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1 Introdu
tionGiven a bounded domain 
 of R2, we 
onsider the spa
e of maps u : 
 ! Csatisfying juj = 1 a.e. in 
div u = 0 in D0(
): (1.1)Equivalentely, taking u = r?g := (��x2g; �x1g), this spa
e 
oin
ides with the spa
eof all fun
tions g : 
! R solvingjrgj2 = 1 a.e. in 
:Inside this large spa
e we will restri
t our attention to the following 
lass of ve
tor�elds:Mdiv(
) := 8<: u : 
! C s.t. div u = 0 and 9� 2 L1(
) satisfying u = ei �and U� := div (ei �^a) is a �nite Radon measure in 
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where �(x)^a denotes the minimum between �(x) and a. Noti
e that the 
onditionon the lifting in (1.2) is nonlinear, unlike the divergen
e-free 
onstraint.The spa
e Mdiv(
) was introdu
ed in [RS2℄ and is the natural limit spa
e of thetwo dimensional variational problem modelising mi
romagnetism without vorti
es(see [RS1℄ and [ARS℄ for a detailed presentation of this problem). In brief, we
onsider the energy E�(u) := Z
 �jruj2 + 1� ZR2 jHuj2 dx;where Hu (the so-
alled demagnetizing �eld) is the 
url-free ve
tor�eld related to uby the PDE div (~u +Hu) = 0, ~u being the extension of u to R2 n 
 with the value0. Assuming that E�(u�) � C and u� = ei �� with �� 2 H1 uniformly bounded inL1, in Theorem 1 of [RS2℄ it is shown that the family �� has limit points (in the L1topology) as � ! 0+ and that any limit point ful�ls (1.2). Moreover, we have the� lim inf inequality lim infk!1 E�k(ei �"k ) � 2jU�1j(
�R)whenever �"k ! �1. In [Le℄ this 
ompa
tness result has been extended to the Mdivspa
e, see Theorem 3.6.The proof of these fa
ts is based, among other things, on some methods developedin [ADM℄ and in [DKMO1℄ in the very 
lose 
ontext of the Aviles-Giga problem (see[AG1℄, [AG2℄). In this setting one 
onsiders the energy fun
tionalsF�(v) := Z
 �jr2vj2 + (1� jrvj2)2� dx;so that the ve
tor �elds rv, up to a rotation, are exa
tly divergen
e-free but taketheir values on S1 only asymptoti
ally.At this stage a full �-
onvergen
e theorem in the mi
romagneti
s 
ase (and inthe Aviles-Giga problem as well) is still missing, although as we said the � lim infinequality is known to hold in general and the � lim sup inequality has been provedin some parti
ular situations. Besides, the results in [RS2℄ and [ARS℄ lead to a
hara
terization of energy minimizing 
on�gurations.The 
ompleteness of the �-limit analysis of this variational problem requires adeeper understanding of the spa
eMdiv(
). In parti
ular, a more pre
ise des
riptionof the singular sets of arbitrary maps in Mdiv(
) is a very natural question.As explained in [RS2℄, the measure div (ei �^a) �dete
ts� the singular set of �:for instan
e, it is proved in [LR℄ that � is lo
ally Lips
hitz in 
 if and only ifdiv (ei �^a) = 0 in D0(
�R). In the parti
ular 
ase where the lifting � is a fun
tionof bounded variation it is established in [RS1℄, [RS2℄ (using the Vol'pert 
hain rule2



in BV ) that the measure div ei �^a is 
arried by S�, where S� is the 
ountably H1-re
ti�able set where � has a dis
ontinuity of jump type, in an approximate sense(see Se
tion 2). Pre
isely, for any � 2 BV (
) su
h that div ei � = 0 one hasdiv (ei �^a) = �f��<a<�+g (ei a � ei ��) � �� H1 J�; (1.3)where �� are the approximate limits of � on both sides of S� and �� is 
hosenin su
h a way that �� < �+, and �f��<a<�+g is the 
hara
teristi
 fun
tion of theinterval (��; �+) inR. FinallyH1 J� denotes the 1-dimensional Hausdor� measurerestri
ted to J�.Our main motivation in this work is to extend su
h a des
ription of the jumpset to liftings � of ve
tor�elds in Mdiv(
). In [ADM℄ an example of a ve
tor�eld inMdiv(
) whi
h is not in BV (
;S1) is given. Pre
isely, the authors give an exampleof a map in the so-
alled Aviles-Giga spa
e AGe (see [AG1℄, [AG2℄, we follow theterminology of [ADM℄) whi
h is not in BV (
). We re
all that AGe(
) is made byall solutions u of the eikonal equation su
h thatdiv  ��u���3 ;���u���3! is a �nite Radon measure in 
for any orthonomal basis (�; �) of R2. Be
ause of the similarities between the twospa
es it happens that this map 
an be made also in Mdiv (the te
hni
al reasonsis that small jumps are penalized with a power faster than 1, see (3.5) and [RS1℄).Therefore the BV spa
e is too small for our analysis and there is no hope to a
hieveour goal by using the 
lassi
al results of the BV theory.It is proved in [RS2℄ that a lifting � of a ve
tor�eld in Mdiv solves the followingkineti
 equation :iei a � rx[�(�(x)� a)℄ = �a �div ei �^a� in D0(
�R); (1.4)where � denotes the 
hara
teristi
 fun
tion of R+. By applying now 
lassi
al resultsof regularity of velo
ity averaging of solutions to kineti
 equations (see [DLM℄),one gets that solutions to (1.4) for whi
h the jump distribution div (ei �^a) is a�nite Radon measure are in W �;p(
) for any � < 15 and p < 53 . Taking advantageof the spe
i�
ity of the solution f = [�(�(x) � a)℄ solving the general equationieia �rxf = �ag, where g = div (ei �^a), P.E. Jabin and B. Perthame in [JP℄ improvedthe Sobolev exponents and showed that� 2 W �;p(
) 8� < 13 and p < 32 : (1.5)Still being a ni
e improvement, this is far from being enough to tell us somethingon the stru
ture of the singular set of � (one would like for instan
e to get as 
loseas possible to the situation where �p = 1).3



Leaving aside the 
lassi
al linear Fun
tional Analysis approa
h, whi
h is perhapsnot the most appropriate one to explore our non linear spa
e Mdiv(
), we adopthere a more dire
t approa
h working dire
tly on the singular set � through a blow-upanalysis of the measure ��(B) := jU�j(B �R).Our main result is the following stru
ture theorem.Theorem 1.1. Let � be a lifting of u 2 Mdiv(
) as in (1.2). Then(i) The jump set J� is 
ountably H1-re
ti�able and 
oin
ides, up to H1-negligiblesets, with � := �x 2 
 : lim supr!0+ ��(Br(x))r > 0� :In additiondiv (ei �^a) J� = �f��<a<�+g (ei a � ei ��) � �� H1 J� 8a 2 R: (1.6)(ii) For H1-a.e. x 2 
 n J� we have the following VMO property:limr!0+ 1�r2 ZBr(x) j�� �j = 0;where � is the average of � on Br(x).(iii) The measure Æ := �� (
 n J�) is orthogonal to H1, i.e.B Borel with H1(B) < +1 =) Æ(B) = 0:Comparing this result with the BV theory, we expe
t that (ii) 
ould be improved,showing also 
onvergen
e of the mean values as r ! 0+ (and thus existen
e of anapproximate limit atH1-a.e. x 2 
nJ�). Moreover, by (1.3) and the VMO 
onditionout of J� we expe
t also that the measures div T au are 
on
entrated on J�. If thisis the 
ase, by the formula (see Theorem 3.2(ii))�� = ZR jdiv ei �^aj da (1.7)one would get that the measure Æ in (iii) is identi
ally 0 and full re
ti�ability of themeasure ��. All these problems are basi
ally open, and it would be interesting evento show that Æ is singular with respe
t to the 2-dimensional Lebesgue measure, thusshowing that Æ is a Cantor-type measure (a

ording to the terminology introdu
edin [DeGA℄, [A℄ for BV fun
tions). We prove that Æ is identi
ally 0 by makingan additional mild regularity assumption on �, namely H1(� \ 
 n �) = 0, seeTheorem 6.4 whose proof is based on the results in [ALR℄.4



As explained in the paper the uniqueness of the tangent jump measure whiledilating at a point where the 1-upper density of the jump measure is nonzeroisstrongly related to the uniqueness result established in [ALR℄.It is likey that this analysis 
an be extended to s
alar �rst order 
onservationlaws with stri
tly 
onvex non-linearities, where the 
lassi
al Oleinik uniqueness resultplays the role of our uniqueness result in [ALR℄. Pre
isely, given a solution � onR�R+ of ���t + �(A Æ �)�x = 0for A00 > 0 and assuming that, for any S 2 Lip(R), one has thatm = �(S Æ �)�t + �(Q Æ �)�x 2 Mlo
(R�R+);where S 0A0 = Q0 and where Mlo
(R�R+) denotes the the distributions whi
h areRadon measures in R�R+, then we expe
t a similar stru
ture theorem to be truefor the measure m.Now we brie�y des
ribe the 
ontents and the te
hniques used in this paper.Se
tion 2 
ontains some basi
 material about BV fun
tions, approximate 
ontinuity,approximate jumps. The main result is Proposition 2.3, where we �nd a ne
essaryand su�
ient for a lifting � to be a fun
tion of bounded variation.Se
tion 3 
ontains the main basi
 properties of the spa
e Mdiv. In parti
ular weshow the identity (1.7) and, as a 
onsequen
e, the absolute 
ontinuity of �� withrespe
t to H1.In Se
tion 4 we study some properties of 
on
ave fun
tions whose gradient satis-�es the eikonal equations. These properties are used in the last se
tion of the paperfor the 
lassi�
ation of blow-ups.Se
tion 5 is devoted to some abstra
t 
riteria for the re
ti�ability of sets andmeasures in the plane. We use a 
lassi
al blow-up te
hnique (see [Pr℄ for mu
hmore on the subje
t), studying the asymptoti
 behaviour of the res
aled and renor-malized measures around a point. The renormalization fa
tor we use is simply theradius of the ball (see De�nition 5.1). The new observation here is that very weakinformations about the stru
ture of blow-ups allow to show that points where theupper 1-dimensional spheri
al density is positive are indeed points where the lower1-dimensional spheri
al density is positive, see Theorem 5.2. In our problem, thisinformation is used to show that �� (
 n S�) has zero 1-dimensional density, andtherefore is orthogonal with respe
t to H1.Se
tion 6 is devoted to the 
lassi�
ation of blow-ups. Here we use the ideathat any ve
tor-valued measure be
omes, after blow-up, a 
onstant multiple of apositive measure at a.e. blow-up point. This idea was �rst used by E. De Giorgito 
lassify blow-ups of sets of �nite perimeter (whi
h turn out to be halfspa
es) in5



his fundamental work [DeG℄ on the re
ti�ability of the redu
ed boundary of sets of�nite perimeter. Here this idea is pushed further, 
onsidering the measuresZR ei adiv ei �^a da; ZR g(a)div ei �^a da;all absolutely 
ontinuous with respe
t to ��, and blowing up at Lebesgue points ofall the respe
tive densities. We show in this way that any blow-up is either 
onstant,or jumps on a line, or jumps on a hal�ine, with a uniform (i.e. independent of the
hosen subsequen
e) lower bound on the width of the jump. This su�
es to applythe results of the previous se
tions, and to infer re
ti�ability.While 
ompleting this work we learned that C. De Lellis and F. Otto indepen-dently established in [DO℄ a stru
ture theorem similar to Theorem 1.1 for the Aviles-Giga spa
e. Their proof, still based on a blow-up argument, is more elaborate, sin
ein the 
ase of the Aviles-Giga spa
e the 
lass of blow-ups is a priori ri
her. It is alsointeresting to noti
e that no 
onne
tion with the theory of vis
osity solutions is usedin their paper.We 
lose this introdu
tion with the following table, summarizing the notationused without further explaination in the paper.
 A bounded open set in R2a ^ b The minimum of a and ba _ b The maximum of a and bv � w The s
alar produ
t of v and w\(v; w) The angle � 2 [0; �℄ su
h that v � w = jvjjwj 
os �v? The anti-
lo
kwise �=2 rotation of v, (�v2; v1)ei a The ve
tor (
os a; sin a)Br(x) The ball with 
entre x and radius r (x = 0 
an be omitted)H1 Hausdor� 1-dimensional measure in R2S1 Unit sphere in R2M(X) Finite Radon measures in XM+(X) Positive and �nite Radon measures in X� B Restri
tion of � to B, de�ned by �B�.2 Continuity points, jump points, BV fun
tionsLet us introdu
e some weak notions of 
ontinuity and jump, well studied in the
ontext of BV fun
tions. All of them have a lo
al nature and, to �x the ideas, wegive the de�nitions for some fun
tion f 2 L1lo
(R2;Rm).6



� (Approximate limit) We say that f has an approximate limit at x if thereexists a 2 Rm su
h thatlimr!0+ 1�r2 ZBr(x) jf(y)� ajdy = 0:The ve
tor a whenever exists is unique and is 
alled the approximate limit off at x. We denote by Sf the set of points where f has no approximate limit.� (Approximate jump points) We say that x is a jump point of f if thereexist a+; a� 2 Rm and �x 2 S1 su
h that a+ 6= a� andlimr!0+ 1�r2 ZB�r (x) jf(y)� a�j dy = 0;where B�r (x) = fy 2 Br(x) : �(y � x) � �x > 0g are the two half ballsdetermined by �x. The triple (a+; a�; �x) is uniquely determined up to a 
hangeof orientation of �x and a permutation of (a+; a�). We denote by Jf the set ofjump points of f .It is not hard to show (see [AFP℄) that Sf ; Jf are Borel sets, that Jf � Sf , andthat Sf is Lebesgue negligible.The following Lemma has been proved in [A1℄ in a more general 
ontext. Forthe sake of 
ompleteness we in
lude the proof.Lemma 2.1. Let (�l) be a family of 
ontinuous fun
tions de�ned on R whi
h sep-arates points. Let � 2 L1(R2) and set �l := �l Æ�. Then the following impli
ationshold:(i) � has an approximate limit at x if and only if all fun
tions �l have an approx-imate limit at x;(ii) If x is either an approximate 
ontinuity point or a jump point for all fun
tions�l, with the same normal to the jump, then the same is true for �.Proof. (i) We prove only the nontrivial impli
ation, the "if" one. Let us set X :=[�k�k1; k�k1℄. By the Stone-Weierstrass theorem the algebra A generated by thefamily (�l)l2N is dense in the set of 
ontinuous fun
tion of X, C(X), endowed withthe sup norm. If �l Æ � has an approximate limit at x for any l we infer that f Æ �has an approximate limit at x for any f 2 A. Sin
e A is dense in C(X), the identityfun
tion is the uniform limit of a sequen
e of fun
tions of A, so that � has anapproximate limit at x.(ii) The proof is similar, working in the two halfspa
es determined by the 
ommonnormal to the jumps. 7



Remark 2.2. Con
erning statement (ii), noti
e that if we assume in addition thatx is a jump point for at least one of the fun
tions �l, then x must be a jump pointof �, by (i).We are going to apply this result with �l(x) = (x _ bl) ^ 
l, where (bl; 
l) is afamily of open intervals. It is easy to 
he
k that the family (�l) separates points ifand only if the 
losed set R n [l(bl; 
l) has an empty interior.We re
all also some basi
 fa
ts aboutBV fun
tions whi
h will be used throughoutthe paper. We say that u 2 L1(
;Rm) is a BV (bounded variation) fun
tion, andwe write u 2 BV (
;Rm) (R1 
an be omitted), if its distributional derivatives Diu,i.e. hDiu; i := � Z
 � �xiu dx  2 C1
 (
); i = 1; 2are representable by �nite Rm-valued Radon measures in 
. We denote by jDuj(
)the total variation of the R2m-valued measure Du = (D1u;D2u). When u 2W 1;1(
;Rm) we have Du = ruL2 and thereforejDuj(
) = Z
 jruj dx:We re
all that the jump set of a BV fun
tion u is 
ountably H1-re
ti�able and thatZJu ju+ � u�j dH1 � jDuj(
): (2.1)Moreover, H1-a.e. any approximate dis
ontinuity point is a jump point, i.e.H1(Su n Ju) = 0: (2.2)Now we investigate under whi
h 
onditions a lifting of a fun
tion u 2 BV (
;S1)is itself a BV fun
tion.Proposition 2.3. Let � 2 L1(
) be su
h that(i) u := ei � 2 BV (
;S1);(ii) U� := div ei �^a 2 M(
�R).Then � 2 BV (
) and jD�j(
) � C [jU�j(
�R) + jDuj(
)℄for some 
onstant C. 8



Proof. Let �0 2 BV (
) be given by Lemma 2.4 below, satisfying ei �0 = ei �. Thenthere exists a unique k 2 L1(
;Z) su
h that � = �0 + 2�k. The goal is to showthat k 2 BV (
;Z).It is 
lear, sin
e �0 2 BV (
)\L1, that div (ei a^�0) 2 M(
�R). Therefore we
an dedu
e that����Z
 ZR 
os a �ei a^� � ei a^�0� � r da dx���� � Ck k1 (2.3)for any  2 C1
 (
), with C = jU�0j(
�R)+ jU�j(
�R). Noti
e that jU�0 j(
�R)
an be estimated (see (3.5)) with jD�0j(
) and this, in turn, 
an be estimated withjDuj(
).We observe that ei a^� = ei a^(�0+2�k) = ei (a�2�k)^�0 . Fixing x 2 
 and assumingk(x) > 0 to �x the ideas, we dedu
e from the remark above thatZR 
os a �ei a^�(x) � ei a^�0(x)� da = Z �0(x)+2�k(x)�0(x) 
os a(ei a � ei �0(x)) da= ei �0(x) Z 2�k(x)0 
os(b + �0(x)) �ei b � 1� db= ei �0(x) (�k(x) 
os�0(x)� i�k(x) sin�0(x))= �k(x) � 10 � :Combining this fa
t with (2.3) we have proved that����Z
 k � �x1 ���� � C k k1 8 2 C1
 (
):This shows that D1k is a �nite Radon measure in 
. A similar argument (repla
ing
os a by sin a in (2.3)) works for D2k.In the proof above we used the following lemma, whi
h ensures the existen
e ofa BV lifting.Lemma 2.4 (BV lifting). Let u 2 BV (
;R2) su
h that juj = 1 almost everywherein 
. Then there exists �0 2 BV (
; [�2�; 2�℄) verifying(i) u = ei �0 a.e. in 
;(ii) jD�0j(
) � C0jDuj(
), where C0 is an absolute 
onstant.9



Proof. Let �0 be a smooth fun
tion from R2 into [��2 ;+�2 ℄ su
h that for any z =(x1; x2) in S1 verifying x1 � 0, �0(z) is the angle in [��2 ; �2 ℄ su
h that ei �0(z) = z.Similarly we introdu
e �� to be a smooth map from R2 into [0; 2�℄ su
h that for anyz = (x1; x2) 2 S1 verifying x1 � 34 , ��(z) is the angle in [0; 2�℄ su
h that ei ��(z) = z.Sin
e u = (u1; u2) is in BV (
;R2), by the mean value theorem and the 
oareaformula in BV we may �nd � 2 [14 ; 12 ℄ su
h thatjD�fx: u1(x)��gj(
) � 4jDu1j(
);thus E = fx 2 
 : u1(x) � �g is a �nite perimeter set. By virtue of the Volpert's
hain rule (see for instan
e [AFP℄, Theorem 3.96), we have that both �0 Æ u and�� Æ u are in L1 \BV (
) and their total variations 
an be estimated with jDuj(
).Using now the de
omposability theorem ([AFP℄, Theorem 3.84), we have that�0 := �E �0 Æ u+ �
nE �� Æ uis in BV (
) andjD�0j(
) � [k�0k1 + k�1k1℄ jD�Ej(
) + jD(�0 Æ u)j(
) + jD(�1 Æ u)j(
):By 
onstru
tion we have ei � = u a.e. in 
 and � is a solution of our problem.3 The spa
e Mdiv(
)In this se
tion we introdu
e the main obje
t of study of the present paper.De�nition 3.1. We denote by Mdiv(
) the spa
e of two-dimensional ve
tor �eldsu in L1(
;S1) satisfying(P1) div u = 0 in D0(
);(P2) there exists a lifting � 2 L1(
), i.e. a map � satisfying u = ei �, su
h that thedistribution U� in D0(
�R) de�ned byhU�; (x; a)i := � ZR Z
 ei �(x)^a � rx (x; a) dxdais a �nite Radon measure in 
�R.For a 2 R we set T au := ei�^a 2 L1(
;S1) (this is a slight abuse of notation,sin
e T au depends on the lifting and not only on u, but it is justi�ed by the fa
tthat in the following the lifting of u will be kept �xed), so thathU�; i := ZRhdiv T au; (�; a)i da: 8 2 C1
 (
�R):10



Noti
e that, sin
e � 2 L1(
), then (P1) implies that div T au = 0 for all a 2 Rsu
h that jaj > k�k1. Finally, we denote by �� the proje
tion of jU�j on the �rstvariable, i.e. ��(B) := jU�j(B �R) for any B � 
 Borel.In the following theorem we state some basi
 properties of the trun
ated ve
tor�elds T au and a useful representation formula for U�.Theorem 3.2. Let u 2 Mdiv(
). Then, the following properties hold:(i) The map a 7! divT au satis�es the Lips
hitz 
ondition��hdivT au; i � hdiv T bu; i�� � Ln(
)kr k1jb� aj 8 2 C1
 (
): (3.1)(ii) ��(B) = RR jdivT auj(B) da for any Borel set B � 
. In parti
ular div T au isa �nite Radon measure in 
 for a.e. a 2 R.(iii) For a.e. a 2 R we have12Æ Z a+Æa�Æ divT bu db �!Æ!0+ div T au in M0(
):Proof. (i) Follows by the elementary inequality jT au� T buj � jb� aj.(ii) For any  (x; a) = f(x)g(a), with f 2 C1
 (
) and g 2 C1
 (R) we havehU�; (x; a)i = � ZR g(a) Z
 T au � rf(x) dxda:By approximation, the same identity holds if g is a bounded Borel fun
tion with
ompa
t support. Now, 
hoosing an open set A � 
 and f 2 C1
 (A) with kfk1 � 1and g = �(a;a+Æ) we getjU�j (A� (a; a+ Æ℄) � � Z a+Æa Z
 T bu � rf(x) dxdb;so that dda jU�j (A� (�1; a℄) � � Z
 T au � rf(x) dx 8a 2 R:Being f arbitrary, this gives that div T au is a �nite Radon measure in A anddda jU�j (A� (�1; a℄) � jdivT auj(A)11



for a.e. a 2 R. By integration it follows thatjU�j(A�R) � ZR jdivT auj(A) da (3.2)for any open set A � 
. On the other hand, the inequalityjU�j(
�R) � ZR jdiv T auj(
) da: (3.3)is easy to prove, using the de�nition of U�. From (3.2) and (3.3) we obtain the
oin
iden
e of the measures �� and R jdiv T auj da.The property (iii) is an easy 
onsequen
es of (ii) and of the Lips
hitz prop-erty (3.1): it su�
es to 
hoose Lebesgue points of the integrable fun
tion a 7!jdiv T auj(
).The following 
overing te
hni
al lemma will be used to show the absolute 
onti-nuity of �� with respe
t to H1.Lemma 3.3. Let K be a 
ompa
t set of 
. Then, there exists a sequen
e ( n) �C1
 (
; [0; 1℄) su
h that:(i)  n = 1 on K and spt  n ! K as n!1;(ii) lim supn!+1 Z
 jr nj dx � �H1(K).Proof. Let L = H1(K). By the de�nition of Hausdor� measure, for any n � 1 we
an �nd a �nite number of balls Bi = B(xi; ri) whose union 
overs K and su
h thatri < 1=n and Pi 2ri < L + 1=n. By the subadditivity of perimeter, the open setAn := [iBi has perimeter less than �L + �=n. Then, we set  n = �An � ��n, where�n < 1=n is 
hosen so small that still  n = 1 on K (it su�
es that �n < dist(K; �An))and the support of  n is 
ompa
t. Sin
e the total variation does not in
rease under
onvolution (see for instan
e Proposition 3.2(
) of [AFP℄) we haveZ
 jr nj dx = jD nj(
) � jD�Anj(
) � �L + �nand therefore  n has all the stated properties.Theorem 3.4 (Absolute 
ontinuity). The measure �� is absolutely 
ontinuouswith respe
t to H1, i.e. �(B) = 0 whenever B is a Borel H1-negligible set.
12



Proof. By the inner regularity of �� it su�
es to show that there exists C > 0 su
hthat, for all 
ompa
t sets K � 
, ��(K) � CH1(K). We will prove that, for alla 2 R su
h that div T au is a Radon measure on 
, the inequality jdiv T auj(K) �2�H1(K) holds for any 
ompa
t set K � 
. Then, sin
e div T au = 0 as soon asjaj > k�k1, by Theorem 3.2(iii) we obtain��(K) = ZR jdivT auj(K) da � 2�k�k1H1(K):Let a 2 R be su
h that � := div T au is a �nite Radon measure on 
. Bythe Hahn de
omposition theorem, there exists two disjoint Borel sets A+, A� su
hthat, if �+ and �� denote respe
tively the positive and negative parts of �, then�� = �� A�. Sin
e j�j = �+ + ��, it su�
es to prove that �+(K) � �H1(K) forany K � A+ 
ompa
t and ��(K) � �H1(K) for any K � A� 
ompa
t.Let K � A+ be 
ompa
t and let ( n) � C1
 (
; [0; 1℄) be given by Lemma 3.3.We have �+(K) = �(K) � limn!1Z
  n d� = � limn!1Z
 T au � r n dx� lim supn!1 Z
 jr nj dx � �H1(K):A similar argument works for 
ompa
t sets K � A�.In the 
ase when � 2 BVlo
(
) one 
an use Volpert's 
hain rule in BV to obtainan expli
it formula for div T au, see [RS2℄: it turns out thatdivT au = �(a; �+; ��)(ei a � ei ��^�+) � ��H1 J�; (3.4)where �(a; �+; ��) := 8<: 1 if �� < a < �+�1 if �+ < a < ��0 else.Moreover, the divergen
e free 
ondition gives ei �+ � �� = ei �� � �� at any point in J�.In parti
ular, 
hoosing �� in su
h a way that �+ > ��, Fubini theorem and (2.1)givejU�j(
�R) = ZR jdivT auj(
) da = ZR ZJ� �f���a��+gjei a � ei ��j dH1da� ZJ� j�+ � ��j(2 ^ 12 j�+ � ��j) dH1 � 2jD�j(
): (3.5)The following lemma provides an integral representation of the divergen
e, as-suming re
ti�ability of the measure and existen
e of jumps.13



Lemma 3.5. Let u 2 L1(R2;R2) and let K � R2 be 
ountably H1-re
ti�able. Ifdiv u is a Radon measure in R2 and H1(K \ Su n Ju) = 0, thendiv u K = (u+ � u�) � �H1 K \ Ju:Proof. Arguing as in Theorem 3.4 and using Lemma 3.3 one 
an easily show thatdiv u << H1, hen
e div u K is representable by �H1 K for some density fun
tion�. The fun
tion � 
an be 
hara
terized by a blow-up argument, using the fa
t thatK be
omes a line (here the re
ti�ability of K plays a role) after blow-up and ube
omes a jump fun
tion or a 
onstant fun
tion at H1-a.e. blow-up point of K.The following 
ompa
tness result has been proved in [Le℄ adapting the trun
ationargument of [RS2℄.Theorem 3.6 (Compa
tness). For any 
onstant M � 0 the setf� 2 L1(
) : k�k1 + jU�j(
�R) �Mgis 
ompa
t in L1(
) with respe
t to the strong topology.4 Some properties of 
on
ave fun
tionsIn this se
tion we study some properties of 
on
ave fun
tions g whose gradientsatis�es the eikonal equation. We re
all that the superdi�erential �g(x) of g at x isthe 
losed 
onvex set de�ned by�g(x) := �p 2 R2 : g(y) � g(x) + p � (y � x) 8y 2 R2	 :It follows immediately from the de�nition that the graph of �g, i.e. f(x; p) : p 2 �g(x)gis a 
losed subset of R2 � R2. Moreover, the Lips
hitz assumption on g gives�g(x) � B1 for any x. Finally, �g(x) = frg(x)g at any di�erentiability point of g.For any ! 2 S1 and any x 2 R2, the left and right dire
tional derivative along !of g at x are de�ned by r�! g(x) := limr!0�g(x+ r!)� g(x)r :For any x 2 Jrg we denote in the following by (rg+;rg�; �x) the triple de�ned inSe
tion 2.Proposition 4.1. Let g : R2 ! R be 
on
ave and satisfying jrgj = 1 a.e. in R2.Then, g satis�es the following properties:14



(i) If rg has an approximate limit at x, then g is di�erentiable at x. Moreover,setting Dx := fx + trg(x) : t < 0g, for H1-a.e. y 2 Dx, rg has an approxi-mate limit at y equal to rg(x).(ii) Let J be the set of approximate jump points of rg and let x 2 J . For any! 2 S1 su
h that ! � �x > 0, the partial derivatives r�! g(x) exist andr�! g(x) = ! � rg�(x) � ! � rg+(x) = r+! g(x): (4.1)Moreover, setting D�x := fx+ trg�(x) : t < 0g, for H1-a.e. y 2 D�x , rg hasan approximate limit equal to rg�(x).(iii) For all � > 0, we de�ne the following setsJ� := fx 2 J : jrg+(x)�rg�(x)j � �g�� := fx 2 R2 : diam (�g(x)) � �g:Then, J� � �� and �� is 
losed.Proof. The �rst two statements 
an be proved in the same way and we prove onlythe se
ond. By the de�nition of J there exist �x 2 S1 and rg+(x); rg�(x) 2 S1su
h that limr!0+ 1L2(B�r (x)) ZB�r (x) jrg(y)�rg�(x)jdy = 0: (4.2)For r > 0, let us de�negr(y) := g(x+ ry)� g(x)r ; y 2 B1:Then, rgr(y) = rg(x+ ry). By (4.2), rgr 
onverge in L1(B1) when r ! 0+ to thefun
tion G0(y) := � rg+(x) if y � �x > 0rg�(x) if y � �x < 0:By Sobolev embedding, this implies that (gr) uniformly 
onverges in B1 to a 1-Lips
hitz fun
tion g0 satisfying rg0 = G0. Sin
e gr(0) = 0 we have that g0(0) = 0and therefore g0 is uniquely determined:g0(y) := � y � rg+(x) if y � �x � 0y � rg�(x) if y � �x � 0But, for any ! 2 S1, we haver+! g(x) = limr!0+g(x+ r!)� g(x)r = limr!0+gr(!) = g0(!)15



and r�! g(x) = limr!0+g(x� r!)� g(x)�r = limr!0+ � gr(�!) = �g0(�!):Therefore, if we assume that ! � �x > 0, thenr�! g(x) = ! � rg�(x) and r+! g(x) = ! � rg+(x):Moreover, we have r�! g(x) � r+! g(x) sin
e the restri
tion of g to R! is 
on
ave.Let us now prove the se
ond part. Let x 2 J and let y 2 D�x . Sin
e the restri
tionof g to D�x is 
on
ave, we haver�rg�(x)g(y) � r+rg�(x)g(y) � r�rg�(x)g(x) = rg�(x) � rg�(x) = 1:Sin
e g is 1-Lips
hitz we obtain thatr�rg�(x)g(y) = r+rg�(x)g(y) = 1: (4.3)By (2.2), for H1-a.e. y 2 R2 either rg has an approximate limit at y, or y is anapproximate jump point of rg. If y 2 D�x , y 
an't be a jump point of rg. Indeed,assuming that y 2 J and applying (4.1) with ! = rg�(x), we haver�rg�(x)g(y) = rg�(y) � rg�(x) � rg+(y) � rg�(x) = r+rg�(x)g(y):By (4.3), rg�(y) � rg�(x) = r+g(y) � rg�(x) = 1. Thus, rg�(y) = rg+(y) =rg�(x), whi
h 
ontradi
ts the assumption y 2 J . Therefore, rg has an approximatelimit equal to rg�(x) at H1-a.e. y 2 D�x . The same argument 
an be used for D+xand (ii) is proved.(iii) First, let us show that J� � ��. Indeed, sin
e g is di�erentiable a.e., for anyx 2 J� we 
an �nd di�erentiability points x�h 
onverging to x su
h that rg(x�h )
onverge to rg�, hen
e the 
losednedd os the graph of �g gives that rg+(x) andrg�(x) are in �g(x). Thus, diam�g(x) � � and x 2 ��.The 
losedness of �� is an immediate 
onsequen
e of a 
ompa
tness argumentbased on the 
losedness of the graph of �g and on the fa
t that �g(x) � B1 for anyx.5 Re
ti�ability of 1-dimensional measures in theplaneIn this se
tion we 
onsider a measure � 2 M+(
) absolutely 
ontinuous with respe
tto H1, i.e. vanishing on any H1-negligible set. We de�ne��(�; x) := lim infr!0+ �(Br(x))r ; ��(�; x) := lim supr!0+ �(Br(x))r : (5.1)16



A general property is that ��(�; x) is �nite for H1-a.e. x (see for instan
e [AFP℄)hen
e the absolute 
ontinuity assumption gives that ��(�; x) is �nite for �-a.e. x.We de�ne also�+� := fx 2 
 : ��(�; x) > 0g ; ��� := fx 2 
 : ��(�; x) > 0g (5.2)and noti
e that ��� are Borel sets and ��� � �+� . Noti
e also that �+� is �-�nitewith respe
t to H1, as all the sets�� := fx 2 
 : ��(�; x) � �g (5.3)satisfy H1(��) � 2�(
)=� (see [AFP℄, Theorem 2.56). Therefore, by the Radon�Nikodým theorem, we 
an represent� = � �+� + � (
 n �+� ) = fH1 �+� + � (
 n �+� ) (5.4)for some f 2 L1(H1 �+� ). Noti
e that the residual part �r := � (
 n �+� ) is"orthogonal" to H1 in the following sense:H1(B) < +1 =) �r(B) = 0:This is a 
onsequen
e of the fa
t that ��(�r; x) is 0 for �r-a.e. x.The following de�nition is a parti
ular 
ase of the general one given in the fun-damental paper [Pr℄.De�nition 5.1 (Tangent spa
e to �). Given x 2 
 and r > 0, we de�ne theres
aled measures �x;r 2 M ((
� x)=r) by�x;r(B) := �(x + rB)rfor any Borel set B � (
� x)=r, so thatZ �(y) d�x;r(y) = 1r Z �(y � xr ) d�(y) 8� 2 C
 ((
� x)=r) :We denote by Tan(�; x) the 
olle
tion of all limit points as r ! 0+ of �x;r, in theduality with C
(R2).Noti
e that the de�nition above makes sense be
ause the sets (
� x)=r invadeR2 as r ! 0+. Moreover, as�x;r(BR) = �(BRr(x))r � 1 +R��(�; x) 8R > 0for r su�
iently small (depending on R), a simple diagonal argument shows thatTan(�; x) is not empty whenever ��(�; x) is �nite (and thus �-a.e.).17



Theorem 5.2 (Positive upper density implies positive lower density). Assumethat for some x 2 �+� the following properties hold(i) The density fun
tion f(r) := �(Br(x))=r is 
ontinuous in (0; Æ) for some Æ 2(0; dist(x; �
));(ii) ��(�; x) is �nite;(iii) There exists 
x > 0 su
h that any nonzero measure � 2 Tan(�; x) is repre-sentable by 
H1 L, where 
 � 
x and L is either a line or a hal�ine (notne
essarily passing through the origin).Then x 2 ��� .Proof. We introdu
e �rst some notation. Given a line or a half line L interse
tingthe open ball B1, we denote by L̂ the line 
ontaining it and by � its dire
tion (ifL = L̂ the orientation does not matter). We denote by hL 2 [0; 1) the distan
e of L̂from the origin. Finally we de�ne dL 2 [�1; 1℄ so thaty 2 L \ B1 () y 2 L̂ \B1 and y � � > �dL:An elementary geometri
 argument shows that, if dL � 0 and H1(L \ B1) � 1=2,then hL � p3=2.We assume by 
ontradi
tion that x =2 ��� , i.e. ��(�; x) = 0. Hen
eforth, we �x apositive number q < minf
x=2;��(�; x)g and �nd a de
reasing sequen
e (Ri) withf(Ri) < q=4 and then ri < Ri su
h that f(ri) = q and f(t) < q for t 2 (ri; Ri℄ (ri isthe �rst r below Ri at whi
h f hits q). Noti
e that ne
essarily Ri=ri � 4.Possibly extra
ting a subsequen
e, by assumptions (ii), (iii) we 
an assume thatthe res
aled measures �i = �x;ri weakly 
onverge, in the duality with C
(R2), to aRadon measure � = 
H1 L, where L is either a line or a hal�ine and 
 � 
x.As �i(B1) = q we obtain that �(B1) = �(B1) � q. On the other hand, as�i(Br) � qr for any r 2 (1; 4) we obtain�(B1) = q and �(Br) � qr 8r 2 (1; 4):In parti
ular the right derivative of g(r) := �(Br)=r at r = 1 is nonpositive.On the other hand, we have�(Br) = 
�dL +qr2 � h2L� 8r � 1;so that ddr+ g(r)����r=1= 
 ddr+ dL +pr2 � h2Lr ����r=1= 
h2L � dLp1� h2Lp1� h2L :18



This derivative is stri
tly positive if dL < 0. If dL � 0 we noti
e thatH1(L \ B1) = q
 � q
x < 12 ;hen
e hL � p3=2 and h2L > p1� h2L. Therefore the derivative above is stri
tlypositive in any 
ase. This 
ontradi
tion proves the theorem.The following re
ti�ability result is part of the folklore on the subje
t, but wein
lude a proof for 
onvenien
e of the reader.Theorem 5.3 (Re
ti�ability 
riterion). Assume that for �-a.e. x 2 ��� thereexists a unit ve
tor � = �(x) su
h that any measure � 2 Tan(�; x) is 
on
entratedon a line parallel to �. Then ��� is 
ountably H1-re
ti�able.Proof. For n � 1, let Sn be de�ned bySn := �x 2 
 : ��(�; x) � 1n�As H1 Sn � 2n� it follows that H1(Sn) < +1, therefore by the de
ompositiontheorem (see Corollary 2.10 in [F℄) we 
an write Sn = Srn [ Sun, where Srn \ Sun = ;,Srn is 
ountably H1-re
ti�able and Sun is purely unre
ti�able, i.e. its interse
tionwith any re
ti�able 
urve is H1-negligible. Let us show that H1(Sun) = 0. Then, ���will be 
ontained in a 
ountable union of re
ti�able 
urves and Theorem 5.3 will beproved.Let us de�ne, for any dire
tion ! 2 S1, for any angle � 2 (0; �2 ), x 2 R2 andr > 0, Sr(x; !; �) as the interse
tion of Br(x) with the 
oneny 2 R2 n fxg : j 
os \(y � x; !)j > j 
os �jo :having x+R� as axis. Sin
e Sun is purely unre
ti�able, by Theorem 3.29 in [F℄, forH1-a.e. x 2 Sun we havelim supr!0+ H1(Sun \ Sr(x; !; �))r � 16 sin � 8! 2 S1; 8� 2 (0; �2 ):In parti
ular, �xing �, we havelim supr!0+ � �Sr(x; �?(x); �)�r � 112n sin � for H1-a.e. x 2 Sun.19



Assuming by 
ontradi
tion that H1(Sun) > 0, 
hoose x 2 Sun where the above densityproperty holds and a sequen
e ri # 0 su
h that �x;ri ! � lo
ally weakly in R2 andlimi!1 � �Sri(x; �?(x); �)�ri � 112n sin �: (5.5)By assumption we know that � is 
on
entrated on a line L parallel to �, and (5.5)gives � �S1(0; �?(x); �)� � 112n sin � > 0:We will obtain a 
ontradi
tion by showing that the line L passes through the origin.If not, there is 
 > 0 su
h that �(B
) = 0, so that �(B
ri(x))=ri is in�nitesimal asi!1. This is not possible be
ause x 2 ��� .6 Classi�
ation of blow-ups and re
ti�abilityIn this se
tion we analyze the asymptoti
 behaviour of good liftings � of ve
tor �eldsu 2 Mdiv(
). In Proposition 6.1 and Theorem 6.2 we show that generi
ally a blow-up produ
es a lifting �1 with spe
ial features, i.e. either approximately 
ontinuousor jumping on a line or on a hal�ine. Moreover, there is a ri
h family of trun
ationswhi
h turns �1 into a BVlo
 ve
tor �eld.Then, in Theorem 6.3 we prove re
ti�ability of the 1-dimensional part of �� byshowing that the normal to the jump is independent of the sequen
e of radii 
hosenfor the blow-up, and a lower bound on the width of the jump of �1. The �rst infor-mation 
omes 
hoosing a Lebesgue point for the density fun
tion ~H 
hara
terizedby ZR ei adiv T au da = ~H��:The se
ond information 
omes 
hoosing Lebesgue point for the density fun
tions ~Hk
hara
terized by ZR ei kadivT au da = ~Hk��; k 2 (1; 2) \Q:This aspe
t of the proof is quite deli
ate, sin
e a priori the jump 
an be arbitrarilysmall and no universal 
onstant in the lower bound 
an be expe
ted, unlike in thetheory of minimal surfa
es. A linearization around k = 1 shows that small jumpsare uniquely determined by all ve
tors ~Hk.Proposition 6.1. Let u 2 Mdiv(
) and let � 2 L1(
) be a lifting satisfying (P2)in De�nition 3.1. For ��-almost every x0 2 
, from any sequen
e rn ! 0+ one 
an20



extra
t a subsequen
e ri su
h that the fun
tions �ri(x) := �(x0 + rix) 
onverge to�1 in L1lo
(R2).Moreover setting u1 := ei �1, the following properties hold:(i) There exist a nonnegative Radon measure � on R2 and a Lips
hitz map h :R! R su
h that div T au1 = h(a)� 8a 2 R:(ii) There exists a �nite or 
ountable family of open segments (possibly unbounded)Il = (bl; 
l) su
h that(a) R n [lIl has an empty interior;(b) for all l, divT 
lbl u1 = 0;(
) for all l, either div T ablu1 is a nonnegative measure for all a 2 Il ordivT ablu1 is a non-positive measure for all a 2 Il.Proof. By Theorem 3.4 we know that �� is absolutely 
ontinuous with respe
t toH1,hen
e (see Se
tion 5) the upper density ��(��; x) is �nite for ��-a.e. x. Hen
eforth,we 
hoose x0 with this property. Sin
e ��r(BR) = ��(BRr(x0))=r is equiboundedwith respe
t to r for any �xed R, the 
ompa
tness Theorem 3.6 and a diagonalargument ensure the �rst part of the statement. We 
an also assume that theres
aled measures (��)x0;ri as in De�nition 5.1 weakly 
onverge, in the duality withC
(R2), to some Radon measure �.In order to obtain the property stated in (i) we impose additional (but generi
)
onditions on x0. By Theorem 3.2(ii) we have that, for all g 2 C
(R), the Radonmeasure RR g(a)divT au da is absolutely 
ontinuous with respe
t to ��. Let D be a
ountable set dense in C
(R) and set�g := ZR g(a)divT au da 8g 2 D:Then, by the Radon-Nikodým theorem there exist fun
tions hg 2 L1(
; ��) su
hthat �g = hg��. By Proposition 3.2(ii) again we obtainZ
(hg � hg0) dx = ZR(g(a)� g0(a))hdiv T au; i da � sup jg � g0j Z
 j j d��for any  2 C1
 (
) and any g; g0 2 C
(R), hen
e khg � hg0k1 � sup jg � g0j (theL1 norm is 
omputed using �� as referen
e measure).Let us 
onsider the Borel set 
0 = 
 n[g2DShg of approximate 
ontinuity pointsof all maps hg, for g 2 D. Let B1(
0) be the spa
e of bounded Borel fun
tions21



on 
0, endowed with the sup norm. By the previous estimate, the map R whi
hasso
iates to g 2 D the fun
tionRg(x) := ap� limy!xhg(y); x 2 
0is 1-Lips
hitz between D and B1(
0). By a density argument R extends to a 1-Lips
hitz map de�ned on the whole of C
(R) and ea
h point x of 
0 is an approximate
ontinuity point of all fun
tions hg, g 2 C
(R), with approximate limit Rg(x).We �x x0 2 
0. Res
aling �g as in De�nition 5.1 we obtain(�g)x0;r = hg(x0 + r�)(��)x0;rand the approximate 
ontinuity of hg at x0, together with the fa
t that the upperdensity is �nite, ensures that (�g)x0;ri weakly 
onverge, in the duality with C
(R2),to Rg(x0)�. On the other hand, the identity(�g)x0;ri = ZR g(a)divT auri daand the 
onvergen
e in the sense of distributions of div T auri to divT au1 giveZR g(a)hdivT au1; �i da = Rg(x0) ZR2 �d� 8g 2 C
(R2); � 2 C1
 (R2):Now we �x �0 2 C1
 (R2) su
h that RR2 �0 d� = 1 (assuming with no loss of generalitythat �(R2) > 0) and noti
e that 
onsequentlyjRg(x0)j � kr�0k1 ZR jg(a)j da:If parti
ular, if gk weakly 
onverge to the Dira
 mass at a, then Rgk(x0) is bounded,and any limit point h satis�eshdivT au1; �i = h ZR2 � d� 8� 2 C1
 (R2):This implies that h does not depend on the approximating sequen
e, but only on a.The Lips
hitz property of h follows dire
tly by Proposition 3.2(i), using �0 as testfun
tion.Let us now prove that (i) implies (ii), assuming with no loss of generality that � isa nonzero measure. Then it su�
es to take as intervals the 
onne
ted 
omponents offh 6= 0g and the 
onne
ted 
omponents of the interior of fh = 0g. By 
onstru
tionthe 
omplement of the union of these intervals has an empty interior.22



Theorem 6.2. Let u 2 Mdiv(
) and let � 2 L1(
) be a lifting satisfying (P2) inDe�nition 3.1. For ��-almost every x0 2 
, from any sequen
e rn ! 0+ one 
anextra
t a subsequen
e ri su
h that the fun
tions �ri(x) := �(x0 + rix) 
onverge toin L1lo
(R2) to �1. Moreover the jump set J�1 of �1 
oin
ides, up to H1-negligiblesets, either with the empty set, or with a line or with a hal�ine K, not ne
essarilypassing through the origin.If K is a line and !K 2 S1, A 2 R2 are su
h that K = A+R!?K (see Figure 1),then �1 is 
onstant in the halfspa
es �� de�ned by�+ := �y 2 R2 : (y � A) � !K > 0	; �� := �y 2 R2 : (y � A) � !K < 0;	:(6.1)If K is a hal�ine and !K 2 S1, A 2 R2 are su
h that K = fA + t!?K : t > 0g(see Figure 1), then the approximate limits �+1 and ��1 are 
onstant H1 a.e. on K.Moreover, �1 is equal to ��1 a.e. in ��A , where��A := �� \ �y 2 R2 : y � Ajy � Aj � !?K � �u�l � !K)	:Proof. Keeping the notation of Proposition 6.1, in the following we denote by L0 theset of all l su
h that Il is not a 
onne
ted 
omponent of the interior of fh = 0g. Then,if l =2 L0, div T au1 = 0 for any a 2 Il. If l 2 L0, either div T au1 is nonnegative andnonzero for any a 2 Il or div T au1 is nonpositive and nonzero for any a 2 Il.Let us set ul := ei (�1_bl)^
l . Then ul is divergen
e free, be
ause divT blu1 =div T 
lu1 = 0 and ei (�1_bl)^
l + ei �1^bl = ei bl + ei �1^
l:Sin
e ei (�1_bl)^a + ei �1^bl = ei bl + ei �1^a; (6.2)we obtain that div T aul = div T au1 for a 2 Il, thereforedivT aul = � h(a)� if a 2 Il0 else. (6.3)In parti
ular ul 2 Mdiv(
). Moreover, either divT aul is nonnegative for any a 2 Ror div T aul is non-positive for any a 2 R. If we are in the �rst situation, byTheorem I.1 of [ALR℄, any fun
tion gl 2 W 1;1(R2) su
h that ul = �r?gl is avis
osity solution of the eikonal equation jrgj2 � 1 = 0 on R2. Therefore, gl is
on
ave and ul 2 BVlo
(R2) (see [AD℄). If we are in the se
ond situation, for anyfun
tion gl 2 W 1;1(R2) su
h that ul = r?gl we have the same statement. In both
ases, by applying Proposition 2.3, we obtain that �l 2 BVlo
(R2).23



In order to study the jump set of �1 we �rst study the behaviour of the fun
tions�l. If l =2 L0, by the previous dis
ussion we obtain that any fun
tion gl satisfyingul = �r?gl is a�ne (being 
on
ave and 
onvex) and therefore ul is 
onstant. AsU�l = 0, from Proposition 2.3 we obtain that �l is 
onstant as well.In the following we 
onsider l 2 L0 and, to �x the ideas (sin
e the argumentis similar for both 
ases), we assume that divT aul is a nonzero and nonnegativemeasure for any a 2 Il.We denote by Jl the set of approximate jump points of �l, by !l a unit normalof Jl and by �+l ; ��l the 
orresponding approximate limits of �l on ea
h side of Jl.Sin
e div ul = 0, then !l � ei �+l = !l � ei ��l on Jl. Thus, !l = �e i2 (�+l +��l ) and we
hoose !l = e i2 (�+l +��l ). Then, the expli
it formula (3.4) given in Se
tion 3 givesdivT aul = �(a; �+l ; ��l )(ei a � ei ��l ) � !lH1 Jl;where �(a; �+l ; ��l ) := 8<: 1 if ��l < a < �+l�1 if �+l < a < ��l0 else.But, div T aul is nonnegative for all a 2 R. Then, j�+l � ��l j < 2�, sin
e, otherwise,there would exist a 2 R su
h that �(a; �+l ; ��l )(ei a�ei ��l ) �!l < 0. In parti
ular Jl isalso the set of approximate jump points of ul. If ��l > �+l , then (ei a� ei ��l ) �!l � 0for any a 2 [�+l ; ��l ℄. Therefore, we must have �+l > ��l and j�+l � ��l j < 2� H1-a.e.on Jl and div T aul = �(��l ;�+l )(a)(ei a � ei ��l ) � !lH1 Jl: (6.4)Claim 1. �+l = 
l and ��l = bl H1-a.e. on Jl.First of all, we noti
e that 
l � �+l > ��l � bl H1-a.e. on Jl. Assuming by
ontradi
tion that f�+l < 
lg has positive H1-measure, we 
an �nd � > 0 su
hthat f�+l < 
lg \ f�+� � ��l > �g has positive H1-measure, and then an interval(�; � 0) � (bl; 
l) with length less than �=2 su
h thatE := f�+l 2 (�; � 0)g \ f�+l � ��l > �ghas positive H1-measure. From (6.4) we infer that div T aul E = 0 for a 2 (� 0; 
l),while div T aul(E) > 0 for a 2 (� � �=2; �). Sin
e h > 0 on (bl; 
l), this 
ontradi
ts(6.3). The argument for ��l is similar.Claim 2. For any 
hoi
e of l; m 2 L0 we have H1(Jl n Jm) = 0.Suppose that there exist l; m 2 L0 and A � Jl n Jm su
h that H1(A) > 0. Sin
e24



A\Jm = ;, (6.4) yields div T aum A = 0 for any a 2 R and (6.3) yields h(a)�(A) =0, so that �(A) = 0. On the other hand, the fun
tion �(��l ;�+l )(a)(ei a � ei ��l ) � !l is
onstant H1-a.e. on Jl by Claim 1. Moreover, this 
onstant is not 0 for any a 2 Il.Sin
e �(A) = 0, then jdiv T aulj(A) = 0 and therefore H1(Jl \A) = 0. Sin
e A � Jl,then H1(A) = 0 whi
h 
ontradi
ts the hypothesis and proves the 
laim.Claim 3. For any l 2 L0, Jl is 
ontained in one line.Let us re
all that the normal unit ve
tor !l to Jl is given by e i2 (�+l +��l ) and is 
onstantH1-a.e. on Jl. Let us assume that there exist x1; x2 2 Jl su
h that (x2�x1) �!l 6= 0and assume (up to a permutation of x1 and x2) that the s
alar produ
t is positive.We set ! := x2�x1jx2�x1j , so that ! � !l > 0. Sin
e the restri
tion of gl to the line R! is
on
ave, we must have r+! gl(x1) � r�! gl(x2):By Proposition 4.1 we getr+! gl(x1) = ! � rg+l (x1) = ! � (ei�+l )?and r�! gl(x2) = ! � rg�l (x2) = ! � (ei��l )?;so that ! � (ei�+l )? � ! � (ei�+l )?. On the other hand, sin
e ! � !l > 0 and �+l > ��l ,then ! � (ei�+l )? < ! � (ei��l )?, a 
ontradi
tion (this inequality 
an be easily 
he
kedin a frame where �+l + ��l = 0, so that !1 > 0). Therefore Jl must be 
ontainedin one line. By Claim 2, all sets Jl with stri
tly positive H1-measure (i.e. those
orresponding to l 2 L0) are 
ontained in the same line. Let us denote this line byR.Claim 4. There exists a 
losed set Kl � R su
h that H1(Kl�Jl) = 0.Let us re
all that Jl 
oin
ides with the set Jrgl of approximate jump points ofrgl = (ei �l)?, where gl is 
on
ave and satis�es jrglj = 1. Sin
e �+l = 
l and��l = bl H1-a.e. on Jl, taking � = jei 
l � ei bl j, it is 
lear that the 
losure Kl ofJ� := fx 2 Jgl : jrg+l (x) � rg�l (x)j � �g 
ontains H1-almost all of Jl. ByProposition 4.1, J� � ��, where �� := fx 2 R2 : diam(�gl(x)) � �g is a 
losedset. Therefore Kl � ��. But, �� � Srgl, where Srgl is the set of points wherergl doesn't have an approximate limit. Indeed, by Proposition 4.1 , at any point xwhere rgl has an approximate limit the fun
tion gl is di�erentiable, hen
e �gl(x) isa singleton. By (2.2) we inferH1(Kl n Jl) � H1(�� n Jl) � H1(Sgl n Jgl) = 0:For any l 2 L0, for H1-almost every x 2 Kl, rgl has an approximate limit atH1-almost every y 2 D�x and the approximate limit at a.e. point in the strip Sx2KlD�x25
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Figure 1: Behaviour of ei �1 when K is a line or a hal�ineis equal to rg�l (x) = (ei bl)?, sin
e ��l is 
onstant equal to bl H1-a.e. on K. In thesame way, one 
an show that rgl has an approximate limit at a.e. point in Sx2KlD+xequal to (ei 
l)?. If Kl is the whole line, then Sx2KlD�x = ��, where �� are the setsde�ned in (6.1). Therefore ul is 
onstant a.e. in �� and equal to ei��l . By Proposi-tion 2.3 we obtain that �l is 
onstant in the two halfspa
es as well.Now, let us assume that Kl is not the whole line and let us show that Kl must bea hal�ine. Assume that Kl is not 
onne
ted. There exists a bounded open interval S
ontained in R nKl, whose endpoints s1; s2 belong to Kl. We will denote by K1; K2the 
omponents of Kl 
ontaining s1 and s2 respe
tively. Set R�i := Sx2KiD�x , i = 1; 2.The regionR2n(R�1 [R+1 [R�2 [R+2 ) 
an be divided into three parts A+; A�; C (seeFigure 2). If y 2 A+ is a point of approximate 
ontinuity of rgl, then rgl(y) mustbe equal to (ei 
l)?, otherwise the hal�ine D+y would 
ross R�1 or R�2 and this would
ontradi
t the result of Proposition 4.1 (ii). If y 2 A� is a point of approximate
ontinuity of rgl, by the same argument, rgl(y) = (ei bl)?. If y 2 C is a point ofapproximate 
ontinuity of rgl, then rgl(y) 
an only be equal to (ei 
l)? or (ei bl)?(see Figure 2). Then, C 
ontains a set of approximate jump points of rgl. But, byhypothesis, Kl \ C = ;, hen
e H1(Jl \ C) = 0. Therefore, Kl must be 
onne
ted.If Kl is not the whole line, then Kl has one or two endpoints. Let A be oneendpoint ofKl and let !K be the unit normal toKl su
h thatKl � fA+t!?K : t � 0g.26
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1Figure 2: K must be 
onne
tedLet us de�ne the 
one C byC := �y 2 R2 n fAg : y � Ajy � Aj � !?K � �ei ��l � !K	:Let C 0 be any open set 
ontaining C su
h that C 0 \K = fAg and C 0 \K = ;. Then,div T aul = 0 in D0(C 0) for any a 2 R. Using the result of [LR℄, �l is lo
ally Lips
hitzin C 0. Therefore, for a.e. x in C 0, r�l(x) exists and div ei �l(x) = (ei �l(x))? �r�l(x) =0. Then, r�l(x) is parallel to ei �l(x) for a.e. x 2 C 0. Therefore for any a 2 R thetangent to the level set f�l = ag at x is orthogonal to ei �l(x) whi
h is equal to ei aon f�l = ag. Hen
e, the level sets f�l = ag are straight lines oriented by (ei a)? andthe only possible 
on�guration in C is the one des
ribed in Figure 1.Finally, we 
an ex
lude the 
ase of Kl is a segment or a single point (Figure 3).Indeed, 
hoose R > 0 su
h that Kl � BR. Sin
e H1(Jl nBR) = 0, the sli
ing theoryof BV fun
tions (see [AFP℄, Theorem 3.108) shows that for a.e. r 2 (R;R + 1) therestri
tion of �l to �Br is (equivalent to) a 
ontinuous BV fun
tion. Therefore ul hasa 
ontinuous lifting in �Br and its topologi
al degree is 0. This is in 
ontradi
tionwith the fa
t that there are vorti
es whi
h have the same orientation �l at the twoendpoints of Kl. Therefore, Kl is a hal�ine.27



K

Figure 3: K 
an't be a segmentBy Claims 2 and 4 we obtain that all lines (or hal�ines) Kl, l 2 L0, 
oin
ide.Hen
eforth we set K = Kl. By Lemma 2.1 and Remark 2.2 we obtain that �1 hasan approximate limit H1-a.e. in R2 nK and H1-a.e. point of K is a jump point of�1. Moreover, as all limits ��l are 
onstant on J�1, the same is true for ��1.Theorem 6.3 (Main re
ti�ability theorem). Let u 2 Mdiv(
) and let � 2L1(
) be a lifting satisfying (P2) in De�nition 3.1. Then the set� := fx 2 
 : ��(��; x) > 0g (6.5)is 
ountably H1-re
ti�able and 
oin
ides, up to H1-negligible sets, with J�. Moreover,for H1-a.e. x 2 
 n J� we havelimr!0+ 1�r2 min
2R ZBr(x) j�(y)� 
j dy = 0: (6.6)Proof. Step 1. We show that �0 := f��(��; �) > 0g is 
ountably re
ti�able, usingTheorem 5.3. To this aim we show that for �-a.e. x any � = limi(��)x;ri 2 Tan(��; x)is supported on a line whose dire
tion depends on x only.We proved in Theorem 6.2 that (possibly passing to a subsequen
e) we 
anassume that �ri = �(x+ riy)! �1 in L1lo
(R2). Moreover, there exists a 
losed set28



K, the empty set, a line or a hal�ine, su
h that H1(K�J�1) = 0. Denoting by !Kthe orientation of K su
h that ei (�+1+��1)=2 = !K, now we show thatdiv T au1 = (T au+1 � T au�1) � !KH1 K 8a 2 R (6.7)using Lemma 3.5. To this aim, we need only to 
he
k that T au1 is divergen
e-free in 
 n K. If a belongs to some interval (bl; 
l), this follows by the identitydiv T au1 = div T aul (see (6.2) and by (3.4), be
ause J�l � K up to H1-negligiblesets. In the general 
ase one 
an argue by approximation, using the fa
t that the
omplement of [l(bl; 
l) has an empty interior.One 
an show, by a dire
t 
omputation based on (6.7), that the ve
tor-valuedmeasure RR ei adiv T au1 da is oriented by !K, and pre
iselyZR ei adivT au1 da = 12 ��+1 � ��1 � sin(�+1 � ��1)�!KH1 K (6.8)(this 
omputation is easily done in a frame where !K = (1; 0), so that �+1 = ���1+4k� for some k 2 Z and the periodi
ity and the odness of the integrand show thatthe integral of the se
ond 
omponent is 0). Moreover, the ve
tor-valued measure�1 := RR ei adiv T au da satis�es, by Theorem 3.2(ii), the inequality j�1j � ��. Thus,there exists a ve
tor-valued fun
tion ~H 2 L1(
; ��) su
h that �1 = ~H�� and j ~Hj � 1.In addition to the previous generi
 
onditions imposed on x0, assume also that x0is a Lebesgue point of ~H, relative to the measure ��. Then(�1)x0;ri ! ~H(x0)� in M0(R2):On the other hand, the 
onvergen
e of �ri to �1 implies(�1)x0;ri = ZR ei adiv T auri da! ZR ei adiv T au1 da in D0(R2):Therefore ZR ei adiv T au1 da = ~H(x0)�:Comparing this expression with (6.8) we obtain12 ��+1 � ��1 � sin(�+1 � ��1)�!KH1 K = ~H(x0)�: (6.9)Therefore !K does not depend on the sequen
e 
hosen, but only on x0.Step 2. We show that ��(� n �0) = 0 using Theorem 5.2. Sin
e H1(S \ S 0) = 0whenever S 6= S 0 are 
ir
les, the family of all 
ir
les S su
h that ��(S) > 0 is at most29




ountable, and the same is true for their 
enters. Therefore we 
an 
hoose x0 outof this set, so that the density fun
tion f(r) := ��(Br(x0)) is 
ontinuous. In orderto 
he
k 
ondition (iii) of Theorem 5.2, for k 2 Q \ (1; 2) we de�ne the measures�k := RR ei kadiv T au da, all absolutely 
ontinuous with respe
t to ��, we denote by~Hk 2 L1(
; ��) their densities with respe
t to �� and we 
hoose a Lebesgue pointx0 for all fun
tions ~Hk (relative to ��).Assuming that � is not identi
ally 0, we have to show that � = 
H1 K with
 � 
(x0) > 0. By (6.9) and sin
e ��1 are 
onstant on K, we know that � = 
H1 K,where 
 is 
onstant on K. Moreover,
j ~H(x0)j = 12 ��(�+1 � ��1)� sin(�+1 � ��1)�� : (6.10)Therefore, if j�+1���1j � �=2, we have 
 � (�=2�1)=2 be
ause j ~H(x0)j � 1. Settingd := j�+1 � ��1j=2 > 0, in the following we show that d (and therefore 
, by (6.10))is uniquely determined by ~Hk(x0) whenever d � �=4. We 
an assume with no lossof generality (possibly making a rotation and adding to �1 an integer multiple of2�) that !K = (1; 0), �+1 = �d and ��1 = �d. Then, arguing as in Step 1 we getZR ei kadiv T au1 da = ~Hk(x0)� 8k 2 (1; 2) \Q:On the other hand, 
omputing the left side we �nd that its real part equals 2k(k2�1)Fd(k)H1 K,where Fd(k) := (sin kd 
os d� k 
os kd sin d) :Then Fd(k) 6= 0 if and only if ~Hk(x0) � !K 6= 0 and
 = 2k(k2 � 1) Fd(k)~Hk(x0) � !K : (6.11)It turns out that the ratios�k;m(d) := Fd(k)Fd(m) = k(k2 � 1)m(m2 � 1) ~Hk(x0) � !K~Hm(x0) � !K (6.12)(when de�ned) depend on x0, k and m but not on d, so that the fun
tions Fd andFd0 are proportional whenever d; d0 satisfy (6.12). A Taylor expansion at k = 1 givesFt(k) = (k � 1)(t� sin t 
os t) + (k � 1)2t sin2 t:Therefore Ft(k) 6= 0 for k � 1 su�
iently small and the 
onstant ratio between Fdand Fd0 must be equal tod� sin d 
os dd0 � sin d0 
os d0 and d sin2 dd0 sin2 d0 :30



Therefore g(d) = g(d0), where g(t) := t� sin t 
os tt sin2 t :A dire
t 
omputation shows that g is stri
tly de
reasing in (0; �=4). Therefored = d0.Step 3. Now we show the last part of the statement. Sin
e we know that �� � isa re
ti�able measure, by Theorem 2.83 of [AFP℄ we know that Tan(�� �; x), is asingleton for H1-a.e. x 2 
, therefore Tan(��; x) is a singleton for H1-a.e. x 2 �.Coming ba
k to (6.9) we obtain that the jump �+1 � ��1 is uniquely determinedH1-a.e., and the same is true for �+1+��1 modulo 2�. Hen
e, �+1 is only determinedmodulo 2�, H1-a.e. on � and ��1 is given by ��1 = �+1 � (�+1 � ��1) when �+1 isknown.Let us de�ne the following measures, all absolutely 
ontinuous with respe
t to ��:�k := Z 2(k+1)�2k� div T au da; 8k 2 Z:Let us denote by tk 2 L1(
; ��) their densities with respe
t to �� and let us 
hoosea Lebesgue point x0 of all fun
tions of tk. As in Step 1, we haveZ 2(k+1)�2k� divT au1 da = tk(x0)� 8k 2 Z:By (6.7), div T au1 = 0 as soon as a =2 [��1; �+1℄. Let us de�ne X0 := fk 2 Z :tk(x0) = 0g. Then, k 2 X0 if and only if (2k�; 2(k+1)�)\ [��1; �+1℄ = ;. Let k0 2 Zbe su
h that �+1 2 [2k0�; 2(k0 + 1)�). Then, ��1 2 [2(k0 � l0)�; 2(k0 � l0 + 1)�),where l0 2 N depends only on �+1���1 and k0 depends on X0 in the following way:Z nX0 = fk0� j : 0 � j � l0g. Sin
e X0 only depends on x0, then k0 only dependson x0 and �+1 is uniquely determined. Thus �+1 and ��1 are uniquely determined�-a.e. on �. Hen
eforth H1-a.e. x0 2 � is a jump point of �.Finally, (6.6) and the in
lusion J� � � follow by the fa
t that any blow-up limit�1 at points x =2 � is 
onstant. Indeed, ei �1 = �r?g1 is 
onstant, (being g1
on
ave and a�ne, see [ALR℄) and U�1 = 0, so that �1 is 
onstant by Proposi-tion 2.3.In 
on
lusion, the statements made in Theorem 1.1 of the introdu
tion followby Theorem 6.3 with the only ex
eption of (1.6). The latter follows by applyingLemma 3.5 to the ve
tor�eld T au, with K = J�.Theorem 6.4. Let u; � as in Theorem 6.3 and assume thatH1(� \ 
 n �) = 0;31



where � is de�ned by (6.5). Then �� is 
on
entrated on J� and therefore is a 1-dimensional re
ti�able measure.Proof. Let g be a 1-Lips
hitz fun
tion su
h that u = �r?g and re
all that �
oin
ides, up to H1-negligible sets, with J�. The blow-up argument in [ALR℄ showsthat g is a vis
osity solution of the eikonal equation jrgj2 � 1 = 0 in set 
 n �,sin
e U�1 = 0 for any blow-up fun
tion �1 at any point x 2 
 n �. Therefore, gis lo
ally semi
on
ave in the open set A := 
 n � and its gradient (and u as well)is a BVlo
 fun
tion in A. By Proposition 2.3 we obtain that � 2 BVlo
(A) and (3.4)gives �� A = 0 be
ause A \ J� is H1-negligible. Therefore �� is supported on �and the absolute 
ontinuity of �� with respe
t to H1 leads us to the 
on
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