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ON THE GAP BETWEEN THE GAMMA-LIMIT AND THE POINTWISE LIMIT
FOR A NONLOCAL APPROXIMATION OF THE TOTAL VARIATION

CLARA ANTONUCCI, MASSIMO GOBBINO AND NICOLA PICENNI

We consider the approximation of the total variation of a function by the family of nonlocal and nonconvex
functionals introduced by H. Brezis and H.-M. Nguyen in a recent paper. The approximating functionals are
defined through double integrals in which every pair of points contributes according to some interaction law.

We answer two open questions concerning the dependence of the Gamma-limit on the interaction law. In
the first result, we show that the Gamma-limit depends on the full shape of the interaction law and not only
on the values in a neighborhood of the origin. In the second result, we show that there do exist interaction
laws for which the Gamma-limit coincides with the pointwise limit on smooth functions.

The key argument is that for some special classes of interaction laws the computation of the Gamma-limit
can be reduced to studying the asymptotic behavior of suitable multivariable minimum problems.

1. Introduction

In a recent paper H. Brezis and H.-M. Nguyen [2018] introduced the family of nonlocal functionals

3δ(ϕ, u, �) :=
∫∫

�2
ϕ

(
|u(y)− u(x)|

δ

)
δ

|y− x |d+1 dx dy, (1-1)

where d is a positive integer, �⊆ Rd is an open set, δ > 0 is a real parameter, u :�→ R is a measurable
function, and ϕ : [0,+∞)→ [0,+∞) is a measurable function satisfying suitable properties; see also
the note [Brezis and Nguyen 2017] or the conference [Brezis 2016] for a nice presentation of the topic.
The function ϕ, whose presence is motivated by problems in image processing, see [Brezis 2015; Brezis
and Nguyen 2018], describes the extent to which a pair (x, y) ∈ �2 contributes to the double integral
(1-1). For this reason, in the sequel we call ϕ the “interaction law”.

Following [Brezis and Nguyen 2018], we restrict ourselves to a special set of functions.

Definition 1.1 (admissible interaction laws). Let A denote the set of all functions ϕ : [0,+∞)→[0,+∞)
not identically equal to 0 such that

(i) ϕ is nondecreasing and lower semicontinuous on [0,+∞) and is continuous except at a finite number
of points in (0,+∞),

(ii) there exist a nonnegative real number a and a positive real number b such that

ϕ(t)≤min{at2, b} for all t ∈ [0,+∞).
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These conditions guarantee that when ϕ ∈A, the right-hand side of (1-1) is finite at least for every u
of class C1 with compact support, and the resulting functional 3δ is lower semicontinuous with respect
to the convergence in L1(�).

The basic example is the case where ϕ(t) coincides with

ϕ1(t) :=
{

0 if t ∈ [0, 1],
1 if t > 1.

(1-2)

In [Brezis and Nguyen 2018] also a normalization condition is included in the definition of A. In this
paper we do not impose any normalization condition, but instead we set

N (ϕ) :=
∫
+∞

0

ϕ(t)
t2 dt for all ϕ ∈A, (1-3)

and we exploit this constant as a scale factor when computing limits and Gamma-limits.

Previous literature. The asymptotic behavior of the family 3δ was investigated in a series of papers,
starting with the model case ϕ = ϕ1; see [Bourgain and Nguyen 2006; Nguyen 2006; 2007; 2008; 2011].
The idea is that 3δ(ϕ, u, �) is asymptotically proportional to the functional

30(u, �) :=
{

total variation of u in � if u ∈ BV(�),
+∞ if u ∈ L1(�) \BV(�).

In order to state the precise results, let Sd−1
:= {σ ∈ Rd

: |σ | = 1} denote the unit sphere in Rd, and let
us consider the geometric constant

Gd :=

∫
Sd−1
|〈v, σ 〉| dσ, (1-4)

where v is any element of Sd−1 (of course the value of Gd does not depend on the choice of v), and the
integration is intended with respect to the (d−1)-dimensional Hausdorff measure.

The main convergence results obtained in [Brezis and Nguyen 2018] can be summed up as follows.

•Pointwise convergence. For every ϕ ∈A it turns out that

lim
δ→0+

3δ(ϕ, u,Rd)= Gd · N (ϕ) ·30(u,Rd) for all u ∈ C1
c (R

d),

where Gd is the geometric constant defined in (1-4), and N (ϕ) is the scale factor defined in (1-3).
On the other hand, there do exist functions u ∈W 1,1(Rd) for which the left-hand side is infinite (while

of course the right-hand side is finite). A precise characterization of equality cases is still unknown.

•Gamma-convergence. For every ϕ ∈A, there exists a constant Kd(ϕ), depending a priori also on the
space dimension, such that

0– lim
δ→0+

3δ(ϕ, u,Rd)= Gd · N (ϕ) · Kd(ϕ) ·30(u,Rd) for all u ∈ L1(Rd), (1-5)

where the Gamma-limit is intended with respect to the usual metric of L1(Rd) (but the result would be
the same with respect to the convergence in measure).
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Assuming that Kd(ϕ) does not depend on d, as one reasonably expects, we could interpret (1-5) by
saying that the Gamma-limit depends on the space dimension through the geometric constant Gd , on the
size of ϕ through the scale factor N (ϕ), and on the shape of ϕ through the “shape factor” Kd(ϕ).

The behavior under rescaling clarifies the different nature of the scale and the shape factors. If we
replace ϕ(t) by ϕ̂(t) := αϕ(βt) for some positive constants α and β, a change of variables shows that
N (ϕ̂)= αβN (ϕ), and the same scaling affects the left-hand side of (1-5). It follows that Kd(ϕ)= Kd(ϕ̂),
namely the shape factor is invariant by both horizontal and vertical rescaling.

Very little was known about Kd(ϕ). In [Nguyen 2007; 2011] it was proved that Kd(ϕ1)≤ log 2, where
ϕ1 is the model interaction law defined in (1-2). In [Brezis and Nguyen 2018] it was proved that

Kd(ϕ1)≤ Kd(ϕ)≤ 1 for all ϕ ∈A.

In order to shed some light on Kd(ϕ), whose appearance in the Gamma-limit was defined in [Brezis
and Nguyen 2018] as “mysterious and somewhat counterintuitive”, some open questions were explicitly
stated. The first one addresses the dependence of Kd(ϕ) on the full shape of ϕ.

Question 1 (see [Brezis and Nguyen 2018, Open Problem 4]). Assume that two functions ϕ and ψ in A
satisfy N (ϕ)= N (ψ), and

ϕ ≥ ψ near 0 (resp. ϕ = ψ near 0 ).

Is it true that
Kd(ϕ)≥ Kd(ψ) (resp. Kd(ϕ)= Kd(ψ))?

A positive answer to this question would imply that, once that the scale factor has been fixed, only
the behavior of the interaction law in a neighborhood of the origin is relevant to the Gamma-limit. This
intuition is supported by the observation that the kernel in (1-1) is divergent on the diagonal y = x , and
therefore short-range interactions should be more relevant in the computation of Kd(ϕ).

The second question addresses the necessity and the width of the gap between the pointwise limit and
the Gamma-limit.

Question 2 (see [Brezis and Nguyen 2018, Open Problem 2]). Is it true that Kd(ϕ) < 1 for every ϕ ∈A
(and every space dimension d)? Or even better: is it true that

sup{Kd(ϕ) : ϕ ∈A}< 1? (1-6)

A positive answer to this question, especially in the stronger form (1-6), would imply that the counter-
intuitive gap is structural.

Our results. In this paper we show that the answer to both questions is negative. To this end, for every
positive integer k we consider the interaction law ϕk : [0,+∞)→ [0,+∞) defined as

ϕk(t) := ϕ1

(
t
k

)
=

{
0 if t ∈ [0, k],
1 if t > k,

(1-7)

and then we introduce the following special classes of interaction laws.
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Definition 1.2 (special interaction laws). Let A denote the set of all admissible interaction laws defined
in Definition 1.1. We consider the following special subclasses.

• Let A0 denote the set of interaction laws that vanish in [0, 1], namely

A0 := {ϕ ∈A : ϕ(t)= 0 for all t ∈ [0, 1]}. (1-8)

• Let PCA denote the set of interaction laws that can be written in the form

ϕ(t)=
m∑

k=1

λkϕk(t) for all t ≥ 0 (1-9)

for some positive integer m and some nonnegative real numbers λ1, . . . , λm (not all equal to 0).

• Let PCA2 denote the set of interaction laws of the form (1-9) whose coefficients are equal in packages
of powers of 2, namely

λ2 = λ3, λ4 = · · · = λ7, λ8 = · · · = λ15,

and so on. More precisely, every ϕ ∈ PCA2 can be written in the form

ϕ(t) :=
m∑

j=1

(
aj

2 j
−1∑

k=2 j−1

ϕk(t)
)

for all t ≥ 0 (1-10)

for some positive integer m, and some nonnegative real numbers a1, . . . , am (not all equal to 0).

We observe that
A⊇A0 ⊇ PCA⊇ PCA2,

and all inclusions are strict.
Our first result is the following.

Theorem 1.3 (piecewise constant interaction laws). Let Kd(ϕ) be the shape factor of an interaction law
as defined by (1-5).

Then in every space dimension d it turns out that

sup{Kd(ϕ) : ϕ ∈ PCA2} = 1.

A closer look at the proof reveals that the supremum is realized for example by the interaction laws
of the form (1-10) with a1 = . . .= am = 1, in the limit as m→+∞. We point out that these achieving
interaction laws are also of the form (1-9) with λk = 1 and m a power of 2.

Theorem 1.3 above provides a negative answer to Question 1, as well as a negative answer to Question 2
in the stronger form (1-6). In particular, this means that the full shape of the interaction law comes into
play in the computation of the Gamma-limit, which therefore takes into account both short-range and
long-range interactions. At the beginning of Section 6 we present also an example with strict inequalities,
namely with ϕ > ψ near the origin, but Kd(ϕ) < Kd(ψ).

Our second result gives a stronger negative answer to Question 2, even when restricted to the smaller
class A0.
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Theorem 1.4 (piecewise affine dyadic interaction laws). Let Kd(ϕ) be the shape factor of an interaction
law as defined by (1-5).

Then the following statements hold true:

(1) In every space dimension d it turns out that

max{Kd(ϕ) : ϕ ∈A0} = 1.

(2) More precisely, let f : Z→ [0,+∞) be any nondecreasing and bounded function (not identically
equal to 0) such that

lim sup
n→+∞

f (−n) · 4n <+∞. (1-11)

Let us consider the function ζ : [0,+∞)→ [0,+∞) such that

• ζ(0)= 0,

• ζ(2z)= f (z) for every z ∈ Z,

• ζ is affine in the interval [2z, 2z+1
] for every z ∈ Z.

Then it turns out that ζ ∈A, and Kd(ζ )= 1 in every space dimension d.

The second statement of Theorem 1.4 above shows in particular that there are large classes of interaction
laws for which the Gamma-limit of (1-1) coincides with the pointwise limit for smooth functions.

Overview of the technique. The proof of these results follows the same strategy that in [Antonucci et al.
2020] led us to show that actually Kd(ϕ1) = log 2 (see also [Antonucci et al. 2018] for an informal
summary of our approach). Since we only need estimates from below for the shape factor, we can limit
ourselves to estimating from below the Gamma-liminf. The main steps are the following.

From local to global bounds: In Theorem B we reduce the problem in any dimension to intervals of the
real line, namely to showing that for δ small enough we can estimate from below 3δ(ϕ, u, (a, b)) in
terms of the oscillation of u in (a, b).

Reduction to multivariable minimum problems: In Proposition 4.3 we show that, when ϕ ∈ PCA, we
can assume that u is a nondecreasing step function with finite image contained in δZ. Up to vertical
translations, any such function depends only on the lengths `1, . . . , `n of the steps, where n ∼ δ−1. In
this way we reduce ourselves to studying the minimum of a δ-dependent multivariable function.

Telescopic effect: The minimum problems found in Proposition 4.3 can be very complicated. Nevertheless,
in the special case where ϕ ∈ PCA2, a telescopic effect implies that the configurations with `1 = · · · = `n

are asymptotically optimal (see Proposition 3.3). At this point, we have explicit estimates from below for
the Gamma-liminf, which in turn yield explicit estimates from below for shape factors, thus leading to
the proof of Theorem 1.3.

Approximation from below of special interaction laws: The more general interaction laws of Theorem 1.4
can be approximated from below by sequences of interaction laws that, up to horizontal rescaling, are in
PCA2. Again this provides estimates from below for the Gamma-liminf, and hence for shape factors, that
lead to the proof of Theorem 1.4.
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Structure of the paper. This paper is organized as follows. In Section 2 we recall the technical results
from [Antonucci et al. 2020] that are needed in the sequel. In Section 3 we investigate the asymptotic
behavior of suitable sequences of minimum problems for functions of a finite number of variables. In
Section 4 we prove Proposition 4.3, which establishes the connection between the Gamma-limit of (1-1)
and the minimum problems of the previous section. In Section 5 we prove Theorems 1.3 and 1.4. In
Section 6 we speculate about some possible generalizations and future directions.

2. Preliminary results

In this section we collect, for the convenience of the reader, the results from [Antonucci et al. 2020] that
are crucial to this paper. To begin with, we recall the definitions of truncation, vertical δ-segmentation
and nondecreasing rearrangement.

Definition 2.1 (truncation). Let X be any set, let w : X→ R be any function, and let A < B be two real
numbers. The truncation of w between A and B is the function TA,Bw : X→ R defined by

TA,Bw(x) :=


A if w(x) < A,
w(x) if A ≤ w(x)≤ B,
B if w(x) > B.

Definition 2.2 (vertical δ-segmentation). Let X be any set, let w : X→ R be any function, and let δ be a
positive real number. The vertical δ-segmentation of w is the function Sδw : X→ R defined by

Sδw(x) := δ
⌊
w(x)
δ

⌋
for all x ∈ X.

The function Sδw takes its values in δZ, and it is uniquely characterized by the fact that Sδw(x)= kδ
for some k ∈ Z if and only if kδ ≤ w(x) < (k+ 1)δ.

Definition 2.3 (nondecreasing rearrangement). Let (a, b)⊆ R be an interval, and let w : (a, b)→ R be a
function whose image is a finite set. The nondecreasing rearrangement ofw is the function Mw : (a, b)→R

defined by

Mw(x) :=min{y ∈ R :meas{z ∈ (a, b) : w(z)≤ y} ≥ x − a} for all x ∈ R. (2-1)

As expected, the function Mw is nondecreasing and satisfies

meas{x ∈ (a, b) : Mw(x)= y} =meas{x ∈ (a, b) : w(x)= y} for all y ∈ R.

Semidiscrete aggregation problem. Let us recall the main result of [Antonucci et al. 2020, Section 2],
where a class of discrete and semidiscrete aggregation problems was considered. Following the terminology
introduced therein, the basic ingredients are an interval (a, b) ⊆ R, an integer number k ≥ 1, and a
nonincreasing function c : (0, b− a)→ R, possibly unbounded in a neighborhood of the origin, called
the hostility function. A semidiscrete arrangement is any measurable function u : (a, b)→ Z with finite
image.
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For any such function u, we define the total k-hostility as

Fk(c, u)=
∫∫

(a,b)2
ϕk(|u(y)− u(x)|) · c(|y− x |) dx dy, (2-2)

where ϕk(t) is the interaction law defined by (1-7).
The key result proved in [Antonucci et al. 2020, Theorem 2.4] (and equivalent to some rearrangement

inequalities found independently in [Taylor 1973; Garsia and Rodemich 1974] in a different context) is
that the nondecreasing rearrangement does not increase the total hostility.

Theorem A (total hostility minimization). Let (a, b)⊆ R be an interval, let k ≥ 1 be an integer, and let
c : (0, b− a)→ R be a nonincreasing function. Let u : (a, b)→ Z be a measurable function with finite
image, let Mu : (a, b)→ Z be its nondecreasing rearrangement defined by (2-1), and let Fk(c, u) be the
functional defined by (2-2).

Then it turns out that
Fk(c, u)≥ Fk(c,Mu).

Localization technique. One of the main points in [Antonucci et al. 2020] was obtaining a localized
version of the Gamma-liminf inequality, namely an asymptotic estimate from below for 3δ(ϕ, uδ, (a, b))
in terms of the oscillation of uδ in (a, b). After such an estimate has been established, a quite classical
path, see for example [Gobbino 1998; Gobbino and Mora 2001], independent of the presence of the
interaction law ϕ, leads to an estimate from below for the Gamma-liminf of 3δ in any space dimension,
and hence to an estimate from below for the shape factor of ϕ. The precise statement is the following.

Theorem B (from local to global bounds). Let ϕ ∈ A be an interaction law, with scale factor N (ϕ)
defined by (1-3) and shape factor Kd(ϕ) defined by (1-5).

Let us assume that there exists a constant K0 such that, for every interval (a, b)⊆ R and every family
{uδ}δ>0 ⊆ L1((a, b)), it happens that

lim inf
δ→0+

3δ(ϕ, uδ, (a, b))≥ K0 · lim inf
δ→0+

osc(uδ, (a, b)), (2-3)

where osc(uδ, (a, b)) denotes the essential oscillation of uδ in (a, b).
Then for every positive integer d it turns out that

0– lim inf
δ→0+

3δ(ϕ, u,Rd)≥ Gd ·
1
2 K0 ·30(u,Rd) for all u ∈ L1(Rd). (2-4)

The proof of Theorem B has two distinct steps.
The first one, for which we refer to [Antonucci et al. 2020, Section 3.2], exploits a piecewise affine

approximation in order to deduce (2-4) in dimension 1 from the local estimate (2-3). We remark that
G1 = 2, and therefore in dimension 1 the geometric constant cancels the denominator, so that (2-3) is
exactly the localized version of (2-4).

The second step, for which we refer to [Antonucci et al. 2020, Section 4], relies on an integral-geometric
representation of both the total variation and the double integral (1-1). This representation leads from
(2-4) in dimension 1 to the analogous inequality in any space dimension.
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3. A family of multivariable minimum problems

In this section we introduce some notation, and we prove asymptotic estimates for a family of inequalities
involving multivariable functions. Roughly speaking, these multivariable functions represent the functional
3δ computed on a piecewise constant function with a finite number of steps of lengths `1, . . . , `n . The
main result of this section, namely estimate (3-10), is going to play a crucial role when combined with
the result of Proposition 4.3, where we estimate from below the asymptotic cost of oscillations.

Let n be a positive integer, and let (`1, . . . , `n) be an n-tuple of nonnegative real numbers. For every
positive integer k ≤ n we consider all possible sums of k consecutive terms

Si,k(`1, . . . , `n) :=

k−1∑
h=0

`i+h for all i ∈ {1, . . . , n− k+ 1}, (3-1)

and we define the set

Dn,k := {(`1, . . . , `n) ∈ [0,+∞)n : Si,k(`1, . . . , `n) > 0 for all i ∈ {1, . . . , n− k+ 1}} (3-2)

of all n-tuples of nonnegative real numbers without k consecutive components equal to 0. When n ≥ k+1,
for every (`1, . . . , `n) ∈ Dn,k we can set

Lk(`1, . . . , `n) :=

n−k∑
i=1

log
[Si,k+1(`1, . . . , `n)]

2

Si,k(`1, . . . , `n) · Si+1,k(`1, . . . , `n)
. (3-3)

Given any interaction law ϕ ∈ PCA, we call µ(ϕ) the smallest integer k such that λk 6= 0 in the
representation (1-9), and for every n ≥ m+ 1 we consider the homogeneous function Pn,ϕ : Dn,µ(ϕ)→ R

defined by

Pn,ϕ(`1, . . . , `n) :=

m∑
k=µ(ϕ)

λk Lk(`1, . . . , `n) for all (`1, . . . , `n) ∈ Dn,µ(ϕ), (3-4)

and its infimum
In(ϕ) := inf{Pn,ϕ(`1, . . . , `n) : (`1, . . . , `n) ∈ Dn,µ(ϕ)}

= inf{Pn,ϕ(`1, . . . , `n) : (`1, . . . , `n) ∈ (0,+∞)n}. (3-5)

Let us consider for example the interaction law ϕ1 defined in (1-2). In this case µ(ϕ1)= 1, the set Dn,1

is just (0,+∞)n, and the function in (3-4) has the form

Pn,ϕ1(`1, . . . , `n)= L1(`1, . . . , `n)= log
(`1+ `2)

2

`1`2
+ log

(`2+ `3)
2

`2`3
+ · · ·+ log

(`n−1+ `n)
2

`n−1`n
.

All the fractions inside the logarithms are greater than or equal to 4, and hence In(ϕ1)= (n− 1) log 4,
with the minimum realized when all the variables are equal. This computation was the final step in the
proof of the crucial estimate in [Antonucci et al. 2020]. In Section 4 of the present paper we show that
the asymptotic behavior of In(ϕ) plays a fundamental role in estimating from below the shape factor of
any interaction law ϕ ∈ PCA.
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Unfortunately, things are not that simple for larger values of k. For example, when the interaction law
is ϕ3, the function L3(`1, . . . , `n) is given by

log
(`1+ `2+ `3+ `4)

2

(`1+ `2+ `3)(`2+ `3+ `4)
+ log

(`2+ `3+ `4+ `5)
2

(`2+ `3+ `4)(`3+ `4+ `5)
+ · · · ,

and now the minimum is not realized when all the variables are equal (for example the periodic pattern
1, 0, 0, 1, 0, 0, . . . is better).

Of course any interaction law of the form ϕk can be dealt with as a rescaling of ϕ1, but nevertheless
the appearance of different patterns in the minimization process seems to suggest that things get worse
and worse when we take linear combinations of the form (3-4). Fortunately this is not always the case.
Indeed, when we expand linear combinations of this form, the numerators of the terms of Lk can partially
cancel with the denominators of the terms of Lk+1, leading to the following result.

Lemma 3.1 (telescopic effect). Let a, b, and n be positive integers such that a ≤ b ≤ n− 1. Let Si,k and
Lk be the functions of n variables defined in (3-1) and (3-3).

Then for every (`1, . . . , `n) ∈ Dn,a it turns out that

b∑
j=a

L j (`1, . . . , `n)≥

n−b∑
i=1

log
[Si,b+1(`1, . . . , `n)]

2

Si,a(`1, . . . , `n) · Si+(b−a)+1,a(`1, . . . , `n)
. (3-6)

Proof. To begin with, we observe that (3-6) is an equality when b= a. Therefore, in the sequel we assume
that b ≥ a+ 1. For the sake of shortness, throughout this proof we omit the explicit dependence on the
variables `1, . . . , `n . The left-hand side of (3-6) can be written in the form

b∑
j=a

L j = 261−62−63, (3-7)

where

61 :=

b∑
j=a

n− j∑
i=1

log Si, j+1, 62 :=

b∑
j=a

n− j∑
i=1

log Si, j , 63 :=

b∑
j=a

n− j∑
i=1

log Si+1, j .

With some algebra (shift of indices and separation of the terms corresponding to the first or last value
of some index) we can rewrite the three sums as

61 =

n−b∑
i=1

log Si,b+1+

b∑
j=a+1

log S1, j +

b∑
j=a+1

log Sn− j+1, j +

b∑
j=a+1

n− j∑
i=2

log Si, j ,

62 =

n−a∑
i=1

log Si,a +

b∑
j=a+1

log S1, j +

b∑
j=a+1

n− j∑
i=2

log Si, j ,

63 =

n−a+1∑
i=2

log Si,a +

b∑
j=a+1

log Sn− j+1, j +

b∑
j=a+1

n− j∑
i=2

log Si, j .
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When we plug these three equalities into (3-7), all double sums cancel, and also the second sums in
62 and 63 cancel with a part of the second and third terms in 61. We end up with

261−62−63= 2
n−b∑
i=1

log Si,b+1+

b∑
j=a+1

log S1, j+

b∑
j=a+1

log Sn− j+1, j−

n−a∑
i=1

log Si,a−

n−a+1∑
i=2

log Si,a. (3-8)

Let us reorganize these terms. In the second and third sums we change the indices and we rewrite them as
b∑

j=a+1

log S1, j =

b−a∑
k=1

log S1,k+a,

b∑
j=a+1

log Sn− j+1, j =

n−a∑
k=n−b+1

log Sk,n+1−k .

In the fourth sum we split the terms as
n−a∑
i=1

log Si,a =

n−b∑
i=1

log Si,a +

n−a∑
k=n−b+1

log Sk,a.

In the fifth sum we split the terms, and then we shift one index in order to rewrite the sum as
n−a+1∑

i=2

log Si,a =

b−a+1∑
i=2

log Si,a +

n−a+1∑
i=b−a+2

log Si,a =

b−a∑
k=1

log Sk+1,a +

n−b∑
i=1

log Si+(b−a)+1,a.

Plugging all these equalities into (3-8) we find that

261−62−63 =

n−b∑
i=1

log
[Si,b+1]

2

Si,a · Si+(b−a)+1,a
+

b−a∑
k=1

log
S1,k+a

Sk+1,a
+

n−a∑
k=n−b+1

log
Sk,n+1−k

Sk,a
.

In the sums of the last line, all terms are nonnegative because in all the fractions the numerators are
greater than or equal to the corresponding denominators. Recalling (3-7), it follows that

b∑
j=a

L j = 261−62−63 ≥

n−b∑
i=1

log
[Si,b+1]

2

Si,a · Si+(b−a)+1,a
,

which completes the proof of (3-6). �

Corollary 3.2. Let us consider the situation described in Lemma 3.1 in the special case where a = 2m−1

and b = 2m
− 1 for some positive integer m.

Then for every n ≥ 2m it turns out that
2m
−1∑

k=2m−1

Lk(`1, . . . , `n)≥ (n− 2m
+ 1) · 2 log 2 for all (`1, . . . , `n) ∈ Dn,a. (3-9)

Proof. In this special case it turns out that

Si,b+1 = Si,a + Si+(b−a)+1,a for all i ≤ n− 2m
+ 1.
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Therefore, from the inequality between arithmetic mean and geometric mean, we deduce that all the
fractions in the right-hand side of (3-6) are greater than or equal to 4, and this is enough to establish (3-9). �

From Corollary 3.2 we deduce a lower bound for the asymptotic behavior of In(ϕ) for interaction laws
ϕ ∈ PCA2.

Proposition 3.3 (interaction laws with package structure). Let m be a positive integer, let a1, . . . , am be
nonnegative real numbers (not all equal to 0), and let ϕ ∈ PCA2 be defined as in (1-10).

For every integer n ≥ 2m, let Pn,ϕ be the homogeneous function defined by (3-4), and let In(ϕ) be its
infimum as in (3-5).

Then it turns out that

lim inf
n→+∞

In(ϕ)

n
≥ 2 log 2 ·

m∑
j=1

aj . (3-10)

Proof. Let m0(ϕ) denote the smallest integer k such that ak > 0. From Corollary 3.2 we know
2 j
−1∑

k=2 j−1

Lk(`1, . . . , `n)≥ (n− 2 j
+ 1) · 2 log 2

for every j ∈ {m0(ϕ), . . . ,m}, and therefore

Pn,ϕ(`1, . . . , `n)≥

m∑
j=m0(ϕ)

aj · (n− 2 j
+ 1) · 2 log 2≥ (n− 2m) · 2 log 2 ·

m∑
j=1

aj

for every admissible choice of `1, . . . , `n .
Dividing by n, and letting n→+∞, we obtain (3-10). �

4. Asymptotic cost of oscillations

In this section we clarify the connection between the Gamma-limit of the family (1-1) and the multivariable
functions of Section 3. In analogy with [Antonucci et al. 2020], the question we address is the following.
Let us assume that a function uδ(x) oscillates between two values A and B in some interval (a, b). Does
this provide an estimate from below for 3δ(ϕ, uδ, (a, b)), at least when δ is small enough? A quantitative
answer is provided by Proposition 4.3 and Corollary 4.4, and this answer is connected to the Gamma-limit
of the family (1-1) by Theorem B, as we clarify in Proposition 4.5.

To begin with, we show that three simplifying operations can be performed on uδ without changing its
oscillation between A and B or increasing its energy.

Lemma 4.1 (truncation, segmentation, rearrangement). Let a < b and A < B be real numbers, let
u : (a, b)→ R be a measurable function, and let ϕ ∈ PCA.

Then for every δ > 0 it turns out that

3δ(ϕ, u, (a, b))≥3δ(ϕ,M SδTA,Bu, (a, b)), (4-1)

where TA,B , Sδ, and M are the operators of truncation, vertical δ-segmentation, and nondecreasing
rearrangement defined at the beginning of Section 2.
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Proof. Since 3δ is linear with respect to ϕ, it is enough to show inequality (4-1) when ϕ = ϕk for some
positive integer k, in which case

3δ(ϕk, u, (a, b))=
∫∫

Ik(δ,u,(a,b))

δ

(y− x)2
dx dy,

where
Ik(δ, u, (a, b)) := {(x, y) ∈ (a, b)2 : |u(y)− u(x)|> kδ}.

Let us examine the effects on 3δ of the three operations performed on u. The arguments are the same
as in the first part of the proof of [Antonucci et al. 2020, Proposition 3.4], where however only the case
of ϕ1 was considered.

Truncation: For every x and y in (a, b) it turns out that

|TA,Bu(y)− TA,Bu(x)|> kδ =⇒ |u(y)− u(x)|> kδ.

This implies Ik(δ, TA,Bu, (a, b))⊆ Ik(δ, u, (a, b)), and therefore

3δ(ϕk, u, (a, b))≥3δ(ϕk, TA,Bu, (a, b)). (4-2)

Vertical δ-segmentation: For every x and y in (a, b) it turns out that

|Sδu(y)− Sδu(x)|> kδ =⇒ |Sδu(y)− Sδu(x)| ≥ (k+ 1)δ =⇒ |u(y)− u(x)|> kδ.

As before this implies

3δ(ϕk, TA,Bu, (a, b))≥3δ(ϕk, SδTA,Bu, (a, b)). (4-3)

Nondecreasing rearrangement: We claim that

3δ(ϕk, SδTA,Bu, (a, b))≥3δ(ϕk,M SδTA,Bu, (a, b)). (4-4)

This inequality, together with (4-2) and (4-3), completes the proof of (4-1).
In order to prove (4-4), we rely on the theory of semidiscrete arrangements. To this end, we consider

the semidiscrete arrangement vδ : (a, b)→ Z defined by

vδ(x) :=
1
δ

SδTA,Bu(x) for all x ∈ (a, b) (4-5)

(we recall that SδTA,Bu takes its values in δZ, and hence vδ(x) is integer-valued) and the hostility function
c : (0, b− a)→ R defined by c(σ ) := δσ−2. We observe that

M SδTA,Bu(x)= δMvδ(x) for all x ∈ (a, b),

where Mvδ is the nondecreasing rearrangement of vδ. From (4-5) and (2-2) it turns out that

3δ(ϕk, SδTA,Bu, (a, b))= δ31(ϕk, vδ, (a, b))= Fk(c, vδ),

and similarly
3δ(ϕk,M SδTA,Bu, (a, b))= δ31(ϕk,Mvδ, (a, b))= Fk(c,Mvδ),

so that now (4-4) follows from Theorem A. �
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As a second simplifying step, we show that the double integral over (a, b)2 can be replaced, in the
computation of the liminf, by a double integral over an infinite strip, which is easier to handle. To this
end, we introduce the family of functionals

3̂δ(ϕ, u, (c, d)) :=
∫ d

c
dx
∫
+∞

−∞

ϕ

(
|u(y)− u(x)|

δ

)
δ

(y− x)2
dy,

and we prove the following result.

Lemma 4.2 (extension to a vertical strip). Let a < c < d < b be real numbers, and let ϕ : [0,+∞)→
[0,+∞) be a bounded measurable function. For every δ > 0, let uδ : (a, b)→R be a measurable function.
Let us extend uδ to the whole real line by setting uδ(x)= 0 for every x 6∈ (a, b).

Then it turns out that

lim inf
δ→0+

3δ(ϕ, uδ, (a, b))≥ lim inf
δ→0+

3̂δ(ϕ, uδ, (c, d)). (4-6)

Proof. Let us set for shortness

fδ(x, y) := ϕ
(
|uδ(y)− uδ(x)|

δ

)
δ

(y− x)2
for all (x, y) ∈ (a, b)×R.

Since ϕ is nonnegative and (c, d)⊆ (a, b), for every δ > 0 it turns out that

3δ(ϕ, uδ, (a, b))≥
∫ d

c
dx
∫ b

a
fδ(x, y) dy

= 3̂δ(ϕ, uδ, (c, d))−
∫ d

c
dx
∫

R\[a,b]
fδ(x, y) dy. (4-7)

From the boundedness of ϕ it follows that∫ d

c
dx
∫
+∞

b
fδ(x, y) dy ≤ δ‖ϕ‖∞

∫ d

c
dx
∫
+∞

b

1
(y− x)2

dy.

Since d < b, the double integral in the right-hand side is convergent, and hence

lim
δ→0+

∫ d

c
dx
∫
+∞

b
fδ(x, y) dy = 0. (4-8)

In an analogous way we obtain

lim
δ→0+

∫ d

c
dx
∫ a

−∞

fδ(x, y) dy = 0. (4-9)

At this point, (4-6) follows from (4-7), (4-8), and (4-9). �

We are now ready to state and prove the main result of this section.

Proposition 4.3 (limit cost of vertical oscillations). Let (a, b)⊆R be an interval, let {uδ}δ>0⊆ L1((a, b))
be a family of functions, let ϕ ∈PCA be a piecewise constant interaction law, let Pn,ϕ be the multivariable
function defined by (3-4), and let In(ϕ) be its infimum as in (3-5).
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Let us assume that there exist two real numbers A ≤ B such that

lim inf
δ→0+

meas{x ∈ (a, b) : uδ(x)≤ A+ ε}> 0 for all ε > 0, (4-10)

lim inf
δ→0+

meas{x ∈ (a, b) : uδ(x)≥ B− ε}> 0 for all ε > 0. (4-11)

Then it turns out that

lim inf
δ→0+

3δ(ϕ, uδ, (a, b))≥ (B− A) · lim inf
n→+∞

In(ϕ)

n
. (4-12)

Proof. To begin with, we observe that (4-12) is trivial if A = B, or if the left-hand side is infinite. Up
to restricting ourselves to a sequence δk → 0+, we can also assume that the liminf is actually a limit.
Therefore, in the sequel we assume that the left-hand side of (4-12) is uniformly bounded from above and
that A < B.

Let us fix ε > 0 such that 4ε < B− A. Due to assumptions (4-10) and (4-11), there exist η > 0 and
δ0 > 0 such that

meas{x ∈ (a, b) : uδ(x)≤ A+ ε} ≥ η for all δ ∈ (0, δ0), (4-13)

meas{x ∈ (a, b) : uδ(x)≥ B− ε} ≥ η for all δ ∈ (0, δ0). (4-14)

Let us consider the modified family ûδ := M SδTA,Buδ as in Lemma 4.1. From (4-13) and (4-14) it
follows that the nondecreasing function ûδ satisfies

ûδ(x)≤ A+ 2ε for all x ∈ (a, a+ η), for all δ ∈ (0, δ1), (4-15)

ûδ(x)≥ B− 2ε for all x ∈ (b− η, b), for all δ ∈ (0, δ1), (4-16)

where δ1 :=min{ε, δ0}. Moreover, from Lemmas 4.1 and 4.2 it follows that

lim inf
δ→0+

3δ(ϕ, uδ, (a, b))≥ lim inf
δ→0+

3δ(ϕ, ûδ, (a, b))≥ lim inf
δ→0+

3̂δ(ϕ, ûδ, (a+ η, b− η)),

where in the computation of the latter we imagine that ûδ has been extended to the whole real line by
setting it equal to 0 (or any other value) outside (a, b).

In order to compute the last liminf, we need a deeper description of the structure of ûδ. We know
that ûδ is nondecreasing and that its image is contained in δZ. Let δm0 denote the value of ûδ in a right
neighborhood of a, let us set x0 = a, and for every positive integer i let us define

xi := sup{x ∈ (a, b) : ûδ(x) < (m0+ i)δ}.

The sequence xi is nondecreasing, and xi = b for every large enough index i . If xi+1 > xi for some
index i , then it turns out that

ûδ(x)= (m0+ i)δ for all x ∈ (xi , xi+1).

If xi+1 = xi for some index i , this means that

meas{x ∈ (a, b) : ûδ(x)= (m0+ i)δ} = 0.
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Let α and β be the two indices (which of course do depend on δ) such that

α :=min{i ∈ N : xi ≥ a+ η} and β :=max{i ∈ N : xi ≤ b− η}.

Let us consider now the interaction law ϕ, which we assumed of the form (1-9), and let µ(ϕ) denote
the smallest index k ≤ m such that λk > 0. To begin with, we show that xi+µ(ϕ) > xi for every index i
with α ≤ i ≤ β. Indeed, if this is not the case, then it turns out that

ûδ(y)− ûδ(x)≥ (µ(ϕ)+ 1)δ for all (x, y) ∈ (a, xi )× (xi , b),

and in particular

3δ(ϕ, ûδ, (a, b))≥ λµ(ϕ)3δ(ϕµ(ϕ), ûδ, (a, b))≥ λµ(ϕ)

∫ xi

a
dx
∫ b

xi

δ

(y− x)2
dy,

which is absurd because the left-hand side is uniformly bounded from above, while the double integral in
the right-hand side is divergent.

Let us consider now an integer k ∈ {µ(ϕ), . . . ,m}, and for every x ∈ (a, b) let us set

Hk,+(x) :=
∫
+∞

x
ϕk

(
|ûδ(y)− ûδ(x)|

δ

)
δ

(y− x)2
dy,

Hk,−(x) :=
∫ x

−∞

ϕk

(
|ûδ(y)− ûδ(x)|

δ

)
δ

(y− x)2
dy.

With this notation it turns out that

3̂δ(ϕk, ûδ, (a+ η, b− η))=
∫ b−η

a+η
dx
∫
+∞

−∞

ϕk

(
|ûδ(y)− ûδ(x)|

δ

)
δ

(y− x)2
dy

=

∫ b−η

a+η
(Hk,+(x)+ Hk,−(x)) dx

≥

∫ xβ−k

xα
Hk,+(x) dx +

∫ xβ

xα+k

Hk,−(x) dx . (4-17)

Let us compute the last two integrals separately. For every index i ∈ {α+1, . . . , β−k} it turns out that

Hk,+(x)=
∫
+∞

xi+k

δ

(y− x)2
dy =

δ

xi+k − x
for all x ∈ (xi−1, xi ).

The previous equality assumes that xi−1 < xi , but actually it is true for trivial reasons also if xi−1 = xi .
It follows that ∫ xi

xi−1

Hk,+(x) dx = δ log
xi+k − xi−1

xi+k − xi

for every i ∈ {α+ 1, . . . , β − k}, and therefore∫ xβ−k

xα
Hk,+(x) dx =

β−k∑
i=α+1

∫ xi

xi−1

Hk,+(x) dx = δ
β−k∑

i=α+1

log
xi+k − xi−1

xi+k − xi
. (4-18)
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In an analogous way, for every index i ∈ {α+ k+ 1, . . . , β} it turns out that

Hk,−(x)=
∫ xi−k−1

−∞

δ

(y− x)2
dy =

δ

x − xi−k−1
for all x ∈ (xi−1, xi ),

so that, with a shift of indices, we obtain∫ xi+k

xi+k−1

Hk,−(x) dx = δ log
xi+k − xi−1

xi+k−1− xi−1

for every i ∈ {α+ 1, . . . , β − k}, and therefore∫ xβ

xα+k

Hk,−(x) dx =
β−k∑

i=α+1

∫ xi+k

xi+k−1

Hk,−(x) dx = δ
β−k∑

i=α+1

log
xi+k − xi−1

xi+k−1− xi−1
. (4-19)

Plugging (4-18) and (4-19) into (4-17), we find that

3̂δ(ϕk, ûδ, (a+ η, b− η))≥ δ
β−k∑

i=α+1

log
(xi+k − xi−1)

2

(xi+k−1− xi−1)(xi+k − xi )
.

Setting `i := xα+i − xα+i−1 for every i ∈ {1, . . . , β −α}, we can write the last inequality in the form

3̂δ(ϕk, ûδ, (a+ η, b− η))≥ δ
β−α−k∑

i=1

log
(`i + · · ·+ `i+k)

2

(`i + · · ·+ `i+k−1)(`i+1+ · · ·+ `i+k)

= δLk(`1, . . . , `β−α),

where Lk is the multivariable function defined in (3-3). We observe that the denominators do not vanish
because k ≥ µ(ϕ), and we have already proved that xi+µ(ϕ) > xi , which is equivalent to saying that the
list (`1, . . . , `β−α) contains no k consecutive terms that vanish. Since 3̂δ is linear with respect to ϕ, we
deduce

3̂δ(ϕ, ûδ, (a+ η, b− η))≥ δ
m∑

k=µ(ϕ)

λk Lk(`1, . . . , `β−α)

= δPβ−α,ϕ(`1, . . . , `β−α)≥ δ Iβ−α(ϕ).

Letting δ→ 0+, and observing that β −α→+∞, we conclude that

lim inf
δ→0+

3̂δ(ϕ, ûδ, (a+ η, b− η))≥ lim inf
δ→0+

δ Iβ−α(ϕ)

≥ lim inf
δ→0+

δ(β −α) · lim inf
δ→0+

Iβ−α(ϕ)
β −α

≥ lim inf
δ→0+

δ(β −α) · lim inf
n→+∞

In(ϕ)

n
. (4-20)

It remains to compute the liminf of δ(β − α). To this end, from (4-15) and the minimality of α we
deduce

A+ 2ε ≥ ûδ(x)= (m0+α− 1)δ for all x ∈ (xα−1, xα).
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Similarly, from (4-16) and the maximality of β we deduce

B− 2ε ≤ ûδ(x)= (m0+β)δ for all x ∈ (xβ, xβ+1).

It follows that (β −α)δ ≥ B− A− 4ε− δ, and therefore from (4-20) we conclude that

lim inf
δ→0+

3̂δ(ϕ, ûδ, (a+ η, b− η))≥ (B− A− 4ε) · lim inf
n→+∞

In(ϕ)

n
.

Letting ε→ 0+, we finally deduce (4-12). �

As observed in [Antonucci et al. 2020], we can rewrite Proposition 4.3 as a relation between the liminf
of the energy and the liminf of oscillations as follows.

Corollary 4.4. Let (a, b), uδ, ϕ, and In(ϕ) be as in Proposition 4.3. For every δ > 0, let osc(uδ, (a, b))
denote the essential oscillation of uδ in (a, b).

Then it turns out that

lim inf
δ→0+

3δ(ϕ, uδ, (a, b))≥
(
lim inf
δ→0+

osc(uδ, (a, b))
)
· lim inf

n→+∞

In(ϕ)

n
.

Proof. Let iδ and sδ denote the essential infimum and the essential supremum of uδ(x) in (a, b), respectively.
Let us assume that iδ and sδ are real numbers (otherwise an analogous argument works with standard
minor changes). Let us set wδ(x) := uδ(x)− iδ, and let us observe that

3δ(ϕ, uδ, (a, b))=3δ(ϕ,wδ, (a, b)) for all δ > 0

and that wδ satisfies (4-10) and (4-11) with A := 0 and

B := lim inf
δ→0+

(sδ − iδ)= lim inf
δ→0+

osc(uδ, (a, b)).

At this point the conclusion follows from Proposition 4.3. �

Combining Theorem B and Corollary 4.4, we obtain the following result, which connects the Gamma-
liminf of the family (1-1) to the multivariable minimum problems of Section 3.

Proposition 4.5. For every positive integer d and every interaction law ϕ ∈ PCA it turns out that

0– lim inf
δ→0+

3δ(ϕ, u,Rd)≥ Gd ·
1
2

lim inf
n→+∞

Iϕ(n)
n
·30(u,Rd) for all u ∈ L1(Rd).

5. Proofs of our main results

Proof of Theorem 1.3. Let us consider, for every positive integer m, the interaction law defined as

ψm(t) :=
2m
−1∑

k=1

ϕk(t) for all t ≥ 0. (5-1)

This interaction law can be written in the form (1-10) with a1 = · · · = am = 1, and hence ψm ∈ PCA2.
As a consequence, from Proposition 3.3 we deduce

lim inf
n→+∞

In(ψm)

n
≥ m · 2 log 2,
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and therefore from Proposition 4.5 we obtain

0– lim inf
δ→0+

3δ(ψm, u,Rd)≥ Gd ·m log 2 ·30(u,Rd). (5-2)

On the other hand, from (1-5) we know

0– lim
δ→0+

3δ(ψm, u,Rd)= Gd · N (ψm) · Kd(ψm) ·30(u,Rd), (5-3)

and with some simple calculus we find that

N (ψm)=

∫
+∞

0

ψm(t)
t2 dt =

2m
−1∑

k=1

∫
+∞

0

ϕk(t)
t2 dt =

2m
−1∑

k=1

∫
+∞

k

1
t2 dt =

2m
−1∑

k=1

1
k
. (5-4)

Comparing (5-2) and (5-3) we obtain

Kd(ψm)≥
m log 2
N (ψm)

for all m ≥ 1. (5-5)

Now from (5-4) we know that N (ψm) ∼ m log 2 as m → +∞, and therefore we conclude that
Kd(ψm)→ 1 as m→+∞, independently of the space dimension. �

Proof of Theorem 1.4(1). Let us consider the interaction law θ ∈A0 defined by

θ(t) :=


0 if t ∈ [0, 1],
t − 1 if t ∈ [1, 2],
1 if t ≥ 2.

(5-6)

We claim that the shape factor of θ is 1 in any space dimension.
For every positive integer m we consider the interaction law

θm(t) :=
2m
−1∑

k=2m−1

ϕk(t),

and the rescaled function

θ̂m(t) :=
1

2m−1 θm((2m−1
− 1)t).

To begin with, we show that

θ(t)≥ θ̂m(t) for all t ≥ 0, for all m ≥ 1. (5-7)

To this end, we distinguish three cases.

Case 1: If t ∈ [0, 1], then (2m−1
− 1)t ≤ 2m−1

− 1, and hence ϕk((2m−1
− 1)t)= 0 for every k ≥ 2m−1. It

follows that θ̂m(t)= 0, and hence (5-7) is trivial.

Case 2: If t ≥ 2, then

θ̂m(t)≤
1

2m−1

2m
−1∑

k=2m−1

1= 1= θ(t),

and therefore (5-7) is again satisfied.
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Case 3: If t ∈ (1, 2), let us choose i ∈ {2m−1, . . . , 2m
− 1} such that

i
2m−1 < t ≤

i + 1
2m−1 .

Since

(2m−1
− 1)t ≤ (2m−1

− 1) ·
i + 1
2m−1 = i −

i + 1− 2m−1

2m−1 ≤ i,

we deduce

ϕk((2m−1
− 1)t)= 0 for all k ≥ i,

and therefore

θ̂m(t)≤
1

2m−1

i−1∑
k=2m−1

ϕk(t)≤
1

2m−1 (i − 2m−1)=
i

2m−1 − 1≤ t − 1= θ(t),

which proves (5-7) also in this case.

From inequality (5-7), and the rescaling properties of 3δ with respect to the interaction law, we deduce

0– lim inf
δ→0+

3δ(θ, u,Rd)≥ 0– lim inf
δ→0+

3δ(θ̂m, u,Rd)

=
2m−1

− 1
2m−1 ·0– lim inf

δ→0+
3δ(θm, u,Rd). (5-8)

Now we observe that the interaction law θm(t) can be written in the form (1-10) with a1=· · ·=am−1=0
and am = 1, and hence θm ∈ PCA2. As a consequence, from Proposition 3.3 we deduce

lim inf
n→+∞

In(θm)

n
≥ 2 log 2,

and therefore from Proposition 4.5 we obtain

0– lim inf
δ→0+

3δ(θm, u,Rd)≥ Gd · log 2 ·30(u,Rd).

Plugging this estimate into (5-8), and letting m→+∞, we deduce

0– lim inf
δ→0+

3δ(θ, u,Rd)≥ Gd · log 2 ·30(u,Rd). (5-9)

On the other hand, from (1-5) we know

0– lim
δ→0+

3δ(θ, u,Rd)= Gd · N (θ) · Kd(θ) ·30(u,Rd), (5-10)

and with some simple calculus we find that

N (θ)=
∫ 2

1

t − 1
t2 dt +

∫
+∞

2

1
t2 dt = log 2.

Comparing (5-9) and (5-10) we conclude that Kd(θ)= 1 in any space dimension.
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Proof of Theorem 1.4(2). The function ζ is continuous because f (z)→ 0 as z→−∞. It is also bounded
and monotone due to the corresponding assumptions on f (z). Finally, assumption (1-11) implies the
existence of a constant a such that ζ(t)≤ at2 for every t ≥ 0. This proves that ζ ∈A.

In order to compute scale and shape factor of ζ , we observe that it can be written in the form

ζ(t)=
+∞∑

z=−∞

( f (z+ 1)− f (z)) · θ(2−zt) for all t ≥ 0,

where θ is the interaction law defined in (5-6). Due to the additivity and to the rescaling properties of 3δ
with respect to the interaction law, from this representation it follows that

0– lim
δ→0+

3δ(ζ, u,Rd)≥

+∞∑
z=−∞

( f (z+ 1)− f (z))2−z
·0– lim inf

δ→0+
3δ(θ, u,Rd)

=

+∞∑
z=−∞

( f (z+ 1)− f (z))2−z
·Gd · N (θ) ·30(u,Rd), (5-11)

where in the last equality we have exploited that Kd(θ)= 1.
On the other hand, from (1-5) we know

0– lim
δ→0+

3δ(ζ, u,Rd)= Gd · N (ζ ) · Kd(ζ ) ·30(u,Rd). (5-12)

Since

N (ζ )= N (θ) ·
+∞∑

z=−∞

( f (z+ 1)− f (z))2−z,

comparing (5-11) and (5-12) we conclude that Kd(ζ )= 1 in any space dimension. �

6. Final remarks

In this section we present some variants of our main results, and we speculate about some possible future
extensions of the theory developed in this paper.

A counterexample to the short-range question with strict inequalities. Let us consider the interaction
laws

ϕε(t) :=
{

c1,ε · εt2 if t ∈ [0, 1],
c1,ε if t > 1,

ψ(t) := c2ψ2(t),

where ψ2(t) is defined by (5-1) with m = 2, and the constants c1,ε and c2 are chosen in such a way that
N (ϕε)= N (ψ)= 1.

From (5-5) and (5-4) with m = 2 it follows that Kd(ψ) ≥ (12/11) log 2. On the other hand, it is
possible (but not completely trivial) to show that Kd(ϕε)→ log 2 as ε→ 0+.

Therefore, when ε is small enough, this is an example of two interaction laws ϕε and ψ with equal
scale factor, satisfying ϕε(t) > ψ(t) for every t ∈ (0, 1], but nevertheless Kd(ϕε) < Kd(ψ) in every space
dimension. This provides a counterexample to Question 1 with strict inequalities.
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True Gamma-limits and smooth recovery families. In this paper we limited ourselves to providing
estimates from below for the Gamma-liminf, since they are enough to establish both Theorems 1.3 and 1.4.
On the other hand, with little further effort we could prove that actually the lower bound coincides with
the Gamma-limit.

This is evident in the case of the interaction laws with shape factor equal to 1, for example all those
provided by statement (2) of Theorem 1.4, because for them the pointwise limit coincides on smooth
functions with the estimate from below for the Gamma-liminf. Therefore, for all these interaction laws
we now know both the Gamma-limit with exact values of the constants in any space dimension and the
existence of smooth recovery families.

As for the interaction laws ψm(t) defined by (5-1), again we can show that the Gamma-limit coincides
with the lower bound we obtained for the Gamma-liminf, namely

0– lim
δ→0+

3δ(ψm, u,Rd)= Gd ·m log 2 ·30(u,Rd). (6-1)

In order to prove this result, one should follow the path we pursued in [Antonucci et al. 2020]. The
main idea is that in any space dimension the family Sδu of vertical δ-segmentations of u is a recovery
family when u is piecewise C1 or piecewise affine with compact support, and those classes are dense
in energy for the right-hand side of (6-1). Since vertical δ-segmentations of piecewise affine functions
with compact support are step functions with level sets that are finite unions of polytopes, it is enough
to further approximate them in order to produce recovery sequences made by functions of class C∞

with compact support. We refer to [Antonucci et al. 2020] for the details. Therefore, also in the case of
the interaction laws ψm(t), we end up with a Gamma-convergence result with both exact values of the
constants in any space dimension, and existence of smooth recovery families.

The same argument should work for all interaction laws in PCA2, and more generally for all interaction
laws ϕ ∈ PCA for which In(ϕ) is realized asymptotically when all the variables are equal.

Toward a general formula for the Gamma-limit. We suspect that the lower bound in Proposition 4.3
might be optimal for every ϕ ∈PCA, and that the liminf in the right-hand side of (4-12) is actually a limit.
Thanks to Proposition 4.5, this would imply

0– lim
δ→0+

3δ(ϕ, u,Rd)= Gd ·
1
2

lim
n→+∞

In(ϕ)

n
·30(u,Rd) for all u ∈ L1(Rd), (6-2)

for every ϕ ∈ PCA. In order to prove this result, the main difficulty seems to be the construction of
recovery sequences, which in general can no longer be obtained simply by vertical δ-segmentation. On
the contrary, the construction should now take into account the pattern that realizes the infimum In(ϕ).

A representation of the form (6-2), if true, would be important because any interaction law can be
approximated from below by piecewise constant interaction laws with steps of equal horizontal length (as
we did in the proof of statement (1) of Theorem 1.4), and these laws are rescalings of laws in PCA.

This kind of representation would be even more important if it were true that the Gamma-limit of
3δ(ϕ, u,Rd) is the supremum of the Gamma-limits of3δ(ψ, u,Rd) as ψ varies in the set of all piecewise
constant interaction laws, with steps of equal horizontal length that are less than or equal to ϕ. A
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confirmation of this conjecture would open the way for answering several questions raised in [Brezis
and Nguyen 2018]: a simplified proof of the Gamma-convergence result in full generality, a less implicit
formula for shape factors, and existence of smooth recovery families.

Characterization of interaction laws without gap. Concerning the gap between the pointwise limit and
the Gamma-limit, the challenge is now characterizing all interaction laws with shape factor equal to 1.
Let us summarize what we know for the time being on this specific issue.

• Continuity does not guarantee lack of the gap. Among continuous interaction laws, we have both
examples without gap (all interaction laws provided by Theorem 1.4) and interaction laws with gap.
Indeed, it is possible to show that the piecewise affine interaction law that is equal to 0 for t ∈ [0, 1− ε]
and equal to 1 for t ≥ 1 has a shape factor that tends to log 2 as ε→ 0+.

Conversely, we have no example of discontinuous interaction law without gap.

• It is not a matter of vanishing in a neighborhood of the origin. Among the interactions laws in A0

we have both examples without gap (the interaction law θ defined in (5-6)) and examples with gap (the
model interaction law ϕ1). Among the interaction laws that are positive for every t > 0 we have both
examples without gap (defined as in statement (2) of Theorem 1.4) and examples with gap (the interaction
law ϕε(t) defined at the beginning of this section).

• The shape factor is concave when restricted to interaction laws with equal scale factor. As a consequence,
any convex combination of interaction laws with the same scale factor, and shape factor equal to 1, has
again shape factor equal to 1. Considering that now we know many interaction laws with shape factor
equal to 1, this leads us to guess that the set of interaction laws with shape factor equal to 1 might be
quite large.

More general exponents. It should not be difficult to extend the results of this paper to the more general
family of functionals

3δ,p(ϕ, u, �) :=
∫∫

�2
ϕ

(
|u(y)− u(x)|

δ

)
δ

|y− x |d+p dx dy,

where p> 1 is a real number. This case was investigated in [Brezis and Nguyen 2020]. The Gamma-limit
turns out to be a multiple of the L p-norm of the gradient of u, and the exact constant was found in
[Antonucci et al. 2020] in the case ϕ = ϕ1. When extending the results of this paper, the presence of
the general exponent p > 1 requires probably only a change in definition (3-3), which now should be
replaced by something like

Lk,p :=

∫ Si,k+1

Si.k

1
σ p dσ +

∫ Si,k+1

Si+1.k

1
σ p dσ

=
1

p− 1

n−k∑
i=1

(
−

2
[Si,k+1]p−1 +

1
[Si,k]

p−1 +
1

[Si+1,k]p−1

)
.

Again, the special structure of the terms of the sum should guarantee the telescopic effect as in
Lemma 3.1.
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