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1 Introduction

Given a bounded domain Q of R?, we consider the space of maps u : @ — C
satisfying

lu| =1 a.e. in Q

(1.1)
divu =0 in D'().

Equivalentely, taking u = V+g := (—0,,9, 0;,9), this space coincides with the space
of all functions g : 2 — R solving

Vgl>’=1 ae. in Q.

Inside this large space we will restrict our attention to the following class of vector
fields:

u:Q— C s.t. divu =0 and 3¢ € L®(Q) satisfying u = et?
Mdiv(Q) = )
and Uy :=div (¢'*"*) is a finite Radon measure in 2 x R
(1.2)
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where ¢(z) Aa denotes the minimum between ¢(z) and a. Notice that the condition
on the lifting in (1.2) is nonlinear, unlike the divergence-free constraint.

The space Mgiv(€2) was introduced in [RS2| and is the natural limit space of the
two dimensional variational problem modelising micromagnetism without vortices
(see [RS1] and [ARS]| for a detailed presentation of this problem). In brief, we
consider the energy

1
E.(u) ::/E|VU|2—|——/ |H,|? dz,
Q € JRr2

where H, (the so-called demagnetizing field) is the curl-free vectorfield related to u
by the PDE div (@ + H,) = 0, @ being the extension of u to R?\ { with the value
0. Assuming that E.(u.) < C and u. = €'? with ¢, € H' uniformly bounded in
L>, in Theorem 1 of [RS2] it is shown that the family ¢, has limit points (in the L*
topology) as € — 07 and that any limit point fulfils (1.2). Moreover, we have the
I'lim inf inequality

liminf E,, (%) > 2|Us |(2 x R)

k—oo

whenever ¢., — ¢oo. In [Le| this compactness result has been extended to the Mgy
space, see Theorem 3.6.

The proof of these facts is based, among other things, on some methods developed
in [ADM] and in [DKMO1] in the very close context of the Aviles-Giga problem (see
[AG1], [AG2|). In this setting one considers the energy functionals

. 2\2
(1= [voP)?

€

F.(v) := / €| V20| + ,
Q

so that the vector fields Vv, up to a rotation, are exactly divergence-free but take

their values on S! only asymptotically.

At this stage a full I'-convergence theorem in the micromagnetics case (and in
the Aviles-Giga problem as well) is still missing, although as we said the I'lim inf
inequality is known to hold in general and the I'lim sup inequality has been proved
in some particular situations. Besides, the results in [RS2| and [ARS] lead to a
characterization of energy minimizing configurations.

The completeness of the ['-limit analysis of this variational problem requires a
deeper understanding of the space Mg, (2). In particular, a more precise description
of the singular sets of arbitrary maps in Mg;,(£2) is a very natural question.

As explained in [RS2], the measure div (e'?"?) “detects” the singular set of ¢:
for instance, it is proved in [LR| that ¢ is locally Lipschitz in Q if and only if
div (€194%) = 0 in D'(2 x R). In the particular case where the lifting ¢ is a function
of bounded variation it is established in [RS1], [RS2] (using the Vol'pert chain rule



in BV) that the measure dive‘?"® is carried by Ss, where Sy is the countably H!-
rectifiable set where ¢ has a discontinuity of jump type, in an approximate sense
(see Section 2). Precisely, for any ¢ € BV (Q) such that dive'? = 0 one has

div (') = X(p-<acgty (€4 — € P ) vy H'L Jy, (1.3)

where ¢* are the approximate limits of ¢ on both sides of Sy and v, is chosen
in such a way that ¢~ < ¢™, and X(s-<4<g+} is the characteristic function of the
interval (¢, ¢") in R. Finally #'L J, denotes the 1-dimensional Hausdorff measure
restricted to Jy.

Our main motivation in this work is to extend such a description of the jump
set to liftings ¢ of vectorfields in Mgy (€2). In [ADM] an example of a vectorfield in
M iy (Q) which is not in BV (Q, S) is given. Precisely, the authors give an example
of a map in the so-called Aviles-Giga space AG. (see [AG1|, [AG2|, we follow the
terminology of [ADM]) which is not in BV (£2). We recall that AG.(2) is made by
all solutions u of the eikonal equation such that

di @ ’ — @ ’ is a finite Radon measure in
“\\ae) T oy

for any orthonomal basis (£,7) of R%. Because of the similarities between the two
spaces it happens that this map can be made also in Mg, (the technical reasons
is that small jumps are penalized with a power faster than 1, see (3.5) and [RS1]).
Therefore the BV space is too small for our analysis and there is no hope to achieve
our goal by using the classical results of the BV theory.

It is proved in [RS2] that a lifting ¢ of a vectorfield in My;, solves the following
kinetic equation :

ie'® - Vilx(¢(z) — a)] = 9, (dive' ") in D'(2 x R), (1.4)

where x denotes the characteristic function of R, . By applying now classical results
of regularity of velocity averaging of solutions to kinetic equations (see [DLM]),
one gets that solutions to (1.4) for which the jump distribution div (e!?"%) is a
finite Radon measure are in W7?(Q2) for any o < é and p < g Taking advantage
of the specificity of the solution f = [x(¢(z) — a)] solving the general equation
i€V, f = 0,9, where g = div (¢!#"?), P.E. Jabin and B. Perthame in [JP] improved
the Sobolev exponents and showed that

1
¢ € WIP(Q) Vo < 3 and p < g (1.5)

Still being a nice improvement, this is far from being enough to tell us something
on the structure of the singular set of ¢ (one would like for instance to get as close
as possible to the situation where op = 1).
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Leaving aside the classical linear Functional Analysis approach, which is perhaps
not the most appropriate one to explore our non linear space Mg, (€2), we adopt
here a more direct approach working directly on the singular set ¢ through a blow-up
analysis of the measure p4(B) := |Us|(B x R).

Our main result is the following structure theorem.

Theorem 1.1. Let ¢ be a lifting of u € Maiy(2) as in (1.2). Then
(i) The jump set J, is countably H'-rectifiable and coincides, up to H'-negligible

sets, with
B,
Y= {xGQ: limsupM >0}.

r—0t r

In addition
div (') L Js = X{g- <acot} (€' —€P) vy H'LJy VaeR. (1.6)

(it) For H'-a.e. x € '\ Js we have the following VMO property:

1 —
e
r—0t mr B, (z)

where ¢ is the average of ¢ on B,(z).
(i) The measure § := pysL(Q\ Jp) is orthogonal to H*, i.e.

B Borel with H'(B) < +o00 = §(B) =0.

Comparing this result with the BV theory, we expect that (ii) could be improved,
showing also convergence of the mean values as » — 0% (and thus existence of an
approximate limit at H'-a.e. z € Q\ J,). Moreover, by (1.3) and the VMO condition
out of Jy we expect also that the measures div7u are concentrated on J,. If this
is the case, by the formula (see Theorem 3.2(ii))

u¢:/ |div e*?"%| da (1.7)
R

one would get that the measure § in (iii) is identically 0 and full rectifiability of the
measure fty. All these problems are basically open, and it would be interesting even
to show that ¢ is singular with respect to the 2-dimensional Lebesgue measure, thus
showing that ¢ is a Cantor-type measure (according to the terminology introduced
in [DeGA], [A] for BV functions). We prove that ¢ is identically 0 by making
an additional mild regularity assumption on ¥, namely H{(Z N Q\ ) = 0, see
Theorem 6.4 whose proof is based on the results in [ALR].
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As explained in the paper the uniqueness of the tangent jump measure while
dilating at a point where the l-upper density of the jump measure is nonzerois
strongly related to the uniqueness result established in [ALR].

It is likey that this analysis can be extended to scalar first order conservation
laws with strictly convex non-linearities, where the classical Oleinik uniqueness result

plays the role of our uniqueness result in [ALR]. Precisely, given a solution ¢ on
R x R" of

0 0(Ao9) B
ot T o
for A” > 0 and assuming that, for any S € Lip(R), one has that
m = 9S50 ¢) + 9(Qo9) € Mpe(R x RY),

ot ozr

where S’A" = Q' and where M;,.(R x R") denotes the the distributions which are
Radon measures in R x R™, then we expect a similar structure theorem to be true
for the measure m.

Now we briefly describe the contents and the techniques used in this paper.
Section 2 contains some basic material about BV functions, approximate continuity,
approximate jumps. The main result is Proposition 2.3, where we find a necessary
and sufficient for a lifting ¢ to be a function of bounded variation.

Section 3 contains the main basic properties of the space Mg;,. In particular we
show the identity (1.7) and, as a consequence, the absolute continuity of ps with
respect to H!.

In Section 4 we study some properties of concave functions whose gradient satis-
fies the eikonal equations. These properties are used in the last section of the paper
for the classification of blow-ups.

Section 5 is devoted to some abstract criteria for the rectifiability of sets and
measures in the plane. We use a classical blow-up technique (see [Pr| for much
more on the subject), studying the asymptotic behaviour of the rescaled and renor-
malized measures around a point. The renormalization factor we use is simply the
radius of the ball (see Definition 5.1). The new observation here is that very weak
informations about the structure of blow-ups allow to show that points where the
upper 1-dimensional spherical density is positive are indeed points where the lower
1-dimensional spherical density is positive, see Theorem 5.2. In our problem, this
information is used to show that s (€2\ Sy) has zero 1-dimensional density, and
therefore is orthogonal with respect to H!.

Section 6 is devoted to the classification of blow-ups. Here we use the idea
that any vector-valued measure becomes, after blow-up, a constant multiple of a
positive measure at a.e. blow-up point. This idea was first used by E. De Giorgi
to classify blow-ups of sets of finite perimeter (which turn out to be halfspaces) in



his fundamental work [DeG| on the rectifiability of the reduced boundary of sets of
finite perimeter. Here this idea is pushed further, considering the measures

/ e‘edive'?" da, / g(a)dive'* da,
R R

all absolutely continuous with respect to i, and blowing up at Lebesgue points of
all the respective densities. We show in this way that any blow-up is either constant,
or jumps on a line, or jumps on a halfline, with a uniform (i.e. independent of the
chosen subsequence) lower bound on the width of the jump. This suffices to apply
the results of the previous sections, and to infer rectifiability.

While completing this work we learned that C. De Lellis and F. Otto indepen-
dently established in [DO] a structure theorem similar to Theorem 1.1 for the Awviles-
Giga space. Their proof, still based on a blow-up argument, is more elaborate, since
in the case of the Awviles-Giga space the class of blow-ups is a priori richer. It is also
interesting to notice that no connection with the theory of viscosity solutions is used
in their paper.

We close this introduction with the following table, summarizing the notation
used without further explaination in the paper.

Q A bounded open set in R?

a/Nb The minimum of ¢ and b

aVb The maximum of @ and b

v-w The scalar product of v and w

(v, w) The angle 6 € [0, 7] such that v - w = |v||w]| cosf

vt The anti-clockwise /2 rotation of v, (—vy, v;)

ela The vector (cosa,sina)

B, (x) The ball with centre & and radius  (z = 0 can be omitted)
H! Hausdorff 1-dimensional measure in R?

St Unit sphere in R?

M(X) Finite Radon measures in X
M (X) Positive and finite Radon measures in X
uL B Restriction of p to B, defined by xpu.

2 Continuity points, jump points, BV functions

Let us introduce some weak notions of continuity and jump, well studied in the
context of BV functions. All of them have a local nature and, to fix the ideas, we
give the definitions for some function f € L} _(R?* R™).
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e (Approximate limit) We say that f has an approximate limit at x if there
exists a € R™ such that

. 1
i = [ 1f)~ aldy =0,
B, (z)

r—0t 12
The vector a whenever exists is unique and is called the approximate limit of
f at z. We denote by S; the set of points where f has no approximate limit.

e (Approximate jump points) We say that z is a jump point of f if there
exist a™, a~ € R™ and v, € S! such that a™ # a~ and

1
lim — —a®|dy =0
tim = [ ) —atldy =0,
where BX(z) = {y € B,(z) : +(y — z) - v, > 0} are the two half balls
determined by v,. The triple (a™,a™, ;) is uniquely determined up to a change
of orientation of v, and a permutation of (a™,a~). We denote by J; the set of
jump points of f.

It is not hard to show (see [AFP]) that Sy, J; are Borel sets, that J; C Sy, and
that Sy is Lebesgue negligible.

The following Lemma has been proved in [Al] in a more general context. For
the sake of completeness we include the proof.

Lemma 2.1. Let (;) be a family of continuous functions defined on R which sep-
arates points. Let ¢ € L°(R?) and set ¢y := x;0¢. Then the following implications
hold:

(i) ¢ has an approzimate limit at x if and only if all functions ¢; have an approx-
imate limit at x;

(i1) If x is either an approzimate continuity point or a jump point for all functions
@1, with the same normal to the jump, then the same is true for ¢.

Proof. (i) We prove only the nontrivial implication, the "if" one. Let us set X :=
[—]|®]lcos ||#]lco]- By the Stone-Weierstrass theorem the algebra A generated by the
family (x;)ien is dense in the set of continuous function of X, C'(X), endowed with
the sup norm. If x; o ¢ has an approximate limit at « for any [ we infer that f o ¢
has an approximate limit at « for any f € A. Since A is dense in C(X), the identity
function is the uniform limit of a sequence of functions of A, so that ¢ has an
approximate limit at x.

(ii) The proof is similar, working in the two halfspaces determined by the common
normal to the jumps. U



Remark 2.2. Concerning statement (ii), notice that if we assume in addition that
x is a jump point for at least one of the functions ¢;, then = must be a jump point
of ¢, by (i).

We are going to apply this result with ¢;(z) = (z V b;) A ¢;, where (b, ¢) is a
family of open intervals. It is easy to check that the family (¢;) separates points if
and only if the closed set R \ U;(b;, ¢;) has an empty interior.

We recall also some basic facts about BV functions which will be used throughout
the paper. We say that v € L*(Q2, R™) is a BV (bounded variation) function, and
we write u € BV (Q,R™) (R! can be omitted), if its distributional derivatives D;u,

l.e.
(Diu;iﬁ)::—/awudw Yelr(N),i=12
Q oz;

are representable by finite R™-valued Radon measures in 2. We denote by |Dul|(2)
the total variation of the R?™-valued measure Du = (Dju,Dou). When u €
Wh(Q; R™) we have Du = VuL? and therefore

Du|(Q) = / V| de.
Q
We recall that the jump set of a BV function u is countably H!-rectifiable and that

lut —u” | dH' < |Dul(Q). (2.1)

Ju
Moreover, H!-a.e. any approximate discontinuity point is a jump point, i.e.
H' (S, \ Ju) = 0. (2.2)

Now we investigate under which conditions a lifting of a function v € BV (Q2, S)
is itself a BV function.

Proposition 2.3. Let ¢ € L®(Q2) be such that
(i) u:=e'® € BV(Q,S");
(ii) Uy := dive! e € M(Q x R).
Then ¢ € BV (Q2) and
[Do[(2) < CIUs[(2 x R) + [Dul()]

for some constant C'.



Proof. Let ¢y € BV (Q) be given by Lemma 2.4 below, satisfying e!?° = e'?. Then
there exists a unique k € L*(2, Z) such that ¢ = ¢g + 27k. The goal is to show
that k € BV (€, Z).

It is clear, since ¢g € BV (2) N L™, that div (¢!4%0) € M(Q x R). Therefore we
can deduce that

//cosa (6199 — &@"%) . vy dade| < Clloo (2.3)
QJR

for any ¢ € C*(Q), with C = |Us,|(2 x R) +|Uy| (€2 x R). Notice that |Uy,|(2 x R)
can be estimated (see (3.5)) with |D¢o|(€2) and this, in turn, can be estimated with
| Dul($2).

We observe that e?%\¢ = eioNdo+2mk) — i(e—2mk)Ado  Pixing x € ) and assuming
k(xz) > 0 to fix the ideas, we deduce from the remark above that

) ) oo (x)+2mk(z) ) ‘
/ cos a (&) — eiando@)) g = / cosa(el® — e @) dq
R $o(w)
) 2mk(z) )
e / cos(b + do(z)) (¢ — 1) db
0

= ! ®@) (nk(z) cosgo(z) — imk(z) singg(z))

Combining this fact with (2.3) we have proved that

oY o
/k el YW ECR(®)
Q L1
This shows that D;k is a finite Radon measure in 2. A similar argument (replacing
cosa by sina in (2.3)) works for Dsk. O

In the proof above we used the following lemma, which ensures the existence of
a BV lifting.

Lemma 2.4 (BV lifting). Let u € BV (Q, R?) such that |u| = 1 almost everywhere
in Q. Then there exists ¢pg € BV (Q, [—2m, 27]) verifying

(i) u=e? ae. in;

(11) |Dgo|(2) < Co|Dul|(2), where Cy is an absolute constant.



e

Proof. Let & be a smooth function from R? into [—%,+%] such that for any z =
T 7] such that %) = 2,

(z1,22) in S' verifying x; > 0, &(2) is the angle in [-%,%
Similarly we introduce &, to be a smooth map from R? into [0, 27| such that for any
z = (z1,22) € S* verifying z; < 2, &:(2) is the angle in [0, 2] such that ¢'¢() = 2.

Since u = (uy,uz) is in BV (2, R?), by the mean value theorem and the coarea

formula in BV we may find a € [§, 3] such that
| DXfo: us(2)>a3 | (2) < 4| Dua (),

thus £ = {z € Q: w(r) > a} is a finite perimeter set. By virtue of the Volpert’s
chain rule (see for instance [AFP|, Theorem 3.96), we have that both & o v and
&row are in L* N BV () and their total variations can be estimated with |Du/|(2).
Using now the decomposability theorem ([AFP|, Theorem 3.84), we have that

G0 :=xg&oou+ Xa\ESrOU
is in BV (€2) and
[Do|(€2) < [ll€olloo + [1€1llo0] [Dx£|(82) + [D(& © u)[(2) + [D(&1 0 u)[(2).

By construction we have ¢!? = v a.e. in 2 and ¢ is a solution of our problem. [

3 The space Mgy, (1)

In this section we introduce the main object of study of the present paper.

Definition 3.1. We denote by Mg;,(€2) the space of two-dimensional vector fields
w in L'(Q, S!) satisfying

(P1) divu = 0 in D'(Q);

(P2) there exists a lifting ¢ € L®(Q), i.e. a map ¢ satisfying u = €', such that the
distribution Uy in D'(2 x R) defined by

Usibiaa)) == [ [ &4 V(2,0 dada
RJQ

is a finite Radon measure in 2 x R.

For a € R we set T := @ € L'(Q,S!) (this is a slight abuse of notation,
since T%u depends on the lifting and not only on u, but it is justified by the fact
that in the following the lifting of u will be kept fixed), so that

(Ug; ) = /R<div T; (-, a)) da. Vi € C°(Q2 x R).
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Notice that, since ¢ € L*(Q2), then (P1) implies that divT®u = 0 for all a € R
such that |a| > ||@]|c. Finally, we denote by pu, the projection of |Uy| on the first

variable, i.e.
pe(B) == |Uy|(B x R) for any B C ) Borel.

In the following theorem we state some basic properties of the truncated vector
fields T%u and a useful representation formula for Uy.

Theorem 3.2. Let u € Mgy (2). Then, the following properties hold:

(i) The map a — divT®u satisfies the Lipschitz condition

[(divTu; 9) — (div T’ )] < L/@)Vellolb —a| V€ CR(R). (3.1)

(i) pe(B) = [ |divT*u|(B)da for any Borel set B C Q. In particular divT%u is
a finite Radon measure in Q) for a.e. a € R.

(11i) For a.e. a € R we have

1 a+9d

— divTudb — divT®u in M'(Q).
20 a—6 §—0+
Proof. (i) Follows by the elementary inequality |T%u — T°u| < |b — a.
(ii) For any ¢(z,a) = f(x)g(a), with f € C*(Q2) and g € C*(R) we have

Ussb(w,a) = [

R

g(a) / T -V f(z) dzda.
Q
By approximation, the same identity holds if ¢ is a bounded Borel function with

compact support. Now, choosing an open set A C Q and f € C°(A) with || f]|eo < 1
and g = X(a,a+d) W€ get

a+d
|Up| (A x (a,a + 6]) > —/ /Tbu-Vf(x)da:db,
a Q
so that

WU (A (coc,a) = = [ T f@)de Vo R

Being f arbitrary, this gives that div 7w is a finite Radon measure in A and

d
7a|Usl (A x (=00, a]) = |div T"u[(A)
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for a.e. a € R. By integration it follows that

|Us|(A x R) > /R |div T%u|(A) da (3.2)
for any open set A C 2. On the other hand, the inequality

U@ x R) < /R div T (Q) da. (3.3)

is easy to prove, using the definition of Us. From (3.2) and (3.3) we obtain the
coincidence of the measures pg and [ |divT?ul da.

The property (iii) is an easy consequences of (ii) and of the Lipschitz prop-
erty (3.1): it suffices to choose Lebesgue points of the integrable function a —
|div T%u|(£2). O

The following covering technical lemma will be used to show the absolute conti-
nuity of ug with respect to H!.

Lemma 3.3. Let K be a compact set of Q2. Then, there exists a sequence (¢,) C
C>(9,1]0,1]) such that:

(i) Yn =1 on K and spt 1, — K as n — oo;

(1) limsup/ Vi, | dz < nH' (K).
n—-+4o0o Q

Proof. Let L = H'(K). By the definition of Hausdorff measure, for any n > 1 we
can find a finite number of balls B; = B(z;, r;) whose union covers K and such that
r; < 1/n and ) .2r; < L+ 1/n. By the subadditivity of perimeter, the open set
A, := U;B; has perimeter less than 7L + 7 /n. Then, we set 1, = xa, * pe,, Where
€n < 1/n is chosen so small that still ¢, = 1 on K (it suffices that ¢, < dist(K, 9A,))
and the support of 1, is compact. Since the total variation does not increase under
convolution (see for instance Proposition 3.2(c) of [AFP]) we have

[ 190nlde = D6 < 1Dxa | @) < 7L+ T

and therefore v,, has all the stated properties. O

Theorem 3.4 (Absolute continuity). The measure p4 is absolutely continuous
with respect to H', i.e. u(B) =0 whenever B is a Borel H'-negligible set.
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Proof. By the inner regularity of p4 it suffices to show that there exists C' > 0 such
that, for all compact sets K C Q, us(K) < CH'(K). We will prove that, for all
a € R such that div7T®u is a Radon measure on (2, the inequality |div T%u|(K) <
2nH(K) holds for any compact set K C Q. Then, since divT®u = 0 as soon as
la| > ||¢||oo, by Theorem 3.2(iii) we obtain

(K = /R|divT“u|(K) da < 27| ¢l|H (K).

Let a € R be such that v := div7T%u is a finite Radon measure on 2. By
the Hahn decomposition theorem, there exists two disjoint Borel sets AT, A~ such
that, if v™ and v~ denote respectively the positive and negative parts of v, then
vt = vl A%, Since |v| = v + v, it suffices to prove that v (K) < nH!(K) for
any K C A" compact and v (K) < 7H!(K) for any K C A~ compact.

Let K C A" be compact and let (¢,) C C*(, 0, 1]) be given by Lemma 3.3.
We have

vi(K) = v(K)< lim [ ¢,dv=—lim [ T -V,dz
Q

n—oo n— o0 Q

< limsup/ Vi, | dz < nH'(K).
Q

n—oo

A similar argument works for compact sets K C A™. O

In the case when ¢ € BVj,.(£2) one can use Volpert’s chain rule in BV to obtain
an explicit formula for div T%u, see [RS2]: it turns out that

div T = x(a, ¢, ¢ ) ('@ — ¥ ") .y HEL J,, (3.4)
where
1 if¢g- <a<oh
x(a,07,¢7) =1 —1 if ¢t <a< ¢
0 else.

Moreover, the divergence free condition gives € " vy = €' ¢ - Vg at any point in Jy.
In particular, choosing v, in such a way that ¢* > ¢~, Fubini theorem and (2.1)
give

Ug)(2 xR) = /|divT“u|(Q)da:// X{s-<a<otyle’® — €7 | dH'da
R R JJ, -

< [t -eleaglet—eae <2Dse). (6
[

The following lemma provides an integral representation of the divergence, as-
suming rectifiability of the measure and existence of jumps.
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Lemma 3.5. Let u € L®(R? R?) and let K C R? be countably H'-rectifiable. If
divu is a Radon measure in R* and H*(K N S, \ J,) =0, then

divulL K = (ut —u™) - vH'LK N J,.

Proof. Arguing as in Theorem 3.4 and using Lemma 3.3 one can easily show that
divu << H!, hence divulL K is representable by §H' L K for some density function
6. The function # can be characterized by a blow-up argument, using the fact that
K becomes a line (here the rectifiability of K plays a role) after blow-up and u
becomes a jump function or a constant function at H!-a.e. blow-up point of K. [

The following compactness result has been proved in [Le| adapting the truncation
argument of [RS2].

Theorem 3.6 (Compactness). For any constant M > 0 the set
{0 € L7(Q): [[¢]lo + [Upl(2 x R) < M}

is compact in L'(Q) with respect to the strong topology.

4 Some properties of concave functions

In this section we study some properties of concave functions g whose gradient
satisfies the eikonal equation. We recall that the superdifferential dg(z) of g at z is
the closed convex set defined by

dg(z) :={peR*: g(y) <g(z)+p-(y —z) Yy € R?*}.

It follows immediately from the definition that the graph of dg,i.e. {(z,p): p € dg(z)}
is a closed subset of R? x R2. Moreover, the Lipschitz assumption on g gives
dg(z) C B, for any x. Finally, dg(z) = {Vg(z)} at any differentiability point of g.

For any w € S! and any € R?, the left and right directional derivative along w
of g at = are defined by

VEg(z) := lim g(z +rw) - g(w)

r—0%t r

For any = € Jy, we denote in the following by (Vg™, Vg, v,) the triple defined in
Section 2.

Proposition 4.1. Let g : R? — R be concave and satisfying |Vg| = 1 a.e. in R2.
Then, g satisfies the following properties:
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(i) If Vg has an approzimate limit at x, then g is differentiable at x. Moreover,
setting Dy := {x +tVg(x): t <0}, for H'-a.e. y € D,, Vg has an approzi-
mate limit at y equal to Vg(z).

(ii) Let J be the set of approximate jump points of Vg and let x € J. For any
w € St such that w - v, > 0, the partial derivatives V=g(z) exist and

V,9(r) =w-Vg (z) >w-Vg'(z) = V] g(z). (4.1)
Moreover, setting DE := {x +tVg*(z): t <0}, for H'-a.e. y € DE, Vg has
an approximate limit equal to Vg*(z).

(iii) For all a > 0, we define the following sets
Jo:={z € J: |Vgt(z) — Vg (z)| > a}

Yo = {z € R* : diam (9g(x)) > a}.
Then, J, C ¥y and %, is closed.
Proof. The first two statements can be proved in the same way and we prove only

the second. By the definition of J there exist v, € S' and Vg*(z), Vg~ (z) € S!
such that

: 1 + _
Y B o, V90~ V@l =0 (4.2

For r > 0, let us define

oly) = 2O 29D o,

Then, Vg,(y) = Vg(z +ry). By (4.2), Vg, converge in L*(B;) when r — 0% to the
function

[ Vgt (z) fy-v,>0
Goly) = { Vg (z) ify-v, <O.
By Sobolev embedding, this implies that (g,) uniformly converges in B; to a 1-
Lipschitz function gy satisfying Vgo = Gy. Since ¢,(0) = 0 we have that go(0) =0
and therefore gy is uniquely determined:
_Jy-Vgi(e) ify-va>0
9oly) := { y-Vg(z) ify v, <0

But, for any w € S, we have

Vo) = tim LEE Z9@ ) = go(w)

r—0+t T r—0+t
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and

Vog(e) = lim S8 Z9@ g ) = —go(—w).

r—0t —7r r—0+

Therefore, if we assume that w - v, > 0, then
Vo9(z)=w:Vg~(z) and Vjg(z)=w-Vg'(z).

Moreover, we have V_g(xz) > V! g(z) since the restriction of g to Rw is concave.
Let us now prove the second part. Let z € J and let y € D_ . Since the restriction
of g to D, is concave, we have

Ve 09W) = Vo, 9W) > Vg, y9(x) = Vg () Vg~ (z) = 1.

Since g is 1-Lipschitz we obtain that
Ver@9¥) = vég—(w)g(y) =1L (4.3)

By (2.2), for H'-a.e. y € R? either Vg has an approximate limit at y, or y is an
approximate jump point of Vg. If y € D7, y can’t be a jump point of Vg. Indeed,
assuming that y € J and applying (4.1) with w = Vg~ (z), we have

Voo @9®) =Yg () Vg (2) 2 Vg*(y) - Vg (2) = Vi, (y9(y)-

By (4.3), Vg~(y) - Vg~ (z) = V'g(y) - Vg~ (z) = 1. Thus, Vg~ (y) = Vg'(y) =
Vg~ (z), which contradicts the assumption y € J. Therefore, Vg has an approximate
limit equal to Vg~ () at H'-a.e. y € D, . The same argument can be used for D}
and (ii) is proved.
(iii) First, let us show that J, C ¥,. Indeed, since g is differentiable a.e., for any
x € J, we can find differentiability points x,f converging to z such that Vg(x,f)
converge to Vg*, hence the closednedd os the graph of dg gives that Vg™ (z) and
Vg (z) are in dg(z). Thus, diamdg(z) > o and = € X,.

The closedness of ¥, is an immediate consequence of a compactness argument
based on the closedness of the graph of dg and on the fact that dg(x) C B, for any
x. U

5 Rectifiability of 1-dimensional measures in the
plane

In this section we consider a measure u € M (Q2) absolutely continuous with respect
to H', i.e. vanishing on any H'-negligible set. We define

O.(u, z) = lim infw, ©*(u, z) := lim sup M (5.1)

r—0+t r r—0+ r
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A general property is that ©*(u, z) is finite for H'-a.e. = (see for instance [AFP)])
hence the absolute continuity assumption gives that ©*(u, z) is finite for p-a.e. .
We define also

Yi={reQ: 0 (u,z) >0}, Y, ={reQ: 0,uz) >0} (5.2)

and notice that Ei are Borel sets and ¥, C EZ. Notice also that Z:j is o-finite
with respect to H!, as all the sets

Yo ={2€Q: O (u,z) > a} (5.3)

satisfy H'(Z4) < 2u()/a (see [AFP], Theorem 2.56). Therefore, by the Radon-
Nikodym theorem, we can represent

p=pLEh +pl(Q\Z)) = fFHILE +ul(Q\ ) (5.4)
for some f € L'(H'LXF). Notice that the residual part pu" := pl(Q\ X}) is
"orthogonal" to H! in the following sense:

H'(B) < +c0o = u"(B)=0.

This is a consequence of the fact that ©*(u", x) is 0 for u"-a.e. z.
The following definition is a particular case of the general one given in the fun-
damental paper [Pr].

Definition 5.1 (Tangent space to p). Given z € Q and r > 0, we define the
rescaled measures i, € M ((2 —x)/r) by

p(z +rB)

or(B) =
fer(B) .

for any Borel set B C (2 — z)/r, so that

r

[ o s = [ oDy dutw) Vo€ Col(@- o).

We denote by Tan(u,z) the collection of all limit points as r — 0" of p,, in the
duality with C.(R?).

Notice that the definition above makes sense because the sets (2 — x)/r invade
R? as r — 0. Moreover, as

Lz r(Br) = w <1+ RO*(u,z) VR >0

for r sufficiently small (depending on R), a simple diagonal argument shows that
Tan(u, z) is not empty whenever ©*(u, x) is finite (and thus p-a.e.).
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Theorem 5.2 (Positive upper density implies positive lower density). Assume
that for some x € EZ the following properties hold

(i) The density function f(r) := w(B.(z))/r is continuous in (0,9) for some § €
(0, dist(z, 09));

(ii) ©*(u,x) is finite;

(1ii) There exists ¢, > 0 such that any nonzero measure v € Tan(u,x) is repre-
sentable by cH'L L, where ¢ > ¢, and L is either a line or a halfline (not
necessarily passing through the origin).

Then x € E;.

Proof. We introduce first some notation. Given a line or a half line L intersecting
the open ball By, we denote by L the line containing it and by ¢ its direction (if
L = L the orientation does not matter). We denote by hy, € [0,1) the distance of L
from the origin. Finally we define dy € [—1, 1] so that

ye LNB; = yeLNB; andy-€> —dy.

An elementary geometric argument shows that, if d > 0 and H*(L N By) < 1/2,
then hL Z \/5/2

We assume by contradiction that ¢ X, i.e. ©,(u,r) = 0. Henceforth, we fix a
positive number ¢ < min{c,/2,0*(u,z)} and find a decreasing sequence (R;) with
f(R;) < ¢/4 and then r; < R; such that f(r;) = ¢ and f(t) < g for t € (r;, R;] (r; is
the first r below R; at which f hits ¢). Notice that necessarily R;/r; > 4.

Possibly extracting a subsequence, by assumptions (ii), (iii) we can assume that
the rescaled measures u; = p,,, weakly converge, in the duality with C.(R?), to a
Radon measure v = ¢cH!L L, where L is either a line or a halfline and ¢ > c,.

As p;(B1) = q we obtain that v(B;) = v(B1) > ¢. On the other hand, as
pi(By) < gr for any r € (1,4) we obtain

v(Bi)=q and v(B,) <gqr Vre(l,4).

In particular the right derivative of g(r) := v(B,)/r at r = 1 is nonpositive.
On the other hand, we have

I/(Br):c<dL—|—\/r2—h%> Vr >1,

so that
d (r) d dp++/m*—h2 h3 —dr\/1—h%
—g(r =c =cC .
dr+ pey drt r 1 V/1—h?
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This derivative is strictly positive if d;, < 0. If d;, > 0 we notice that

4

H(LNB) =<

1
< 5,
hence h; > v/3/2 and h? > /1 — h%. Therefore the derivative above is strictly
positive in any case. This contradiction proves the theorem. O

The following rectifiability result is part of the folklore on the subject, but we
include a proof for convenience of the reader.

Theorem 5.3 (Rectifiability criterion). Assume that for p-a.e. x € X there
exists a unit vector & = £(x) such that any measure v € Tan(u, ) is concentrated
on a line parallel to . Then ¥, is countably H!-rectifiable.

Proof. For n > 1, let S,, be defined by

1
Sy = {xeﬂ: O.(p,x) > ﬁ}

As H'L S, < 2nu it follows that H'(S,) < +oo, therefore by the decomposition
theorem (see Corollary 2.10 in [F|) we can write S, = S, U S¥, where S; NSy = 0,
S is countably H!-rectifiable and S* is purely unrectifiable, i.e. its intersection
with any rectifiable curve is H'-negligible. Let us show that #'(Sy) = 0. Then, X/
will be contained in a countable union of rectifiable curves and Theorem 5.3 will be
proved.

Let us define, for any direction w € S*, for any angle # € (0,%), = € R? and
r >0, S.(r,w,0) as the intersection of B,(z) with the cone

{y € R?\ {z}: |cos(yfzw)| > |cos€|}.

having « + Rv as axis. Since S¥ is purely unrectifiable, by Theorem 3.29 in [F], for
H'-ae. z € S¥ we have

1 u
H(S N Sr(z,w,0)) ésin@ Yw € S, V8 € (0, g)-

lim sup
r—0t r

In particular, fixing 6, we have

Sr(z, & (x), 6 1
lim sup #(5-(2,67(2),6)) > sin 0 for H'-a.e. z € S
r—0+ r 12n
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Assuming by contradiction that H'(S%) > 0, choose z € S* where the above density
property holds and a sequence r; | 0 such that g, , — v locally weakly in R* and

lim u(S”(x,ﬁL(a:),G)) > L sin 6. (5.5)

i—00 T 12n

By assumption we know that v is concentrated on a line L parallel to &, and (5.5)
gives
1 .
v (S1(0,6H(z),0)) > o sinf > 0.
We will obtain a contradiction by showing that the line L passes through the origin.

If not, there is ¢ > 0 such that v(B.) = 0, so that (B, (x))/r; is infinitesimal as
¢ — oo. This is not possible because z € X . O

6 Classification of blow-ups and rectifiability

In this section we analyze the asymptotic behaviour of good liftings ¢ of vector fields
u € Mgiy(92). In Proposition 6.1 and Theorem 6.2 we show that generically a blow-
up produces a lifting ¢, with special features, i.e. either approximately continuous
or jumping on a line or on a halfline. Moreover, there is a rich family of truncations
which turns ¢, into a BVj,. vector field.

Then, in Theorem 6.3 we prove rectifiability of the 1-dimensional part of 14 by
showing that the normal to the jump is independent of the sequence of radii chosen
for the blow-up, and a lower bound on the width of the jump of ¢,. The first infor-
mation comes choosing a Lebesgue point for the density function H characterized
by

/ e'2div T%u da = ﬁu¢.
R

The second information comes choosing Lebesgue point for the density functions H,
characterized by

/ et*ediv T da = ﬁku¢, ke (1,2)NnQ.
R

This aspect of the proof is quite delicate, since a priori the jump can be arbitrarily
small and no universal constant in the lower bound can be expected, unlike in the
theory of minimal surfaces. A linearization around k = 1 shows that small jumps
are uniquely determined by all vectors H k-

Proposition 6.1. Let u € Mgy (Q2) and let ¢ € L>®(Q) be a lifting satisfying (P2)
in Definition 3.1. For pg-almost every xo € Q, from any sequence r, — 07 one can
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extract a subsequence r; such that the functions ¢, (z) := ¢(xo + riz) converge to

boo in Li (R?).

loc .
Moreover setting us := €'9=, the following properties hold:

(i) There exist a monnegative Radon measure v on R? and a Lipschitz map h :
R — R such that
div T ue = h(a)v Va € R.

(ii) There exists a finite or countable family of open segments (possibly unbounded)
I = (by, ¢;) such that

(a) R\ UL} has an empty interior;
(b) for alll, divTy'ue, = 0;

(c) for all 1, either div Thus 1S a monnegative measure for all a € I or
div T ue 18 @ non-positive measure for all a € I;.

Proof. By Theorem 3.4 we know that y4 is absolutely continuous with respect to !,
hence (see Section 5) the upper density ©*(uy, z) is finite for pug-a.e. z. Henceforth,
we choose zy with this property. Since g, (Br) = tt¢(Br(z0))/r is equibounded
with respect to r for any fixed R, the compactness Theorem 3.6 and a diagonal
argument ensure the first part of the statement. We can also assume that the
rescaled measures (ftg)z,r, as in Definition 5.1 weakly converge, in the duality with
C.(R?), to some Radon measure v.

In order to obtain the property stated in (i) we impose additional (but generic)
conditions on xy. By Theorem 3.2(ii) we have that, for all g € C.(R), the Radon
measure [ g(a)divT*u da is absolutely continuous with respect to . Let D be a
countable set dense in C.(R) and set

Vg 1= / g(a)divT®uda Vg€ D.
R

Then, by the Radon-Nikodym theorem there exist functions h, € L'(£, pp) such
that v, = hyps. By Proposition 3.2(ii) again we obtain

/ﬂ (hy — hy )b dz = /R (9(a) — ¢'(a))(div T; ) da < sup g — ¢ / 1] djsg

for any ¢ € C°(2) and any g, ¢’ € C.(R), hence ||hy; — hyl||lco < sup|g — ¢'| (the
L> norm is computed using p4 as reference measure).

Let us consider the Borel set Q' = Q\ Ugep Sy, of approximate continuity points
of all maps hy, for g € D. Let B>(£Y') be the space of bounded Borel functions

21



on (¥, endowed with the sup norm. By the previous estimate, the map R which
associates to g € D the function
= ap— li Q'
Ry(z) :=ap lim hy(y), s
is 1-Lipschitz between D and B*>(2'). By a density argument R extends to a 1-
Lipschitz map defined on the whole of C.(R) and each point x of ' is an approximate

continuity point of all functions hy, g € C.(R), with approximate limit Ry(x).
We fix zy € Q2'. Rescaling v, as in Definition 5.1 we obtain

(Vg)xo,r = hy(xO + T')(Ntb)xo,r

and the approximate continuity of hy at xg, together with the fact that the upper
density is finite, ensures that (v)s,,, weakly converge, in the duality with C.(R?),
to Ry(xo)v. On the other hand, the identity

(Vg)zor: = /Rg(a)divT“u” da

and the convergence in the sense of distributions of divT%u,, to divT%u., give
/ 9(a)(div Touu; ) da = Ry(zy) | €dv Vg e Cu(R?), € € C(R2).
R R2

Now we fix & € C°(R?) such that [, & dv = 1 (assuming with no loss of generality
that v(R?) > 0) and notice that consequently

IRy (o) < ||V§0||oo/R|g(a)|da.

If particular, if g, weakly converge to the Dirac mass at a, then Ry, (x¢) is bounded,
and any limit point h satisfies

(divTuee; &) =h [ Edv V€ € CP(R?).
R2

This implies that h does not depend on the approximating sequence, but only on a.
The Lipschitz property of h follows directly by Proposition 3.2(i), using &, as test
function.

Let us now prove that (i) implies (ii), assuming with no loss of generality that v is
a nonzero measure. Then it suffices to take as intervals the connected components of
{h # 0} and the connected components of the interior of {h = 0}. By construction
the complement of the union of these intervals has an empty interior. O
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Theorem 6.2. Let u € Mg, (Q) and let $ € L>(Q2) be a lifting satisfying (P2) in
Definition 3.1. For pg-almost every zy € Q, from any sequence r, — 0% one can
extract a subsequence r; such that the functions ¢, (x) := ¢(xg + r;x) converge to
in L (R?) to ¢oo. Moreover the jump set Js,, of oo coincides, up to H'-negligible
sets, either with the empty set, or with a line or with a halfline K, not necessarily
passing through the origin.

If K is a line and wi € S', A € R? are such that K = A+ Rwi (see Figure 1),

then ¢oo is constant in the halfspaces I'T defined by

.= {y€R2: (y—A)-wK>0}, = {yGRQ: (y—A)-wK<0,}.
(6.1)

If K is a halfline and wx € S, A € R? are such that K = {A + twy : t > 0}
(see Figure 1), then the approzimate limits ¢1 and ¢, are constant H' a.e. on K.
Moreover, o, is equal to ¢p= a.e. in Fi , where

y— A
ly — A

rs .= Fiﬂ{yGRz: wIL{Z—uli-wK)}.
Proof. Keeping the notation of Proposition 6.1, in the following we denote by L° the
set of all [ such that [; is not a connected component of the interior of {h = 0}. Then,
if | ¢ L° divT%uy = 0 for any a € I;. If | € LY, either div T%u,, is nonnegative and
nonzero for any a € I; or div T%u, is nonpositive and nonzero for any a € I;.

Let us set u; := e*(?=V®) e Then w; is divergence free, because divT%uy, =

divTu, = 0 and
et (oo V) Acy + el¢oo/\bl = ¢ b + e Pooer

Since

gi ($ocVbAG y pidoohbl — oibi | gidooha (6.2)

we obtain that divT%u; = div T%u for a € I, therefore

h(a)v if a € I

0 else. (6.3)

div T“ul = {
In particular u; € Mgy (©2). Moreover, either div 7%y, is nonnegative for any a € R
or div7T%u; is non-positive for any a € R. If we are in the first situation, by
Theorem I.1 of [ALR|, any function g; € Wh*®(R?) such that u; = —V<tg is a
viscosity solution of the eikonal equation |Vg|? — 1 = 0 on R2?. Therefore, g; is
concave and u; € BVj,.(R?) (see [AD]). If we are in the second situation, for any
function g; € W1*°°(R2) such that u; = V+¢; we have the same statement. In both
cases, by applying Proposition 2.3, we obtain that ¢; € BVjo.(R?).
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In order to study the jump set of ¢, we first study the behaviour of the functions
¢. If [ ¢ L° by the previous discussion we obtain that any function g; satisfying
w = —Vtg is affine (being concave and convex) and therefore u; is constant. As
U, = 0, from Proposition 2.3 we obtain that ¢; is constant as well.

In the following we consider [ € Ly and, to fix the ideas (since the argument
is similar for both cases), we assume that div7®wu; is a nonzero and nonnegative
measure for any a € 1.

We denote by J; the set of approximate jump points of ¢;, by w; a unit normal
of J; and by ¢;, ¢, the corresponding approximate limits of ¢; on each side of J;.

. ) . o P
Since divu; = 0, then wy - et = w; - €% on J;. Thus, w = +e2@+%) and we

(o +¢7)

7
choose w; = e2 . Then, the explicit formula (3.4) given in Section 3 gives

divT%u; = x(a, ¢, 97 ) (€ — "% ) - Wy H Ly,

where
1 if ¢ <a<g¢f

x(a, ¢l+,¢l_) =< —1 if qzﬁf <a<¢,
0 else.

But, div T%u; is nonnegative for all a € R. Then, |¢;” — ¢, | < 2, since, otherwise,
there would exist a € R such that x(a, ¢;", ¢, )(e!*—e'% )-w; < 0. In particular J; is
also the set of approximate jump points of u;. If ¢; > ¢,7, then (e?® —e'% )-w; > 0

for any a € [¢;", ¢, ]. Therefore, we must have ¢;" > ¢, and |¢;” — ¢, | < 27 H'-a.e.
on J; and

div Tu; = x(4- 7¢l+)(a)(ei“ — ey H L (6.4)

Claim 1. ¢;" = ¢; and ¢; = b H'-a.e. on J,.

First of all, we notice that ¢, > ¢;7 > ¢; > b H'-a.e. on J;. Assuming by
contradiction that {¢;” < ¢;} has positive H'-measure, we can find ¢ > 0 such
that {¢;” < a} N{¢S — ¢, > €} has positive H'-measure, and then an interval
(B,8") C (bi, ;) with length less than €/2 such that

E:={¢/ € (8,8} n{s — &, >¢}

has positive H'-measure. From (6.4) we infer that div 7%y E = 0 for a € (8, ¢),
while div 7%y (E) > 0 for a € (5 — €/2,5). Since h > 0 on (b, ¢;), this contradicts
(6.3). The argument for ¢; is similar.

Claim 2. For any choice of [, m € L° we have H'(J; \ J,,) = 0.
Suppose that there exist [, m € L® and A C J; \ J,, such that H'(A) > 0. Since
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AN, =0, (6.4) yields div Tu,,L A = 0 for any a € R and (6.3) yields h(a)v(A4) =
0, so that v(A) = 0. On the other hand, the function X(d),‘,d),*)(a)(em — e ) - w s
constant H!-a.e. on J; by Claim 1. Moreover, this constant is not 0 for any a € I;.
Since v(A) = 0, then |div T%u;|(A) = 0 and therefore #!(J;N A) = 0. Since A C J,
then H'(A) = 0 which contradicts the hypothesis and proves the claim.

Claim 3. For any [ € L% J; is contained in one line. ,

Let us recall that the normal unit vector w; to Jj is given by 2 +97) and is constant
H'-a.e. on J;. Let us assume that there exist z;, z5 € J; such that (zo —21) - w; # 0
and assume (up to a permutation of z; and x3) that the scalar product is positive.
We set w := %, so that w - w; > 0. Since the restriction of g; to the line Rw is
concave, we must have

Vea(z) >V, a(xs).
By Proposition 4.1 we get

Vig(n) =w- Vg (1) =w- (¢9)"

and

Vogi(@:) =w- Vg (z2) =w - ()7,
so that w - (€ )L > w- (¢ )L, On the other hand, since w -w; > 0 and ¢; > ¢;,
then w - (€% )+ < w - (€' )+, a contradiction (this inequality can be easily checked
in a frame where ¢ + ¢, = 0, so that w; > 0). Therefore .J; must be contained
in one line. By Claim 2, all sets J; with strictly positive H!-measure (i.e. those

corresponding to [ € L%) are contained in the same line. Let us denote this line by
R.

Claim 4. There exists a closed set K; C R such that H!'(K;AJ;) = 0.

Let us recall that J; coincides with the set Jy, of approximate jump points of
Vg = (e'9)t, where g; is concave and satisfies |Vg| = 1. Since ¢ = ¢ and
¢; = by H'-a.e. on Jj, taking a = |e'% — e'¥|, it is clear that the closure K of
J* .= {z € J,, : |Vg/(z) — Vg, (z)] > a} contains H'-almost all of J;,. By
Proposition 4.1, J* C ¥, where &, := {z € R? : diam(dg;(x)) > a} is a closed
set. Therefore K; C ¥,. But, ¥, C Sy, where Sy, is the set of points where
Vg, doesn’t have an approximate limit. Indeed, by Proposition 4.1 , at any point z
where Vg, has an approximate limit the function g; is differentiable, hence dg;(x) is
a singleton. By (2.2) we infer

HY K\ ) < H (Ba \ J) S H (S, \ ) = 0.

For any | € L°, for H!-almost every z € K;, Vg, has an approximate limit at

H!-almost every y € D, and the approximate limit at a.e. point in the strip |J D,
QZEKl
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Figure 1: Behaviour of e~ when K is a line or a halfline

is equal to Vg; (z) = (e®)*, since ¢, is constant equal to b; H'-a.e. on K. In the

same way, one can show that Vg; has an approximate limit at a.e. point in |J D}
ze K

equal to (e?®)t. If Kj is the whole line, then |J DF = I'*| where I'* are the sets
zeK;

defined in (6.1). Therefore v; is constant a.e. in I'* and equal to et By Proposi-
tion 2.3 we obtain that ¢; is constant in the two halfspaces as well.

Now, let us assume that K is not the whole line and let us show that K; must be
a halfline. Assume that K is not connected. There exists a bounded open interval S
contained in R\ K, whose endpoints s, s belong to K;. We will denote by K;, K,
the components of K; containing s; and s, respectively. Set Rii = U DE i=1,2.

reK;

The region R?\ (R UR] UR; URy) can be divided into three parts A*, A=, C (see
Figure 2). If y € A" is a point of approximate continuity of Vg;, then Vg;(y) must
be equal to (e*“)L, otherwise the halfline D/ would cross R, or R, and this would
contradict the result of Proposition 4.1 (ii). If y € A~ is a point of approximate
continuity of Vg;, by the same argument, Vg;(y) = (e'®)*. If y € C is a point of
approximate continuity of Vg;, then Vg;(y) can only be equal to (e“t)* or (e'?)+
(see Figure 2). Then, C contains a set of approximate jump points of Vg;. But, by
hypothesis, K; N C' = ), hence H'(J; N C) = 0. Therefore, K; must be connected.

If K; is not the whole line, then K; has one or two endpoints. Let A be one
endpoint of K; and let wg be the unit normal to K; such that K; C {A+twx : t > 0}.
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Figure 2: K must be connected

Let us define the cone C by

y— A
ly — A|

C:={yeR*\{4}: wg < —€% wi}.

Let C' be any open set containing C such that C'N K = {A} and C'N K = (). Then,
div T%u; = 0 in D'(C’) for any a € R. Using the result of [LR|, ¢, is locally Lipschitz
in C'. Therefore, for a.e. x in C', V¢;(x) exists and div e! % (z) = (e!?@)+. Ve (z) =
0. Then, V¢;(z) is parallel to e?(® for a.e. € C'. Therefore for any a € R the
tangent to the level set {¢ = a} at x is orthogonal to ¢??/(*) which is equal to e*@
on {¢; = a}. Hence, the level sets {¢;, = a} are straight lines oriented by (e'*)* and
the only possible configuration in C is the one described in Figure 1.

Finally, we can exclude the case of K is a segment or a single point (Figure 3).
Indeed, choose R > 0 such that K; C Bg. Since H!(J;\ Bg) = 0, the slicing theory
of BV functions (see [AFP], Theorem 3.108) shows that for a.e. r € (R, R+ 1) the
restriction of ¢; to dB, is (equivalent to) a continuous BV function. Therefore u; has
a continuous lifting in 0B, and its topological degree is 0. This is in contradiction
with the fact that there are vortices which have the same orientation «; at the two
endpoints of K;. Therefore, K is a halfline.
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Figure 3: K can’t be a segment

By Claims 2 and 4 we obtain that all lines (or halflines) K;, [ € L% coincide.
Henceforth we set K = K;. By Lemma 2.1 and Remark 2.2 we obtain that ¢ has
an approximate limit H!-a.e. in R?\ K and H!'-a.e. point of K is a jump point of
®oo- Moreover, as all limits gbli are constant on Jy_, the same is true for ¢ . O

Theorem 6.3 (Main rectifiability theorem). Let u € Mg, (Q) and let ¢ €
L*>®(Q) be a lifting satisfying (P2) in Definition 3.1. Then the set

Yi={reQ: 0%(uy,x) >0} (6.5)

is countably H'-rectifiable and coincides, up to H'-negligible sets, with J,. Moreover,
for H'-a.e. z € Q\ J, we have

1
tim —smin [ o)~y =0 (6:5)
Proof. Step 1. We show that X' := {©,(u,-) > 0} is countably rectifiable, using
Theorem 5.3. To this aim we show that for y-a.e. z any o = lim;(f1¢)s,r, € Tan(pe, )
is supported on a line whose direction depends on x only.
We proved in Theorem 6.2 that (possibly passing to a subsequence) we can
assume that ¢,, = ¢(z + r;y) — doo in Li (R?). Moreover, there exists a closed set

loc
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K, the empty set, a line or a halfline, such that #'(KAJ,_ ) = 0. Denoting by wg
the orientation of K such that e (#%+¢=)/2 = 4, now we show that

divTUs = (T*ul, — Tuy) -wgH'LK  Va€R (6.7)

using Lemma 3.5. To this aim, we need only to check that T%u,, is divergence-
free in  \ K. If a belongs to some interval (b, ¢;), this follows by the identity
div Tuy = div Ty (see (6.2) and by (3.4), because J,, C K up to H!'-negligible
sets. In the general case one can argue by approximation, using the fact that the
complement of U;(b;, ¢;) has an empty interior.

One can show, by a direct computation based on (6.7), that the vector-valued
measure fR e *div T%uq, da is oriented by wy, and precisely

(6% — b —sin(0, — b)) wxH'LK  (6.8)

(NN

/ e div T%uy, da =
R

(this computation is easily done in a frame where wx = (1,0), so that ¢- = —¢_ +
4km for some k € Z and the periodicity and the odness of the integrand show that
the integral of the second component is 0). Moreover, the vector-valued measure
A1 = [ €'?div T%u da satisfies, by Theorem 3.2(ii), the inequality |A;| < py. Thus,
there exists a vector-valued function H € L*(RQ, ug) such that \; = Hpg and |[H| < 1.
In addition to the previous generic conditions imposed on xzy, assume also that z
is a Lebesgue point of ﬁ, relative to the measure pg. Then

()‘1)90077”1 — ﬁ(ﬂfo)a in M,(RQ)-
On the other hand, the convergence of ¢,, to ¢, implies
(M) = / e'*div T*u,, da — / e'%divTuy da  in D'(R?).
R R

Therefore
/ e %div T%uq da = H ()0
R

Comparing this expression with (6.8) we obtain

1 _ . - 7

5 (6% — 6 — sin(%, — 62)) wiH' LK = H(zo)o. (6.9)
Therefore wyx does not depend on the sequence chosen, but only on z,.

Step 2. We show that us(X \ ¥') = 0 using Theorem 5.2. Since H'(SNS') =0
whenever S # S’ are circles, the family of all circles S such that 14(S) > 0 is at most
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countable, and the same is true for their centers. Therefore we can choose zy out
of this set, so that the density function f(r) := pe(B,(z9)) is continuous. In order
to check condition (iii) of Theorem 5.2, for £ € Q N (1,2) we define the measures
A = fR et*ediv T%u da, all absolutely continuous with respect to iy, we denote by
Hy, € L}9, ) their densities with respect to u,s and we choose a Lebesgue point
zy for all functions Hy, (relative to ).

Assuming that o is not identically 0, we have to show that o = ¢H!L K with
¢ > c(xy) > 0. By (6.9) and since ¢ are constant on K, we know that 0 = cH! L K,
where c¢ is constant on K. Moreover,

el (o) = 3 [(85 — 6:0) — sin(6 — 6.)| (6.10)

Therefore, if | — ¢ | > 7/2, we have ¢ > (7/2—1)/2 because |H(zo)| < 1. Setting
d:= |9t — ¢ |/2 > 0, in the following we show that d (and therefore ¢, by (6.10))
is uniquely determined by Hy(zo) whenever d < m/4. We can assume with no loss
of generality (possibly making a rotation and adding to ¢, an integer multiple of
27) that wx = (1,0), ¢F = +d and ¢, = Fd. Then, arguing as in Step 1 we get

/ ekadiv Ty da = Hy(zo)o Yk € (1,2) N Q.
R

On the other hand, computing the left side we find that its real part equals mFd(k)’Hl L K,
where

Fy(k) := (sinkdcosd — k coskdsind) .
Then Fy(k) # 0 if and only if Hy () - wx # 0 and
2 Fy(k)

c= — . 6.11
k(k2—1) Hy(xo) - wk (6.11)
It turns out that the ratios
Fy(k k(k*—1) H :
D m(d) = dk) _ M ) Hilwo) - wx (6.12)

Fd(m) N m(m2 - 1) ﬁm(l’g) WK

(when defined) depend on xg, £ and m but not on d, so that the functions F,; and
Fy are proportional whenever d, d’ satisfy (6.12). A Taylor expansion at k = 1 gives

Fi(k) = (k — 1)(t —sintcost) + (k — 1)*tsin® ¢.

Therefore Fy(k) # 0 for k — 1 sufficiently small and the constant ratio between Fy
and Fyp must be equal to
d —sindcosd dsin®d

d _—.
d —sind' cosd' atl d'sin? d'
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Therefore g(d) = g(d’), where

(t) _t— sintcost
I = it

A direct computation shows that ¢ is strictly decreasing in (0,7/4). Therefore
d=d.

Step 3. Now we show the last part of the statement. Since we know that psl X is
a rectifiable measure, by Theorem 2.83 of [AFP] we know that Tan(usL X, z), is a
singleton for #'-a.e. x € Q, therefore Tan(ug, ) is a singleton for H'-a.e. z € .
Coming back to (6.9) we obtain that the jump ¢ — ¢ is uniquely determined
H'-a.e., and the same is true for ¢ + @ modulo 27. Hence, ¢Z is only determined
modulo 27, H'-a.e. on ¥ and ¢, is given by ¢, = oL — (¢L — ¢ ) when @1 is
known.

Let us define the following measures, all absolutely continuous with respect to ji4:

2(k+1)m

Ty 1= / div T%u da, Vk € Z.
2km

Let us denote by ¢, € L*(Q, ug) their densities with respect to p, and let us choose

a Lebesgue point xy of all functions of ¢;. As in Step 1, we have

2(k+1)m
/ div T%ue da = tg(z0)o Vk € Z.
2km
By (6.7), divT%us = 0 as soon as a ¢ [¢,dL]. Let us define Xy := {k € Z :
tr(zg) = 0}. Then, k € X if and only if (2k7,2(k+ 1)) N[dy, L] = 0. Let ky € Z
be such that ¢X € [2kom,2(ko + 1)m). Then, ¢ € [2(ko — lo)m,2(ko — lp + 1)7),
where [y € N depends only on ¢ — ¢ and k¢ depends on Xj in the following way:
Z\ Xo={ko—j: 0<j <lp}. Since X, only depends on zy, then kg only depends
on xy and ¢L is uniquely determined. Thus ¢f and ¢, are uniquely determined
p-a.e. on ¥. Henceforth H'-a.e. o € ¥ is a jump point of ¢.

Finally, (6.6) and the inclusion Jy C ¥ follow by the fact that any blow-up limit

$so at points = ¢ ¥ is constant. Indeed, e~ = —V-=1g is constant, (being goo
concave and affine, see [ALR]) and Uy = 0, so that ¢ is constant by Proposi-
tion 2.3. U

In conclusion, the statements made in Theorem 1.1 of the introduction follow
by Theorem 6.3 with the only exception of (1.6). The latter follows by applying
Lemma 3.5 to the vectorfield T%u, with K = J,.

Theorem 6.4. Let u, ¢ as in Theorem 6.3 and assume that

HY(ENQ\X) =0,
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where ¥ is defined by (6.5). Then py is concentrated on Jy and therefore is a 1-
dimensional rectifiable measure.

Proof. Let g be a 1-Lipschitz function such that u = —V<'g and recall that &
coincides, up to H'-negligible sets, with J;. The blow-up argument in [ALR| shows
that g is a viscosity solution of the eikonal equation |Vg|> —1 = 0 in set Q \ I,
since Uy, = 0 for any blow-up function ¢ at any point z € Q\ X. Therefore, g
is locally semiconcave in the open set A := Q\ ¥ and its gradient (and u as well)
is a BV, function in A. By Proposition 2.3 we obtain that ¢ € BVj,.(A) and (3.4)
gives iyl A = 0 because AN J, is H!'-negligible. Therefore p, is supported on &
and the absolute continuity of p1, with respect to ' leads us to the conclusion. O
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