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On the reti�ability of defet measures arisingin a miromagnetis model �Luigi Ambrosioy, Bernd Kirhheimz, Myriam Leumberryx, Tristan Rivière{May 30, 2002
1 IntrodutionGiven a bounded domain 
 of R2, we onsider the spae of maps u : 
 ! Csatisfying juj = 1 a.e. in 
div u = 0 in D0(
): (1.1)Equivalentely, taking u = r?g := (��x2g; �x1g), this spae oinides with the spaeof all funtions g : 
! R solvingjrgj2 = 1 a.e. in 
:Inside this large spae we will restrit our attention to the following lass of vetor�elds:Mdiv(
) := 8<: u : 
! C s.t. div u = 0 and 9� 2 L1(
) satisfying u = ei �and U� := div (ei �^a) is a �nite Radon measure in 
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where �(x)^a denotes the minimum between �(x) and a. Notie that the onditionon the lifting in (1.2) is nonlinear, unlike the divergene-free onstraint.The spae Mdiv(
) was introdued in [RS2℄ and is the natural limit spae of thetwo dimensional variational problem modelising miromagnetism without vorties(see [RS1℄ and [ARS℄ for a detailed presentation of this problem). In brief, weonsider the energy E�(u) := Z
 �jruj2 + 1� ZR2 jHuj2 dx;where Hu (the so-alled demagnetizing �eld) is the url-free vetor�eld related to uby the PDE div (~u +Hu) = 0, ~u being the extension of u to R2 n 
 with the value0. Assuming that E�(u�) � C and u� = ei �� with �� 2 H1 uniformly bounded inL1, in Theorem 1 of [RS2℄ it is shown that the family �� has limit points (in the L1topology) as � ! 0+ and that any limit point ful�ls (1.2). Moreover, we have the� lim inf inequality lim infk!1 E�k(ei �"k ) � 2jU�1j(
�R)whenever �"k ! �1. In [Le℄ this ompatness result has been extended to the Mdivspae, see Theorem 3.6.The proof of these fats is based, among other things, on some methods developedin [ADM℄ and in [DKMO1℄ in the very lose ontext of the Aviles-Giga problem (see[AG1℄, [AG2℄). In this setting one onsiders the energy funtionalsF�(v) := Z
 �jr2vj2 + (1� jrvj2)2� dx;so that the vetor �elds rv, up to a rotation, are exatly divergene-free but taketheir values on S1 only asymptotially.At this stage a full �-onvergene theorem in the miromagnetis ase (and inthe Aviles-Giga problem as well) is still missing, although as we said the � lim infinequality is known to hold in general and the � lim sup inequality has been provedin some partiular situations. Besides, the results in [RS2℄ and [ARS℄ lead to aharaterization of energy minimizing on�gurations.The ompleteness of the �-limit analysis of this variational problem requires adeeper understanding of the spaeMdiv(
). In partiular, a more preise desriptionof the singular sets of arbitrary maps in Mdiv(
) is a very natural question.As explained in [RS2℄, the measure div (ei �^a) �detets� the singular set of �:for instane, it is proved in [LR℄ that � is loally Lipshitz in 
 if and only ifdiv (ei �^a) = 0 in D0(
�R). In the partiular ase where the lifting � is a funtionof bounded variation it is established in [RS1℄, [RS2℄ (using the Vol'pert hain rule2



in BV ) that the measure div ei �^a is arried by S�, where S� is the ountably H1-reti�able set where � has a disontinuity of jump type, in an approximate sense(see Setion 2). Preisely, for any � 2 BV (
) suh that div ei � = 0 one hasdiv (ei �^a) = �f��<a<�+g (ei a � ei ��) � �� H1 J�; (1.3)where �� are the approximate limits of � on both sides of S� and �� is hosenin suh a way that �� < �+, and �f��<a<�+g is the harateristi funtion of theinterval (��; �+) inR. FinallyH1 J� denotes the 1-dimensional Hausdor� measurerestrited to J�.Our main motivation in this work is to extend suh a desription of the jumpset to liftings � of vetor�elds in Mdiv(
). In [ADM℄ an example of a vetor�eld inMdiv(
) whih is not in BV (
;S1) is given. Preisely, the authors give an exampleof a map in the so-alled Aviles-Giga spae AGe (see [AG1℄, [AG2℄, we follow theterminology of [ADM℄) whih is not in BV (
). We reall that AGe(
) is made byall solutions u of the eikonal equation suh thatdiv  ��u���3 ;���u���3! is a �nite Radon measure in 
for any orthonomal basis (�; �) of R2. Beause of the similarities between the twospaes it happens that this map an be made also in Mdiv (the tehnial reasonsis that small jumps are penalized with a power faster than 1, see (3.5) and [RS1℄).Therefore the BV spae is too small for our analysis and there is no hope to ahieveour goal by using the lassial results of the BV theory.It is proved in [RS2℄ that a lifting � of a vetor�eld in Mdiv solves the followingkineti equation :iei a � rx[�(�(x)� a)℄ = �a �div ei �^a� in D0(
�R); (1.4)where � denotes the harateristi funtion of R+. By applying now lassial resultsof regularity of veloity averaging of solutions to kineti equations (see [DLM℄),one gets that solutions to (1.4) for whih the jump distribution div (ei �^a) is a�nite Radon measure are in W �;p(
) for any � < 15 and p < 53 . Taking advantageof the spei�ity of the solution f = [�(�(x) � a)℄ solving the general equationieia �rxf = �ag, where g = div (ei �^a), P.E. Jabin and B. Perthame in [JP℄ improvedthe Sobolev exponents and showed that� 2 W �;p(
) 8� < 13 and p < 32 : (1.5)Still being a nie improvement, this is far from being enough to tell us somethingon the struture of the singular set of � (one would like for instane to get as loseas possible to the situation where �p = 1).3



Leaving aside the lassial linear Funtional Analysis approah, whih is perhapsnot the most appropriate one to explore our non linear spae Mdiv(
), we adopthere a more diret approah working diretly on the singular set � through a blow-upanalysis of the measure ��(B) := jU�j(B �R).Our main result is the following struture theorem.Theorem 1.1. Let � be a lifting of u 2 Mdiv(
) as in (1.2). Then(i) The jump set J� is ountably H1-reti�able and oinides, up to H1-negligiblesets, with � := �x 2 
 : lim supr!0+ ��(Br(x))r > 0� :In additiondiv (ei �^a) J� = �f��<a<�+g (ei a � ei ��) � �� H1 J� 8a 2 R: (1.6)(ii) For H1-a.e. x 2 
 n J� we have the following VMO property:limr!0+ 1�r2 ZBr(x) j�� �j = 0;where � is the average of � on Br(x).(iii) The measure Æ := �� (
 n J�) is orthogonal to H1, i.e.B Borel with H1(B) < +1 =) Æ(B) = 0:Comparing this result with the BV theory, we expet that (ii) ould be improved,showing also onvergene of the mean values as r ! 0+ (and thus existene of anapproximate limit atH1-a.e. x 2 
nJ�). Moreover, by (1.3) and the VMO onditionout of J� we expet also that the measures div T au are onentrated on J�. If thisis the ase, by the formula (see Theorem 3.2(ii))�� = ZR jdiv ei �^aj da (1.7)one would get that the measure Æ in (iii) is identially 0 and full reti�ability of themeasure ��. All these problems are basially open, and it would be interesting evento show that Æ is singular with respet to the 2-dimensional Lebesgue measure, thusshowing that Æ is a Cantor-type measure (aording to the terminology introduedin [DeGA℄, [A℄ for BV funtions). We prove that Æ is identially 0 by makingan additional mild regularity assumption on �, namely H1(� \ 
 n �) = 0, seeTheorem 6.4 whose proof is based on the results in [ALR℄.4



As explained in the paper the uniqueness of the tangent jump measure whiledilating at a point where the 1-upper density of the jump measure is nonzeroisstrongly related to the uniqueness result established in [ALR℄.It is likey that this analysis an be extended to salar �rst order onservationlaws with stritly onvex non-linearities, where the lassial Oleinik uniqueness resultplays the role of our uniqueness result in [ALR℄. Preisely, given a solution � onR�R+ of ���t + �(A Æ �)�x = 0for A00 > 0 and assuming that, for any S 2 Lip(R), one has thatm = �(S Æ �)�t + �(Q Æ �)�x 2 Mlo(R�R+);where S 0A0 = Q0 and where Mlo(R�R+) denotes the the distributions whih areRadon measures in R�R+, then we expet a similar struture theorem to be truefor the measure m.Now we brie�y desribe the ontents and the tehniques used in this paper.Setion 2 ontains some basi material about BV funtions, approximate ontinuity,approximate jumps. The main result is Proposition 2.3, where we �nd a neessaryand su�ient for a lifting � to be a funtion of bounded variation.Setion 3 ontains the main basi properties of the spae Mdiv. In partiular weshow the identity (1.7) and, as a onsequene, the absolute ontinuity of �� withrespet to H1.In Setion 4 we study some properties of onave funtions whose gradient satis-�es the eikonal equations. These properties are used in the last setion of the paperfor the lassi�ation of blow-ups.Setion 5 is devoted to some abstrat riteria for the reti�ability of sets andmeasures in the plane. We use a lassial blow-up tehnique (see [Pr℄ for muhmore on the subjet), studying the asymptoti behaviour of the resaled and renor-malized measures around a point. The renormalization fator we use is simply theradius of the ball (see De�nition 5.1). The new observation here is that very weakinformations about the struture of blow-ups allow to show that points where theupper 1-dimensional spherial density is positive are indeed points where the lower1-dimensional spherial density is positive, see Theorem 5.2. In our problem, thisinformation is used to show that �� (
 n S�) has zero 1-dimensional density, andtherefore is orthogonal with respet to H1.Setion 6 is devoted to the lassi�ation of blow-ups. Here we use the ideathat any vetor-valued measure beomes, after blow-up, a onstant multiple of apositive measure at a.e. blow-up point. This idea was �rst used by E. De Giorgito lassify blow-ups of sets of �nite perimeter (whih turn out to be halfspaes) in5



his fundamental work [DeG℄ on the reti�ability of the redued boundary of sets of�nite perimeter. Here this idea is pushed further, onsidering the measuresZR ei adiv ei �^a da; ZR g(a)div ei �^a da;all absolutely ontinuous with respet to ��, and blowing up at Lebesgue points ofall the respetive densities. We show in this way that any blow-up is either onstant,or jumps on a line, or jumps on a hal�ine, with a uniform (i.e. independent of thehosen subsequene) lower bound on the width of the jump. This su�es to applythe results of the previous setions, and to infer reti�ability.While ompleting this work we learned that C. De Lellis and F. Otto indepen-dently established in [DO℄ a struture theorem similar to Theorem 1.1 for the Aviles-Giga spae. Their proof, still based on a blow-up argument, is more elaborate, sinein the ase of the Aviles-Giga spae the lass of blow-ups is a priori riher. It is alsointeresting to notie that no onnetion with the theory of visosity solutions is usedin their paper.We lose this introdution with the following table, summarizing the notationused without further explaination in the paper.
 A bounded open set in R2a ^ b The minimum of a and ba _ b The maximum of a and bv � w The salar produt of v and w\(v; w) The angle � 2 [0; �℄ suh that v � w = jvjjwj os �v? The anti-lokwise �=2 rotation of v, (�v2; v1)ei a The vetor (os a; sin a)Br(x) The ball with entre x and radius r (x = 0 an be omitted)H1 Hausdor� 1-dimensional measure in R2S1 Unit sphere in R2M(X) Finite Radon measures in XM+(X) Positive and �nite Radon measures in X� B Restrition of � to B, de�ned by �B�.2 Continuity points, jump points, BV funtionsLet us introdue some weak notions of ontinuity and jump, well studied in theontext of BV funtions. All of them have a loal nature and, to �x the ideas, wegive the de�nitions for some funtion f 2 L1lo(R2;Rm).6



� (Approximate limit) We say that f has an approximate limit at x if thereexists a 2 Rm suh thatlimr!0+ 1�r2 ZBr(x) jf(y)� ajdy = 0:The vetor a whenever exists is unique and is alled the approximate limit off at x. We denote by Sf the set of points where f has no approximate limit.� (Approximate jump points) We say that x is a jump point of f if thereexist a+; a� 2 Rm and �x 2 S1 suh that a+ 6= a� andlimr!0+ 1�r2 ZB�r (x) jf(y)� a�j dy = 0;where B�r (x) = fy 2 Br(x) : �(y � x) � �x > 0g are the two half ballsdetermined by �x. The triple (a+; a�; �x) is uniquely determined up to a hangeof orientation of �x and a permutation of (a+; a�). We denote by Jf the set ofjump points of f .It is not hard to show (see [AFP℄) that Sf ; Jf are Borel sets, that Jf � Sf , andthat Sf is Lebesgue negligible.The following Lemma has been proved in [A1℄ in a more general ontext. Forthe sake of ompleteness we inlude the proof.Lemma 2.1. Let (�l) be a family of ontinuous funtions de�ned on R whih sep-arates points. Let � 2 L1(R2) and set �l := �l Æ�. Then the following impliationshold:(i) � has an approximate limit at x if and only if all funtions �l have an approx-imate limit at x;(ii) If x is either an approximate ontinuity point or a jump point for all funtions�l, with the same normal to the jump, then the same is true for �.Proof. (i) We prove only the nontrivial impliation, the "if" one. Let us set X :=[�k�k1; k�k1℄. By the Stone-Weierstrass theorem the algebra A generated by thefamily (�l)l2N is dense in the set of ontinuous funtion of X, C(X), endowed withthe sup norm. If �l Æ � has an approximate limit at x for any l we infer that f Æ �has an approximate limit at x for any f 2 A. Sine A is dense in C(X), the identityfuntion is the uniform limit of a sequene of funtions of A, so that � has anapproximate limit at x.(ii) The proof is similar, working in the two halfspaes determined by the ommonnormal to the jumps. 7



Remark 2.2. Conerning statement (ii), notie that if we assume in addition thatx is a jump point for at least one of the funtions �l, then x must be a jump pointof �, by (i).We are going to apply this result with �l(x) = (x _ bl) ^ l, where (bl; l) is afamily of open intervals. It is easy to hek that the family (�l) separates points ifand only if the losed set R n [l(bl; l) has an empty interior.We reall also some basi fats aboutBV funtions whih will be used throughoutthe paper. We say that u 2 L1(
;Rm) is a BV (bounded variation) funtion, andwe write u 2 BV (
;Rm) (R1 an be omitted), if its distributional derivatives Diu,i.e. hDiu; i := � Z
 � �xiu dx  2 C1 (
); i = 1; 2are representable by �nite Rm-valued Radon measures in 
. We denote by jDuj(
)the total variation of the R2m-valued measure Du = (D1u;D2u). When u 2W 1;1(
;Rm) we have Du = ruL2 and thereforejDuj(
) = Z
 jruj dx:We reall that the jump set of a BV funtion u is ountably H1-reti�able and thatZJu ju+ � u�j dH1 � jDuj(
): (2.1)Moreover, H1-a.e. any approximate disontinuity point is a jump point, i.e.H1(Su n Ju) = 0: (2.2)Now we investigate under whih onditions a lifting of a funtion u 2 BV (
;S1)is itself a BV funtion.Proposition 2.3. Let � 2 L1(
) be suh that(i) u := ei � 2 BV (
;S1);(ii) U� := div ei �^a 2 M(
�R).Then � 2 BV (
) and jD�j(
) � C [jU�j(
�R) + jDuj(
)℄for some onstant C. 8



Proof. Let �0 2 BV (
) be given by Lemma 2.4 below, satisfying ei �0 = ei �. Thenthere exists a unique k 2 L1(
;Z) suh that � = �0 + 2�k. The goal is to showthat k 2 BV (
;Z).It is lear, sine �0 2 BV (
)\L1, that div (ei a^�0) 2 M(
�R). Therefore wean dedue that����Z
 ZR os a �ei a^� � ei a^�0� � r da dx���� � Ck k1 (2.3)for any  2 C1 (
), with C = jU�0j(
�R)+ jU�j(
�R). Notie that jU�0 j(
�R)an be estimated (see (3.5)) with jD�0j(
) and this, in turn, an be estimated withjDuj(
).We observe that ei a^� = ei a^(�0+2�k) = ei (a�2�k)^�0 . Fixing x 2 
 and assumingk(x) > 0 to �x the ideas, we dedue from the remark above thatZR os a �ei a^�(x) � ei a^�0(x)� da = Z �0(x)+2�k(x)�0(x) os a(ei a � ei �0(x)) da= ei �0(x) Z 2�k(x)0 os(b + �0(x)) �ei b � 1� db= ei �0(x) (�k(x) os�0(x)� i�k(x) sin�0(x))= �k(x) � 10 � :Combining this fat with (2.3) we have proved that����Z
 k � �x1 ���� � C k k1 8 2 C1 (
):This shows that D1k is a �nite Radon measure in 
. A similar argument (replaingos a by sin a in (2.3)) works for D2k.In the proof above we used the following lemma, whih ensures the existene ofa BV lifting.Lemma 2.4 (BV lifting). Let u 2 BV (
;R2) suh that juj = 1 almost everywherein 
. Then there exists �0 2 BV (
; [�2�; 2�℄) verifying(i) u = ei �0 a.e. in 
;(ii) jD�0j(
) � C0jDuj(
), where C0 is an absolute onstant.9



Proof. Let �0 be a smooth funtion from R2 into [��2 ;+�2 ℄ suh that for any z =(x1; x2) in S1 verifying x1 � 0, �0(z) is the angle in [��2 ; �2 ℄ suh that ei �0(z) = z.Similarly we introdue �� to be a smooth map from R2 into [0; 2�℄ suh that for anyz = (x1; x2) 2 S1 verifying x1 � 34 , ��(z) is the angle in [0; 2�℄ suh that ei ��(z) = z.Sine u = (u1; u2) is in BV (
;R2), by the mean value theorem and the oareaformula in BV we may �nd � 2 [14 ; 12 ℄ suh thatjD�fx: u1(x)��gj(
) � 4jDu1j(
);thus E = fx 2 
 : u1(x) � �g is a �nite perimeter set. By virtue of the Volpert'shain rule (see for instane [AFP℄, Theorem 3.96), we have that both �0 Æ u and�� Æ u are in L1 \BV (
) and their total variations an be estimated with jDuj(
).Using now the deomposability theorem ([AFP℄, Theorem 3.84), we have that�0 := �E �0 Æ u+ �
nE �� Æ uis in BV (
) andjD�0j(
) � [k�0k1 + k�1k1℄ jD�Ej(
) + jD(�0 Æ u)j(
) + jD(�1 Æ u)j(
):By onstrution we have ei � = u a.e. in 
 and � is a solution of our problem.3 The spae Mdiv(
)In this setion we introdue the main objet of study of the present paper.De�nition 3.1. We denote by Mdiv(
) the spae of two-dimensional vetor �eldsu in L1(
;S1) satisfying(P1) div u = 0 in D0(
);(P2) there exists a lifting � 2 L1(
), i.e. a map � satisfying u = ei �, suh that thedistribution U� in D0(
�R) de�ned byhU�; (x; a)i := � ZR Z
 ei �(x)^a � rx (x; a) dxdais a �nite Radon measure in 
�R.For a 2 R we set T au := ei�^a 2 L1(
;S1) (this is a slight abuse of notation,sine T au depends on the lifting and not only on u, but it is justi�ed by the fatthat in the following the lifting of u will be kept �xed), so thathU�; i := ZRhdiv T au; (�; a)i da: 8 2 C1 (
�R):10



Notie that, sine � 2 L1(
), then (P1) implies that div T au = 0 for all a 2 Rsuh that jaj > k�k1. Finally, we denote by �� the projetion of jU�j on the �rstvariable, i.e. ��(B) := jU�j(B �R) for any B � 
 Borel.In the following theorem we state some basi properties of the trunated vetor�elds T au and a useful representation formula for U�.Theorem 3.2. Let u 2 Mdiv(
). Then, the following properties hold:(i) The map a 7! divT au satis�es the Lipshitz ondition��hdivT au; i � hdiv T bu; i�� � Ln(
)kr k1jb� aj 8 2 C1 (
): (3.1)(ii) ��(B) = RR jdivT auj(B) da for any Borel set B � 
. In partiular div T au isa �nite Radon measure in 
 for a.e. a 2 R.(iii) For a.e. a 2 R we have12Æ Z a+Æa�Æ divT bu db �!Æ!0+ div T au in M0(
):Proof. (i) Follows by the elementary inequality jT au� T buj � jb� aj.(ii) For any  (x; a) = f(x)g(a), with f 2 C1 (
) and g 2 C1 (R) we havehU�; (x; a)i = � ZR g(a) Z
 T au � rf(x) dxda:By approximation, the same identity holds if g is a bounded Borel funtion withompat support. Now, hoosing an open set A � 
 and f 2 C1 (A) with kfk1 � 1and g = �(a;a+Æ) we getjU�j (A� (a; a+ Æ℄) � � Z a+Æa Z
 T bu � rf(x) dxdb;so that dda jU�j (A� (�1; a℄) � � Z
 T au � rf(x) dx 8a 2 R:Being f arbitrary, this gives that div T au is a �nite Radon measure in A anddda jU�j (A� (�1; a℄) � jdivT auj(A)11



for a.e. a 2 R. By integration it follows thatjU�j(A�R) � ZR jdivT auj(A) da (3.2)for any open set A � 
. On the other hand, the inequalityjU�j(
�R) � ZR jdiv T auj(
) da: (3.3)is easy to prove, using the de�nition of U�. From (3.2) and (3.3) we obtain theoinidene of the measures �� and R jdiv T auj da.The property (iii) is an easy onsequenes of (ii) and of the Lipshitz prop-erty (3.1): it su�es to hoose Lebesgue points of the integrable funtion a 7!jdiv T auj(
).The following overing tehnial lemma will be used to show the absolute onti-nuity of �� with respet to H1.Lemma 3.3. Let K be a ompat set of 
. Then, there exists a sequene ( n) �C1 (
; [0; 1℄) suh that:(i)  n = 1 on K and spt  n ! K as n!1;(ii) lim supn!+1 Z
 jr nj dx � �H1(K).Proof. Let L = H1(K). By the de�nition of Hausdor� measure, for any n � 1 wean �nd a �nite number of balls Bi = B(xi; ri) whose union overs K and suh thatri < 1=n and Pi 2ri < L + 1=n. By the subadditivity of perimeter, the open setAn := [iBi has perimeter less than �L + �=n. Then, we set  n = �An � ��n, where�n < 1=n is hosen so small that still  n = 1 on K (it su�es that �n < dist(K; �An))and the support of  n is ompat. Sine the total variation does not inrease underonvolution (see for instane Proposition 3.2() of [AFP℄) we haveZ
 jr nj dx = jD nj(
) � jD�Anj(
) � �L + �nand therefore  n has all the stated properties.Theorem 3.4 (Absolute ontinuity). The measure �� is absolutely ontinuouswith respet to H1, i.e. �(B) = 0 whenever B is a Borel H1-negligible set.
12



Proof. By the inner regularity of �� it su�es to show that there exists C > 0 suhthat, for all ompat sets K � 
, ��(K) � CH1(K). We will prove that, for alla 2 R suh that div T au is a Radon measure on 
, the inequality jdiv T auj(K) �2�H1(K) holds for any ompat set K � 
. Then, sine div T au = 0 as soon asjaj > k�k1, by Theorem 3.2(iii) we obtain��(K) = ZR jdivT auj(K) da � 2�k�k1H1(K):Let a 2 R be suh that � := div T au is a �nite Radon measure on 
. Bythe Hahn deomposition theorem, there exists two disjoint Borel sets A+, A� suhthat, if �+ and �� denote respetively the positive and negative parts of �, then�� = �� A�. Sine j�j = �+ + ��, it su�es to prove that �+(K) � �H1(K) forany K � A+ ompat and ��(K) � �H1(K) for any K � A� ompat.Let K � A+ be ompat and let ( n) � C1 (
; [0; 1℄) be given by Lemma 3.3.We have �+(K) = �(K) � limn!1Z
  n d� = � limn!1Z
 T au � r n dx� lim supn!1 Z
 jr nj dx � �H1(K):A similar argument works for ompat sets K � A�.In the ase when � 2 BVlo(
) one an use Volpert's hain rule in BV to obtainan expliit formula for div T au, see [RS2℄: it turns out thatdivT au = �(a; �+; ��)(ei a � ei ��^�+) � ��H1 J�; (3.4)where �(a; �+; ��) := 8<: 1 if �� < a < �+�1 if �+ < a < ��0 else.Moreover, the divergene free ondition gives ei �+ � �� = ei �� � �� at any point in J�.In partiular, hoosing �� in suh a way that �+ > ��, Fubini theorem and (2.1)givejU�j(
�R) = ZR jdivT auj(
) da = ZR ZJ� �f���a��+gjei a � ei ��j dH1da� ZJ� j�+ � ��j(2 ^ 12 j�+ � ��j) dH1 � 2jD�j(
): (3.5)The following lemma provides an integral representation of the divergene, as-suming reti�ability of the measure and existene of jumps.13



Lemma 3.5. Let u 2 L1(R2;R2) and let K � R2 be ountably H1-reti�able. Ifdiv u is a Radon measure in R2 and H1(K \ Su n Ju) = 0, thendiv u K = (u+ � u�) � �H1 K \ Ju:Proof. Arguing as in Theorem 3.4 and using Lemma 3.3 one an easily show thatdiv u << H1, hene div u K is representable by �H1 K for some density funtion�. The funtion � an be haraterized by a blow-up argument, using the fat thatK beomes a line (here the reti�ability of K plays a role) after blow-up and ubeomes a jump funtion or a onstant funtion at H1-a.e. blow-up point of K.The following ompatness result has been proved in [Le℄ adapting the trunationargument of [RS2℄.Theorem 3.6 (Compatness). For any onstant M � 0 the setf� 2 L1(
) : k�k1 + jU�j(
�R) �Mgis ompat in L1(
) with respet to the strong topology.4 Some properties of onave funtionsIn this setion we study some properties of onave funtions g whose gradientsatis�es the eikonal equation. We reall that the superdi�erential �g(x) of g at x isthe losed onvex set de�ned by�g(x) := �p 2 R2 : g(y) � g(x) + p � (y � x) 8y 2 R2	 :It follows immediately from the de�nition that the graph of �g, i.e. f(x; p) : p 2 �g(x)gis a losed subset of R2 � R2. Moreover, the Lipshitz assumption on g gives�g(x) � B1 for any x. Finally, �g(x) = frg(x)g at any di�erentiability point of g.For any ! 2 S1 and any x 2 R2, the left and right diretional derivative along !of g at x are de�ned by r�! g(x) := limr!0�g(x+ r!)� g(x)r :For any x 2 Jrg we denote in the following by (rg+;rg�; �x) the triple de�ned inSetion 2.Proposition 4.1. Let g : R2 ! R be onave and satisfying jrgj = 1 a.e. in R2.Then, g satis�es the following properties:14



(i) If rg has an approximate limit at x, then g is di�erentiable at x. Moreover,setting Dx := fx + trg(x) : t < 0g, for H1-a.e. y 2 Dx, rg has an approxi-mate limit at y equal to rg(x).(ii) Let J be the set of approximate jump points of rg and let x 2 J . For any! 2 S1 suh that ! � �x > 0, the partial derivatives r�! g(x) exist andr�! g(x) = ! � rg�(x) � ! � rg+(x) = r+! g(x): (4.1)Moreover, setting D�x := fx+ trg�(x) : t < 0g, for H1-a.e. y 2 D�x , rg hasan approximate limit equal to rg�(x).(iii) For all � > 0, we de�ne the following setsJ� := fx 2 J : jrg+(x)�rg�(x)j � �g�� := fx 2 R2 : diam (�g(x)) � �g:Then, J� � �� and �� is losed.Proof. The �rst two statements an be proved in the same way and we prove onlythe seond. By the de�nition of J there exist �x 2 S1 and rg+(x); rg�(x) 2 S1suh that limr!0+ 1L2(B�r (x)) ZB�r (x) jrg(y)�rg�(x)jdy = 0: (4.2)For r > 0, let us de�negr(y) := g(x+ ry)� g(x)r ; y 2 B1:Then, rgr(y) = rg(x+ ry). By (4.2), rgr onverge in L1(B1) when r ! 0+ to thefuntion G0(y) := � rg+(x) if y � �x > 0rg�(x) if y � �x < 0:By Sobolev embedding, this implies that (gr) uniformly onverges in B1 to a 1-Lipshitz funtion g0 satisfying rg0 = G0. Sine gr(0) = 0 we have that g0(0) = 0and therefore g0 is uniquely determined:g0(y) := � y � rg+(x) if y � �x � 0y � rg�(x) if y � �x � 0But, for any ! 2 S1, we haver+! g(x) = limr!0+g(x+ r!)� g(x)r = limr!0+gr(!) = g0(!)15



and r�! g(x) = limr!0+g(x� r!)� g(x)�r = limr!0+ � gr(�!) = �g0(�!):Therefore, if we assume that ! � �x > 0, thenr�! g(x) = ! � rg�(x) and r+! g(x) = ! � rg+(x):Moreover, we have r�! g(x) � r+! g(x) sine the restrition of g to R! is onave.Let us now prove the seond part. Let x 2 J and let y 2 D�x . Sine the restritionof g to D�x is onave, we haver�rg�(x)g(y) � r+rg�(x)g(y) � r�rg�(x)g(x) = rg�(x) � rg�(x) = 1:Sine g is 1-Lipshitz we obtain thatr�rg�(x)g(y) = r+rg�(x)g(y) = 1: (4.3)By (2.2), for H1-a.e. y 2 R2 either rg has an approximate limit at y, or y is anapproximate jump point of rg. If y 2 D�x , y an't be a jump point of rg. Indeed,assuming that y 2 J and applying (4.1) with ! = rg�(x), we haver�rg�(x)g(y) = rg�(y) � rg�(x) � rg+(y) � rg�(x) = r+rg�(x)g(y):By (4.3), rg�(y) � rg�(x) = r+g(y) � rg�(x) = 1. Thus, rg�(y) = rg+(y) =rg�(x), whih ontradits the assumption y 2 J . Therefore, rg has an approximatelimit equal to rg�(x) at H1-a.e. y 2 D�x . The same argument an be used for D+xand (ii) is proved.(iii) First, let us show that J� � ��. Indeed, sine g is di�erentiable a.e., for anyx 2 J� we an �nd di�erentiability points x�h onverging to x suh that rg(x�h )onverge to rg�, hene the losednedd os the graph of �g gives that rg+(x) andrg�(x) are in �g(x). Thus, diam�g(x) � � and x 2 ��.The losedness of �� is an immediate onsequene of a ompatness argumentbased on the losedness of the graph of �g and on the fat that �g(x) � B1 for anyx.5 Reti�ability of 1-dimensional measures in theplaneIn this setion we onsider a measure � 2 M+(
) absolutely ontinuous with respetto H1, i.e. vanishing on any H1-negligible set. We de�ne��(�; x) := lim infr!0+ �(Br(x))r ; ��(�; x) := lim supr!0+ �(Br(x))r : (5.1)16



A general property is that ��(�; x) is �nite for H1-a.e. x (see for instane [AFP℄)hene the absolute ontinuity assumption gives that ��(�; x) is �nite for �-a.e. x.We de�ne also�+� := fx 2 
 : ��(�; x) > 0g ; ��� := fx 2 
 : ��(�; x) > 0g (5.2)and notie that ��� are Borel sets and ��� � �+� . Notie also that �+� is �-�nitewith respet to H1, as all the sets�� := fx 2 
 : ��(�; x) � �g (5.3)satisfy H1(��) � 2�(
)=� (see [AFP℄, Theorem 2.56). Therefore, by the Radon�Nikodým theorem, we an represent� = � �+� + � (
 n �+� ) = fH1 �+� + � (
 n �+� ) (5.4)for some f 2 L1(H1 �+� ). Notie that the residual part �r := � (
 n �+� ) is"orthogonal" to H1 in the following sense:H1(B) < +1 =) �r(B) = 0:This is a onsequene of the fat that ��(�r; x) is 0 for �r-a.e. x.The following de�nition is a partiular ase of the general one given in the fun-damental paper [Pr℄.De�nition 5.1 (Tangent spae to �). Given x 2 
 and r > 0, we de�ne theresaled measures �x;r 2 M ((
� x)=r) by�x;r(B) := �(x + rB)rfor any Borel set B � (
� x)=r, so thatZ �(y) d�x;r(y) = 1r Z �(y � xr ) d�(y) 8� 2 C ((
� x)=r) :We denote by Tan(�; x) the olletion of all limit points as r ! 0+ of �x;r, in theduality with C(R2).Notie that the de�nition above makes sense beause the sets (
� x)=r invadeR2 as r ! 0+. Moreover, as�x;r(BR) = �(BRr(x))r � 1 +R��(�; x) 8R > 0for r su�iently small (depending on R), a simple diagonal argument shows thatTan(�; x) is not empty whenever ��(�; x) is �nite (and thus �-a.e.).17



Theorem 5.2 (Positive upper density implies positive lower density). Assumethat for some x 2 �+� the following properties hold(i) The density funtion f(r) := �(Br(x))=r is ontinuous in (0; Æ) for some Æ 2(0; dist(x; �
));(ii) ��(�; x) is �nite;(iii) There exists x > 0 suh that any nonzero measure � 2 Tan(�; x) is repre-sentable by H1 L, where  � x and L is either a line or a hal�ine (notneessarily passing through the origin).Then x 2 ��� .Proof. We introdue �rst some notation. Given a line or a half line L intersetingthe open ball B1, we denote by L̂ the line ontaining it and by � its diretion (ifL = L̂ the orientation does not matter). We denote by hL 2 [0; 1) the distane of L̂from the origin. Finally we de�ne dL 2 [�1; 1℄ so thaty 2 L \ B1 () y 2 L̂ \B1 and y � � > �dL:An elementary geometri argument shows that, if dL � 0 and H1(L \ B1) � 1=2,then hL � p3=2.We assume by ontradition that x =2 ��� , i.e. ��(�; x) = 0. Heneforth, we �x apositive number q < minfx=2;��(�; x)g and �nd a dereasing sequene (Ri) withf(Ri) < q=4 and then ri < Ri suh that f(ri) = q and f(t) < q for t 2 (ri; Ri℄ (ri isthe �rst r below Ri at whih f hits q). Notie that neessarily Ri=ri � 4.Possibly extrating a subsequene, by assumptions (ii), (iii) we an assume thatthe resaled measures �i = �x;ri weakly onverge, in the duality with C(R2), to aRadon measure � = H1 L, where L is either a line or a hal�ine and  � x.As �i(B1) = q we obtain that �(B1) = �(B1) � q. On the other hand, as�i(Br) � qr for any r 2 (1; 4) we obtain�(B1) = q and �(Br) � qr 8r 2 (1; 4):In partiular the right derivative of g(r) := �(Br)=r at r = 1 is nonpositive.On the other hand, we have�(Br) = �dL +qr2 � h2L� 8r � 1;so that ddr+ g(r)����r=1=  ddr+ dL +pr2 � h2Lr ����r=1= h2L � dLp1� h2Lp1� h2L :18



This derivative is stritly positive if dL < 0. If dL � 0 we notie thatH1(L \ B1) = q � qx < 12 ;hene hL � p3=2 and h2L > p1� h2L. Therefore the derivative above is stritlypositive in any ase. This ontradition proves the theorem.The following reti�ability result is part of the folklore on the subjet, but weinlude a proof for onveniene of the reader.Theorem 5.3 (Reti�ability riterion). Assume that for �-a.e. x 2 ��� thereexists a unit vetor � = �(x) suh that any measure � 2 Tan(�; x) is onentratedon a line parallel to �. Then ��� is ountably H1-reti�able.Proof. For n � 1, let Sn be de�ned bySn := �x 2 
 : ��(�; x) � 1n�As H1 Sn � 2n� it follows that H1(Sn) < +1, therefore by the deompositiontheorem (see Corollary 2.10 in [F℄) we an write Sn = Srn [ Sun, where Srn \ Sun = ;,Srn is ountably H1-reti�able and Sun is purely unreti�able, i.e. its intersetionwith any reti�able urve is H1-negligible. Let us show that H1(Sun) = 0. Then, ���will be ontained in a ountable union of reti�able urves and Theorem 5.3 will beproved.Let us de�ne, for any diretion ! 2 S1, for any angle � 2 (0; �2 ), x 2 R2 andr > 0, Sr(x; !; �) as the intersetion of Br(x) with the oneny 2 R2 n fxg : j os \(y � x; !)j > j os �jo :having x+R� as axis. Sine Sun is purely unreti�able, by Theorem 3.29 in [F℄, forH1-a.e. x 2 Sun we havelim supr!0+ H1(Sun \ Sr(x; !; �))r � 16 sin � 8! 2 S1; 8� 2 (0; �2 ):In partiular, �xing �, we havelim supr!0+ � �Sr(x; �?(x); �)�r � 112n sin � for H1-a.e. x 2 Sun.19



Assuming by ontradition that H1(Sun) > 0, hoose x 2 Sun where the above densityproperty holds and a sequene ri # 0 suh that �x;ri ! � loally weakly in R2 andlimi!1 � �Sri(x; �?(x); �)�ri � 112n sin �: (5.5)By assumption we know that � is onentrated on a line L parallel to �, and (5.5)gives � �S1(0; �?(x); �)� � 112n sin � > 0:We will obtain a ontradition by showing that the line L passes through the origin.If not, there is  > 0 suh that �(B) = 0, so that �(Bri(x))=ri is in�nitesimal asi!1. This is not possible beause x 2 ��� .6 Classi�ation of blow-ups and reti�abilityIn this setion we analyze the asymptoti behaviour of good liftings � of vetor �eldsu 2 Mdiv(
). In Proposition 6.1 and Theorem 6.2 we show that generially a blow-up produes a lifting �1 with speial features, i.e. either approximately ontinuousor jumping on a line or on a hal�ine. Moreover, there is a rih family of trunationswhih turns �1 into a BVlo vetor �eld.Then, in Theorem 6.3 we prove reti�ability of the 1-dimensional part of �� byshowing that the normal to the jump is independent of the sequene of radii hosenfor the blow-up, and a lower bound on the width of the jump of �1. The �rst infor-mation omes hoosing a Lebesgue point for the density funtion ~H haraterizedby ZR ei adiv T au da = ~H��:The seond information omes hoosing Lebesgue point for the density funtions ~Hkharaterized by ZR ei kadivT au da = ~Hk��; k 2 (1; 2) \Q:This aspet of the proof is quite deliate, sine a priori the jump an be arbitrarilysmall and no universal onstant in the lower bound an be expeted, unlike in thetheory of minimal surfaes. A linearization around k = 1 shows that small jumpsare uniquely determined by all vetors ~Hk.Proposition 6.1. Let u 2 Mdiv(
) and let � 2 L1(
) be a lifting satisfying (P2)in De�nition 3.1. For ��-almost every x0 2 
, from any sequene rn ! 0+ one an20



extrat a subsequene ri suh that the funtions �ri(x) := �(x0 + rix) onverge to�1 in L1lo(R2).Moreover setting u1 := ei �1, the following properties hold:(i) There exist a nonnegative Radon measure � on R2 and a Lipshitz map h :R! R suh that div T au1 = h(a)� 8a 2 R:(ii) There exists a �nite or ountable family of open segments (possibly unbounded)Il = (bl; l) suh that(a) R n [lIl has an empty interior;(b) for all l, divT lbl u1 = 0;() for all l, either div T ablu1 is a nonnegative measure for all a 2 Il ordivT ablu1 is a non-positive measure for all a 2 Il.Proof. By Theorem 3.4 we know that �� is absolutely ontinuous with respet toH1,hene (see Setion 5) the upper density ��(��; x) is �nite for ��-a.e. x. Heneforth,we hoose x0 with this property. Sine ��r(BR) = ��(BRr(x0))=r is equiboundedwith respet to r for any �xed R, the ompatness Theorem 3.6 and a diagonalargument ensure the �rst part of the statement. We an also assume that theresaled measures (��)x0;ri as in De�nition 5.1 weakly onverge, in the duality withC(R2), to some Radon measure �.In order to obtain the property stated in (i) we impose additional (but generi)onditions on x0. By Theorem 3.2(ii) we have that, for all g 2 C(R), the Radonmeasure RR g(a)divT au da is absolutely ontinuous with respet to ��. Let D be aountable set dense in C(R) and set�g := ZR g(a)divT au da 8g 2 D:Then, by the Radon-Nikodým theorem there exist funtions hg 2 L1(
; ��) suhthat �g = hg��. By Proposition 3.2(ii) again we obtainZ
(hg � hg0) dx = ZR(g(a)� g0(a))hdiv T au; i da � sup jg � g0j Z
 j j d��for any  2 C1 (
) and any g; g0 2 C(R), hene khg � hg0k1 � sup jg � g0j (theL1 norm is omputed using �� as referene measure).Let us onsider the Borel set 
0 = 
 n[g2DShg of approximate ontinuity pointsof all maps hg, for g 2 D. Let B1(
0) be the spae of bounded Borel funtions21



on 
0, endowed with the sup norm. By the previous estimate, the map R whihassoiates to g 2 D the funtionRg(x) := ap� limy!xhg(y); x 2 
0is 1-Lipshitz between D and B1(
0). By a density argument R extends to a 1-Lipshitz map de�ned on the whole of C(R) and eah point x of 
0 is an approximateontinuity point of all funtions hg, g 2 C(R), with approximate limit Rg(x).We �x x0 2 
0. Resaling �g as in De�nition 5.1 we obtain(�g)x0;r = hg(x0 + r�)(��)x0;rand the approximate ontinuity of hg at x0, together with the fat that the upperdensity is �nite, ensures that (�g)x0;ri weakly onverge, in the duality with C(R2),to Rg(x0)�. On the other hand, the identity(�g)x0;ri = ZR g(a)divT auri daand the onvergene in the sense of distributions of div T auri to divT au1 giveZR g(a)hdivT au1; �i da = Rg(x0) ZR2 �d� 8g 2 C(R2); � 2 C1 (R2):Now we �x �0 2 C1 (R2) suh that RR2 �0 d� = 1 (assuming with no loss of generalitythat �(R2) > 0) and notie that onsequentlyjRg(x0)j � kr�0k1 ZR jg(a)j da:If partiular, if gk weakly onverge to the Dira mass at a, then Rgk(x0) is bounded,and any limit point h satis�eshdivT au1; �i = h ZR2 � d� 8� 2 C1 (R2):This implies that h does not depend on the approximating sequene, but only on a.The Lipshitz property of h follows diretly by Proposition 3.2(i), using �0 as testfuntion.Let us now prove that (i) implies (ii), assuming with no loss of generality that � isa nonzero measure. Then it su�es to take as intervals the onneted omponents offh 6= 0g and the onneted omponents of the interior of fh = 0g. By onstrutionthe omplement of the union of these intervals has an empty interior.22



Theorem 6.2. Let u 2 Mdiv(
) and let � 2 L1(
) be a lifting satisfying (P2) inDe�nition 3.1. For ��-almost every x0 2 
, from any sequene rn ! 0+ one anextrat a subsequene ri suh that the funtions �ri(x) := �(x0 + rix) onverge toin L1lo(R2) to �1. Moreover the jump set J�1 of �1 oinides, up to H1-negligiblesets, either with the empty set, or with a line or with a hal�ine K, not neessarilypassing through the origin.If K is a line and !K 2 S1, A 2 R2 are suh that K = A+R!?K (see Figure 1),then �1 is onstant in the halfspaes �� de�ned by�+ := �y 2 R2 : (y � A) � !K > 0	; �� := �y 2 R2 : (y � A) � !K < 0;	:(6.1)If K is a hal�ine and !K 2 S1, A 2 R2 are suh that K = fA + t!?K : t > 0g(see Figure 1), then the approximate limits �+1 and ��1 are onstant H1 a.e. on K.Moreover, �1 is equal to ��1 a.e. in ��A , where��A := �� \ �y 2 R2 : y � Ajy � Aj � !?K � �u�l � !K)	:Proof. Keeping the notation of Proposition 6.1, in the following we denote by L0 theset of all l suh that Il is not a onneted omponent of the interior of fh = 0g. Then,if l =2 L0, div T au1 = 0 for any a 2 Il. If l 2 L0, either div T au1 is nonnegative andnonzero for any a 2 Il or div T au1 is nonpositive and nonzero for any a 2 Il.Let us set ul := ei (�1_bl)^l . Then ul is divergene free, beause divT blu1 =div T lu1 = 0 and ei (�1_bl)^l + ei �1^bl = ei bl + ei �1^l:Sine ei (�1_bl)^a + ei �1^bl = ei bl + ei �1^a; (6.2)we obtain that div T aul = div T au1 for a 2 Il, thereforedivT aul = � h(a)� if a 2 Il0 else. (6.3)In partiular ul 2 Mdiv(
). Moreover, either divT aul is nonnegative for any a 2 Ror div T aul is non-positive for any a 2 R. If we are in the �rst situation, byTheorem I.1 of [ALR℄, any funtion gl 2 W 1;1(R2) suh that ul = �r?gl is avisosity solution of the eikonal equation jrgj2 � 1 = 0 on R2. Therefore, gl isonave and ul 2 BVlo(R2) (see [AD℄). If we are in the seond situation, for anyfuntion gl 2 W 1;1(R2) suh that ul = r?gl we have the same statement. In bothases, by applying Proposition 2.3, we obtain that �l 2 BVlo(R2).23



In order to study the jump set of �1 we �rst study the behaviour of the funtions�l. If l =2 L0, by the previous disussion we obtain that any funtion gl satisfyingul = �r?gl is a�ne (being onave and onvex) and therefore ul is onstant. AsU�l = 0, from Proposition 2.3 we obtain that �l is onstant as well.In the following we onsider l 2 L0 and, to �x the ideas (sine the argumentis similar for both ases), we assume that divT aul is a nonzero and nonnegativemeasure for any a 2 Il.We denote by Jl the set of approximate jump points of �l, by !l a unit normalof Jl and by �+l ; ��l the orresponding approximate limits of �l on eah side of Jl.Sine div ul = 0, then !l � ei �+l = !l � ei ��l on Jl. Thus, !l = �e i2 (�+l +��l ) and wehoose !l = e i2 (�+l +��l ). Then, the expliit formula (3.4) given in Setion 3 givesdivT aul = �(a; �+l ; ��l )(ei a � ei ��l ) � !lH1 Jl;where �(a; �+l ; ��l ) := 8<: 1 if ��l < a < �+l�1 if �+l < a < ��l0 else.But, div T aul is nonnegative for all a 2 R. Then, j�+l � ��l j < 2�, sine, otherwise,there would exist a 2 R suh that �(a; �+l ; ��l )(ei a�ei ��l ) �!l < 0. In partiular Jl isalso the set of approximate jump points of ul. If ��l > �+l , then (ei a� ei ��l ) �!l � 0for any a 2 [�+l ; ��l ℄. Therefore, we must have �+l > ��l and j�+l � ��l j < 2� H1-a.e.on Jl and div T aul = �(��l ;�+l )(a)(ei a � ei ��l ) � !lH1 Jl: (6.4)Claim 1. �+l = l and ��l = bl H1-a.e. on Jl.First of all, we notie that l � �+l > ��l � bl H1-a.e. on Jl. Assuming byontradition that f�+l < lg has positive H1-measure, we an �nd � > 0 suhthat f�+l < lg \ f�+� � ��l > �g has positive H1-measure, and then an interval(�; � 0) � (bl; l) with length less than �=2 suh thatE := f�+l 2 (�; � 0)g \ f�+l � ��l > �ghas positive H1-measure. From (6.4) we infer that div T aul E = 0 for a 2 (� 0; l),while div T aul(E) > 0 for a 2 (� � �=2; �). Sine h > 0 on (bl; l), this ontradits(6.3). The argument for ��l is similar.Claim 2. For any hoie of l; m 2 L0 we have H1(Jl n Jm) = 0.Suppose that there exist l; m 2 L0 and A � Jl n Jm suh that H1(A) > 0. Sine24



A\Jm = ;, (6.4) yields div T aum A = 0 for any a 2 R and (6.3) yields h(a)�(A) =0, so that �(A) = 0. On the other hand, the funtion �(��l ;�+l )(a)(ei a � ei ��l ) � !l isonstant H1-a.e. on Jl by Claim 1. Moreover, this onstant is not 0 for any a 2 Il.Sine �(A) = 0, then jdiv T aulj(A) = 0 and therefore H1(Jl \A) = 0. Sine A � Jl,then H1(A) = 0 whih ontradits the hypothesis and proves the laim.Claim 3. For any l 2 L0, Jl is ontained in one line.Let us reall that the normal unit vetor !l to Jl is given by e i2 (�+l +��l ) and is onstantH1-a.e. on Jl. Let us assume that there exist x1; x2 2 Jl suh that (x2�x1) �!l 6= 0and assume (up to a permutation of x1 and x2) that the salar produt is positive.We set ! := x2�x1jx2�x1j , so that ! � !l > 0. Sine the restrition of gl to the line R! isonave, we must have r+! gl(x1) � r�! gl(x2):By Proposition 4.1 we getr+! gl(x1) = ! � rg+l (x1) = ! � (ei�+l )?and r�! gl(x2) = ! � rg�l (x2) = ! � (ei��l )?;so that ! � (ei�+l )? � ! � (ei�+l )?. On the other hand, sine ! � !l > 0 and �+l > ��l ,then ! � (ei�+l )? < ! � (ei��l )?, a ontradition (this inequality an be easily hekedin a frame where �+l + ��l = 0, so that !1 > 0). Therefore Jl must be ontainedin one line. By Claim 2, all sets Jl with stritly positive H1-measure (i.e. thoseorresponding to l 2 L0) are ontained in the same line. Let us denote this line byR.Claim 4. There exists a losed set Kl � R suh that H1(Kl�Jl) = 0.Let us reall that Jl oinides with the set Jrgl of approximate jump points ofrgl = (ei �l)?, where gl is onave and satis�es jrglj = 1. Sine �+l = l and��l = bl H1-a.e. on Jl, taking � = jei l � ei bl j, it is lear that the losure Kl ofJ� := fx 2 Jgl : jrg+l (x) � rg�l (x)j � �g ontains H1-almost all of Jl. ByProposition 4.1, J� � ��, where �� := fx 2 R2 : diam(�gl(x)) � �g is a losedset. Therefore Kl � ��. But, �� � Srgl, where Srgl is the set of points wherergl doesn't have an approximate limit. Indeed, by Proposition 4.1 , at any point xwhere rgl has an approximate limit the funtion gl is di�erentiable, hene �gl(x) isa singleton. By (2.2) we inferH1(Kl n Jl) � H1(�� n Jl) � H1(Sgl n Jgl) = 0:For any l 2 L0, for H1-almost every x 2 Kl, rgl has an approximate limit atH1-almost every y 2 D�x and the approximate limit at a.e. point in the strip Sx2KlD�x25
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Figure 1: Behaviour of ei �1 when K is a line or a hal�ineis equal to rg�l (x) = (ei bl)?, sine ��l is onstant equal to bl H1-a.e. on K. In thesame way, one an show that rgl has an approximate limit at a.e. point in Sx2KlD+xequal to (ei l)?. If Kl is the whole line, then Sx2KlD�x = ��, where �� are the setsde�ned in (6.1). Therefore ul is onstant a.e. in �� and equal to ei��l . By Proposi-tion 2.3 we obtain that �l is onstant in the two halfspaes as well.Now, let us assume that Kl is not the whole line and let us show that Kl must bea hal�ine. Assume that Kl is not onneted. There exists a bounded open interval Sontained in R nKl, whose endpoints s1; s2 belong to Kl. We will denote by K1; K2the omponents of Kl ontaining s1 and s2 respetively. Set R�i := Sx2KiD�x , i = 1; 2.The regionR2n(R�1 [R+1 [R�2 [R+2 ) an be divided into three parts A+; A�; C (seeFigure 2). If y 2 A+ is a point of approximate ontinuity of rgl, then rgl(y) mustbe equal to (ei l)?, otherwise the hal�ine D+y would ross R�1 or R�2 and this wouldontradit the result of Proposition 4.1 (ii). If y 2 A� is a point of approximateontinuity of rgl, by the same argument, rgl(y) = (ei bl)?. If y 2 C is a point ofapproximate ontinuity of rgl, then rgl(y) an only be equal to (ei l)? or (ei bl)?(see Figure 2). Then, C ontains a set of approximate jump points of rgl. But, byhypothesis, Kl \ C = ;, hene H1(Jl \ C) = 0. Therefore, Kl must be onneted.If Kl is not the whole line, then Kl has one or two endpoints. Let A be oneendpoint ofKl and let !K be the unit normal toKl suh thatKl � fA+t!?K : t � 0g.26
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1Figure 2: K must be onnetedLet us de�ne the one C byC := �y 2 R2 n fAg : y � Ajy � Aj � !?K � �ei ��l � !K	:Let C 0 be any open set ontaining C suh that C 0 \K = fAg and C 0 \K = ;. Then,div T aul = 0 in D0(C 0) for any a 2 R. Using the result of [LR℄, �l is loally Lipshitzin C 0. Therefore, for a.e. x in C 0, r�l(x) exists and div ei �l(x) = (ei �l(x))? �r�l(x) =0. Then, r�l(x) is parallel to ei �l(x) for a.e. x 2 C 0. Therefore for any a 2 R thetangent to the level set f�l = ag at x is orthogonal to ei �l(x) whih is equal to ei aon f�l = ag. Hene, the level sets f�l = ag are straight lines oriented by (ei a)? andthe only possible on�guration in C is the one desribed in Figure 1.Finally, we an exlude the ase of Kl is a segment or a single point (Figure 3).Indeed, hoose R > 0 suh that Kl � BR. Sine H1(Jl nBR) = 0, the sliing theoryof BV funtions (see [AFP℄, Theorem 3.108) shows that for a.e. r 2 (R;R + 1) therestrition of �l to �Br is (equivalent to) a ontinuous BV funtion. Therefore ul hasa ontinuous lifting in �Br and its topologial degree is 0. This is in ontraditionwith the fat that there are vorties whih have the same orientation �l at the twoendpoints of Kl. Therefore, Kl is a hal�ine.27



K

Figure 3: K an't be a segmentBy Claims 2 and 4 we obtain that all lines (or hal�ines) Kl, l 2 L0, oinide.Heneforth we set K = Kl. By Lemma 2.1 and Remark 2.2 we obtain that �1 hasan approximate limit H1-a.e. in R2 nK and H1-a.e. point of K is a jump point of�1. Moreover, as all limits ��l are onstant on J�1, the same is true for ��1.Theorem 6.3 (Main reti�ability theorem). Let u 2 Mdiv(
) and let � 2L1(
) be a lifting satisfying (P2) in De�nition 3.1. Then the set� := fx 2 
 : ��(��; x) > 0g (6.5)is ountably H1-reti�able and oinides, up to H1-negligible sets, with J�. Moreover,for H1-a.e. x 2 
 n J� we havelimr!0+ 1�r2 min2R ZBr(x) j�(y)� j dy = 0: (6.6)Proof. Step 1. We show that �0 := f��(��; �) > 0g is ountably reti�able, usingTheorem 5.3. To this aim we show that for �-a.e. x any � = limi(��)x;ri 2 Tan(��; x)is supported on a line whose diretion depends on x only.We proved in Theorem 6.2 that (possibly passing to a subsequene) we anassume that �ri = �(x+ riy)! �1 in L1lo(R2). Moreover, there exists a losed set28



K, the empty set, a line or a hal�ine, suh that H1(K�J�1) = 0. Denoting by !Kthe orientation of K suh that ei (�+1+��1)=2 = !K, now we show thatdiv T au1 = (T au+1 � T au�1) � !KH1 K 8a 2 R (6.7)using Lemma 3.5. To this aim, we need only to hek that T au1 is divergene-free in 
 n K. If a belongs to some interval (bl; l), this follows by the identitydiv T au1 = div T aul (see (6.2) and by (3.4), beause J�l � K up to H1-negligiblesets. In the general ase one an argue by approximation, using the fat that theomplement of [l(bl; l) has an empty interior.One an show, by a diret omputation based on (6.7), that the vetor-valuedmeasure RR ei adiv T au1 da is oriented by !K, and preiselyZR ei adivT au1 da = 12 ��+1 � ��1 � sin(�+1 � ��1)�!KH1 K (6.8)(this omputation is easily done in a frame where !K = (1; 0), so that �+1 = ���1+4k� for some k 2 Z and the periodiity and the odness of the integrand show thatthe integral of the seond omponent is 0). Moreover, the vetor-valued measure�1 := RR ei adiv T au da satis�es, by Theorem 3.2(ii), the inequality j�1j � ��. Thus,there exists a vetor-valued funtion ~H 2 L1(
; ��) suh that �1 = ~H�� and j ~Hj � 1.In addition to the previous generi onditions imposed on x0, assume also that x0is a Lebesgue point of ~H, relative to the measure ��. Then(�1)x0;ri ! ~H(x0)� in M0(R2):On the other hand, the onvergene of �ri to �1 implies(�1)x0;ri = ZR ei adiv T auri da! ZR ei adiv T au1 da in D0(R2):Therefore ZR ei adiv T au1 da = ~H(x0)�:Comparing this expression with (6.8) we obtain12 ��+1 � ��1 � sin(�+1 � ��1)�!KH1 K = ~H(x0)�: (6.9)Therefore !K does not depend on the sequene hosen, but only on x0.Step 2. We show that ��(� n �0) = 0 using Theorem 5.2. Sine H1(S \ S 0) = 0whenever S 6= S 0 are irles, the family of all irles S suh that ��(S) > 0 is at most29



ountable, and the same is true for their enters. Therefore we an hoose x0 outof this set, so that the density funtion f(r) := ��(Br(x0)) is ontinuous. In orderto hek ondition (iii) of Theorem 5.2, for k 2 Q \ (1; 2) we de�ne the measures�k := RR ei kadiv T au da, all absolutely ontinuous with respet to ��, we denote by~Hk 2 L1(
; ��) their densities with respet to �� and we hoose a Lebesgue pointx0 for all funtions ~Hk (relative to ��).Assuming that � is not identially 0, we have to show that � = H1 K with � (x0) > 0. By (6.9) and sine ��1 are onstant on K, we know that � = H1 K,where  is onstant on K. Moreover,j ~H(x0)j = 12 ��(�+1 � ��1)� sin(�+1 � ��1)�� : (6.10)Therefore, if j�+1���1j � �=2, we have  � (�=2�1)=2 beause j ~H(x0)j � 1. Settingd := j�+1 � ��1j=2 > 0, in the following we show that d (and therefore , by (6.10))is uniquely determined by ~Hk(x0) whenever d � �=4. We an assume with no lossof generality (possibly making a rotation and adding to �1 an integer multiple of2�) that !K = (1; 0), �+1 = �d and ��1 = �d. Then, arguing as in Step 1 we getZR ei kadiv T au1 da = ~Hk(x0)� 8k 2 (1; 2) \Q:On the other hand, omputing the left side we �nd that its real part equals 2k(k2�1)Fd(k)H1 K,where Fd(k) := (sin kd os d� k os kd sin d) :Then Fd(k) 6= 0 if and only if ~Hk(x0) � !K 6= 0 and = 2k(k2 � 1) Fd(k)~Hk(x0) � !K : (6.11)It turns out that the ratios�k;m(d) := Fd(k)Fd(m) = k(k2 � 1)m(m2 � 1) ~Hk(x0) � !K~Hm(x0) � !K (6.12)(when de�ned) depend on x0, k and m but not on d, so that the funtions Fd andFd0 are proportional whenever d; d0 satisfy (6.12). A Taylor expansion at k = 1 givesFt(k) = (k � 1)(t� sin t os t) + (k � 1)2t sin2 t:Therefore Ft(k) 6= 0 for k � 1 su�iently small and the onstant ratio between Fdand Fd0 must be equal tod� sin d os dd0 � sin d0 os d0 and d sin2 dd0 sin2 d0 :30



Therefore g(d) = g(d0), where g(t) := t� sin t os tt sin2 t :A diret omputation shows that g is stritly dereasing in (0; �=4). Therefored = d0.Step 3. Now we show the last part of the statement. Sine we know that �� � isa reti�able measure, by Theorem 2.83 of [AFP℄ we know that Tan(�� �; x), is asingleton for H1-a.e. x 2 
, therefore Tan(��; x) is a singleton for H1-a.e. x 2 �.Coming bak to (6.9) we obtain that the jump �+1 � ��1 is uniquely determinedH1-a.e., and the same is true for �+1+��1 modulo 2�. Hene, �+1 is only determinedmodulo 2�, H1-a.e. on � and ��1 is given by ��1 = �+1 � (�+1 � ��1) when �+1 isknown.Let us de�ne the following measures, all absolutely ontinuous with respet to ��:�k := Z 2(k+1)�2k� div T au da; 8k 2 Z:Let us denote by tk 2 L1(
; ��) their densities with respet to �� and let us hoosea Lebesgue point x0 of all funtions of tk. As in Step 1, we haveZ 2(k+1)�2k� divT au1 da = tk(x0)� 8k 2 Z:By (6.7), div T au1 = 0 as soon as a =2 [��1; �+1℄. Let us de�ne X0 := fk 2 Z :tk(x0) = 0g. Then, k 2 X0 if and only if (2k�; 2(k+1)�)\ [��1; �+1℄ = ;. Let k0 2 Zbe suh that �+1 2 [2k0�; 2(k0 + 1)�). Then, ��1 2 [2(k0 � l0)�; 2(k0 � l0 + 1)�),where l0 2 N depends only on �+1���1 and k0 depends on X0 in the following way:Z nX0 = fk0� j : 0 � j � l0g. Sine X0 only depends on x0, then k0 only dependson x0 and �+1 is uniquely determined. Thus �+1 and ��1 are uniquely determined�-a.e. on �. Heneforth H1-a.e. x0 2 � is a jump point of �.Finally, (6.6) and the inlusion J� � � follow by the fat that any blow-up limit�1 at points x =2 � is onstant. Indeed, ei �1 = �r?g1 is onstant, (being g1onave and a�ne, see [ALR℄) and U�1 = 0, so that �1 is onstant by Proposi-tion 2.3.In onlusion, the statements made in Theorem 1.1 of the introdution followby Theorem 6.3 with the only exeption of (1.6). The latter follows by applyingLemma 3.5 to the vetor�eld T au, with K = J�.Theorem 6.4. Let u; � as in Theorem 6.3 and assume thatH1(� \ 
 n �) = 0;31



where � is de�ned by (6.5). Then �� is onentrated on J� and therefore is a 1-dimensional reti�able measure.Proof. Let g be a 1-Lipshitz funtion suh that u = �r?g and reall that �oinides, up to H1-negligible sets, with J�. The blow-up argument in [ALR℄ showsthat g is a visosity solution of the eikonal equation jrgj2 � 1 = 0 in set 
 n �,sine U�1 = 0 for any blow-up funtion �1 at any point x 2 
 n �. Therefore, gis loally semionave in the open set A := 
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