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A generalized multiparameter Hong-Ou-Mandel interferometer is presented which extends the conventional
“Mandel dip” configuration to the case where a symmetric biphoton source is used to monitor the contemporary
absence of k independent time delays. Our construction results in a two-input/two-output setup, obtained
by concatenating 50:50 beam splitters with a collection of adjustable achromatic wave plates. For k = 1, 2
and k = 4 explicit examples can be exhibited that prove the possibility of uniquely linking the zero value
of the coincidence counts registered at the output of the interferometer with the contemporary absence of
all the time delays. Interestingly enough the same result cannot be extended to k = 3. Besides, the sensitivity of
the interferometer is analyzed when the time delays are affected by strong fluctuations, i.e., the fluctuations over
timescales that are larger than the inverse of the frequency of the pump used to generate the biphoton state.
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I. INTRODUCTION

The Michelson interferometer [1,2], the Hong-Ou-Mandel
(HOM) interferometer [3–7], and the Mach-Zehnder interfer-
ometer (MZI) [8–14] are examples of two-input/two-output
setups which have been extensively used to study two-photon
quantum interference effects, with applications in parameter
estimation problems, such as phase estimation in quantum
radar [15] or coordinates estimation in a quantum positioning
system [16]. In these schemes a minimum (or a maximum) in
the coincidence counts recorded at the output of the device is
typically associated with the case where no relative delays af-
fect the propagation of the photons along the two optical paths
of the setup. In the HOM interferometer this correspondence
yields the celebrated “Mandel dip” where, given a symmetric
input biphoton (BP) source [17–21], a zero-coincidence signal
can be uniquely linked to the absence of asymmetries in
the signal propagation. Generalization of this effect to more
than one parameter is naturally provided by MZIs [8–14]
where, exploiting the presence of two 50:50 beam-splitters
(BSs), one can in principle monitor two independent time
delays with a single coincidence measurement. It turns out,
however, that for these settings the zero-coincidence event
does not exclusively correspond to the contemporary absence
of the two delays unless [22] one includes the presence of
an achromatic quarter wave plate [23–25]. Unlike standard
wave plates, this optical element provides a constant phase
shift independent of the wavelength of the incoming light,
typically achieved by using two different birefringent crys-
talline materials balancing the relative shift in retardation over
the wavelength range. As shown in Ref. [22], by inserting
it inside the MZI, one can effectively force an exact swap
between the symmetric and antisymmetric components of the
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spectral wave function of the propagating biphoton signal,
restoring the one-to-one correspondence between the HOM
zero-coincidence point event and the contemporary absence
of the delays in the configuration.

The aim of the presented paper is to study the possibil-
ity of extending this result to the case of k > 2 time-delay
parameters. More specifically, we consider a generalized
two-input/two-output interferometer formed by k concate-
nated 50:50 BSs and k independent time-delay parameters
τ1, τ2, . . . , τk , where with the help of a collection of properly
setting achromatic phase-shifts we try to identify what we dub
an exclusive HOM zero-coincidence point event, i.e., a one-to-
one correspondence between the zero value in the coincidence
counts registered at the output of the interferometer and the
contemporary absence of all the time delays in the scheme.
After stating this problem in rigorous mathematical terms, we
observe that, while it is explicitly solvable for k = 1, 2, and 4
(the solutions for k = 1 and k = 2 being associated with the
results of Refs. [3] and [22] respectively), it admits no solution
for k = 3, a peculiar behavior which is probably associated
with some accidental symmetries. In the second part of the
paper we study the sensitivity of the scheme in the presence of
random fluctuations with respect to the time-delay parameters
τ1, . . . , τk , showing that the effectiveness of the achromatic
phase shifts is strongly affected by such noisy events.

The paper is organized as follows: in Sec. II we introduce
the setup, setting the notations and introducing a necessary
and sufficient condition for the existence of an exclusive
HOM zero-coincidence point for the case of k time-delay
parameters. In Sec. III we hence specify our attentions to
k = 3 and k = 4, showing that in the first case no solution
can be found and presenting instead an explicit solution for
the second. Moreover some comments for the k > 4 case are
proposed to complete our discussions. In Sec. IV we finally
study the sensitivity of the scheme under fluctuating time-
delay parameters. This paper finally ends with Sec. V, where
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FIG. 1. The sketch of a generalized interferometer. The yellow circles in the figure represent the phase-shifter elements indicating that
light beams propagating on the upper A� (lower B�) optical paths experience the phase shift e−iϕ� (ω) [resp. eiϕ� (ω)] composed of a time-delay
component ωτ� (−ωτ�) and an achromatic wave plate θ�/2 (−θ�/2), as indicated by Eq. (1).

we present our conclusions and comments on the possible
applications to sensing procedures.

II. EXCLUSIVE HOM ZERO-COINCIDENCE POINT

Here we propose the scheme and introduce the related no-
tations. More importantly a formal definition of the exclusive
HOM zero-coincidence point is presented.

A. Scheme structure

Consider the device with two input and two output ports,
shown in Fig. 1, which registers the coincidence events at the
detectors T1 and T2 associated with a frequency correlated,
symmetric biphoton (BP) source [17–21]. As schematically
depicted in Fig. 1, the setup is obtained by concatenating k
modules (red dashed rectangles), labeled by the progressive
index � = 1, 2, . . . , k, each containing the optical elements
that introduce the opposite phase shifts e−iϕ�(ω) and eiϕ�(ω)

in the lower A� and upper B� paths in this generalized
interferometer, respectively, and a 50:50 BS that coherently
mixes them. Reviewing the original HOM configuration,
the phase shifts ϕ1(ω), ϕ2(ω), . . . , ϕk (ω) are assumed to be
linked to the time-delays τ1, τ2, . . . , τk , which in the following
will be treated as the independent variables. Furthermore,
along the lines detailed in Ref. [22] we also allow for the
presence of achromatic wave plates [23–25] that add the
frequency-independent contributions θ1, θ2, . . . , θk ∈ [0, 2π )
that we shall use as tunable knobs of the device, writing

ϕ1(ω) = ωτ1, ϕ�(ω) = ωτ� + θ�/2, ∀� � 2, (1)

the value of θ1 being set equal to zero without the loss of
generality as it introduces an irrelevant global phase to the
final state of the emerging photons; see below. Under the
above premises, the aim of our analysis is to verify whether
it is possible to identify what we dub an exclusive HOM zero-
point configuration, i.e., a special assignment θ̄2, . . . , θ̄k of the
parameters θ2, . . . , θk capable of ensuring that a null value for
the coincidence counts at T1 and T2 uniquely corresponds to
the case where all the temporal delays of the setup are exactly

equal to zeros, i.e.,

R(θ̄2,...,θ̄k )
BP (τ1, . . . , τk ) = 0 ⇐⇒ τ1 = τ2 = · · · = τk = 0.

(2)

For k = 1 a solution of the above problem is provided by
the “Mandel dip” [3]. For k = 2 instead the existence of an
exclusive HOM zero-coincidence point follows by the results
of Ref. [22], which achieves (2) by employing θ̄2 = π/2. In
what follows, we shall extend this construction to the larger
values of k; interestingly enough we observe that for k = 3
no solution can be found, while for k = 4 special choices of
θ2, . . . , θ4 exist so that (2) holds true.

B. A necessary and sufficient condition
for the symmetric BP state

To set the problem in rigorous mathematical terms, let
us introduce the annihilation operators â(�)

j (ω) describing a
photon of frequency ω that enters the �th module of the
device along the input path j ( j = 1 (2) denotes the path
A� (B�) respectively) and fulfilling canonical commutation
rules (CCRs) [â(�)

j (ω), â(�)
j′ (ω′)] = 0 and [â(�)

j (ω), â(�)†
j′ (ω′)] =

δ j, j′δ(ω − ω′), where δ j, j′ and δ(ω − ω′) are the Kronecker
and Dirac deltas respectively. The associated output coun-
terpart â(�+1)

j (ω), that is also the input bosonic annihilation

operator in the (� + 1)th module, is connected with â(�)
j (ω)

by the �th module via the following linear transformation:

�a(�)(ω) :=
(

â(�)
1 (ω)

â(�)
2 (ω)

)
= M�(ω)�a(�+1)(ω), (3)

with

M�(ω) = 1√
2

(
eiϕ�(ω) eiϕ�(ω)

e−iϕ�(ω) −e−iϕ�(ω)

)
, (4)

where 2 × 2 matrix M�(ω) is defined by the phase shifts
introduced in Eq. (1). Therefore, the input-output mapping
from the first module to the kth module can now be expressed
in the compact form

�a(1)(ω) = Nk (ω)�a(k+1)(ω), (5)
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with the matrix Nk (ω) defined as

Nk (ω) :=
(

Ak (ω) Bk (ω)
Ck (ω) Dk (ω)

)
= M1(ω)M2(ω) · · · Mk (ω). (6)

Consider hence the following frequency correlated biphoton pure state [17–21] as the input state of the setup:

|	 (1)〉 :=
∫

dω

∫
dω′	(ω,ω′) â(1)†

1 (ω)â(1)†
2 (ω′)|Ø〉, (7)

where |Ø〉 is the multi-mode vacuum state and where 	(ω,ω′) represents a complex amplitude probability distribution on
which, for the moment, we make no assumptions apart from the normalization condition

∫
dω

∫
dω′|	(ω,ω′)|2 = 1. Following

the principle of coincidence measurement [26], we express the coincidence counts as

R(θ2,...,θk )
BP (τ1, . . . , τk ) :=

∫
dt1

∫
dt2〈	 (k+1)|Ê (−)

1 (t1)Ê (−)
2 (t2)Ê (+)

2 (t2)Ê (+)
1 (t1)|	 (k+1)〉

=
∫

dω

∫
dω′〈	 (k+1)|â(k+1)†

1 (ω)â(k+1)
1 (ω)â(k+1)†

2 (ω′)â(k+1)
2 (ω′)|	 (k+1)〉, (8)

where Ê (−)
j (t ) = (Ê (+)

j )† := 1√
2π

∫
dω â(k+1)†

j (ω)eiωt is the amplitude of electromagnetic field at detector Tj and where |	 (k+1)〉
represents the output state emerging from the interferometer associated with the input state |	 (1)〉. The former one can be
obtained by using (5) to express â(1)†

j (ω) in terms of the corresponding output-mode operator â(k+1)†
j (ω), giving

â(1)†
1 (ω) = A∗

k (ω)â(k+1)†
1 (ω) + B∗

k (ω)â(k+1)†
2 (ω), â(1)†

2 (ω) = C∗
k (ω)â(k+1)†

1 (ω) + D∗
k (ω)â(k+1)†

2 (ω), (9)

which is inserted into (7) to give us

|	 (k+1)〉 =
∫

dω

∫
dω′	(ω,ω′)

[
A∗

k (ω)â(k+1)†
1 (ω) + B∗

k (ω)â(k+1)†
2 (ω)

][
C∗

k (ω′)â(k+1)†
1 (ω′) + D∗

k (ω′)â(k+1)†
2 (ω′)

]|Ø〉. (10)

Expanding Eq. (10), we observe that it contains two kinds of contributions: the first contains the terms where both photons
belong to the same output port of the interferometer (either Ak+1 or Bk+1) and gives explicitly no contribution to (8); the
second instead contains all the terms where one photon is in Ak+1 and another one is in Bk+1, and it can actively contribute to
R(θ2,...,θk )

BP (τ1, . . . , τk ). Its analytic expression is given by

|
(k+1)〉 =
∫

dω

∫
dω′
(k+1)(ω,ω′)â(k+1)†

1 (ω)â(k+1)†
2 (ω′)|Ø〉, (11)

where 
(k+1)(ω,ω′) is the new biphoton amplitude that we can write as


(k+1)(ω,ω′) := 	(ω,ω′)A∗
k (ω)D∗

k (ω′) + 	(ω′, ω)B∗
k (ω′)C∗

k (ω) := 	S (ω,ω′)Perm∗
k (ω,ω′) + 	A(ω,ω′)Det∗k (ω,ω′), (12)

where in the latter term we use the symmetric and antisymmetric components of the input distribution,

	S (ω,ω′) := [	(ω,ω′) + 	(ω′, ω)]/2, 	A(ω,ω′) := [	(ω,ω′) − 	(ω′, ω)]/2, (13)

and introduce the functions

Permk (ω,ω′) := Ak (ω)Dk (ω′) + Bk (ω′)Ck (ω), Detk (ω,ω′) := Ak (ω)Dk (ω′) − Bk (ω′)Ck (ω) (14)

that correspond respectively to the permanent [27] and determinant of the 2 × 2 matrix

Nk (ω,ω′) :=
(

Ak (ω) Bk (ω′)
Ck (ω) Dk (ω′)

)

and which exhibit an implicit dependence upon the delays τ1, . . . , τk and upon the constant phase shifts θ2, . . . , θk . Substituting
all this into Eq. (8), we finally get

R(θ2,...,θk )
BP (τ1, . . . , τk )

= 〈
(k+1)|
(k+1)〉 =
∫

dω

∫
dω′ |
(k+1)(ω,ω′)|2

= 1

4

∫
dω

∫
dω′ |	S (ω,ω′)[Perm∗

k (ω,ω′) + Perm∗
k (ω′, ω)] + 	A(ω,ω′)[Det∗k (ω,ω′) − Det∗k (ω′, ω)]|2

+ 1

4

∫
dω

∫
dω′ |	S (ω,ω′)[Perm∗

k (ω,ω′) − Perm∗
k (ω′, ω)] + 	A(ω,ω′)[Det∗k (ω,ω′) + Det∗k (ω′, ω)]|2, (15)
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where in the second line we separate the symmetric and antisymmetric contributions of 
(k+1)(ω,ω′). The above expression
makes it evident that a zero value of coincidence counts can be obtained if and only if the following conditions get satisfied for
all ω and ω′: {

	S (ω,ω′)[Perm∗
k (ω,ω′) + Perm∗

k (ω′, ω)] + 	A(ω,ω′)[Det∗k (ω,ω′) − Det∗k (ω′, ω)] = 0,

	S (ω,ω′)[Perm∗
k (ω,ω′) − Perm∗

k (ω′, ω)] + 	A(ω,ω′)[Det∗k (ω,ω′) + Det∗k (ω′, ω)] = 0.
(16)

In particular, under the simplifying hypothesis of an input BP state that has a symmetric amplitude analogous to those analyzed
in Ref. [22], i.e.,

	A(ω,ω′) = 0 �⇒ 	(ω,ω′) = 	S (ω,ω′), (17)

Eq. (16) implies a simple necessary and sufficient condition for having a zero-coincidence counts, i.e.,

R(θ2,...,θk )
BP (τ1, . . . , τk ) =

∫
dω

∫
dω′|	S (ω,ω′)|2|Permk (ω,ω′)|2 = 0 ⇐⇒ Permk (ω,ω′) = 0 ∀ω,ω′ ∈ D, (18)

which in the following we shall adopt to study the problem (2), D being the domain where 	S (ω,ω′) is supported.

III. MULTIPARAMETER HOM ZERO-COINCIDENCE POINT

From the discussion of Sec II, the presence of a zero value in the coincidence counts R(θ2,...,θk )
BP (τ1, . . . , τk ) when feeding the

apparatus with a symmetric biphoton state |	 (1)〉 is related to the possibility of nullifying the function Permk (ω,ω′) for all points
in the support D of 	S (ω,ω′), which, without the loss of generality hereafter we shall assume to be the full frequency domain.
As for the scheme defined by a single modulus (k = 1), Eqs. (6) and (14) reduce to

N1(ω) = M1(ω) = 1√
2

(
eiωτ1 eiωτ1

e−iωτ1 −e−iωτ1

)
, (19)

Perm1(ω,ω′) = −i sin[(ω − ω′)τ1]. (20)

Therefore, Perm1(ω,ω′) = 0 for all ω,ω′ ∈ D if and only if τ1 = 0. Under this assumption we get

RBP(τ1) =
∫

dω

∫
dω′|	S (ω,ω′)|2 sin2[(ω − ω′)τ1], (21)

which corresponds to the standard result of coincidence counts observed in the conventional HOM interferometer [3] exhibiting
τ1 = 0 as an exclusive HOM zero-coincidence point (“Mandel dip”).

A less nontrivial configuration is already obtained in the case of k = 2 modules, which was studied in Ref. [22]. Here Eqs. (6)
and (14) yield

N2(ω) = M1(ω)M2(ω) =
(

eiωτ1 cos(ωτ2 + θ2/2) ieiωτ1 sin(ωτ2 + θ2/2)
ie−iωτ1 sin(ωτ2 + θ2/2) e−iωτ1 cos(ωτ2 + θ2/2)

)
, (22)

and

Perm2(ω,ω′) = cos[(ω − ω′)τ1] cos[(ω + ω′)τ2 + θ2] + i sin[(ω − ω′)τ1] cos[(ω − ω′)τ2], (23)

which for τ1 = τ2 = 0 gives Perm2(ω,ω′)|τ1=τ2=0 = cos θ2. Accordingly, from Eq. (18) it follows that we can have R(θ2 )
BP (0, 0) =

0 by setting θ2 = θ̄2 = π/2. Most importantly, under this condition (23) becomes

Perm2(ω,ω′)|θ2=π/2 = − cos[(ω − ω′)τ1] sin[(ω + ω′)τ2] + i sin[(ω − ω′)τ1] cos[(ω − ω′)τ2], (24)

for which only τ1 = τ2 = 0 can ensure the fulfillment of Eq. (18). Hence also in this k = 2 case we can conclude that the scheme
exhibits an exclusive zero-coincidence point (2) under the special setting θ2 = π/2 [22].

A. Absence of the exclusive zero-coincidence point for k = 3 modules

Now we consider the case with respect to k = 3 modules; under this condition Eqs. (6) and (14) yield

N3(ω) = M1(ω)M2(ω)M3(ω) = 1√
2

(
eiϕ1 [cos(ϕ2 − ϕ3) + i sin(ϕ2 + ϕ3)] eiϕ1 [cos(ϕ2 + ϕ3) − i sin(ϕ2 − ϕ3)]

e−iϕ1 [cos(ϕ2 + ϕ3) + i sin(ϕ2 − ϕ3)] e−iϕ1 [− cos(ϕ2 − ϕ3) + i sin(ϕ2 + ϕ3)]

)
(25)

and

Perm3(ω,ω′) = − cos(ϕ1 − ϕ′
1) sin(ϕ2 + ϕ′

2) sin(ϕ3 + ϕ′
3) + sin(ϕ1 − ϕ′

1) sin(ϕ2 − ϕ′
2) cos(ϕ3 + ϕ′

3)

− i[cos(ϕ1 − ϕ′
1) cos(ϕ2 + ϕ′

2) sin(ϕ3 − ϕ′
3) + sin(ϕ1 − ϕ′

1) cos(ϕ2 − ϕ′
2) cos(ϕ3 − ϕ′

3)], (26)
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where ϕ� := ϕ�(ω), ϕ′
� = ϕ�(ω′) for � = 1, 2, 3. Recalling (1), one can easily verify that for τ1 = τ2 = τ3 = 0 Eq. (26) reduces

to

Perm3(ω,ω′)|τ1=τ2=τ3=0 = − sin(θ2) sin(θ3), (27)

which can be forced to zero by taking one (or both) of the two phase shifts θ2 and θ3 equal to an integer multiple of π . Interestingly
enough none of these settings provide an exhaustive zero-coincidence point (2) for the scheme. For instance, assuming θ2 = π

we get

Perm3(ω,ω′)|θ2=π

= cos[(ω − ω′)τ1] sin[(ω + ω′)τ2] sin[(ω + ω′)τ3 + θ3] + sin[(ω − ω′)τ1] sin[(ω − ω′)τ2] cos[(ω + ω′)τ3 + θ3]

+ i(cos[(ω − ω′)τ1] cos[(ω + ω′)τ2] sin[(ω − ω′)τ3] − sin[(ω − ω′)τ1] cos[(ω − ω′)τ2] cos[(ω − ω′)τ3]),

which besides τ1 = τ2 = τ3 = 0 admits zero value for all the points (τ1, τ2, τ3) proportional to (1, 0, 1); in the case where θ2 = 0
the same holds for (τ1, τ2, τ3) proportional to (1, 0,−1). In contrast, for θ3 = π we have

Perm3(ω,ω′)|θ3=π

= cos[(ω − ω′)τ1] sin[(ω + ω′)τ2 + θ2] sin[(ω + ω′)τ3] − sin[(ω − ω′)τ1] sin[(ω − ω′)τ2] cos[(ω + ω′)τ3]

− i(cos[(ω − ω′)τ1] cos[(ω + ω′)τ2 + θ2] sin[(ω − ω′)τ3] + sin[(ω − ω′)τ1] cos[(ω − ω′)τ2] cos[(ω − ω′)τ3]),

which instead admits zero value for all points (τ1, τ2, τ3) proportional to (0, 1, 0); the same result holds also when θ3 = 0.

B. Exclusive zero-coincidence point for k = 4 modules

The presence of exclusive zero-coincidence solutions is restored for k = 4. Analytically Eqs. (6) and (14) get replaced by

N4(ω) = M1(ω)M2(ω)M3(ω)M4(ω)

=
(

eiϕ1 [cos(ϕ3) cos(ϕ2 + ϕ4) + i sin(ϕ3) cos(ϕ2 − ϕ4)] eiϕ1 [sin(ϕ3) sin(ϕ2 − ϕ4) + i cos(ϕ3) sin(ϕ2 + ϕ4)]
−e−iϕ1 [sin(ϕ3) sin(ϕ2 − ϕ4) − i cos(ϕ3) sin(ϕ2 + ϕ4)] e−iϕ1 [cos(ϕ3) cos(ϕ2 + ϕ4) − i sin(ϕ3) cos(ϕ2 − ϕ4)]

)

(28)

and

Perm4(ω,ω′) = cos(ϕ1 − ϕ′
1)[cos(ϕ2 + ϕ′

2) cos(ϕ3 − ϕ′
3) cos(ϕ4 + ϕ′

4) − sin(ϕ2 + ϕ′
2) cos(ϕ3 + ϕ′

3) sin(ϕ4 + ϕ′
4)]

− sin(ϕ1 − ϕ′
1)[cos(ϕ2 − ϕ′

2) sin(ϕ3 − ϕ′
3) cos(ϕ4 + ϕ′

4) + sin(ϕ2 − ϕ′
2) sin(ϕ3 + ϕ′

3) sin(ϕ4 + ϕ′
4)]

+ i cos(ϕ1 − ϕ′
1)[cos(ϕ2 + ϕ′

2) sin(ϕ3 − ϕ′
3) cos(ϕ4 − ϕ′

4) + sin(ϕ2 + ϕ′
2) sin(ϕ3 + ϕ′

3) sin(ϕ4 − ϕ′
4)]

+ i sin(ϕ1 − ϕ′
1)[cos(ϕ2 − ϕ′

2) cos(ϕ3 − ϕ′
3) cos(ϕ4 − ϕ′

4) − sin(ϕ2 − ϕ′
2) cos(ϕ3 + ϕ′

3) sin(ϕ4 − ϕ′
4)],

(29)

where we adopt the same simplifying notation introduced in Eq. (26). For τ1 = τ2 = τ3 = τ4 = 0, the above expression reduces
to

Perm4(ω,ω′)|τ1=τ2=τ3=τ4=0 = cos(θ2) cos(θ4) − sin(θ2) sin(θ4) cos(θ3). (30)

We notice that taking, for instance, (θ2, θ4) = (0, π/2), the above expression can be forced to zero. Yet, one can easily verify that
under this condition we do not get an exclusive HOM zero-coincidence point as Perm4(ω,ω′) also nullifies for (τ1, τ2, τ3, τ4),
e.g., proportional to the vector (1, 0,−1, 0). A similar discussion holds also for the cases where either θ2 = 0, π and θ4 =
π/2, 3π/2 or where instead θ2 = π/2, 3π/2 and θ4 = 0, π . Excluding these cases, e.g., requiring sin θ2 sin θ4 = 0, we can still
force Eq. (30) to zero by fixing the achromatic phases to fulfill the identity

θ3 = arccos(cot θ2 cot θ4). (31)

We claim that under these conditions the model exhibits indeed an exclusive zero-coincidence point. For this purpose we observe
that from Eq. (18) it follows that a necessary condition to have zero value for coincidence counts is to nullify the real part of
Perm4(ω,ω′) for all possible choices of ω and ω′ in the domain, i.e.,

R(θ2,...,θ4 )
BP (τ1, . . . , τ4) = 0 �⇒ Re[Perm4(ω,ω′)] = 0 ∀ω,ω′ ∈ D. (32)

Restricting the analysis to the case ω = ω′, the above equation yields hence the condition

Re[Perm4(ω,ω)] = cos(2ωτ2 + θ2) cos(2ωτ4 + θ4) − sin(2ωτ2 + θ2) sin(2ωτ4 + θ4) cos(2ωτ3 + θ3) = 0, (33)
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which must hold for all ω ∈ D if we want to get R(θ2,...,θ4 )
BP (τ1, . . . , τ4) = 0; as shown in Sec. III B 1 below, however, this condition

can only be achieved when τ2 = τ3 = τ4 = 0, which when inserted into (29) finally leads to identify τ1 = τ2 = τ3 = τ4 = 0 as
the unique zero-coincidence point of the model.

Existence of the exclusive zero-coincidence point

Here we explicitly show that for proper choices of θ2, θ3, θ4

as in Eq. (31), Eq. (33) admits τ1 = τ2 = τ3 = τ4 = 0 as a
unique solution, hence proving that for k = 4 we can have
the exclusive zero-coincidence point condition (2). First, let
us observe that we can exclude the cases with τ2 = τ4 = 0.
Indeed under the condition of τ2 = τ4 = 0 Eq. (33) yields

Re[Perm4(ω,ω)]

= cos(θ2) cos(θ4) − sin(θ2) sin(θ4) cos(2ωτ3 + θ3) = 0,

(34)

which, considering that we are discussing the case where
sin θ2 sin θ4 = 0 and Eq. (31) holds true, can be satisfied for
all ω only by taking τ3 = 0. However, now we shall have
τ2 = τ3 = τ4 = 0 so that Eq. (29) becomes

Perm4(ω,ω′) = i sin[(ω − ω′)τ1], (35)

which is null for all ω and ω′ only when we have also τ1 = 0.
Second, consider the case where at least one among τ2 and τ4

is different from zero. Under this condition it is convenient to

rewrite Eq. (33) as

g1(ω) = g2(ω), (36)

with

g1(ω) := cos(2ωτ2 + θ2) cos(2ωτ4 + θ4)

= 1
2 cos[2ω(τ2 + τ4) + θ2 + θ4]

+ 1
2 cos[2ω(τ2 − τ4) + θ2 − θ4] (37)

and

g2(ω) := sin(2ωτ2 + θ2) sin(2ωτ4 + θ4) cos(2ωτ3 + θ3)

= 1
4 cos[2ω(τ2 − τ4 + τ3) + θ2 − θ4 + θ3]

+ 1
4 cos[2ω(τ2 − τ4 − τ3) + θ2 − θ4 − θ3]

− 1
4 cos[2ω(τ2 + τ4 + τ3) + θ2 + θ4 + θ3]

− 1
4 cos[2ω(τ2 + τ4 − τ3) + θ2 + θ4 − θ3]. (38)

We now observe that, if at least one among τ2 and τ4 is
different from zero, then g1(ω) is an oscillating function of
ω characterized by two independent frequencies 2ω(τ2 + τ4)
and 2ω(τ2 − τ4). In contrast, in general g2(ω) admits four
different frequencies (explicitly given by 2ω(τ2 ± τ4 ± τ3))
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FIG. 2. (a)–(f) Contour plots of the coarse-grained coincidence counts R̄BP(τ1, τ2, τ3) of Eq. (48) for assigned values of τ2 in the generalized
k = 3 HOM configuration. All of the time delays are rescaled by the inverse of the width ��− of the biphoton frequency-spectrum function
[see Eq. (41)], and the coincidence counts are rescaled by the plateau value, i.e., R̄BP(0, τ2, ∞) = 1/2.
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FIG. 3. (a)–(f) Functional dependence of R̄BP(τ1, 15/��−, τ3) of Eq. (48) upon τ3 for assigned values of τ1. All of the time delays are
rescaled by the inverse of the width ��− of the biphoton frequency-spectrum function, and the coincidence counts are rescaled by the plateau
value, i.e., R̄BP(0, 15/��−, ∞) = 1/2.

apart from the special degenerate cases where we have either
τ2 + τ4 − τ3 = τ2 − τ4 + τ3 or τ2 + τ4 + τ3 = τ2 − τ4 − τ3,
which both admits three independent frequency values. The
only possibility to fulfill (36) [and hence (33)] is that in the
above configurations the multiplicative coefficients of such
frequency terms help us to reduce the effective number of
frequencies of g2(ω) to two. By looking at Eq. (38), however,
this can only happen in the degenerate cases. For instance, for
τ2 + τ4 − τ3 = τ2 − τ4 + τ3, by taking θ2 + θ4 − θ3 = θ2 −
θ4 + θ3 we can reduce Eq. (38) to

g2(ω) := 1
4 cos[2ω(τ2 − τ4 − τ3) + θ2 − θ4 − θ3]

− 1
4 cos[2ω(τ2 + τ4 + τ3) + θ2 + θ4 + θ3)].

(39)

Still we notice that in this case it is impossible to obtain
the identity (36) due to the mismatching between the 1/2
prefactor of g1(ω) and the 1/4 prefactor of g2(ω).

C. Exclusive zero-coincidence point for k > 4

From the previous subsections it is clear that as k increases
determining the condition under which Eq. (2) can be fulfilled
becomes harder and harder. In particular the absence of a
solution for k = 3 suggests that the problem cannot be solved
by induction. Still we suspect that for large enough k the
possible combinations of θ2, . . . , θk ensuring the condition

Permk (ω,ω′)|τ1=···=τk=0 = 0 (40)

will increase. For instance, in passing from k = 3 to k = 4
we go from a very constrained set of solutions where one
among θ2 and θ3 is forced to be an integer multiple of π [see
Eq. (27)] to (31) which allows θ2, θ3, and θ4 to span over a
dense set of possibilities. Exploiting this increased freedom

in the selection of θ2, . . . , θk , it is reasonable to assume that
among them it would be possible to find a special assignment
to force Eq. (2). Accordingly it is expected that this problem is
always solvable for k � 4 (possibly excluding some isolated
and pathological cases).

IV. SENSITIVITY TO FLUCTUATIONS

To get a concrete example, we now specialize the analysis
under the assumption of a BP input state (7) with Gaussian
two-mode spectral function of the form

|	S (ω,ω′)|2 = P+(ω + ω′)P−(ω − ω′) (41)

with the normal distributions

P+(ω + ω′) = 1√
2π��+

e
− (ω+ω′−2ω0 )2

8�2�+ ,

P−(ω − ω′) = 1√
2π��−

e
− (ω−ω′ )2

2�2�− , (42)

which locally assigns to each photon an average frequency ω0

with spread �ω :=
√

��2− + 4��2+/2. In the limit ��+ �
��−, Eq. (41) approaches the frequency-entangled biphoton
state emerging from an ideal spontaneous parametric down
conversion (SPDC) source pumped with a laser of mean
frequency ωp = 2ω0 (see, e.g., [17,19–21] and references
therein); for ��+ = ��− instead it corresponds to two un-
correlated (unentangled) single-photon packets; while finally
for ��+ � ��− it mimics the properties of an entangled
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FIG. 4. (a)–(f) Contour plots of the coarse-grained coincidence counts R̄BP(τ1, τ2, τ3) of Eq. (48) for assigned values of τ1 in the generalized
k = 3 HOM configuration. All of the time delays are rescaled by the inverse of the width ��− of the biphoton frequency-spectrum function
[see Eq. (41)], and the coincidence counts are rescaled by the plateau value, i.e., R̄BP(τ1, 0, ∞) = 1/2.

state emitted by a difference-beam (DB) source [18]. Under
the condition (41) it follows that the associated coincidence
counts (15) can be expressed as the sum of two contributions,

R(θ2,...,θk )
BP (τ1, . . . , τk )

=
∫

dω

∫
dω′|	S (ω,ω′)|2|Permk (ω,ω′)|2

= R̄BP(τ1, . . . , τk ) + �R(θ2,...,θk )
BP (τ1, . . . , τk ),

(43)

where the whole dependence upon θ2, . . . , θk is only carried
by �R(θ2,...,θk )

BP (τ1, . . . , τk ) which, as a function of τ1, . . . , τk ,
exhibits a series of fast oscillations with frequency ω0, and
where R̄BP(τ1, . . . , τk ) depends instead only upon the spec-
tral width ��− which determines the spread of the fre-
quency mismatch of the two input photons (see Sec. IV A
for details). The special decoupling shown in Eq. (43) im-
plies that the functional dependence of R(θ2,...,θk )

BP (τ1, . . . , τk )
upon θ2, . . . , θk is washed away when the delays τ1, . . . , τk

are effected by strong fluctuations, a result that occurs due
to the fact that the interference phenomenon takes place
only when the paths are exactly balanced. To see this ex-
plicitly we assume that each of these parameters fluctu-
ates randomly and independently on intervals T (which
gauges the intensity of the fluctuations). In this case the
result of coincidence counts registered at the output of
the setup is effectively provided by the coarse-graining

counterpart of R(θ2,...,θk )
BP (τ1, . . . , τk ) [22], i.e.,〈

R(θ2,...,θk )
BP (τ1, . . . , τk )

〉
:=

∫ τ1+ T
2

τ1− T
2

dτ ′
1

T
· · ·

∫ τk+ T
2

τk− T
2

dτ ′
k

T
R(θ2,...,θk )

BP (τ ′
1, . . . , , τ

′
k ).

(44)

Now from Eq. (43) it follows that if we are in weak fluctuation
regime, characterized by values of T which are smaller than
the inverse of ω0, the averaging is not going to affect too much
the results of measured coincidence counts. In contrast, upon
entering the strong fluctuation regime, i.e., whenever T gets
larger than the inverse of the mean biphoton frequency ω0

but smaller than the inverse of the associated local spread �ω

(i.e., 1/ω0 � T � 1/�ω), we get〈
R(θ2,...,θk )

BP (τ1, . . . , τk )
〉 � R̄BP(τ1, . . . , τk ),〈

�R(θ2,...,θk )
BP (τ ′

1, . . . , τ
′
k )

〉 � 0, (45)

(see again Sec. IV A for a formal derivation of these identities
that holds for arbitrary values of k). Equation (45) makes it
explicit that the achromatic shifts θ2, . . . , θk , while enforcing
the exclusive zero-coincidence point condition (2), become
inconsequential in the presence of fluctuations of the time
delays. For k = 1 this is a direct consequence of the fact that
in the original HOM scheme one has

R̄BP(τ1) = RBP(τ1) = 1
2

(
1 − e−2τ 2

1 ��2
−
)
, (46)
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FIG. 5. (a)–(f) Functional dependence of R̄BP(15/��−, τ2, τ3) of Eq. (48) upon τ3 for assigned values of τ2. All of the time delays are
rescaled by the inverse of the width ��− of the biphoton frequency-spectrum function, and the coincidence counts are rescaled by the plateau
value R̄BP(15/��−, 0, ∞) = 1/2.

the contribution �RBP(τ1) being explicitly zero after the
coarse graining; of course this is also the only case which
exhibits a zero-coincidence point without achromatic phase
shifter. For the case k = 2 instead we get [22]

R̄BP(τ1, τ2)

= 1
2 + 1

8

(
2e−2τ 2

2 ��2
− − e−2(τ1+τ2 )2��2

− − e−2(τ1−τ2 )2��2
−
)
,

(47)

while, as explicitly discussed in the Appendix, for k = 3 we
get

R̄BP(τ1, τ2, τ3) = 1

2
+ 1

32

(
2e−2(τ2−τ3 )2��2

− + 2e−2(τ2+τ3 )2��2
−

− 4e−2(τ1−τ3 )2��2
− − 4e−2(τ1+τ3 )2��2

−

− e−2(τ1+τ2−τ3 )2��2
− − e−2(τ1−τ2+τ3 )2��2

−

− e−2(τ1−τ2−τ3 )2��2
− − e−2(τ1+τ2+τ3 )2��2

−
)
.

(48)

It is worth noticing that, besides the disappearing of the
zero-coincidence point, the washing out of the achromatic
shifts brings residual intercorrelations between the delays

τ1, τ2, and τ3. For instance, as shown in Fig. 2 the coarse-
grained coincidence count function R̄BP(τ1, τ2, τ3) shows a
strong correlation between τ1 and τ3 which becomes more
and more pronounced as the value of τ2 increases: in par-
ticular, for an assigned value of τ2, in the (τ1, τ3) plane the
function R̄BP(τ1, τ2, τ3) saturates to a flat 1/2 plateau value,
apart from the two diagonal directions where it exhibits a
distinctive minimum. This feature is further shown in Fig. 3:
here, fixing ��−τ2 = 15, we report the functional depen-
dence R̄BP(τ1, 15/��−, τ3) upon τ3 for different values of
τ1, showing that it exhibits two symmetric dips at τ3 = ±τ1

positions with a visibility Vmin ≈ 25% (the ratio between the
depth of the minima and the height of the plateau). Similarly,
from Figs. 4 and 5 it follows that for ��−τ1 � 10, such
as ��−τ1 = 15, R̄BP(15/��−, τ2, τ3) exhibits instead two
symmetric peaks at τ3 = ±τ2 positions, which, as a function
of τ3 for assigned values of τ2, have a visibility Vmax ≈ 10%
(the ratio between the maximum value and the height of the
plateau). As we shall discusss in our concluding remarks
in Sec. V, following the approach of Ref. [22] the residual
interconnection between the time delays we observe here
paves the way towards a possible application associated with
the multiparameter estimation procedure.

Effect of the coarse graining

Here we present a derivation of Eq. (45) for arbitrary k. We start by observing that from Eq. (6) it follows that the various
matrix elements of Nk (ω) can be expressed as

Ak (ω) :=
∑

�s
α

(�s)
k ei�s·�ϕ(ω), Bk (ω) :=

∑
�s

β
(�s)
k ei�s·�ϕ(ω), Ck (ω) :=

∑
�s

γ
(�s)

k ei�s·�ϕ(ω), Dk (ω) :=
∑

�s
δ

(�s)
k ei�s·�ϕ(ω), (49)

where the summation runs over the set of k-long vector �s formed by the sequences of ±1, where �ϕ(ω) := (ϕ1(ω), . . . , ϕk (ω)),
and where finally α

(�s)
k , β

(�s)
k , γ

(�s)
k , and δ

(�s)
k are complex parameters of modulus 2k/2 which are independent of the phase ϕ�(ω).
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Accordingly we can write

Permk (ω,ω′) =
∑
�s,�s′

[
α

(�s)
k δ

(�s′ )
k + β

(�s′ )
k γ

(�s)
k

]
ei[�s·�ϕ(ω)+�s′ ·�ϕ(ω′ )] =

∑
�s,�s′

Q(�s,�s′ )
k ei[(ω+ω′ ) �τ+�θ]· ��+(�s,�s′ ) ei(ω−ω′ ) �τ · ��−(�s,�s′ ), (50)

where in the second identity we introduced the quantities

Q(�s,�s′ )
k := [

α
(�s)
k δ

(�s′ )
k + β

(�s′ )
k γ

(�s)
k

]
, (51)

��±(�s, �s′) := (�s ± �s′)/2, (52)

and used Eq. (1) to write

�s · �ϕ(ω) + �s′ · �ϕ(ω′) = [(ω + ω′) �τ + �θ] · ��+(�s, �s′) + (ω − ω′) �τ · ��−(�s, �s′), (53)

with �τ := (τ1, . . . , τk ) and �θ := (θ1, . . . , θk ). We now split the summation of Eq. (50) into �s = −�s′ and �s = −�s′ terms
respectively, i.e.,

Permk (ω,ω′) = Fk (ω − ω′) +
∑
�s =−�s′

Q(�s,�s′ )
k ei[(ω+ω′ ) �τ+�θ ]· ��+(�s,�s′ ) ei(ω−ω′ ) �τ · ��−(�s,�s′ ), (54)

with

Fk (ω − ω′) :=
∑

�s
Q(�s,−�s)

k ei(ω−ω′ ) �τ ·�s, (55)

where we use the fact that ��−(�s,−�s) = �s and ��+(�s,−�s) = 0. Taking the modulus, we have

|Permk (ω,ω′)|2 = |Fk (ω − ω′)|2 +
∣∣∣∣∣∣
∑
�s =−�s′

Q(�s,�s′ )
k ei[(ω+ω′ ) �τ+�θ ]· ��+(�s,�s′ ) ei(ω−ω′ ) �τ · ��−(�s,�s′ )

∣∣∣∣∣∣
2

+ 2Re

⎡
⎣F ∗

k (ω − ω′)
∑
�s =−�s′

Q(�s,�s′ )
k ei[(ω+ω′ ) �τ+�θ ]· ��+(�s,�s′ ) ei(ω−ω′ ) �τ · ��−(�s,�s′ )

⎤
⎦, (56)

which is further expressed as

|Permk (ω,ω′)|2 = P̄k (ω − ω′) + �Pk (ω,ω′), (57)

with P̄k (ω − ω′) being a function that only depends upon ω − ω′ but bares no functional dependence upon neither ω + ω′ nor �θ ,
while �Pk (ω,ω′) is a sum of contributions which exhibit the phase-shift terms that have a nontrivial dependence upon ω + ω′.
Specifically,

P̄k (ω − ω′) := |Fk (ω − ω′)|2 +
∑
�s =−�s′

∣∣Q(�s,�s′ )
k

∣∣2 + 2Re

⎡
⎣ ∑

{�s =�s′,�s1 =�s′
1}∈S+

Q(�s,�s′ )
k Q(�s1,�s′

1 )∗
k ei(ω−ω′ ) �τ ·[ ��−(�s,�s′ )− ��−(�s1,�s′

1 )]

⎤
⎦,

�Pk (ω,ω′) := 2Re

⎡
⎣ ∑

{�s =�s′,�s1 =�s′
1}∈S−

Q(�s,�s′ )
k Q(�s1,�s′

1 )∗
k ei[(ω+ω′ ) �τ+�θ]·[ ��+(�s,�s′ )− ��+(�s1,�s′

1 )]

⎤
⎦

+ 2Re

⎡
⎣F ∗

k (ω − ω′)
∑
�s =−�s′

Q(�s,�s′ )
k ei[(ω+ω′ ) �τ+�θ ]· ��+(�s,�s′ ) ei(ω−ω′ ) �τ · ��−(�s,�s′ )

⎤
⎦, (58)

with S+ and S− being the subsets formed by the couples {�s = �s′} = {�s1 = �s′
1} such that ��+(�s, �s′) = ��+(�s1, �s′

1) and ��−(�s, �s′) =
��−(�s1, �s′

1) respectively (notice that they have zero overlap). Using Eq. (57) to compute the coincidence counts, we hence arrive
to Eq. (43) via the identifications

R̄BP(τ1, . . . , τk ) =
∫

dω

∫
dω′|	S (ω,ω′)|2P̄k (ω − ω′) =

∫
dω

∫
dω′ P+(ω + ω′)P−(ω − ω′)P̄k (ω − ω′), (59)
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and

�R(θ2,...,θk )
BP (τ1, . . . , τk ) =

∫
dω

∫
dω′|	S (ω,ω′)|2�Pk (ω,ω′) =

∫
dω

∫
dω′P+(ω + ω′)P−(ω − ω′)�Pk (ω,ω′). (60)

We used (41) to split the integral in terms of the variables ξ := ω + ω′ and ν := ω − ω′, hence Eq. (60) is given by(
1

2

∫
dξP+(ξ )ei[ξ �τ+�θ ]· �K+

)(∫
dνP−(ν)eiν �τ · �K−

)
= ei(2ω0 �τ+�θ )· �K+e−2(�τ · �K+ )2��2

+e−(�τ · �K− )2��2
−/2, (61)

with the vector �K+ being explicitly nonzero. As anticipated in the text before, �R(θ2,...,θk )
BP (τ1, . . . , τk ) depends explicitly upon ω0

and �θ . Furthermore we notice that under coarse graining we have〈
ei(2ω0 �τ+�θ )· �K+e−2(�τ · �K+ )2��2

+e−(�τ · �K− )2��2
−/2〉 � 〈ei(2ω0 �τ+�θ )· �K+

〉 � 0, (62)

where in the first identity we used the fact that, since we assume 1/ω0 � T � 1/�ω (i.e., the strong fluctuations), the integral
is performed over intervals of length T which is much shorter than 1/��− and 1/��+. Inserting this into (60) we can thus
conclude that 〈

�R(θ2,...,θk )
BP (τ ′

1, . . . , τ
′
k )

〉 � 0, (63)

which proves the second identity of Eq. (45). The first one follows along the same line by observing that according to Eq. (58) the
right-hand-side term of (59) is given by a finite summation of terms which are either constant or have the following dependence
on �τ , (

1

2

∫
dξP+(ξ )

)(∫
dνP−(ν) eiν �τ · �K−

)
= e−(�τ · �K− )2��2

−/2, (64)

with �K− being some nonzero vectors; we notice that the values of R̄BP(τ1), R̄BP(τ1, τ2), and R̄BP(τ1, τ2, τ3) reported in Eqs. (46)–
(48) have indeed this structure. Therefore, repeating the same argument used in Eq. (62), in this case we get

〈e−(�τ · �K− )2��2
−/2〉 � e−(�τ · �K− )2��2

−/2, (65)

which ultimately leads to

〈R̄BP(τ1, . . . , τk )〉 � R̄BP(τ1, . . . , τk ), (66)

and hence we get the first identity of Eq. (45).

V. CONCLUSION

A generalized multiparameter HOM interferometer com-
posed of k 50:50 beam splitters, k different time delays, and
(k − 1) achromatic wave plates has been presented. In the
special case with k = 2 modules, the described setup was
employed in Ref. [22] as a scheme to measure two inde-
pendent time-delay parameters via the results of coincidence
counts at the output. Borrowing directly from the original
HOM scheme [3], the idea was to link the uniqueness of a
zero-coincidence point, attainable when setting θ2 = π/2, to
a way of detecting the nonzero values of τ1 and τ2, thereby
compensating for them by adding the controllable delays
along the interferometric paths. From the results presented
here, it is clear that the same construction can be extended
to the case of k = 4 modules, while this would not be possible
for the case of just three modules due to the impossibility
of fulfilling the condition (2) for k = 3. In Ref. [22] it was
also shown how to use the residual functional dependence
of the coarse-grained coincidence counts (47) on the delays
to determine their values. Clearly the same construction can
be applied also for larger values of k. In particular this can

be done for the unlucky case k = 3 which, in the presence
of strong fluctuations, does not even admit an exclusive
HOM zero-coincidence point. Consider then the case where
the length difference of each of the paths A1B1, A2B2, and
A3B3 are �� j = ��

(0)
j + x j , ∀ j = 1, 2, 3, where ��

(0)
j is

fixed and unknown and the second term x j is controllable
by the experimentalist. According to the characterizations of
R̄BP(τ1, τ2, τ3) shown in Figs. 2–5, one way to recover these
parameters could be the following procedure: (i) we select x2

to be sufficiently large to ensure that the value �τ2 = ��2/2c
to be larger than 10/��−. Then, keeping x1 = 0, we record

the values of R̄BP( ��
(0)
1

2c , ��2
2c ,

��
(0)
3 +x3

2c ) as a function of x3,

locating the two minima x(r)
min, x(l )

min of Fig. 3. This allows us
to determine the values of ��

(0)
1 and ��

(0)
3 by observing that

��
(0)
1 = x(r)

min − x(l )
min and ��

(0)
3 = x(r)

min + x(l )
min respectively. (ii)

With this information we now set x1 to get �τ1 = ��1/2c
larger than 10/��−, keeping x2 = 0, and we start scanning

once more R̄BP( ��1
2c ,

��
(0)
2

2c ,
��

(0)
3 +x3

2c ) with respect to x3 to locate

the maxima x(r)
max, x(l )

max of Fig. 5, hence the value of ��
(0)
2 can

be obtained as ��
(0)
2 = x(r)

max − x(l )
max.
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APPENDIX

As for the k = 3 modules, �R(θ2,θ3 )
BP (τ1, τ2, τ3) of Eq. (43) with respect to θ2 = π/2 and θ3 = 0 is given by

�R(θ2,θ3 )
BP (τ1, τ2, τ3) = 1

32

{
f1(τ1, τ2, τ3) cos(4ω0τ2) + f2(τ1, τ2, τ3) sin(2ω0τ2) + f3(τ1, τ2, τ3) cos(4ω0τ3)

+ f4(τ1, τ2, τ3)
[
e−16τ2τ3��2

+ cos[4ω0(τ2 + τ3)] + e16τ2τ3��2
+ cos[4ω0(τ2 − τ3)]

]
+ f5(τ1, τ2, τ3)

[
e8τ2τ3��2

+ sin[2ω0(τ2 − 2τ3)] − e−8τ2τ3��2
+ sin[2ω0(τ2 + 2τ3)]

]}
, (A1)

with

f1(τ1, τ2, τ3) = 2 exp
[−8τ 2

2 ��2
+ − 2(τ1 + τ3)2��2

−
](

1 + e8τ1τ3��2
− + 2e(2τ 2

1 +4τ1τ3 )��2
−
)
,

f2(τ1, τ2, τ3) = −4 exp
[−2τ2(τ1 + τ3)��2

− − 2(τ1 + τ3)2��2
− − 1

2τ 2
2 (4��2

+ + ��2
−)

]
× (

e4τ3(2τ1+τ2 )��2
− − e4τ2(τ1+τ3 )��2

− + e4τ1(τ2+2τ3 )��2
− − 1

)
,

f3(τ1, τ2, τ3) = 2 exp
[−8τ 2

3 ��2
+ − 2(τ1 + τ2)2��2

−
](

e8τ1τ2��2
− − 4e2τ2(2τ1+τ2 )��2

− − 2e2τ1(τ1+2τ2 )��2
− + 1

)
,

f4(τ1, τ2, τ3) = −2 exp
[−2

(
4τ 2

2 ��2
+ + 4τ 2

3 �2
+ + τ 2

1 ��2
−
)](

1 + e2τ 2
1 ��2

−
)
,

f5(τ1, τ2, τ3) = 4 exp
[−2

(
τ 2

2 + 4τ 2
3

)
��2

+ − 1
2 (2τ1 + τ2)2��2

−
](

e4τ1τ2��2
− − 1

)
. (A2)
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