
duration Fi < F < Fi+1. The circles are the temporary impacts for metaorders of volume time
duration Fi. The figure clearly gives a negative answer to our question. In fact, the price trajectories
deviate from the temporary market impact described by the circles. For small participation rates

10 A methodological comment is in order. The Ancerno database does not provide the number, time, volume,
or price of each individual transaction (or child-order) through which the metaorder has been executed. For this
reason we follow the price dynamics by using the public price information with one-minute time resolution.
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this effect is more evident and price trajectories are well above the immediate impact. Notice also
that in some cases the price reverts before the end of the metaorder11. A similar behavior was very
recently shown in Ref. [9]. For larger participation rates the price trajectories become closer and
closer to the circles representing the temporary impact.

The discussion presented in Section 3 helps us understanding this behaviour. We have seen that
within the Almgren-Chriss model, the market impact trajectories deviate from the temporary mar-
ket impact surface if the execution profile deviates from the VWAP trading profile. Front-loaded
execution profiles, used for example by risk averse investors, generate market impact trajectories
that stay above the market impact surface as shown in figure 4. However the Almgren-Chriss
model is not able to reproduce some of the main features of market impact since it predicts a
linear market impact. The propagator model, on the contrary, better reproduces the concavity
of the market impact surface and consistently makes it possible to recover the square-root law
describing the market impact curve. As we have seen in section 3.2, the model predicts that, also
in this case, front-loaded execution schemes have market impact trajectories that depart from the
impact surface and reach it from above. Consistently, the presence of a decaying kernel for the
impact, makes it possible to reproduce the fact that price starts to revert before the end of the
execution. If the trading pressure is softer than the market recovering force, market impact starts
reverting.

These results strongly suggest that the typical trading profile used by the brokers in our
database is not the widespread VWAP trading profile but a front loaded execution scheme. This
might be due to risk aversion or in order to avoid losing a profit opportunity. In fact, if the price
is expected to increase, it is better to buy more at the beginning of the metaorder and less at the
end. Unfortunately, these alternatives can not be tested within the information contained in the
Ancerno database.

4.4 Impact decay and permanent impact

In this section we consider the temporal dependence of the price after the execution of the
metaorder, i.e. how the market impact relaxes. The long term limit of the price, when all the tem-
porary effects have dissipated, is called permanent impact. Recently there has been a debate about
the value of the permanent impact and the dynamics of the price after the end of the metaorder.
Under the assumption that the metaorder size distribution has a power law tail with exponent 1.5,
the model of Farmer et al. [14] predicts a decay of the impact to a permanent value of roughly 2/3

11Note that, with this method, we are able to investigate in full detail the the market impact path in the early
stage of the execution, because for orders with duration Fi < F < Fi+1 we follow the price up to v = Fi, missing
the very last part. As a consequence, in figure 11 the magnitude of the reversion of the market impact path during
the execution is underestimated. On the contrary, this feature becomes more evident in the analysis performed in
the following section, see Figure 13 and 14. In that case, we follow the market impact path with great attention to
the late stage of the execution. We will observe that long metaorders with small participation rate present a strong
reversion, as clearly visible in Figure 14.
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Figure 12: Decay of temporary market impact after the execution of the meteorder. We follow the
normalised market impact path Iren(z) as a function of the rescaled variable z = v/F , without
conditioning on any variable. The market impact path of each metaorder is followed also in the
following day. The red horizontal line corresponds to 2/3, as predicted by the model of Farmer et
al. [14].

of the peak impact. Note however, that this assumption does not appear to be met in our data – as
seen in Figure 2, π clearly does not have a power law distribution. This has serious consequences,
since in this case their theory does not predict a square root market impact function. See Section
5 for a more complete discussion.

Here we consider the market impact trajectory I(v|Ω = {η, F}) after the end of the execution
of the metaorder, i.e. for v > F . In order to compare metaorders with different durations F , we
rescale time as z = v/F . In this way at metaorder completion it is z = 1 independently from the
metaorder duration F . We also rescale the market impact trajectory by dividing by the market
impact at the end of the execution of the metaorders I(v = F |Ω = {η, F}), i.e.

Iren(z|Ω = {η, F}) :=
I(z|Ω = {η, F})
I(z = 1|Ω = {η, F}) . (23)

The decay of the impact is presumably less dependent on the execution scheme than the immediate
impact, and therefore its study could be used, at least in principle, to investigate how well the
propagator model describes the price dynamics. As we will see, this is strictly true only if we can
neglect the order flow of other metaorders (for example if the participation rate of the conditioning
metaorder is large enough).

We first consider all the metaorders together and we compute the average rescaled path followed
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Figure 13: Decay of temporary market impact after the execution of a metaorder. We follow
the normalised market impact path Iren(z|Ω = {η, F}) as a function of the rescaled variable
z = v/F . Within each panel the solid lines correspond to the average market impact trajectory for
metaorders with different durations F ; the four panels correspond to different participation rates
η. We consider the price dynamics up to the end of day when the metaorder was placed. The
black line corresponds to the prediction of the propagator model with δ = 0.5. Overnight returns
and the price path of subsequent days are not considered in our analysis.

by the price after the end of the metaorder. The result is shown in Figure 12. We observe that
the price decays toward a value which is remarkably close to (though slightly higher than) 2/3 of
the peak impact. This is agreement with the results obtained for example in [10, 13].

The large size of our metaorder database allows us to perform an analysis of the price decay
conditioning on the duration and participation rate. Figure 13 shows the results. The four panels
refer to increasing values of the participation rate. In each panel the market impact path of
metaorders with several durations is presented. We follow the relaxation of the market impact
trajectories up to three times the duration of the metaorder, but we avoid introducing overnight
returns and following the price on subsequent days. In each panel we also show the prediction of
the propagator model for the market impact trajectory when γ = 0.5 (black line).

The figure shows that the price decay and its long term limit depend on η and F . For small
participation rates (top panels) the average permanent impact (across durations) is close to 2/3
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Figure 14: Decay of temporary market impact after the execution of the metaorder. We follow
the renormalised market impact path Iren(z|Ω = {η, F}) as a function of the rescaled variable
z = v/F . Each solid line corresponds to the average market impact trajectory computed on
metaorders characterised of low (top row) and high (bottom row) participation rate η and several
durations F (see legend). We consider metaorders with long durations 0.224 < F < 1 and we
follow the price path also in the following days (in contrast with the analysis of figure 11).

peak impact. However this is also the regime where we observe the strongest dependence of the
permanent impact on F . Longer metaorders relax more slowly than shorter metaorders, and at
the end of the period examined remain at higher price levels. This effect is bigger for smaller
participation rates12. On the contrary, for the largest participation rates the renormalised market
impact paths of metaorders are all very similar. The market impact relaxes toward zero and we
do not observe any flattening of the curve in the considered time window. Quite interestingly, in
this regime the market impact decay is well described by the prediction of the propagator model
with γ = 0.5, while for small and intermediate participation rates the price is systematically higher
than the value predicted by the propagator model.

12 This observation that metaorders with low participation rate revert more slowly is consistent with the notion
that reversion depends on detection by others of the presence or absence of the order. The beginning or end of a
low participation rate order is more difficult to detect, and should require more time for a given level of certainty,
giving a more sluggish reaction to completion of the order. Of course there may also be other explanations.
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We have also performed the previous analysis following the market impact decay on subsequent
days. This allows us to include metaorders with longer duration in the analysis. Considering
metaorders with the same duration as before, we observe that the global picture changes slightly
only for metaorders with very large participation rate. In the other cases it is approximatively
unchanged (data not shown). Considering metaorders with even longer duration, see Figure 14,
we observe the appearance of clear plateaux with height 0.8 - 1 times the peak impact. It is worth
also noticing that here, but also in the top left panel of Figure 13, the reversion of the price before
the end of the metaorder is much more clearly visible, as explained in footnote 11. Note that
the market impact trajectories of metaorders in this analysis often contain the overnight return
(contrary to the previous analysis). As seen by [8], we observe that the price decay essentially
stops when the trading day ends. However the presence of overnight returns increases significantly
the already large noise in the determination of permanent market impact.

4.4.1 The role of metaorder autocorrelations

The picture emerging from the previous analysis can be partly clarified by taking into account the
autocorrelation of the sign of metaorders. Positive autocorrelations in the signs of metaorders will
make the market impact of a single metaorder relaxation artificially high, as it becomes impossible
to isolate metaorders from each other. Moreover this effect is stronger for longer metaorders,
since the probability of overlapping with other metaorders is larger. It is also larger for lower
participation rates, since the market impact is easily overwhelmed by that of metaorders with larger
participation rates. On the contrary, we expect that the effect is milder for shorter metaorders,
because of the lower probability of overlap, and larger participation rates, because the effect of
metaorders with lower participation rates on price becomes negligible.

The overlap of the metaorders present in our database is summarized in Table 5. We observe
that, considering the time interval from the beginning of the metaorder up to three times its
duration after the end of the execution, on average, a given metaorder overlaps on average with 3.5
other metaorders. As expected, the average number of overlapping metaorders is larger for longer
metaorders (around 2 for the shortest ones and around 10 for the longest ones). On average, 55%
of these metoarders have the same sign. This implies that, on average, a metaorder is surrounded
by more metaorders of the same sign than of the opposite signs, and this effect enhances the
measured impact.

Very recently Ref. [8] considers trades from the same fund and traded following a signal and
show that they present a strong autocorrelation in time. The authors suggest that a positive
autocorrelation of sign of the metaorders can keep the impact artificially high. They suggested
a method to deconvolve their own trades to remove both their own impact and the information,
finding zero permanent impact on the time scale of 15 days. It is important to highlight that,
although consistent with [8], our measure of the autocorrelation of metaorders is obtained by
using an extensive database covering the trading activity of many different investors, rather than
all the metaorders of the same fund. Thus our analysis points out a herding among funds in their
trading of metaorders, rather than metaorders by the same institution in the attempt to exploit
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duration (mins) number # overlaps same sign opposite sign
0 - 10 368,484 1.7 0.548 0.452

10 - 25 117,756 3.0 0.553 0.447
25 - 50 71,031 4.6 0.553 0.447

50 - 100 52,931 6.6 0.547 0.453
100 - 200 43,884 8.0 0.546 0.454
200 - 390 49,411 9.3 0.543 0.457

0 - 390 703,497 3.54 0.548 0.452

Table 5: An analysis of overlap of metaorders. We consider the metaorders with participation
rate η > 0.005 traded on the 100 most populated stocks from January 2007 to December 2009.
This set has 703,497 metaorders. We consider nonintersecting bins according to the duration of
the metaorders (first column) and their relative number (second column). For each metaorder we
consider the time interval from the beginning up to 3 times its duration. We count the metaorders
in the whole set overlapping with the selected time interval. For each subset we report the average
number of overlapping metaorders ( # overlaps, third column). As expected, the number of
overlaps increases with the duration of the metaorder. We then measure the fraction of the
overlapping metaorders which have the same or opposite sign as the selected metaorder (fourth and
fifth columns). We observe that a constant average fraction (∼ 55%) of the overlapping metaorders
have the same sign, independent of the duration. This finding quantifies the autocorrelation of the
sign in the time series of the metaorders.

medium term signals as in Ref. [8].
The positive autocorrelation of metaorder signs qualitatively explains the findings on price

decay. Market impact trajectories of metaorders with very large participation rate are negligibly
perturbed by the other metaorders and their trajectories are roughly independent of duration
(bottom right panel of Figure 13). Moreover, the market impact trajectory is quite well described
by the propagator model. On the other hand, we have seen that the market impact trajectory
of metaorders with lower participation rate and longer durations deviates from each other and
from the prediction of the propagator model (top panels of Figure 13). We speculate that, in this
case, the market impact trajectories are kept artificially high by the effect of other metaorders
with the same sign and non-negligible participation rate. The fact that this effect is stronger for
low participation rates is consistent with our explanation. Although interesting and worthy of
investigation, a more in depth analysis of this aspect is beyond the scope of this paper.

5 Implications for fundamental models

One of the motivations for this paper is to test fundamental theories for market impact. In this
section we review these theories and discuss their possible implications in relation to the results
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presented here. We also offer some caveats, discussing possible effects that might distort our
results.

5.1 The latent order book approach of Toth et al.

Toth et al. [3] present a theory for market impact based on the concept of a latent order book.
The key idea is that the true order book does not reflect the actual supply and demand that are
present in the market, due to the fact that participants do not reveal their true intensions. They
show that for prices to be diffusive, i.e. for the variance to grow linearly with time, it is necessary
for the latent order book to have a linear profile around the current price, which implies a square
root impact function. This is supported by simulations of a simple agent-based model. They make
no prediction about how prices should relax after execution is completed, though in subsequent
empirical work this group suggests that once the predictive advantage of a trading strategy has
been removed the price relaxes slowly to zero [8].

That fact that we observe a logarithm for temporary impact appears to contradict the theory
of Toth et al. While we do observe that the square root is an approximation over part of the
range, we see substantial deviations. In addition the fact that we observe an impact surface with
logarithmic dependence on η and F separately is not consistent with their theory. However see
the caveats given below, as well as the discussion of the implications for the latent order book in
Section 4.1.1.

5.2 The fair pricing approach of Farmer et al.

Farmer et al [14] derive a fair pricing principle that, when combined with the martingale property
of prices, predicts that the average execution price should equal the final price when the metaorder
has completed and prices have been allowed to relax. This is done by deriving a Nash equilibrium
between informed traders and liquidity providers, in a setup that requires much stronger assump-
tions than the theory of Toth et al. above [3]. (This model can be viewed as an extension of
Kyle’s original model, but with more realistic assumptions. Farmer et al. assume batch executions
and that the beginning and end of metaorders is known by market participants. The functional
form of market impact depends on the distribution of metaorder sizes. Under the assumption that
the cumulative distribution of metaorder sizes is a power law with exponent −3/2 they predict a
square root impact and that after execution prices should revert to 2/3 of their peak value.

The analogous quantity to metaorder size studied here is π = Q/V . From Figure 2 it is clear
that this is not distributed according to a power law13. As a result, it is not clear what this model
implies. Further work is needed to fit a functional form to the distribution of π and work out the
predictions for market impact under the fair pricing principle, but this is beyond the scope of this
paper.

13 One complication is that we only study metaorders that are executed within the course of a single day, which
truncates the distribution. Nonetheless, based on Figure 2 it seems unlikely that removing this truncation would
restore a power law.
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5.3 Other theories

Several other theories deserve mention. The theory of Gabaix et al. [23] also predicts a square
root for market impact. However, this theory requires a very strong assumption, namely that the
utility function of investors has absolute risk aversion, i.e. they assume that investors have a utility
function of the form µ − σδ, where µ is the mean of returns and σ is the standard deviation and
δ = 1. If δ = 2, for example, then the impact becomes linear.

In view of our results a theory that is particularly worthy of mention is the PhD thesis of Austin
Gerig14 [32]. This model was an historical precursor to the theory of Farmer et al. discussed above.
As they did, Gerig assumed the prices form a martingale and that the starting and stopping times
of metaorders are observable, but made a different auxiliary assumption. This theory deserves
special mention because it is the only theory that we are aware of that predicts a logarithmic
dependence for market impact.

5.4 A few caveats

Our data has limitations and we should issue some caveats. In our data it is not possible to observe
the strategic intentions of the agents originating the metaorders. There may be preferential biases
that are invisible to us. In particular, suppose that execution of buy metaorders is sometimes
cancelled before completion if the price rises too much (or if selling if the price falls too much).
This will systematically bias the sample to make impact appear more concave. Even if the true
impact were a square root, this could make the measured impact more concave. Nonetheless, such
effects would have to be substantial, and it seems a bit surprising that they would result in such
good agreement with a logarithmic functional form.

Another important caveat that should be mentioned is the normalization by daily volume.
We make the implicit assumption, which has been almost universally made in prior work, that
liquidity is proportional to daily volume. This provides a (time varying) point of reference for
market impact. This is an assumption, and is not part of the predictions of any of the fundamental
theories discussed above. A failure of the core assumption that daily volume is the correct way to
measure liquidity could easily distort the shape of the impact function. The only exception to the
above is Kyle’s original 1985 model and the new Kyle-Obizhaeva market invariance model, which
predict a more complicated liquidity scaling [33]. We have not tested any such alternatives.

Finally we should remind the reader that we truncate all metaorders that are longer than one
day in duration (so that a metaorder that persists for n days is treated as n separate metaorders).
However, our inspection of the data suggests that this is rare – see Figure 1.

14 This was joint work with J.D. Farmer and F. Lillo.
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6 Conclusions

We have presented the most extensive empirical analysis of the market impact of the execution
of large trades performed so far, at least in terms of the number of metaorders and heterogeneity
of their originators that have been analyzed. The large dataset allows us to reduce the statistical
uncertainty in the analysis and thereby make stronger inferences about the functional form of
market impact. We have also linked together the raw data on metaorders with minute-by-minute
data on prices, so that we can study time dependent effects, such as the immediate impact as a
metaorder is executed and the reversion after it is completed. Our results extend but also contrast
with what is commonly believed about market impact. Some of our main conclusions are as follows:

• Market impact conditional on the daily fraction π (the ratio between the volume and the
average daily volume) is remarkably well described by a logarithmic function over more than
four orders of magnitude. In contrast, the square root impact law, which is widely used in
academia and industry, approximates market impact only for a couple of orders of magnitude
in π. Thus the form of market impact is strongly concave, even more so than suggested by
the square root law.

• The market impact surface captures an inherently bivariate dependence of impact on partic-
ipation rate and duration. As before, this bivariate dependence is much better represented
by a logarithm than by a power law. Furthermore, the good ”collapse” seen by conditioning
on π alone is substantially due to a compensation effect between residuals. That is, we show
that impact depends on F and η separately; however, when one aggregates by conditioning
only on π, the dependences tend to cancel each other.

• During execution the price trajectory deviates from the temporary market impact and some-
times the price starts reverting well before the end of the execution. This strongly suggests
that market impact is decaying even as the metaorder is being executed. We believe the lack
of correspondence is due to front-loaded execution. (This also reflects a limitation of our
analysis; we do not have detailed timestamps for the execution of the metaorder, and so we
are forced to assume uniform execution).

• The propagator model is only a good description of metaorder impact for metaorders with
high participation rate. This is likely due, at least in part, to the overlap (herding) between
metaorders of the same sign, which for moderate to low participation rate modifies the price
dynamics considerably.

• Prices clearly show a strong tendency toward reversion after metaorder execution ends. This
behavior strongly depends on both participation rate and duration. For high participation
rates orders of all duration relax in essentially the same way, consistent with a propagator
in which impact relaxes to zero as the square root of time. In contrast for low participation
rates orders of different duration behavior quite differently, with orders of longer duration
relaxing more slowly than those of short duration.
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Our results present several modeling challenges, since none of the available models are fully
capable of explaining our results. Indeed, the only model that we are aware of that predicts
logarithmic behavior is one due to the work of Farmer, Gerig and Lillo, which is reported in
Austin Gerig’s thesis [32]. These results are particularly surprising when compared to the work
of [3]. In that work they show that square root behavior of impact is a necessary condition for
diffusive behavior of prices, and that deviations from this should therefore result in arbitrage. This
raises the question of how the observed logarithmic impact can avoid this problem. Please note
however the caveats given in the previous section. At the very least our work suggests the need
for more large studies of market impact. Unless there are biases in our results as discussed above,
our work suggests that current fundamental theories of market impact have serious problems and
that models of market impact require further development.
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[11] B. Tóth, F. Lillo, and J. Farmer, “Segmentation algorithm for non-stationary compound
poisson processes. with an application to inventory time series of market members in a financial
market,” European Physical Journal B, vol. 78, pp. 235–243, 2010.

[12] H. Waelbroeck and C. Gomes, “Is market impact a measure of the information value of trades?
market response to liquidity vs. informed trades,” Market Response to Liquidity vs. Informed
Trades (July 9, 2013), 2013.

[13] N. Bershova and D. Rakhlin, “The non-linear market impact of large trades: Evidence from
buy-side order flow,” Quantitative Finance, vol. 13, no. 11, pp. 1759–1778, 2013.

[14] J. D. Farmer, A. Gerig, F. Lillo, and H. Waelbroeck, “How efficiency shapes market impact,”
Quantitative Finance, vol. 13, no. 11, pp. 1743–1758, 2013.

[15] R. Almgren and N. Chriss, “Optimal execution of portfolio transactions,” Journal of Risk,
vol. 3, pp. 5–40, 2001.

[16] A. Puckett and X. Yan, “Short-term institutional herding and its impact on stock prices,”
Unpublished working paper, University of Missouri, 2008.

[17] M. A. Goldstein, P. Irvine, E. Kandel, and Z. Wiener, “Brokerage commissions and institu-
tional trading patterns,” Review of Financial Studies, vol. 22, no. 12, pp. 5175–5212, 2009.

[18] T. J. Chemmanur, S. He, and G. Hu, “The role of institutional investors in seasoned equity
offerings,” Journal of Financial Economics, vol. 94, no. 3, pp. 384–411, 2009.

[19] R. Jame, “Organizational structure and fund performance: pension funds vs. mutual funds,”
Mutual Funds (January 22, 2010), 2010.

[20] M. A. Goldstein, P. Irvine, and A. Puckett, “Purchasing ipos with commissions,” Journal of
Financial and Quantitative Analysis, vol. 46, no. 05, pp. 1193–1225, 2011.

[21] A. Puckett and X. S. Yan, “The interim trading skills of institutional investors,” The Journal
of Finance, vol. 66, no. 2, pp. 601–633, 2011.

37



[22] J. A. Busse, T. Clifton Green, and N. Jegadeesh, “Buy-side trades and sell-side recommen-
dations: Interactions and information content,” Journal of Financial Markets, vol. 15, no. 2,
pp. 207–232, 2012.

[23] X. Gabaix, G. P., V. Plerou, and H. Stanley, “Institutional investors and stock market volatil-
ity,” Quarterly Journal of Economics, vol. 121, pp. 461–504, 2006.

[24] J.-P. Bouchaud, Y. Gefen, M. Potters, and M. Wyart, “Fluctuations and response in financial
markets: the subtle nature of “random” price changes,” Quantitative Finance, vol. 4, no. 2,
pp. 176–190, 2004.

[25] F. Lillo and J. D. Farmer, “The long memory of the efficient market,” Studies in Nonlinear
Dynamics & Econometrics, vol. 8, no. 3, 2004.

[26] D. E. Taranto, G. Bormetti, and F. Lillo, “The adaptive nature of liquidity in limit order
books,” Journal of Statistical Mechanics, p. P06002, 2014.

[27] J. Donier, J. Bonart, I. Mastromatteo, and J.-P. Bouchaud, “A fully consistent, minimal
model for non-linear market impact,” preprint at http://arxiv.org/abs/1412.0141, 2014.

[28] J. Gatheral, “No-dynamic-arbitrage and market impact,” Quantitative Finance, vol. 10, no. 7,
pp. 749–759, 2010.

[29] J. Gatheral, A. Schied, and A. Slynko, “Transient linear price impact and fredholm integral
equations,” Mathematical Finance, vol. 22, no. 3, pp. 445–474, 2012.

[30] N.-M. Dang, “Optimal execution with transient impact,” Available at SSRN 2183685, 2012.

[31] G. Curato, J. Gatheral, and F. Lillo, “Optimal order execution with nonlinear transient market
impact,” in preparation, 2014.

[32] A. Gerig, “A theory for market impact: How order flow affects stock price,” Available at
http://arxiv.org/abs/0804.3818 (PhD Thesis, University of Illinois at Urbana-Champaign),
2007.

[33] A. Kyle and A. Obizhaeva, “Market microstructure invariance: Theory and empirical tests,”
2014.

38


	1 Introduction
	2 Definitions and Data
	2.1 Definitions
	2.2 Metaorder execution data
	2.3 Market price data
	2.4 Metaorder statistics

	3 Heuristic models of market impact
	3.1 The Almgren-Chriss model
	3.2 The propagator model

	4 Measurements of market impact
	4.1 Market impact curve: testing the square-root formula
	4.1.1 Inferring latent order book from market impact

	4.2 Market impact surface: beyond the square-root formula
	4.3 Market impact during the execution of the metaorder
	4.4 Impact decay and permanent impact
	4.4.1 The role of metaorder autocorrelations


	5 Implications for fundamental models 
	5.1 The latent order book approach of Toth et al.
	5.2 The fair pricing approach of Farmer et al.
	5.3 Other theories
	5.4 A few caveats

	6 Conclusions

