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Abstract

Humans are inherently mobile creatures. The way we move around our
environment has consequences for a wide range of problems, including the design
of efficient transportation systems and the planning of urban areas. Having good
prediction models able to abstract and infer human mobility behaviours within a

city is of extreme importance to improve the urban life.
This thesis proposes to study human behavior and dynamics through a

combination of techniques from network science and data mining. In the context of
human mobility, we use GPS data from vehicles to define trajectories in order to

understand the mobility patterns. We based our mobility models on the Individual
Mobility Networks, a graph representation of users trips that will be presented and

used in this thesis. Our work also aims to represent a step towards a reliable
Mobility Analysis framework, capable to exploit the richness of the

spatio-temporal data nowadays available. The work done is an exploration of
meaningful open challenges, from an efficient Trajectory Segmentation of low
sampling GPS data to the definition of a stable car crash prediction model.

From simulation of electric vehicles to the ethics aspects of mobility data usage we
have today many ways to make our cities more sustainable and smart. Another
promising perspective is the use of such extracted knowledge to investigate more

extensive topics such as Geographical Transfer Learning and Explainability.
Further experimentation has been performed in order to improve the

characterization of the individual human movements having a more complete and
richer picture of that.
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Introduction

One of the most fascinating challenges of our time is to understand the complexity of
the global interconnected society and possibly to predict human behavior. A great
part of human behavior is observable through individual movements, registered in
many different layers: mobile phone network, GPS devices, social media applica-
tions, road sensors, credit card transactions. Movement is the “hardware” of our
daily life. We move to perform any activity: we have to move to bring children at
school, to buy a new electronic device, to meet with colleagues at work and so on
[113]. If we understand the patterns of human movement, we can also comprehend
how to improve the metropolis conditions, reduce urban traffic and create smarter
cities. Modeling human mobility is a challenging task due to many reasons: first
of all human trajectories are extremely high dimensional and second the trajectory
of each individual is very unique in the geographical space [208]. Nevertheless hu-
man movements are similar in an underlying semantic space, which gives meaning
to a trajectory [42]. For example, majority of people leave their respective home in
the morning and go to their respective work places, spend time for lunch at their
favorite cafes and visit their points of interest. This is not substantially different
among individuals since the semantics and the geographic features of locations in
a trajectory are all correlated with each other. There is also a correlation between
the mobility features of different individuals in an area. Thus, it is extremely hard
to characterize (geographically and semantically) meaningful location trajectories
using sequential models, where a location is developed given only a short list of its
preceding visited locations. The whole trajectory, instead, needs to be built in a
consistent manner, using a model that captures all its features. Several questions
are still open for investigation, from general ones such as: How to capture the multi-
dimensional and multi-scale of individual mobility in a single model?, to specific ones
as: What are the frequent patterns of people’s travels? How do big data attractors
and extraordinary events influence mobility? How to predict mobility related events
such as traffic jams or car accidents in the near future?

In the world of Big Data, mobility is one of the most interesting phenomena to
study, both for technological and philosophical reasons. The ensemble of all the pos-
sible kind of data produced by billions of everywhere connected users represents the
big mosaic of mobility data. Every single piece of such mosaic encloses a dimension
of human mobility, every right combination of two or more pieces is a step towards
the understanding of big picture. So far, main results in Mobility Data Analysis
have been the comprehension of (almost) all the single dowels; the next challenge is

xv
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to compose the whole mosaic.

Starting with the Global Positioning System (GPS) tracks only, the goal of my
research work is to find new answers to those questions focusing the attention on
the study of the individual mobility. The objective is to model the mobility of the
single individual as a whole, creating a unique, complete picture of it adding seman-
tics to the raw data.
The main idea is to exploit innovative data mining algorithms trying to build a model
able to give us an accurate prediction of individual movements at the city level. We
want also to pay attention to the privacy aspect and understand how privacy limits
interfere with the quality of result. Moreover, the human mobility context consid-
ered here presents two very important and interesting open challenges that we would
like to take into consideration: the transfer learning method for mobility data mod-
els and the explainability aspects behind risk event recognition. Both were born and
evolved in contexts far from the one developed in this thesis but we think that it will
be challenging to try to use them in the mobility context. The first one aims to find
a way to exploit a pre-trained model of trajectory prediction in another geographi-
cal setting. Building a universal algorithm able to predict the future tracks of users
would be very useful in those context where data availability is low. The second
aims to understand how the Black Box works: usually machine learning algorithms
map user features into classes or scores without explaining why and how, because
the decision model is either not comprehensible to stakeholders, or secret. This is
worrying not only for the lack of transparency, but also due to the possible hidden
biases.
In the field of mobility and risk prediction there is still lot of work to do and a
wide range of open scenarios to explore. One of the most interesting challenges is
trying to transform predictions into "prescriptive rules" to prevent risk phenomena
(for example car accidents in the insurance industry or heart attacks in the medical
field). Based on these observation, in this thesis we want to face some challenges
related to the mentioned topics: from trajectory segmentation to electric vehicles
simulations, from mobility graph embedding to geographical transfer learning.

Motivation
Mobility is definitely a critical phenomenon in urban environments.
In fact, we can think about it as one of the most important mechanisms underlying
the structure and dynamics of contemporary cities. Indeed, cities are places where
intensive buying, selling or exchanging goods is taking place, where individuals com-
mute to work or meet with other individuals. An obvious means to achieve all this is
transportation. Here is where technology comes into play through the speed of the
different transportation modes. This velocity has increased considerably as technol-
ogy evolved and modified the spatial organization of cities. For example the possi-
bility to reach a place for an individual depends on the transportation mode. For a
pedestrian, the reachability horizon is typically isotropic and small, whereas the car
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permits a wider yet anisotropic exploration of space due to the existing infrastruc-
tures. The described correlation between the spatial organisation of a city and the
available technology at the time has been demonstrated by [13] for American cities.
The authors of the study show how many big cities, such as Denver, grew around
rail stations which unleashed the development of central business districts. Later
automobile-era cities such as Dallas, on the other hand, display a spatial structure
primarily conditioned by the highway system. In terms of mobility, the traditional
city center can be considered as the location that minimises the average distance
to all other locations in the city. As a natural consequence, it has thus historically
attracted businesses and residences, leading to competition for the limited space
among individuals or firms, which gave rise to the real-estate market.
In this wide and complex scenario we want to focus on how cities can be theoreti-
cally seen as a big complex network and how this allows to investigate them in some
fascinating ways.

But why complex network?
The science of networks has been witnessing a rapid development in recent years:
the metaphor of the network, with all the power of its mathematical devices, has
been applied to complex, self-organized systems as diverse as social, biological, tech-
nological and economic, leading to the achievement of several unexpected results in
the works of Barabási, Strogatz, and others [5] [285]. The understanding of spa-
tial networks detectable in biological, technological and infrastructural systems has
seen an unprecedented progress in the recent years. However, despite a significant
amount of research on these kinds of networks, in disciplines covering among others
mathematics, physics and geography, their structural and dynamical properties are
not yet completely explored in the mobility context. Our goal is to add a small
missing piece to the huge puzzle in order to show a few new applications within the
set of possible solutions for which complex networks can be used.

Contribution and Organization of the thesis
I decided to imagine my thesis work as a "theatre play". The thesis is organized in
four parts. The first part "Summary of Contributions" has been thought of as a sort
of short presentation of the work that will be presented in the thesis. Having dealt
with very different topics which require detailed references to theoretical parts, we
consider that a summary of the most significant aspects is necessary and helpful to
the comprehension. Basically, we prepare ground for the subsequent body of work
by motivating why studying human mobility is important, by introducing core con-
cepts we are going to work with, and by providing an extensive review of literature
in urban mobility, and baseline techniques and models we will build upon and de-
velop. The second part, Setting the Stage, is devoted to the background needed for
the introduction of the novelty parts and to the issue related to the understanding of
human behavior through the analysis of Big Data. In this part there are no original
contributions or personal interventions.
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The next two parts, called "Acts" (to respect the idea of a play structure) are about
my personal contribution and the challenges we tackle.
In Act I we introduce the core topic of my work, namely complex networks, and
we describe in detail the methodology and process of building the urban mobility
network. Section 3.1 is related to an introduction about complex system and in-
dividual mobility networks (Sec.3.2) . We present also (in Section 3.3) the first
original work of the thesis: a new trajectory segmentation method originated from
a multi-granularity perspective that aims to look for a better understanding of the
problem and for an user-adaptive solution. In conclusion in Section3.4 we investigate
the graph embedding challenge in the mobility framework. We discuss the existing
approaches to graph embedding and the specificities of IMNs, trying to find the
best matching solutions. Our goal is to exploring Embedding Strategies for Individ-
ual Mobility Networks in order to compare two of them even if very different a priori.

Act II is dedicated to three interesting problems in real life context. Section
4.4 it is related to the privacy aspect of mobility data and the risks that lie behind
the improper use of such data. Section 4.1 is about the electrical vehicles impact
in citizens life and in our cities organizations. Section 4.2 introduces the city indi-
cators in details while Section 4.3 tackles the car crash prediction problem and the
geographical transfer learning challenge behind that.
In conclusion, like at the end of a show, the Epilogue chapter concludes the thesis
by presenting possible future research directions in the study of human mobility.

Pubblications
This section lists all the publications that constitute the innovative contributions of
this thesis. The single papers are inserted into the chapters of this thesis in order
to make the context and overall objectives of the entire work uniform and easily
understandable.

• A.Bonavita, R.Guidotti, M.Nanni, "Self-Adapting Trajectory Segmentation"
3rd International Workshop on Big Mobility Data Analytics (BMDA), see
Sec. 3.3;

• A.Bonavita, R.Guidotti, M.Nanni, "Individual and Collective Adaptive Tra-
jectory Segmentation" GeoInformatica: International Journal on Advances of
Computer Science for Geographic Information Systems, see Sec. 3.3;

• A.Bonavita, R.Guidotti, M.Nanni, "City Indicators for Mobility Data Mining"
3rd International Workshop on Big Mobility Data Analytics (BMDA), see Sec.
4.2;

• A.Bonavita, G.Comandè, "Mobility Data (knowledge discovery from)"
in G. Comandè (editor) Encycopaedia of Law and Data Science, Edward Elgar,
see Sec. 4.4;
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on Intelligent Transportation Systems, see Sec. 4.1;
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studying the impact of EVs on the daily mobility life of users" Transactions
on Intelligent Transportation Systems, see Sec. 3.4;





Chapter 1
Summary of Contributions

In this chapter the main contributions of this thesis are presented.
The common thread of this PhD research is the study of mobility at an individual
level. So, all the works presented and published start from the study of the behavior
of the individual users.
Figure 1.0.1 shows the starting idea of the research work: in the picture there are
three main objectives (represented by the three colored circles) linked together that
will be presented more in detail in this chapter.
The challenges that a mobility data scientist has to face are multilateral: they could
be related to algorithm building and implementation or to the application of existing
methods to very specific tasks. Theory and application are always connected and
they are mutually dependent on each other. So the idea behind this research project
is to bring some contributions to every level, from implementation of general methods
to application for very specific tasks.
In addition a particular attention has been given on two data mining open question:
transfer learning and explainability. Both of them have been studied in the mobility
context inside a very specific problem.

Privacy Aspects of Mobility Data

Since mobility data can convey personal and sensible information, our work paid a
particular attention to the privacy and ethic aspects related to mobility data. Indeed
it becomes fundamental to take into consideration the legal and ethical aspects of
processing of personal data, especially given the entry into force of the General
Data Protection Regulation (GDPR) in May 2018. This is why it aims at devising
methodologies and tools that enable us to arrive at data science solutions that
are demonstrably in accordance with shared societal and moral values. For this
reason, it is important that legal requirements and constraints are complemented
by a solid understanding of ethical and legal views and values such as privacy and
data protection.
As a larger part of modern life is digitized, individuals generate an increasing volume
and variety of digital traces, which reveal information about their everyday activity

1
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and movements. In this context, we analyze from a technical and legal point of
view the potentials to infer personal sensitive data from mobility information. By
demonstrating how the mobility knowledge discovery process blurs the boundaries
in the dichotomies anonymous/personal data and sensitive/non-sensitive personal
data this work explores its implications and propose to leverage the requirement of a
Data Protection Impact Assessment to expand the reach of personal data protection
law without impairing the blooming use of mobility data in many public and private
domains. For this purpose, some concrete examples based on real experiments will
be presented in order to show how easy it is to obtain personal information from this
type of data. After a chapter totally reserved for this theme (see 4.4), in each section
of a specific work there will be a brief analysis about the potential risks of attack on
privacy in that specific context. It’s crucial to keep in mind the potential dangers
of using personal data even if the scope of a project seems completely ethically safe.

Figure 1.0.1: My PhD research project in a nutshell

1.1 Building and Representing Individual Mobil-
ity Models

Building sophisticated models to understand and predict the individual mobility is
crucial to face and solve several issues related to urban planning, traffic congestions
and trajectory pattern mining. The objective is to model the mobility of the single
individual as a whole, creating a unique, complete picture of it and, in a second
stage, adding semantics to the raw data. In order to do that, it is essential to find
the most efficient individual mobility representation that satisfies the following re-
quests: effective, understandable and easy to use.
Starting from Individual Mobility Networks, our contributions have focused on the
implementation and improvement of some essential aspects for the correct use of
these networks. An Individual Mobility Network (IMN) describes the mobility of an
individual through a graph representation of her locations and movements, grasping
the relevant properties of individual mobility and removing unnecessary details. An
essential element of the IMN, which influences its performances, is the definition of
trajectory.
Movements are performed by users or drivers in specific areas and time instants and
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each movement is composed by a sequence of spatio-temporal points. The set of the
trajectories traveled by a driver makes the driver’s individual history.
So, finding the right paramenters to segment trajectories is essential for any appli-
cation or goal we want to achieve with IMN.
Therefore, we present a set of user adaptive methods for solving the trajectory
segmentation problem, a very common and useful task in mobility data mining, es-
pecially in preprocessing phases. Identifying the portions of trajectory data where
movement ends and a significant stop starts is a basic, yet fundamental task that
can affect the quality of any mobility analytics process. Most of the many exist-
ing solutions adopted by researchers and practitioners are simply based on fixed
spatial and temporal thresholds stating when the moving object remained still for
a significant amount of time, yet such thresholds remain as static parameters for
the user to guess. To overcome these weak points we study the trajectory segmen-
tation from a multi granularity perspective, looking for a better understanding of
the problem and for an automatic, parameter-free and user-adaptive solution that
flexibly adjusts the segmentation criteria to the specific user under study and to the
geographical areas they traverse. The solutions proposed take into consideration
the overall trajectory of the user, identifying an individual cut time threshold (each
user can potentially have a different threshold) and also combining the information
coming from the different users through the spatial regions they share. This process
yields thresholds for trajectory segmentation which are not only user-adaptive, but
also location-adaptive, thus taking into account that a stop at different places might
require time intervals of different duration to be considered a significant stay and
thus a trajectory cut point. The experiments show that the individual and collective
adaptive strategies have a significant impact on the thresholds obtained, which lead
to a performance improvement in terms of the metrics defined for this purpose.

1.1.1 Graph Embedding

The term Graph Embeddings defines the representation of graph properties (as nodes
or edges lengths) in a vector or a set of vectors in a low dimensional space. Em-
bedding should capture the graph topology, vertex-to-vertex relationship, and other
relevant information about graphs, subgraphs, and vertices.
A graph embedding is a representation of graph vertices in a low-dimensional space.
As mentioned before, an Individual Mobility Network (IMN) is a graph representa-
tion of the mobility history of an individual that highlights the relevant locations
visited (nodes of the graph) and the movements across them (edges), also providing
a rich set of annotations of both nodes and edges. Extracting representative fea-
tures from an IMN has proven to be a valuable task for enabling various learning
applications. However, it is also a demanding operation that does not guarantee
the inclusion of all important aspects from the human perspective. A vast recent
literature on graph embedding goes in a similar direction, yet typically aims at
general-purpose methods that might not suit specific contexts. At this purpose, in
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Sec. 3.4 we discuss the existing approaches to graph embedding and the specificities
of IMNs, trying to find the best matching solutions. We also experiment with some
representative algorithms and adapt them to meet the IMNs’ particular character-
istics better. Tests are performed on a large dataset of real vehicle trajectories.

1.2 Applications of IMNs
Individual Mobility Networks can be useful for several different objective. We intro-
duce now some ways to apply this theoretical representation of individual mobility
for specific purposes. In particular two different usage are showed:

• IMNs for electric vehicles simulations;

• IMNs for car crash forecasting;

The results and insights obtained with this works opened several research and
practical questions that we would like to address in the future and also confirmed
us that the IMN representation adopted, appears to be the right tool for enriching
the data with higher-level semantics, such as our initial goal was.

1.2.1 Electric Mobility
Electric mobility appears to be one of the future ways to make cities more sustain-
able and improve the quality of life in urban environments. However, when it comes
to private vehicles, users need to evaluate how their mobility lifestyle is going to
change when their fuel-based vehicle is replaced by and electric one (EV).
While there are many advantages for using electric vehicles, the average user is
still worried about changing her life style to EVs. This aversion is to be found in
the common belief that moving to an electric vehicle can have a strong impact on
their daily life. One of the biggest differences between a fuel-powered vehicle and a
battery-powered vehicle lies in the immediate availability of energy needed to charge
it. The time required to fill a fuel tank is usually less than a quarter of an hour,
while a stop to recharge the battery of an electric vehicle based on the capacity of
the battery, can easily take more time.
With this work we aim to propose a process that, through a mix of mobility data
analytics, ad hoc trip planning and a simulation, is able to analyze the current
fuel-based mobility of a user and quantitatively describe the impact of switching to
EVs on her mobility life style. Exploiting the IMNs representation of human mobil-
ity, four simulation scenarios are considered, distinguished by the battery recharge
options that the user might have in real life. The four options we considered are:

• the user can recharge at the public station, at home and at her work place;

• the user can recharge at the public station and at home;

• the user can recharge at the public station and at her work place;
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• the user can only recharge at the public station;

For each scenario we calculate how much battery the user has to charge in each
charging option and how much time she waste for charging, as well as how much
her original mobility (performed with a combustion engine) is affected by the limits
of EVs, evaluating the expected increment in travel times and distances.
In particular we develop a simulation framework for EVs based on a set of indi-
vidual trips, that mirrors them according to EV constraints and battery recharge
opportunities of each scenarios considered. We then define and implement a fast
heuristics to compute the best path from an origin to a destination, taking into
account the battery constraints and, where needed, computing a deviation to reach
a recharge station. And finally we propose a process that, through a mix of mo-
bility data analytics, ad hoc trip planning and simulation, can analyze the current
fuel-based mobility of a user and quantitatively describe the impact of switching to
EVs on their mobility lifestyle. As we aim to reproduce the study over large sets
of users and long periods of time, the process turns to be scalable and completely
automatic. The proposed approach turned out to be efficient and takes into con-
sideration the main aspects involved in EV-based mobility: limited driving range,
sparse recharge infrastructures, potentially long recharge times, the possibility of
recharging at home/work, and so on. The experimentation performed over an Ital-
ian region shows how the electrification process is expected to generate only minor
issues at the collective level (mainly, marginal increases in distance traveled and
time spent at recharge stations), and yet individual users can expect slightly differ-
ent impacts in they travel & refuel habits.
In general, we observe that the highest increases are observed when only public
stations are available for recharging, which are strongly reduced by recharges at
home, and slightly less by recharges at work. When both options are available, their
synergy actually produces slight improvements.

1.2.2 Crash event risk prediction
The massive and increasing availability of mobility data enables the study and the
prediction of human mobility behavior and activities at various levels. In Section
4.3, we tackle the problem of predicting the crash risk of a car driver in the long
term. This is a very challenging task, requiring a deep knowledge of both the driver
and their surroundings, yet it has several useful applications to public safety (e.g.
by coaching high-risk drivers) and the insurance market (e.g. by adapting pricing
to risk). We model each user with a data-driven approach based on the IMNs. The
basic objective is not only to recognize the real risk level of a customer but also to
understand possible causes [125]. Hence, we aim to reach two distinct results:

1. To predict the customer’s risk score: given a car insurance customer, provide a
risk score relative to the near future, e.g., the next year or the next month. We
expect this estimate to be much dependent on how the customer drives, as well
as on the conditions of the surrounding environment [77], [20]. Accordingly,
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the methodology we propose is based on the computation of individual driving
features, describing how much the user drives and how much dynamically, also
related to the general characteristics of mobility in the places that the user
visits.

2. To infer risk mitigation strategies: given a car insurance customer and her risk
score, we would like to identify the characteristics of her driving behavior [307]
that determine her risk score. From a prescriptive viewpoint, this is going to
provide to the customer indications of how to reduce her risk score, with bene-
fits for her (in terms of safety and insurance costs) and the insurance company
(in terms of costs for accidents). The approach under investigation queries the
predictive models adopted for understanding which features decided for the
prediction [238].

However, since raw mobility data collected by car telematics and car insurance
companies is limited to positions and events of the vehicle [191] with no vision of
what happens around it, or further structured and complex information, in order to
achieve our goals we need to augment the individual data with additional knowledge.
About that, we proposed a solution consisting in extracting sophisticated features
of the user’s mobility, able to capture not only basic characteristics of her mobility,
but also higher-level information derived from a network view of her mobility history
as well as contextual knowledge directly inferred through analysis of the collective
data of all users. On top of such features, machine learning models can be trained
and successfully employed. Experiments on real data showed that our solution
outperforms basic solutions based on state-of-art features, and a inspection of the
prediction models through explainable AI methods allowed us to identify a few
representative features associated with crash risk.

1.3 Explore Open Questions

1.3.1 Transfer Learning
In this section we underline the importance of studying geographical transfer learn-
ing in the mobility context and briefly introduce the achieved goal of this thesis. The
objective is make mobility models extracted on a geographical area transferrable to
other locations, i.e. applicable to data over a different territory achieving good per-
formances. In particular, a process for extracting sophisticated descriptive features
of a geographical area is provided, then it is exploited to analyze their relations with
model transferability, and finally a set of geographical model transfer strategies is
defined and tested over a prediction problem of interest. In particular, our goal it
to verify the feasibility of a model transfer (a machine learning model is trained in
the source domain and then transferred to the target domain) in the prediction of
urban traffic. In our context, both source and target domains are cities with their
mobility. The validation of the methodology and the case study are developed on
Tuscany dataset.
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The basic idea is that cities that are similar can be represented by the same model
more easily than very different cities. For instance, a highly populated city with
heavy traffic and users that frequently make long trips is expected to have mobility
dynamics very different from small, country-side cities with low traffic. Therefore,
any model capturing the first city (for instance a traffic prediction model) will prob-
ably be not very fit for making predictions in the second, even if the model itself
was built in a location-oblivious way in order to be relocatable – i.e. it does not
directly depend on the spatial position of the areas to model, and therefore it can be
applied to any location. The approach proposed follows the similar-cities principle
mentioned above and it is exploited inside the car crash prediction project. The
approach is developed in three steps: first, a method to compare the similarity of
cities is proposed, next, for each city a traffic prediction task is defined, which is
approached through a standard machine learning solution (XGBoost, regression);
finally, the prediction model of a city is applied to make predictions in each of the
others, aiming to test whether similar cities show a better transferability of their
models. We define an array of geographical transfer learning strategies based on the
data and the models available in certain areas that can be applied to target areas
individually or as an ensemble.

Comparative City Studies through City Indicators. For our transfer
learning purposes we rely on a set of city indicators that can be retrieved for every
area to evaluate the similarity between two or more areas. Classifying cities and
other geographical units is a classical task in urban geography, typically carried out
through manual analysis of specific characteristics of the area. The primary objective
of our work is to contribute to this process through the definition of a wide set of city
indicators that capture different aspects of the city, mainly based on human mobility
and automatically computed from a set of data sources, including mobility traces and
road networks. The secondary objective is to prove that such set of characteristics
is indeed rich enough to support a simple task of geographical transfer learning,
namely identifying which groups of geographical areas can share with each other a
basic traffic prediction model. The experiments show that similarity in terms of our
city indicators also means better transferability of predictive models, opening the
way to the development of more sophisticated solutions that leverage city indicators.

Our work proposes several different strategies that exploit such weights in differ-
ent ways, and provides an empirical comparison to find out the best one in terms of
prediction performances. However, even if geographical transfer learning is a poorly
explored area and the results discussed here represent only a first step, their are
convincing that searching the optimal set of city indicators it is possible to have
an efficient model transferability. More sophisticated solutions could be obtained
by an appropriate combination of standard techniques butions) and context-aware
methods.
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1.3.2 Explainability
As AI systems and machine learning-powered tools proliferate in our everyday life,
both practitioners and critics are becoming more vocal about the need to know
how they produce the outcomes they do. Moreover AI is fast becoming embedded
in industries, economies and lives, making decisions, recommendations and predic-
tions. These trends mean it’s critical to understand how AI-enabled systems arrive
at specific outputs. It’s not enough for an AI algorithm to generate the right result
knowing “the reason why” is now a business fundamental. The process needs to be
transparent, trustworthy and compliant far removed from the opaque “black-box”
concept that has characterized some AI advances in recent times. At the same time,
these advances should not be stifled: AI’s velocity underscores organizational com-
petitive advantage in multiple use cases. From an AI system providing personalized
real-time medical information to financial traders using AI algorithms to make deals
within milliseconds, the solution might be found in explainable artificial intelligence
(XAI).

In few words XAI is still one of the main challenges computer scientists are focus-
ing on, despite the development of increasingly sophisticated solutions to understand
the responses of machine learning models. That is why part of this thesis is devoted
to study and test some optimal explainability solutions for our use cases. In particu-
lar, for the Car Crash Prediction work (described with all the details in Section 4.3)
we decided to adopted the SHAP solution to understand the impact of the single
features on the final outputs. SHAP, alias SHapley Additive exPlanations [181], is a
local-agnostic explanation method that calculates feature importance based on the
Shapley values. The goal of SHAP is to explain the prediction of an instance x by
computing the contribution of each feature to the prediction. The SHAP explana-
tion method computes Shapley values from coalitional game theory. The feature
values of a data instance act as players in a coalition. Shapley values tell us how to
fairly distribute the “payout” (= the prediction) among the features. We obtained
very interesting explanation results following this approach.



Chapter 2
Setting the Stage

In this chapter we provide a background of the main topics treated in this thesis.
We recall basic notions of data mining and human mobility, and also present an
overview of user profiling models and methods.
In particular, we analyze the current state-of-the-art with respect to personal data
models defined to characterize mobility habits. Finally a detailed section about
Transfer Learning is shown in order to introduce the general aspects of the topic.
The thesis will be focused more on the geographical transfer learning theme but a
complete introduction of the topic is needed to contextualize. Besides that we men-
tion the privacy and ethical aspects of mobility data trying to underline the dangers
behind a misuse of human mobility data and analysing also what explainability
should do to avoid this kind of issues.

2.1 Data Analytics Landscape
By Wikipedia definition [324], Analytics is the systematic computational analysis of
data or statistics [253]. It is used for the discovery, interpretation and communica-
tion of meaningful patterns in data. It also entails applying data patterns towards
effective decision-making. It can be valuable in areas rich with recorded information;
analytics relies on the simultaneous application of statistics, computer programming
and operations research to quantify performance. Organizations may apply analyt-
ics to business data to describe, predict, and improve their business performance
and decision making.

Data analytics has become an extremely important and challenging problem in dis-
ciplines like computer science, biology, medicine, finance, and homeland security.
This problem involves several aspects: first of all large volumes of data must be col-
lected and stored relying on cleansing and filtering techniques; next, sophisticated
algorithms are used to analyze the data and extract “useful” information; finally,
various user interfaces can be used to visualize and understand the data.
Analyzing large amounts of data has become an extremely hard task, as the quantity

9
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of information in the world is large and increasing exponentially. For example, var-
ious social networks like Facebook generate terabytes of data per day in the form of
photos, videos, wall posts, etc., and will generate significantly more data in the near
future. The size of today’s data is unprecedented and cannot simply be analyzed
with conventional data management techniques.
Nevertheless, being able to efficiently “make sense” out of big data is becoming even
more important than ever in various areas. In computer science, web-scale data
needs to be analyzed in order to understand global trends and user behavior. In
biology, interpreting massive amounts of DNA and RNA sequencing data is essen-
tial for understanding complex biological systems. Already, the explosive growth of
sequencing data has exceeded the growth rate of storage capacity.
In medicine, health devices generate huge amounts of data that reflect the condition
of patients by monitoring their sleep, heart rate, and other health conditions. In
finance, the stock market generates immense quantities of transaction data that can
help companies maximize profit. While we have only listed a few examples, there
are many other areas that are starting to exploit large amounts of information as
well. One of the main challenges in data analytics is to collect data from multiple
sources and combine them together so that data analysts can access and manipulate
the information in a unified way.

2.2 Background on Mobility Data Analysis
In this Chapter we recall the basic notion of data mining and we present an overview
of human mobility models and methods.

2.2.1 Mobility Data Science
Geographical movements across different countries are a natural phenomenon in hu-
man history [323]. Without necessarily thinking of big events, like the expansion
of the Roman Empire or the conquest of the Americas, human movement has been
the common thread slowly shaping our history worldwide. Even the idiom in which
this work is written is an Indo-European language, which, as the word says, is the
result of the displacement in centuries of civilizations, presumably tribes, from the
Asian continent towards Europe. Mobility is a behavioral phenomenon, which has
no meaning without taking into consideration who performs it. In [202] Marchetti
defined few anthropological invariants in the way humans move worldwide, which
basically points out the concepts of distance, mass and time. However today we
know that human movement occurs for different reasons, hence it must necessar-
ily be classified in different categories, mainly depending on the purpose. As an
example, people migrate in order to improve their living conditions, or because of
social distress [160], wars and natural catastrophes, but this phenomenon cannot
be studied in the same way as we study people going to work in urban areas in
the morning or like building evacuations in a fire drill. It is not only a matter of
a different scale, it is a matter of behaviors and purposes. This will be reflected in
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the way we, as scientists, address the study and modeling of human flows depicted
by these behaviors. Every movement is linked to a single person and this person
has a story to tell. Understanding the human mobility history is essential to have
the bigger picture of human footprints representing the sum of behaviors. Mobil-
ity is undoubtedly a critical phenomenon in urban environments. In fact, it can
be considered as one of the most important mechanisms underlying the structure
and dynamics of cities. Indeed, cities are places where intensive buying, selling or
exchanging goods is taking place, where individuals commute to work or meet with
other individuals. An obvious means to achieve all this is transportation. Here
is where technology enters the picture via the average and maximum velocity of
different transportation modes. Data is central to our future and technological ad-
vancement. As we continue to urbanize and gather more data about our mobility
patterns and urban systems, the challenge is not simply the amount of data, but
how we manage it, critically understand its quality, and utilize findings to address
our cities’ most pressing challenges.

2.2.2 Data Mining and User Profiling

The process of digging through data to discover hidden connections and predict
future trends has a long history. Sometimes referred to as "knowledge discovery in
databases", the term "data mining" was not coined until the 1990s. But its founda-
tion comprises three intertwined scientific disciplines: statistics (the numeric study
of data relationships), artificial intelligence (human-like intelligence displayed by
software and/or machines) and machine learning (algorithms that can learn from
data to make predictions). Over the last decade, advances in processing power and
speed have enabled us to move beyond manual, tedious and time-consuming prac-
tices to quick, easy and automated data analysis. The more complex the data sets
collected, the more potential there is to uncover relevant insights. Retailers, banks,
manufacturers, telecommunications providers and insurers, among others, are using
data mining to discover relationships among everything from price optimization,
promotions and demographics to how the economy, risk, competition and social
media are affecting their business models, revenues, operations and customer rela-
tionships.
Even the study of human mobility can be observed from the data mining point of
view, whose interest on the analysis of human movements, in form of trajectories,
generated the new sub-field called mobility data mining [114]. While statistical
physics seeks to discover which global models describe human mobility, data mining
is aimed at discovering local mobility models. The former uses statistical laws which
regulate basic quantities, the latter prefers to use micro-laws adjusting similarity or
behavioral regularities in sub-populations.
Thanks to the improvements in mobile communication and positioning technology
we can describe the large amounts of moving objects data in form of trips (also
called trajectories as we will define better in the next chapters). In this regard,
the Data Mining analysis step of the Knowledge Discovery process in Databases (or
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KDD) [291] is the most intuitive and attractive approach to describe the structure
of trajectories and to extract frequent spatio-temporal patterns: indeed, mining the
spatio-temporal patterns means searching for concise representations of interesting
behaviors of single or groups of moving objects.

User profiling term refers to the process of construction and extraction of a per-
sonal data model representing the user behavior generated by computerized data
analysis. A personal data model highlights the systematic behaviors expressing the
repetition of habitual actions, i.e.,personal patterns. These patterns can be ex-
pressed as simple or complex indexes, behavioral rules, typical actions, etc. Users’
profiles have several objectives: from one side they are employed to analyze and un-
derstand human behaviors and interactions. On the other side, they are exploited
to make predictions, give suggestions, and to group similar users. Profiles can be
classified as individual or collective according to the subject they refer to [139].
Despite user profiling has been deeply studied in fields like economy or in the World
Wide Web, nowadays it is still an emerging field of research with respect to mobility,
thanks to the great availability of GPS and GSM data we have.
A personal profile is a data model built considering the data of a single person.
This kind of profiling is used to create a complete picture of the single individual
enabling unique identification for the provision of personalized services. A strong
point of individual profiling is that the computation is generally not time and space
consuming because the data of a single user are limited. However, this limitation
can also negatively affect, indeed it could not consider a valuable pattern recognized
by other users because it is not enough systematic for the individual. For example,
if a user u goes occasionally to the movie theatre on Saturday night, this trip could
not be personally considered as a routine or a pattern if compared with the Home-
Work-Home movements. However, if many people move from the same city of u to
the same movie theatre on Saturday night, then this generates a pattern collectively
recognized.
At the contrary, services are usually based on global profiling: people are classified
or segmented within a certain class, based on the fact that their behavior aligns
with a data model formed by global patterns constructed on the basis of a massive
amount of data. A weakness of global profiles is that they do not consider personal
patterns because only the general patterns recognized by all the users emerge from
the mass. Furthermore, it can be computationally hard to extract global profiles
because a large amount of data must be considered all at the same time. Finally,
global profiling requires every user to share all her raw data at the most detailed
level.
Conversely, collective data models are about personal models generated by individual
profiling that are aggregated without distinguishing the individuals. The difference
with global models is that the collective profiles consider the personal patterns ex-
tracted from the individuals as a unique model, while in the global ones the patterns
extracted are those related to the data of all the individuals, representing the be-
haviors of the mass. Finally, we can refer to combined or hybrid models when two
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Figure 2.2.1: The process of Knowledge Discovery in Databases.

or more of the previous ones are merged in some way. Different models are gener-
ally combined to overtake weak points and to exploit strong points. An example of
combined approach is the hierarchical one. It uses the individual profile as long as
it is useful to solve the problem of a certain person, then it switches to collective
patterns. Another example in stochastic applications is to mix the two different
profiles according to a certain parameter or probability.

2.2.3 Human Mobility Data
Modeling human mobility in a city is tightly related to geographical patterns and
spatial distributions. Understanding individual movements brings useful insights
for a variety of applications, such as urban planning [220], security [165], migration
studies [37], disease spread and traffic prediction (transportation planning)[181].
Researchers have tried to use surveys [195] from travel or tourist centers in a tradi-
tional way to study mobility patterns; however, thanks to new technologies, finding
a dataset to analyze people’s mobility is not a big concern anymore.
Recently, a significant effort has been made with different types of datasets, includ-
ing phone call records (CDR)[63], WiFi or RFID [340], global positioning system
(GPS) [280] and location-based social network (LBSN) data, in order to obtain use-
ful information from geographical movements. In this area, researchers have tried
to tackle various questions as Does human mobility follow any model or pattern? Is
it possible to extract significant patterns to define mobility models? If yes, how?
The various methodologies applied to study human mobility have changed substan-
tially in the last century. Availability of digital data on large geographical and time
scales and enhanced multidisciplinarity across different fields are only few of the
ingredients that have radically changed the way we study human mobility and our
understanding of the heterogeneous set of phenomena that go under this same la-
bel. In the following, we will review the data and methodologies used over the past
century until the present.

The quick evolution and wide diffusion of technologies for the localization of de-
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Figure 2.2.2: Some of the most used mobility data in data mining.

vices (especially smart-phones and vehicles’ GPS) as well as location-based services,
is leading to the production and collection of large and diversified traces of human
mobility, every day more detailed and pervasive. These traces potentially contain
a huge amount of information that might allow to infer models of human mobility
spaces at unprecedented levels of precision and depth. They would be key enablers
of many applications, ranging from monitoring urban traffic features to reconstruct
inter-city mobility demands and region-scale structures, which could help in mak-
ing modern urban spaces more sustainable, efficient and comfortable for citizens.
The ubiquitous applications of mobile and handheld devices lead to an explosion of
multi-source data correlated with human mobility, providing a novel and compre-
hensive view to study urban human mobility patterns. These datasets are collected
passively, for example, call detail records (CDR), credit card, smart card, their pur-
pose is not collecting mobility data but to register all the transactions. But these
multi-source heterogeneous datasets record people’s travel trajectories and imply
the potential mobility patterns. In smart cities, we can collect a variety of data
leveraging network and wireless communication technology, which captures people
travel trajectories in their daily life and depicts the spatiotemporal characteristics
of urban human mobility.
In this section, we introduce the main data types used for human mobility research
as shown in Fig. 2.2.2 and compare their advantages and disadvantages.

GPS Data

The GPS (Global Positioning System) is a satellite navigation system that provides
geolocation and time information to a GPS receiver anywhere on or near the Earth
where there is an unobstructed line of sight to four or more GPS satellites. The
GPS does not require the user to transmit any data, and it operates independently
of any telephonic or Internet reception, though these technologies can enhance the
usefulness of the GPS positioning information.
Each satellite continually broadcasts timing signals which specify the moment the
massage was transmitted and the precise positioning information. The receiver com-
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putes the distance to each satellite by determining the transit time of each message
it receives. These distances along with the satellites’ locations are used to calculate
the position of the receiver, in form of latitude, longitude and other information like
elevation, direction and speed.
GPS-enabled devices provide us with all the required information for trajectory
tracking, giving access to accurate, time-stamped locations of each tracked moving
point. Today GPS receivers are not very expensive, so it is possible to find them em-
bedding in many devices we use everyday: smart phones, vehicles, smart swatches,
and so on. They allow to track human mobility very well.
In this thesis we mainly use a massive real-life GPS dataset, namely the Octo dataset,
obtained from tens of thousands private vehicles with on-board GPS receivers. The
owners of these cars are subscribers of a pay-as-you-drive car insurance contract,
under which the tracked trajectories of each vehicle are periodically sent to a cen-
tral server for antifraud and anti-theft purposes. This data set has been shared for
research purposes by Octo Telematics Italia S.r.l. [2], the leader for this sector in
Europe.

The GPS device automatically turns on when the car starts, and the sequence of
GPS points that the device transmits every 30 seconds to the server creates the global
trajectory of a vehicle [230]. When the vehicle stops no points are registered. These
stops are then exploited to split the global trajectory into several sub-trajectories in
the most meaningful way, that correspond to the travels performed by the vehicle.
Clearly, the vehicle may have stops of different duration, corresponding to different
activities.
In the next chapters we will deal with the segmentation of trajectories in detail,
showing the strategies adopted and implemented.
The principal data source for the works presented in this thesis consists of GPS
trajectories of private car in Rome, London and Tuscany, provided within the scope
of the EU Horizon 2020 "Track & Know" programe.

GSM Data

Nowadays mobile phones are perhaps the most used technological device by all
citizens. In the Italian film "Perfetti Sconosciuti" ("Perfect Strangers") mobile phones
are defined as "the black box of our life" because they know almost more about
us than ourselves. Individuals carry them in their daily routine offering a good
proxy to study structure and dynamics of human social behavior. Indeed, phone
records capture information about both social links and human displacements: each
time we make a call a social relationship of some kind is expressed, and the tower
that communicates with our phone is recorded by the carrier, effectively tracking
our position. The GSM (Global System of Mobile Communications) is the most
popular standard for mobile phones in the world, nowadays used by more than
1.5 billion people across more than 210 countries and territories. The versatility
of GSM systems make international roaming very common between mobile phone
operators, enabling subscribers to use their phones in many parts of the worlds.
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GSM network is compound by a number of base stations, each responsible for a
particular spatial area (known as “cell” or “tower”). In this way, for each GSM-
enabled device it is possible to collect information about the base stations at different
timestamps assuming its movement. A GSM-enabled device can be tracked by
collecting all the communication signals transmitted (cell, signal strength) between
this device and the networks infrastructure or by studying the log of the outgoing
calls (UserID, data and time of the call, duration of the call, the cell where the
call began, the cell where the call ended). However, in both levels the accuracy of
trajectories that can be collected is very low since GSM data are coarse in space
because they express locations with the granularity of a cell tower sector, providing
an uncertainty approximately 1.5 square meter or even higher in less populated
areas. The most detailed level of available information is the network cell and not
a spatial point. Data about calls are generally stored in form of CDRs (Call Detail
Records), describing each phone call performed by the users. Each call is represented
by a tuple with timestamp, caller and callee identifiers, duration of the call, and the
geographical coordinates of the tower serving the call. Such mobility traces are more
accurate in densely populated areas, where much more phone towers are installed to
carry the heavier load. This means that in rural areas, where a single tower usually
covers several square kilometers, short movements are not collected. Besides the
mobility dimension, GSM data also provide us the social dimension, since we can
reconstruct from the calls a weighted directed call graph, where nodes are users and
edges are interactions between users. The weight of an edge can be either the total
number of calls or the total duration of calls between the users during the period of
observation.
Even though mobile phones are carried by the same person during the daily routine
offering a good proxy to capture individual trajectories they do not provide an
accurate spatial information. On the contrary, GPS traces provide high resolution
location data, storing the geodetic coordinates with an average sampling rate of few
seconds. Mobile phone data pertain to general mobility while GPS data pertain
only to cars, yet they are much less detailed than GPS trajectories. Moreover the
GSM sampling rate is usually very low (it depends on the calls duration) so the
granularity is often very poor.
The choice of using only GPS data for the work of this thesis is therefore legitimate
since the studies were made only using cars travels also considering that our main
applications are related to vehicle mobility.

Social Media Data

Nowadays, the ever growing popularity of social media systems and the ubiquitous
use of smart devices is generating a huge amount of data that is freely available
and that covers all aspects of user behavior and life, such as the behavior in so-
cial media systems and Internet in general, economic activities, visited places, and
user preferences and opinions[199]. In such a scenario, users represent sensors that
continuously generate a stream of data that can be exploited by everyone to infer
information about collective user behaviors and to analyze what the users want to
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disclose about the so-called spatial self [272].

Most of the social media platforms use APIs to provide access to their data. Usually
the APIs make multiple functions available based on a set of parameters that allow
to perform several activities, such as to download a stream of data in real time, to
specify a time window, to specify a set of keywords, or to specify a bounding box.
The use of these functions represents a valuable method to create a collection of
geolocated data coming from social media.
Social media check-ins data is also a valuable source collected by social network
providers. More and more users record their social connections and geographical
locations through Twitter, Facebook, Foursquare, and Flickr. The geotagged data
is made up of coordinates, time, photos, and comments. Therefore, the movement
trajectories of users can be obtained from the sequence of published locations. By
analyzing the information, we can calculate some important metrics and identify
patterns: radius of gyration, jump length, visit frequency. Scellato et al. [270] in-
vestigate three location-based social networks from a perspective of network science
and discover several small-world properties; Itoh et al. [149] explore social media
data on Twitter and smart card data on the Tokyo subway and extract abnormal
situations on mega-city subway networks; Ni et al. [218] propose a hybrid approach
to predict the subway passenger flow based on social media activities and improve
the prediction accuracy. Compared with other data sources, social media data has
its unique characteristics such as more social information, which provides a multi-
dimensional view of studying human mobility patterns. But the data is uploaded
personally, so it is likely to have also false information.

2.2.4 Mobility Metrics
In this section, we discuss the validation methods and metrics which are used for the
human mobility models. We make a distinction between trajectory-based metrics
and network-based metrics. The first category is the result of individuals’ mobility
traces, thus regards the characteristics of each single trip performed by an individual:
duration, length, distance, and so on. The second ones involve considering the
human mobility as a complex network and study it as a graph. Its performance is
based on metrics showing the effects of human mobility in terms of networks. Both
kind of metrics are important and complementary for our purposes.

Trajectory-based Metrics

Trajectory is the most intuitive expression of human mobility and contains many
features and laws of human behaviors.

• Distance is the most fundamental quantity to measure about paths followed
by an individual. The Euclidean distance is the most common distance used
to obtain the trip length for origins and destinations’ coordinates while the
geodesic one is the most popular for longitude and latitude attributes [328].
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• Duration is the elapsed time during a journey,i.e. the difference between
the departure time and the end time. The metric reflects the time spent in
traveling, capturing the basic characteristics of human mobility [278].

• Radius of gyration is the root mean square distance of an individual’s lo-
cation from her center of mass of the motions [118]. It is defined as:

Radiusg =
√√√√ 1
n

n∑
i=1

(ri − r0)2 (2.2.1)

where ri represents the ith position of a user, and r0 is the center of mass of her
travel trajectories, r0 = ∑n

i=1 ri/n. Radius of gyration is an important metric
to measure the typical distance traveled by people and it has a correlation to
the mutual distance of visited locations and the total number of visits. Radius
of gyration provides a more complete view of how individuals travel around
their centers of mass.

• Interval is the elapsed time between two consecutive trips and for instances it
depends on how the segmentation of the trajectories is done. It often represents
the time spent in a location or in a taxi operation case, the time taxi drivers
cruise for a new passenger after passengers get off. So the metric measures
the time of non-occupied state for taxi and reflects travel demands indirectly.
Obviously, a taxi with shorter interval will be more efficient.

• Entropy is the most basic metric measuring the degree of predictability of an
individual’s human mobility [282]. It is related to the frequency of visitation
and capture the full spatiotemporal pattern in a person’s travel trajectory.
People with a high entropy show a low heterogeneity of visiting location. We
formulate the metric as follows:

Entropyg = −
n∑
i=1

pg(i) log2 pg(i) (2.2.2)

where pg(i) denotes the historical probability that the user g visits the loca-
tion i, characterizing the heterogeneity of visiting patterns. n represents the
number of visited locations.

Network-based Metrics

The different types of data originated by several sources provide a novel view of
studying human mobility from a perspective of complex network [118]. A solution to
model human behaviors is by graph theory that allows to explore the characteristics
of human dynamics in an easy way. In the graph, the nodes represent a set of
locations or POIs visited by people, and an edge represents the related pairs of
locations in historical trajectories. Furthermore, it can be determined which node is
the most influential in a network and how well a network is optimized with respect
to network performance.
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• Degree Centrality: is defined as the number of ties that a node has [73].

CD(i) =
n∑
j=1

aij (2.2.3)

where CD(i) denotes the degree centrality of node i. ∑n
j=1 aij is the number of

links between node i and the other nodes (n− 1). Degree centrality identifies
the most important nodes in a network. A node with high degree centrality
has more links than others, which is used for understanding human dynamics
[250].

• Betweenness centrality is a measure of centrality in a graph based on short-
est paths. For every pair of nodes in a graph, there exists at least one shortest
path between the vertices such that the number of edges that the path passes
through is minimized. The betweenness centrality is computed as follows:

CB(k) =
∑

i 6=j 6=k∈V

αij(k)
αij

(2.2.4)

where CB(k represents the betweenness centrality of node k. αij is the total
number of shortest path from node i to node j and αij(k) is the number
of these paths through node k. According to its definition a node with high
betweenness centrality greatly impacts the transmission of information flowing
between others [78]. Therefore, it is important to prevent nodes with high
betweenness centrality from failing in a network.

• Closeness centrality: is a measure of centrality in a network, calculated as
the reciprocal of the sum of the length of the shortest paths between the node
and all other nodes in the graph. It is formulated as follows:

CC(i) = 1∑
j 6=i d(j, i) (2.2.5)

where CC(i) is the closeness centrality of node i. d(j, i) is the sum of node j
and node i. A node with a high closeness centrality is clearer to all the other
nodes in the network, and its movement law reacts to the motion law of other
nodes. Therefore, the patterns of high closeness centrality node are critical to
predicting human mobility in the future.

2.2.5 Individuality vs Collectivity
Human mobility refers to the geographic displacement of human beings, seen as in-
dividuals or groups, in space and time. This displacement is described by an origin,
a destination, and a specific trajectory in between. There are many different ways
to categorize the mobility models. Social scientists categorise mobility (spatial mo-
bility) by its utility: mobility that happens inside the place of residence; migration
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(international and inter-regional mobility); travel with the purpose of tourism or
business and day-to-day journeys such as commuting and running errands [183].
Physicists describe mobility by spatiotemporal scale: long-term mobility that is
likely to cover large displacement, e.g., migration, and short-term mobility whose
displacement is constrained by 24 hours in a day. They see mobility as a diffusion
process that is characterised by both randomness and regularity [281].
In transport geography, researchers see the mobility as individual behaviour that
generates flows of population. At the individual level, the mobility trajectory is a
time series of visits to various locations. Individuals’ mobility trajectories can be ag-
gregated to study the flows of people travelling between different locations/regions.
Depending on the spatiotemporal scale of the aggregation, an origin-destination
matrix (OD matrix) can be constructed with the origins and the destinations of
all trips. Using this taxonomy, this chapter continues to review the literature with
these two perspectives: individual and collective mobility models.

Collective Mobility Models

Population mobility models mainly focus on the mobility patterns of collective peo-
ple between two regions in urban scenarios. This type of model can predict the
distribution of migratory flows at some time in the future according to the popula-
tion of regions.

• Gravity model: The gravity model is inspired by Newton’s law of gravitation
[346]. It assumes that the volume Tij of people flow between locations i and
j is in direct proportion to the population size of the two locations and is in
inverse proportion to the distance dij between them [14]. The gravity model
is defined as

Tij = xαi x
β
j /f(dij) (2.2.6)

where α and β are two exponents. xi and xj denote the population of locations
i and j. f(dij) is a function of distance between origins and destinations, which
can approximate the empirical data such as power law and exponential.
In addition to estimating human flow, the gravity model is used for measuring
the intensity of interaction (calls and trade) between two regions. The form
of the function is tunable according to the scenarios. In urban planning, the
distance may not measure the travel cost between specified locations, and trip
duration may be a better alternative.
The gravity model is widely used in public transportation management [161],
geography [97], and social economics[205].

• Radiation model:
Simini et al. [279] extend the gravity model introducing the radiation model,
a stochastic process able to capture the local mobility decisions of individuals,
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analytically deriving mobility fluxes that require as input only information on
the population distribution. The radiation model predicts mobility patterns
in good agreement with mobility and transport patterns observed in a wide
range of phenomena, from long-term migration patterns to communication
volume between different regions. Given its parameter-free nature, the model
can be applied in areas where mobility measurements are not available, signif-
icantly improving the predictive accuracy of most of the phenomena affected
by mobility and transport processes. It is defined as:

Tij = pixixj/(xi +Nij)(xi + xj +Nij) (2.2.7)

where pi, xi, and xj are the same to the representation of above-mentioned
models. Nij represents the total number of population between locations i
and j. The specific range is a circle with location i as its center and dij as its
radius, excepting for locations i and j.

Individual Mobility Models

Individual mobility models mainly characterize the mobility patterns of individuals
based on multi-source spatio-temporal trajectory datasets. This type of model in-
troduces some travel features to modeling human mobility, i.e., radius of gyration,
entropy, trip interval, and trip displacement.

• Brownian motion: Brownian motion originally explains the motion law of
particles hovered in a liquid [84] [95]. The process of motion is accompanied by
multiple collisions and stochastic steps and directions. The probability density
function is represented as

P (x, t) = 1√
2πtσ2

e

−(x− µkt)2

2tσ2 (2.2.8)

where σ2 and µ denote the variance and mean of the stochastic distances.
Brownian motion is also a kind of random walk. We can define Brownian
motion as a limit of the non-continuous symmetrical random walk. Einstein
et al. [302] illustrate the principle of Brownian motion in detail and provide a
strong evidence of the existence of atoms and molecules.

• Lévy flight: A Lévy flight is a random walk in which the step-lengths have
a Lévy distribution, a probability distribution that is heavy-tailed. When
defined as a walk in a space of dimension greater than one, the steps made
are in isotropic random directions [326]. The flight step l is approximated by
a power law with the characteristics of a fat-tailed distribution.

P (l) ∼ l(1+β), 0 ≤ β ≤ 2 (2.2.9)
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Figure 2.2.3: Brownian motion (left) is described as a random walk in which all
the steps give the same contribution. Levy-flight (right) occurs when the trip is
dominated by a few very large steps

where β is an exponent of displacement. About the intrinsic mechanisms of
these method we can cite some examples. Gonzales et al. [118] prove that
the power-law distribution of jump length is related to the characteristics
of individual mobility and population heterogeneity. Han and Jiang et al.
[134] demonstrate that human mobility is impacted by the topology of urban
transportation systems. Jiang et al. [156] also find the above-mentioned factor
by analyzing the human mobility in urban road networks.

2.2.6 Human Mobility Patterns
Human mobility patterns reflect many aspects of life, from the global spread of in-
fectious diseases to urban planning and daily commute patterns [301]. In recent
years, due to the increasing availability of mobile-phone records, global-positioning-
system data and other datasets capturing traces of human movements numerous
statistical patterns in human mobility have been revealed. The efforts to mine sig-
nificant patterns within large-scale, high-dimensional mobility data have solicited
use of advanced analysis techniques, usually based on machine learning methods.
These empirical observations suggest that human mobility are barely random, but
follow predictable rules. For instance, Song et al. [281] proposed the Exploration
and Preferential Return (EPR) model, which does not fix the set of most visited
locations but allows them to emerge naturally during the evolution of the mobility
process.They propose two basic mechanisms that together describe human mobil-
ity: exploration and preferential return. Exploration is a random walk process
with truncated power law jump size distribution. Preferential return reproduces the
propensity of humans to return to the locations they visited frequently before [341].
On the ohter hand, gravity models have a long history of use in describing and
forecasting the movements of individuals, goods and services. This class of urban
models, derived from Newton’s law of gravity, characterize the distribution of trips
between locations and predict the degree of migration interaction between two of
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them. About that the work of Zipf [346] provides a theoretical motivation for move-
ment between two cities a and b being governed by a PaPb/d relationship, where
P is the city population and d is separation distance. In other words, the author
establishes that movements follow a sort of “gravity law”: the probability that an
individual or a group of individuals move between two locations is inversely propor-
tional to the separation distance of the two locations.
More often mobility pattern methods are used in the context of a particular appli-
cation, providing a service that is based on data about a particular entity that is
being tracked and modeled. We can group applications by classes, aiming at rep-
resenting domains of functions that can be accomplished by each application while
using particular datasets [301]. Through an iterative process, the studies are classi-
fied in three main categories according to the aim of the model that is used by the
application: user modeling, place modeling, and trajectory modeling. Figure 2.2.4
exemplifies the three application classes focusing on modeling the (a) human user,
(b) places the user moves through, and (c) trajectories of the user movements. User
modeling applications analyze the mobility of a single user (or object) for extended
periods of time (Fig. 2.2.4a). In such applications, the model can predict where
a particular user will be at different times of the day. For example, in homeland
security applications, targeted users can be modeled by the distribution of their
geographic locations over time in order to trigger an alarm if an abnormal situation
occurs.
Place modeling applications analyze the characteristics of a geographic location or
a set of locations. For example, in Fig. 2.2.4b, the model can predict the number of
incoming and outgoing people in a place (say a large store), profile its traffic, and
classify the type of place according to the mobility patterns of people around it.
Trajectory modeling applications analyze a set of spatial–temporal points that re-
flect a trajectory, defined as a movement pattern through a set of locations of a
single object or a set of objects and time. In contrast to user modeling, in trajec-
tory modeling, the identities of the moving objects are not necessarily a factor in
the analysis; thus, for example, all the moving objects along the modeled trajectory
can be analyzed aggregately. In contrast to place modeling, the entity in trajectory
modeling is a route between geographic locations,rather than a single location. For
example, Fig. 2.2.4c visualizes a trajectory that may be used in modeling road
segments or road networks by an application that predicts traffic conditions.

2.2.7 Personal location detection

One of the key tasks in mobility data analysis (and a necessary preprocessing step
for many applications) is detecting the locations of users [16]. The objective is to
identify the users’ personal location, i.e., the areas where users perform their activi-
ties, based on the analysis of the locations (essentially, GPS points) where they have
stopped. Examples of locations are home, workplace, supermarket, gym, fuel sta-
tion, etc. More precisely, given a set of users GPS stop observations, i.e., coordinates
in which the users have stopped, the location detection problem consists in grouping
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Figure 2.2.4: Visualization of the three application classes: (a) user modeling where
the object of analysis is a single user (represented by circles of the same color), (b)
place modeling where the object is a geographic area (visited by different users; each
is represented by a circle of its own color), (c) trajectory modeling where the object
is a set of spatial–temporal points by the same user (represented by a yellow arrow).
The map was generated using Google Maps

together the observations corresponding to the same location. Correctly discovering
such personal locations is an important problem with a wide range of applications.
In the literature, this problem is typically addressed using a grid partitioning of the
studied area or generic clustering algorithms like DBSCAN [90] or OPTICS [17].
However, this type of clustering methods have various drawbacks. First, some of
them are focused on specific optimization criteria, such as maximizing compactness
or density connectivity, which does not always correspond exactly to the notion of
locations, and therefore, the results, though optimal with respect to its own criteria,
are not good locations.
Second, in some cases, the algorithms need parameters that are not easy to guess
(e.g., the size of the cell for the grid partitioning and the radius and minimum points
for DBSCAN) and that should be tuned ad hoc for the data of each user analyzed.
Indeed, in most cases an experienced analyst or some expensive self-tuning proce-
dure might be needed to select accurately the parameters. On the other hand, in
most cases such parameters are fixed for all users, while each individual might show
specific features that require a treatment different from the others.
TOSCA (two-step clustering algorithm) [128] is an approch that tries to overcome
these drawbacks, providing a parameter-free algorithm explicitly shaped for per-
sonal location detection. The two steps of TOSCA are realized by combining two
clustering methods and a statistical analysis approach. TOSCA enables in this way
to produce high-quality clusters with a low computational cost. The idea behind
TOSCA comes from the need to detect the locations of the users in an efficient way
without sacrificing the clustering quality and, most importantly, without any tuning
phase for the parameters. Extensive experimentation showed that center-based clus-
tering methods tend to incorrectly identify subgroups of observations that should
belong to the same location. The side effect of such constraints is that the result
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usually splits real locations into several pieces that are connected with each other in
a relatively loose way. On the other hand, single-linkage and density-based cluster-
ing methods are very good at spotting such loose connections, with the drawback
of not distinguishing well those loose connections that are actually boundaries with
other clusters. By exploiting these observations, the two main steps of TOSCA work
as follows (see Fig. 2.2.5): (1) extract (sub-)clusters and corresponding medoids
through center-based methods. X -means [239] algorithm was selected through em-
pirical evaluations; and (2) cluster the medoids through a single-linkage hierarchical
algorithm [276]. Stop the iterative cluster aggregation (or, equivalently, cut the
dendrogram resulting from a complete run of the algorithm) through a statistically
determined threshold on the increase in the distance between the clusters to be
merged at each iteration. The cut criteria considered in TOSCA come from the
outlier detection theory [223]. The distribution of the difference of the distances
in the dendrogram returned by single linkage experimentally shows a sudden spike
indicating the change in trend in the aggregation of the clusters.
It has been shown how, in contrast to algorithms commonly used in the literature,
TOSCA automatically detects a good distance threshold for the clusters produced,
thus adapting the clustering to the individual mobility behavior of each user in the
data [128]. Therefore, it is perfectly suitable as autofocus clustering algorithm for
analyzing individual mobility data. TOSCA evaluation against a large set of com-
petitors over data generated from a null model and a mobility-like model shown that
both in the mobility-like model and in the real case study TOSCA performs better
than the generalpurpose algorithms producing the desirable clustering for personal
mobility data mining (see Fig. 2.2.6 ).
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Figure 2.2.5: Orange points represent the stop observations input of TOSCA. Blue
dotted circles correspond to the X-Means clusters and the blue points to their
medoids, which are then processed by Single Linkage. On the resulting dendogram
we highlight the differences among the element distances. The red interval represents
a possible cut. The image comes from [128].

Figure 2.2.6: Personal locations detected with X -means (left) and TOSCA (right).
Different colors denote the different clusters (personal locations) to which each point
is assigned [16].

2.3 Transfer Learning

Transfer learning is a machine learning method where a learning model developed for
a first learning task is reused as the starting point for a learning model in a second
learning task[304]. It is a research problem that focuses on storing knowledge gained
while solving one problem and applying it to a different but related task. It also
focuses on recognizing which part of knowledge can be shared and which is strictly
connected to the original problem. A key argument of this thesis will be the transfer
learning technique applied to the human mobility topic. We will call it Geographical
Transfer Learning and it will be explained in the next pages in details. Before that
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an overview of what transfer learning is and what are the areas in which it is mostly
applied will be presented.

2.3.1 Basic Definitions

Learning new knowledge and skills is one of the most important capabilities for
human beings. Based on personal own studying experience and previous knowledge
stored in brain, we are able to learn similar knowledge in a simplified way without
studying it from the beginning. Our brain is able to draw on our previous knowledge
and experience in order to minimize the time and energy needed to learn a new
task. For instance, learning how to play tennis table can be easier for someone
which already plays tennis, since both sports need a racket to play and may share
some common knowledge and strategies. This is the study on how human beings
learn new knowledge by individual way to transfer information preprocessed before
to learn similar new information [8].

In traditional supervised machine learning, developers create a model that per-
forms a certain task. For this task it is often necessary to have a large amount of
labeled data available to be divided into train and test dataset. In this way it is pos-
sible to train the algorithm and optimize the process. This labeled data originates
from a certain place, a so-called domain. Without the proper amount of input data,
the model is most likely not able to modify its weights well enough to reach a certain
accuracy. In particular, this problem exists when using a random initialization for
weights and biases at the beginning of the training phase of a ML algorithm. The
usual approach is to train the model with the labeled data from a certain domain
and thus make it perform as good as possible for the respective domain. Although
this might suffice in many cases, the difficulties arise quickly if we want to use the
same network on a slightly different environment. For example, when a model is
trained to perform on detecting people on pictures during the day then the algorithm
will perform worse if applied to images with people at night time. The reason for
this behavior comes from the training stage. Indeed the algorithm learns a certain
level of bias and errors influencing its output. These biases have been adapted to
perform in the best way possible on the training data it has seen. Therefore, due to
the bias , which is optimized on pictures of people at daytime, the model is most
likely not able to generalize. Hence, it won’t be able to perform decently on pictures
from a new domain [264]. This is where transfer learning comes into play. With
the use of transfer learning, the problem depicted above can be solved without the
need to train a new network on huge amounts of labeled data from the new domain.
In transfer learning, a model A is trained on a dataset from a source domain for a
source task. By doing so, the algorithm gains insight on how to solve the source
task and tries to maximize its performance.
According to this theory, the prerequisite of transfer is that there needs to be a con-
nection between two learning activities. Fig. 2.3.2 shows some intuitive examples
about transfer learning.
In this section, we introduce some essential notations and definitions for the topic
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understanding. First of all, we give the definitions of a “domain” and a “task”,
respectively. Both notations and definitions match those from the survey paper by
Pan [226].

Definition 2.3.1 (Domain). A domain D is composed of two parts, i.e., a feature
space χ and a marginal distribution P (X), where X = {x1, .., xn} ∈ χ

So, for example, if our learning task is document binary classification, then χ
is the space of all term vectors, xi is the ith term vector corresponding to some
documents, and χ is a particular learning sample. In general, if two domains are
different, then they may have different feature spaces or different marginal proba-
bility distributions.

Definition 2.3.2 (Task). A task T consists of a label space Y and a decision
function f , i.e., T = {Y, f}. The decision function f is an implicit one, which is
expected to be learned from the sample data.

From a probabilistic viewpoint, f(x) can be written as P (y|x). In our document
classification example, Y is the set of all labels, which is True, False for a binary
classification task, and yi is "True" or "False".
Basically we consider the case where there is one source domain DS, and one
target domain, DT , as this is by far the most popular of the research works in
the literature. More specifically, we denote the source domain data as DS =
{(xS1 , yS1), ..., (xSnS

, ySnS
)}, where xSi

∈ XS is the data instance and ySi
∈ YS

is the corresponding class label. In the document classification example, DS can
be considered as a set of term vectors together with their associated true or false
class labels. In an analoguous way, we denote the target domain data as DT =
{(xT1 , yT1), ..., (xTnT

, yTnT
)}, where the input xTi

is in XT and yTi
∈ YT is the corre-

sponding output.

Definition 2.3.3 (Transfer Learning). Given a source domain DS and learning task
TS, a target domain DT and learning task TT , transfer learning aims to help improve
the learning of the target predictive function fT (·) in DT using the knowledge in DS

and TS, where DS 6= DT , or TS 6= TT .

Then Transfer Learning is a technique where a model trained on one task is
re-purposed on a second related task. Transfer learning and domain adaptation
refer to the situation where what has been learned in one setting, is exploited to
improve generalization in another setting. In the above definition, a domain is a
pair D = {X,P (X)}. Thus the condition DS 6= DT implies that either XS 6= XT or
PS(X) 6= PT (X). This case respect to transfer learning is defined as heterogeneous
transfer learning while the case where XS = XT with respect to transfer learning is
defined as homogeneous transfer learning. If we consider our document classification
example, this means that between a source document set and a target document set,
either the term features are different between the two sets (e.g., they use different
languages), or their marginal distributions are different. The case of traditional
machine learning is DS = DT and TS = TT .
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Figure 2.3.1: Traditional Learning vs Transfer Learning

During the process of transfer learning, the following three important questions
must be answered:

• What to transfer?: This is the first and the most important step in the whole
process. It is important to understand which part of the knowledge can be
transferred from the source to the target in order to improve the performance
of the target task. When trying to answer this question, we try to identify
which portion of knowledge is source-specific and what is common between
the source and the target.

• When to transfer?: There can be scenarios where transferring knowledge for
the sake of it may make matters worse than improving anything (also known
as negative transfer). The aim is utilizing transfer learning to improve target
task performance/results and not degrade them.

• How to transfer?: Once the what and when have been answered, it is possi-
ble to proceed towards identifying ways of actually transferring the knowledge
across domains/tasks. This involves changes to existing algorithms and differ-
ent techniques.

Figure 2.3.2: Some intuitive examples of transfer learning
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2.3.2 Transfer Learning Scenarios
In literature it is possibile to find transfer learning tasks related to problems such
as multi-task learning and concept drift in the deep learning framework but also in
many other applications or areas of study. It is identifyed with many representative
approaches that include predictive modeling problems too. Two common approaches
are the Develop Model Approach and the Pre-trained Model Approach.
The first one consists in selecting a source task related to a predictive modeling
problem.The data there will be some relationship in the input data, output data,
and/or concepts learned during the mapping from input to output data. Then the
model is developed for this first task: it must be better than a naive model to ensure
that some feature learning has been performed. In conclusion, the model fit on the
source task can then be used as the starting point for a model on the second task of
interest, this may involve using all or parts of the model, depending on the modeling
technique used, or just a selection of them. Sometimes, the model may need to be
adapted or refined on the input-output pair data available for the task of interest.
The second approach is more common in the field of deep learning and consists
in select a pre-trained source model from all the available models (many research
institutions release models on large and challenging datasets that may be included
in the pool of candidate models from which to choose). Then the pre-trained model
can be used as the starting point for a model on the second task of interest. This
may involve using all or parts of the model, depending on the modeling technique
used. And in conclusion tuning the model in order to adapt it or refine on the
input-output pair data available for the task of interest.

Assuming somebody considers reusing a pre-trained network with a new dataset,
it is very likely that the original and the new dataset are situated in one of the four
following categories inspired by [96]. All four scenarios are depicted in Figure 2.3.3.

• Scarcity of data & low similarity. This approach is the least promising in
terms of transfer learning. In a neural network the lower layers of the network
serve as basic feature extractors. In image recognition, for example, in the
first layers the network learns to recognize edges, corners and contours. Later
layers will then learn more complex structures. At last, the output layers
identify objects on the images. When having a dataset in this state, the only
possibility to reuse the original network is by trying to freeze the first layers
and to fine tune the more advanced ones. The theory behind this approach
is to retain the capability of extracting the features that are similar in the
original and the new datasets. Transferred to the image recognition example,
to detect objects, every image classifier needs to learn how to recognize corners
and edges first. The goal is to keep this skill for the new dataset. This option
though, as mentioned above, is not known to promise very good results.

• Scarcity of data & high similarity: In this scenario, the new dataset is
rather small and thus its size does not suffice to reach a decent accuracy by
training a neural network from scratch. But since the new dataset and the
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original input to the pre-trained network are highly similar, it is plausible that
by adjusting the output layers of the original network the accuracy on the new
dataset will be on a decent level. In this case, the lower layers of the original
network serve as a feature extractor for the general problem statement that
confronts both of the datasets.

• Richness of data & low similarity: If the new dataset contains a big
amount of input-output pairs which are highly dissimilar compared to the
original dataset, training a neural network from scratch would be the better
approach. There are two main reasons for this. First, in this situation, the
network can learn all the needed features from the big new dataset, thus there
is no need to inherit these skills from a pre-trained algorithm. Second, as the
datasets do not have a lot in common, spoiling the network with the original
dataset would not help with converging to the correct solution for the new
dataset, as the weights will adapt into the wrong direction.

• Richness of data & high similarity.: Having a big dataset which is fairly
similar to the original dataset is obviously the optimal scenario. This state
indicates that there is no need to discard any of the previously acquired skills
of the algorithm as the features between both datasets are similar. In order
to ensure a high accuracy with the pre-trained model all the layers should not
be changed. In this case, the only modification needed to apply the neural
network to the new dataset is to keep the layers but to fine tune the pre-
trained model of the algorithm in order to minimize the original influence of
the dataset on the weights and biases. Fine tuning means to reload and retrain
the pre-trained network with the new data.

Figure 2.3.3: A schema of the four typical scenarios [96].
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Another way to divide the transfer learning approaches is the one introduced by
Pan. [226] that will be presented in the next pages. We can consider three different
types of transfer learning methods: Inductive transfer learning, Transductive transfer
learning and Unsupervised transfer learning.

Transfer in Inductive Learning

In an inductive learning task, the objective is to induce a predictive model from a
set of training examples [304]. Often the goal is classification, i.e. assigning class
labels to examples. Examples of classification systems are artificial neural networks
and symbolic rule-learners. Another type of inductive learning involves modeling
probability distributions over interrelated variables, usually with graphical models.
The predictive model learned by an inductive learning algorithm should make accu-
rate predictions not just on the training examples, but also on future examples that
come from the same distribution. In order to produce a model with this generaliza-
tion capability, a learning algorithm must have an inductive bias [207], that is a set
of assumptions about the true distribution of the training data.

The bias of an algorithm is often based on the hypothesis space of possible mod-
els that it considers. For example, the hypothesis space of the Naive Bayes model is
limited by the assumption that example characteristics are conditionally indepen-
dent given the class of an example. The bias of an algorithm can also be determined
by its search process through the hypothesis space, which determines the order in
which hypotheses are considered. For example, rule-learning algorithms typically
construct rules one predicate at a time, which reflects the assumption that predi-
cates contribute significantly to example coverage by themselves rather than in pairs
or more.
Transfer in inductive learning works in this way: the target task is different from
the source task, but some data in the target domain is labeled as well. The data in
the source domain could be labeled or not. So the target domain data are required
to induce the knowledge learned in the source task for the target task (see 2.3.4).
The left hand side of Figure 2.3.4 depicts how the network converges to a solution
with no prior knowledge about the problem statement. Clearly, the algorithm needs
many backpropagation steps to tune the weights into the right direction. For the
tuning of the weights to function properly, a big dataset is necessary in order to give
the network a sufficient amount of references for the optimal solution. The way this
is done varies depending on which inductive learning algorithm is used to learn the
source and target tasks. Some transfer methods narrow the hypothesis space, limit-
ing the possible models, or remove search steps from consideration. Other methods
broaden the space, allowing the search to discover more complex models, or add
new search steps.

One area of inductive transfer applies specifically to Bayesian learning methods.
Bayesian learning involves modeling probability distributions and taking advantage
of conditional independence among variables to simplify the model. An additional



2.3. TRANSFER LEARNING 33

Figure 2.3.4: Inductive learning can be viewed as a directed search through a specified
hypothesis space [207]. Inductive transfer uses source-task knowledge to adjust the
inductive bias, which could involve changing the hypothesis space or the search steps
[304].

aspect that Bayesian models often have is a prior distribution, which describes the
assumptions one can make about a domain before seeing any training data. Given
the data, a Bayesian model makes predictions by combining it with the prior dis-
tribution to produce a posterior distribution. A strong prior can significantly affect
these results (see Figure 2.3.5). This serves as a natural way for Bayesian learning
methods to incorporate prior knowledge – in the case of transfer learning, source-
task knowledge. Marx et al. [203] use a Bayesian transfer method for tasks solved by
a logistic regression classifier. The usual prior for this classifier is a Gaussian distri-
bution with a mean and variance set through cross-validation. To perform transfer,
they instead estimate the mean and variance by averaging over several source tasks.
Raina et al. [251] use a similar approach for multi-class classification by learning a
multivariate Gaussian prior from several source tasks.

Figure 2.3.5: Bayesian learning uses a prior distribution to smooth the estimates
from training data. Bayesian transfer may provide a more informative prior from
source-task knowledge. [304].

Another setting for transfer in inductive learning is hierarchical transfer. In this
setting, solutions to simple tasks are combined or provided as tools to produce a
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solution to a more complex task (see Figure 2.3.6). This can involve many tasks
of varying complexity, rather than just a single source and target. The target task
might use entire source-task solutions as parts of its own, or it might use them in
a more subtle way to improve learning. Sutton and McCallum [287] begin with a
sequential approach where the prediction for each task is used as a feature when
learning the next task. They then proceed to turn the problem into a multi-task
learning problem by combining all the models and applying them jointly, which
brings their method outside our definition of transfer learning, but the initial se-
quential approach is an example of hierarchical transfer.

Figure 2.3.6: An example of a concept hierarchy that could be used for hierarchical
transfer,in which solutions from simple tasks are used to help learn a solution to
a more complextask. Here the simple tasks involve recognizing lines and curves in
images, and the more complex tasks involve recognizing surfaces, circles, and finally
pipe shapes.[304].

Transductive transfer learning

Among machine learning paradigms, unsupervised transductive transfer learning is
useful when no labeled data from the target domain are available at training time,
but there is accessible unlabeled target data during training phase instead.
In contrast to inductive learning, transductive learning techniques have observed
all the data beforehand, both the training and testing datasets. We learn from the
already observed training dataset and then predict the labels of the testing dataset.
Even though we do not know the labels of the testing datasets, we can make use
of the patterns and additional information present in this data during the learning
process. So, a Transductive Transfer Learning method is a method that, given a
labelled training set and an unlabelled object set (and optionally two unlabelled
training sets) from two different but related domains S and T, generates predicted
labels for all documents without using any general rule.
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Basically, the main differences of a transductive transfer algorithm with respect to an
inductive one is that in the former, unlike in the latter, there is an object set which is
observed at training time, and we generate no general hypothesis but only predicted
labels. The main difference of a transductive transfer learning algorithm with respect
to a transductive one is instead that in the second the training set and the object
set are not the same, since they originate from two different domains S and T. In
[254] authors propose a novel unsupervised transductive transfer learning method
to find the specific and shared features across the source and the target domains.
The proposed learning method maps both domains into the respective subspaces
with minimum marginal and conditional distribution divergences. It discriminates
the classes of both domains via maximizing the distance between each sample-pairs
with different labels and via minimizing the distance between each instance-pairs of
the same classes.

Unsupervised transfer learning

Existing transfer learning methods mainly focus on how to fix the discrepancy be-
tween supervised tasks. However, unsupervised learning has achieved remarkable
advances in recent years and has become an interesting topic in the deep learning
community. In this case the question we want to answer is: Is it necessary to do
transfer learning between unsupervised tasks, and how to do it?
As a typical unsupervised learning paradigm, predictive learning has shown great
research significance in discovering the underlying structure of unlabeled spatiotem-
poral data without human supervision and learning generalizable deep representa-
tions. In the unsupervised case the target task is different from the source task and
the labeled data are unknown both in the source and target domain. So this type
of transfer learning methods focuses on tasks like clustering or dimensional reduc-
tion with the goal of sharing the gained knowledge in terms of ways of clustering or
feature selections.
The literature contains a large body of contributions on inductive and transduc-
tive transfer learning, since they are the natural extensions of supervised learning
problems: once a great deal of effort has been expended to develop a model on a
supervised, clean, and controlled dataset, transfer learning aims at maximising the
return on investment by making the model applicable in as many real-life applica-
tions as possible. Research on unsupervised transfer learning, however, has been
more limited. Most works focus on the machine learning tasks of clustering and
dimensionality reduction [226] [292].
Unsupervised Domain Adaptation (UDA) has been widely studied to transfer knowl-
edge across different data distributions [144]. Critically, by assuming all the domains
are sharing the same label space, UDA learns to either align feature distributions
[109] or map the relationships between the decision boundaries and feature repre-
sentations so that the boundaries are valid for both domains [174]. However, UDA
is not always practical as it cannot enumerate all the categories for model train-
ing let alone exhaustively collecting and annotating the data. In [335], authors
propose a novel differentiable framework named transferable memory that provides
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diverse understandings of the underlying, complex data structure of the target do-
main. Technically, they perform unsupervised knowledge distillation on the memory
states of multiple pretrained recurrent networks, and then introduce a new gating
mechanism to dynamically find the transferable part of the distilled representations.
The work is also inspired by the idea of knowledge distillation [141], which transfers
knowledge from larger models into smaller, faster models without losing too much
generalization ability.

2.3.3 Avoiding Negative Transfer

Given a target task, the effectiveness of any transfer method depends on the source
task and how it is related to the target. If the relationship is strong and the transfer
method can take advantage of it, the performance in the target task can significantly
improve through transfer. However, if the source task is not sufficiently related or
if the relationship is not well leveraged by the transfer method, the performance
with many approaches may not only fail to improve but it may actually decrease.
Negative transfer learning occurs when the information learned from a source do-
main has a negative effect on a target learner instead. More formally, given a source
domain DS, a source task TS, a target domain DT , a target task TT , a predictive
learner fT1(·) trained only with DT , and a predictive learner fT2(·) trained with a
transfer learning process combining DT and DS, negative transfer occurs when the
performance of fT1(·) is greater than the performance of fT2(·). The topic of nega-
tive transfer addresses the need to quantify the amount of relatedness between the
source domain and the target domain and whether an attempt to transfer knowledge
from the source domain should be made. Extending the definition above, positive
transfer occurs when the performance of fT2(·) is greater than the performance of
fT1(·).
Ideally, a transfer method would produce positive transfer between appropriately
related tasks while avoiding negative transfer when the tasks are not a good match.
In practice, these goals are difficult to achieve simultaneously. Approaches that
have safeguards to avoid negative transfer often produce a smaller effect from posi-
tive transfer due to their caution. Conversely, approaches that transfer aggressively
and produce large positive-transfer effects often have no protection against negative
transfer.
One way of approaching negative transfer is to attempt to recognize and reject harm-
ful source-task knowledge while learning the target task. The goal in this approach
is to minimize the impact of bad information, so that the transfer performance is at
least no worse than learning the target task without transfer. At the extreme end,
an agent might disregard the transferred knowledge completely, but some methods
also allow it to selectively reject parts and keep other parts. Option-based transfer
in reinforcement learning ([76]) is an example of an approach that naturally incor-
porates the ability to reject bad information.
Another way for avoiding negative transfer is if there exists not just one source task,
but a set of candidate source tasks. In this case the problem becomes choosing the
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Figure 2.3.7: (a) One way to avoid negative transfer is to choose a good source task
from which to transfer. In this example, Task 2 is selected as being the most related.
(b) Another way to avoid negative transfer is to model the way source tasks are
related to the target task and combine knowledge from them with those relationships
in mind [304].

best source task (see Figure 2.3.7). An example of this approach is the transfer
hierarchy [40], who order tasks by difficulty. Appropriate source tasks are usually
less difficult than the target task, but not so much simpler that they contain little
information. Given a task ordering, it may be possible to locate the position of the
target task in the hierarchy and select a source task that is only moderately less
difficult.

2.3.4 Applications
Nowadays transfer learning methods are applied in several sectors of machine learn-
ing and used a lot in various applications in specific areas such as medicine, trans-
portations, image classification and text recognition. In this section a few examples
are mentioned:

• Transfer learning for NLP: Textual data presents all sorts of challenges when it
comes to ML and deep learning. These are usually transformed or vectorized
using different techniques. Embeddings, such as Word2vec and FastText, have
been prepared using different training datasets. These are utilized in different
tasks, such as sentiment analysis and document classification, by transferring
the knowledge from the source tasks. Besides this, newer models like the Uni-
versal Sentence Encoder and BERT definitely present a myriad of possibilities
for the future.

• Transfer learning for Audio/Speech: Similar to domains like NLP and Com-
puter Vision, deep learning has been successfully used for tasks based on audio
data. For instance, Automatic Speech Recognition (ASR) models developed
for English have been successfully used to improve speech recognition perfor-
mance for other languages, such as German. Also, automated-speaker identi-
fication is another example where transfer learning has greatly helped.
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• Transfer learning for Computer Vision: deep learning has been quite success-
fully utilized for various computer vision tasks, such as object recognition and
identification, using different CNN architectures. In [336] authors present their
findings on how the lower layers act as conventional computer-vision feature
extractors, such as edge detectors, while the final layers work toward task-
specific features.

• Geographical Transfer Learning: the various types of mobility models involved
in this thesis are expected to be highly dependent on the specific geographi-
cal area under study. For instance, it has been empirically verified that the
trip purpose prediction models work very well in the areas where they were
extracted, their performances degrade dramatically if applied to areas with
different characteristics (see [257]). At the same time, not all areas of interest
are equally well covered by data, due to the non-homogeneous penetration
of tracking devices, making it difficult to build different models for different
areas. For those reason finding a way to share models and knowledge between
different geographical area is essential. In the next chapters this problem will
be explained in detailed and some solutions will be presented and motivated.



2.4. ETHICAL ASPECTS OF DATA SCIENCE 39

2.4 Ethical Aspects of Data Science

GPS devices, smartphones, and social media, which are used to register people’s
locations, time, and social activities include also the users’ private information.
The majority of the models and algorithms for predicting individual mobility require
the sharing of the historical travel information of users. In addition, some blogs on
social media possess users’ photos, events, and social relationship. For those rea-
sons the privacy problem for people providing personal information becomes crucial
[318]. The trajectory data contains daily travel routes. Attackers may use the spa-
tial and temporal correlations hidden in a user’s trajectory data to deduce their
mobility patterns and identify their home and workplaces. Several techniques have
been proposed to protect users’ trajectory data from privacy leak. For example
existing privacy-preserving technologies include clustering-based [4], generalization-
based [215] and suppression-based methods [145].
We already saw that the explosive growth in the quantity and quality of personal
data has created a significant opportunity to generate new forms of economic and
social value. For that reason, there is a need for the same kinds of rules and frame-
works that exist for other asset classes. Citizens are more worried every day about
what companies and institutions do with their data, and ask for clear positions and
policies from both the governments and the data owners. Despite this increasing
need, there is no unified view on privacy laws across countries. Until 2000s, The
European Union regulateed privacy by Directive 95/46/EC (Oct. 24, 1995) and
Regulation (EC) No 45/2001 (December 18, 2000). The European regulations were
based on the notion of “non-identifiability”. The regulation on privacy in the EU
was then revised by the comprehensive reform of the data protection rules proposed
on January 25, 2012 by the European Commission, which will be applied on May
25, 2018 in the form of Regulation, i.e., the General Data Protection Regulation
(GDPR) [246].
While legal frameworks evolve, ethical concerns and guidelines are changing as well.
Authors in [99] consider the impact of social media on society and the ethical atten-
tion is reflected by social networks continuing to update privacy policies and settings,
by newsrooms making publishing guidelines on how they use material sourced from
social media platforms, and by the continuous shifts in what is or is not considered
appropriate when individuals post on social media platforms.
Moreover, both active and passive data collections also raise questions. Even though
users are publishing messages and personal information on public networks, many
users do not consider that anyone other than their close friends and family will see
their posts. But, while many users are aware of the information they have logged
into social networks, they are much less aware of the data being collected from them.
World Economic Forum warns both people and organizations. It points out that
people have the right to be informed about the potential impact of their content
being shared widely. This concept can easily be extended to other types of data, not
just the social networks ones. For that reason, a part of this thesis concerns privacy
risk in human mobility. In one of the next chapters, the possible hidden risks of the
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misuse of mobility data will be explained in detail.
However, World Economic Forum is not the only entity that invokes transparency.
Indeed, transparency is one of the most essential part in ethics and it is related
to several aspects of the big data process, such as seeking permission of users, ex-
planation of terms of use, and data usage after the collection. In [98], the OECD
framework is presented. It is a unique forum where governments work together to ad-
dress the economic, social and environmental challenges of globalisation along with
fundamental principles that should be respected in data usage process: collection
limitation (data collected are the minimum necessary and they must be obtained
by lawful and fair means), data quality (personal data should be relevant to the
purposes for which they are to be used and they must be complete and up-to-date),
purpose specification (purposes should be specified before of data collection), use
limitation (data must be used and disclosed only for the specified purpose), secu-
rity safeguard (data must be protected by reasonable security safeguards), openness
(about development, practices and policies), individual participation (individuals
should have the right to control, rectify or have the data erased) and accountability
(data controllers should be accountable for complying with measures regarding the
other principles). In [222], there is a short list together with some practical examples
of good and bad practices, of the six key principles they consider essential in the
data management: (i) to highlight the users need and public benefit from the start
of the definition of the methods; (ii) to use data and tools with the minimum intru-
sion necessary; (iii) to create robust data science models, studying the peculiarities
of the data and the presence of potential discrimination features; (iv) to be aware
of public perception, understanding how people expect their data to be used; (v) to
be clear and open about data, tools and algorithms, providing explanation in plain
English; and (vi) to keep data secure, following the guidelines provided by the Infor-
mation Commissioner’s Office 15 . Finally, the Council of Europe [221] drafts some
guidelines too. The majority of ethical principles are highly shared among different
institutions, and many of them had been included in the new EU Regulation before
and in the GDPR now.

2.4.1 General Data Protection Regulation (GDPR)

The General Data Protection Regulation (EU) 2016/679 (GDPR) is a regulation
in EU law on data protection and privacy in the European Union (EU) and the
European Economic Area (EEA). It also addresses the transfer of personal data
outside the EU and EEA areas. The GDPR’s primary objective is to enhance indi-
viduals’ control and rights over their personal data and to simplify the regulatory
environment for international business. Superseding the Data Protection Directive
95/46/EC, the regulation contains provisions and requirements related to the pro-
cessing of personal data of individuals (formally called data subjects in the GDPR)
who are located in the EEA, and applies to any enterprise—regardless of its loca-
tion and the data subjects’ citizenship or residence—that is processing the personal
information of individuals inside the EEA.
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The GDPR was adopted on 14 April 2016 and became enforceable beginning 25
May 2018. As the GDPR is a regulation, not a directive, it is directly binding and
applicable but does provide flexibility for certain aspects of the regulation to be
adjusted by individual member states [325]. This last aspect heralds the hidden
criticisms since it does not include a plan of fixed rules. Those limitations will be
discussed more in Sec. 4.4.4 in the mobility data context
GDPR is composed of 11 chapters that go from principles and right to accessing to
data, from transferring of personal data and competences, to implementing Acts.
In particular, in Article 5 GDPR state some of the ethical principles considered
fundamental, such as data minimization, transparent information, purpose and lim-
itation and accountability. GDPR also introduces some novelty with respect to the
Directive 95/46/EC, such as explicit references to Data protection by design and
by default, to data protection impact assessment and new obligations of data pro-
cessors. A Data Controller is a "natural or legal person, public authority, agency or
other body which, alone or jointly with others, determines the purposes and means
of the processing of personal data” (Article 4 (7)). A Data Processor is a “natural
or legal person, public authority, agency or other body which processes personal data
on behalf of the controller” (Article 4 (8)).
Data processor has, among its obligations:

• guarantee to implement appropriate technical and organizational measures in
such a manner that processing ensure the protection of the rights of the data
subject, where processing is to be carried out on behalf of a controller;

• inform the controller of any intended changes concerning the addition or re-
placement of other processors;

• processes the personal data only on documented instructions from the con-
troller (including the categories of processing carried out and any transfer to
a third country);

• takes all the data protection measures required also for the Data Controller.

The data protection measures should be applied to any information concerning
an identified or identifiable natural person. Identified data (e.g., name and social se-
curity number) are directly linked to the individual, whereas identifiable data (e.g.,
nickname or address) are attributable to a specific person through some additional
information. This data protection measures could consist, among other things, of
minimizing the processing of personal data, pseudonymizing personal data as soon
as possible, transparency with regard to the functions and processing of personal
data, enabling the data subject to monitor the data processing, enabling the con-
troller to create and improve security features. This processes are fundamental in the
mobility framework too. For the purposes of this thesis it is essential to investigate
the hidden risks behind an uncontrolled use of mobility data. As it is explained in
Sec.4.4.4 it is very easy to exploit simple GPS data to reveal personal and sensitive
information about users.
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The GDPR regulation is a strong tool to protect the privacy rights of citizens but
it still shows some lacks and interpreations errors that could be improved.
About this, it is important to cite the recent Breyer Case versus the Court of Justice
of the European Union [60]. This case primarily concerns the question whether a
website visitor’s dynamic IP address constitutes personal data for a website pub-
lisher, when another party (an internet access provider) can tie a name to that IP
address. In particular, the Court finds that an IP address constitutes personal data
for the website publisher, if that publisher has the legal means to obtain, from the
visitor’s internet access provider, additional information that enables the publisher
to identify that visitor [46]. This is the first ruling by the EU Court on the pro-
tection of personal data against a content provider. The functional approach of the
Court of Justice is decisive in outlining, through interpretation, a community no-
tion of "personal data" that binds all member states. At the same time, the Court’s
ruling offers an interpretation of Article 7, letter f) [60], of the same directive, stat-
ing that it constitutes the legitimate interest of an online media service provider to
protect itself from possible cyber attacks, and reiterates the non-absolute nature of
the right to protection of personal data. What was specified by the EU Court also
appears of particular importance in view of the entry into force (in May 2018) of
the new community regulations on the protection of personal data (Regulation n.
2016/679). After this case, law seemed to be clear about the protection of individu-
als with regard to the processing of personal data and on the free movement of such
data. In essence data must be interpreted as meaning that a dynamic IP address
registered by an online media services provider when a person accesses a website
that the provider makes accessible to the public constitutes personal data within
the meaning of that provision, in relation to that provider, where the latter has the
legal means which enable it to identify the data subject with additional data which
the internet service provider has about that person.
But apparently the law needs changes and updates continuously. Recently The
European Data Protection Supervisor (EDPS) has lodged an appeal against the
judgment of the General Court delivered on April 26, 2023, in the case of Single
Resolution Board (SRB) vs European Data Protection Supervisor (EDPS) (Case
T-557/20), seeking the annulment of the entire judgment under appeal [61]. The
background of the case involves a dispute between the SRB and the EDPS regarding
data protection regulations and the processing of personal data during the SRB’s
decision-making process concerning Banco Popular Español, S.A. Several complaints
were submitted to the EDPS regarding alleged violations of Regulation 2018/1725
by the SRB’s handling of personal data. The General Court discussed the treatment
of personal data by the SRB during a resolution scheme decision and the subsequent
handling of comments by individuals participating in the decision-making process
[189]. The General Court found merit in the first plea raised by the SRB, and it
annulled the EDPS’s revised decision without delving into the second plea. The
appeal by the EDPS seeks to challenge the General Court’s interpretation of key
data protection regulations and principles in light of the specific circumstances of
the case [189]. The outcome of the appeal will have implications for data protection
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practices within EU institutions. The EDPS claims that the General Court misin-
terpreted Article 4(2) and 26(1) of Regulation 2018/1725 by failing to consider the
principle of accountability.
In conclusion the judgment above seems to confirm even more, compared to what
has already been said by the Authorities and Courts, the adoption of an approach
related to the interpretation of the concept of "identifiability". In this way, many
data that were previously considered pseudonymized (and therefore personal) could
fall into the category of anonymized data, simplifying the processing operations of
many data controllers (also the Breyer case should be re-examined in the light of
the new decisions). It is important, however, to point out, that the Court of First
Instance did not claim that, in the case at hand, the data received by the third
company were non-personal, but merely provided guidance on how to assess iden-
tifiability, which must use a relative approach from the perspective of the person
receiving the pseudonymised/anonymised data. This does not exclude that, given
the concrete situation, the recipient has the means to identify the persons concerned.
A case-by-case assessment will therefore be necessary once again.

2.4.2 Privacy Aspects of Human Mobility Analysis

Nowadays, our daily life is centered on data. Whether or not we are aware of it, our
simple everyday interactions with through digital devices produce a myriad of data,
that is combined to create Big Data. We leave traces relating to our movements via
our mobile phones and GPS devices, to our relationships within social networks, to
our habits and tastes from query logs and records of what we buy.
These digital breadcrumbs are a treasure trove as a way to discover new patterns in
human activities and a way to understand better many aspects of human behavior
that it was impossible to study or analyze just a few years ago. The resulting data
can also enable a totally new class of services that can improve directly and sensibly
our society or provide ways to tackle and solve problems from new perspectives.
The other side of the coin is the question of privacy: since the data describe our life
at a very detailed level, privacy breaches can occur along with inferences that reveal
the most personal details.
Most of these data are of sequential nature, such as time-stamped transactions,
users’ medical histories and trajectories. They describe sequences of events or users’
actions where the timestamps make the temporal sequentiality of the events powerful
sources of information. Unfortunately, such information often might unveil sensitive
information that require protection under the legal frameworks for personal data
protection. Thus, when such data has to be released to any third party for anal-
ysis, privacy-preserving mechanisms are utilized to de-link individual records from
their associated users [27]. Privacy-preserving methods aim at preserving statistical
properties of the data while removing the details that can help the re-identification
of users. The challenge to researchers around the world is to share data without
revealing private information of the users, and for that they need to protect the
information using data anonymization techniques [103]. Several approaches provide
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a worst-case probabilistic risk of user re-identification as a measure for how safe the
anonymised data is [208]. However, these solutions may work to make registered
users anonymous, but they are insufficient for data combined attacks. After all, with
reference to tracking apps for fighting covid-19, the EDPB clarified ’that location
data thought to be anonymised may in fact not be. Mobility traces of individuals
are inherently highly correlated and unique. Therefore, they can be vulnerable to
re-identification attempts under certain circumstances’ [248].

2.5 Explainability
Machine Learning (ML) is at the heart of many recent technological and scientific
developments. Its ability to find patterns in large volumes of data is revolutionizing
several sectors; financial services, health-care, retail and many more [49]. For many
years, the main research focus in ML was to maximize the predictive performances
of the algorithms. This has led to the construction of increasingly sophisticated
models able to capture the extreme nonlinearity of the relationships between the
variables and the highly interactive processes that generated the data. The increas-
ing complexity of such empirical models made it almost impossible to understand
their internal reasoning, even to their developers [228]. The typical example of this
trend is represented by the Deep Learning techniques [119], a subset of Machine
Learning techniques which hierarchically combines a set of basic units in several
layers. Deep Learning has become popular thanks to its astounding predictive per-
formances in several tasks such as computer vision, speech recognition, and natural
language processing. However, there is no intrinsic way to understand why the
algorithm has come to its conclusions.

2.5.1 Lack of Transparency
Machine Learning models which have opaque internal reasoning are called "black
boxes" and underlie many decision support systems (DSS). In the last decade, these
ML-based DSS gained popularity also in supporting decisions that have safety-
critical policy consequences. However, their lack of interpretability raised concerns
among the scientific community and in society at large. Indeed, it was proven that
such black boxes are easily misled by biases in the data. For example, in [255] it is
shown that the amount of snow in a picture was how a machine learning algorithm
learned to distinguish pictures of husky dogs from pictures of wolves, this because
all the pictures labeled as husky dog contained snow in the background. Even if
this might sound like a silly problem, it is easy to imagine how similar biases in the
process of data collection could influence the decisions taken in a judicial or military
context.
Although a machine learning model provides predictions with high precision and
profound accuracy, what most matters to a decision-maker is how it came to that
decision and therefore how it came about the prediction was determined or how a
particular instance is classified by the algorithm. Doshi-Velez and Kim [85] answer
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this question by stating that: "the problem is that a single metric, like accuracy,
it is an incomplete description of most of the real world tasks". Always the same
authors explain that there are cases and applications where it is not necessary to
provide an explanation in terms of interpretability.
Furthermore, it was shown that such black boxes are really sensitive to adversarial
examples [33], i.e., inputs maliciously modified to mislead the ML algorithm into the
wrong output while appearing unchanged to the human eye. In [229] the authors
developed a technique able to modify the image of a stop sign in a way that’s too
subtle for the human eye, but that is also sufficient to make a Deep Neural Network
(DNN) wrongly classify it as a yield sign. This kind of attacks could cause a self-
driving car to have dangerous behaviors.
Moreover, some ethical concerns were raised when it was shown how ML algorithms
could learn human prejudices from the data [338] and perpetuate them in their
decision-making process. One example of unfairness in ML-based DSS is the COM-
PAS recidivism algorithm developed by Northpointe. COMPAS was developed to
predict if a defendant should receive a release on bail. Analyzing the false positive
rates, the investigative journalism organization ProPublica, has shown that accord-
ing to the profiling scores provided by this software a black who did not re-offend
was classified as high risk twice as much as whites who did not re-offend, and white
repeat offenders were classified as low risk twice as much as black repeat offenders.
[152]. This is just an example that nevertheless highlights the criticality behind the
use of ML models. The bias issue needs to be considered a priority, especially when
working with personal data.
The COMPAS case demonstrates Artificial Intelligence limits: until there isn’t a
model able to completely eliminate human bias will always be necessary to rely on
human judgment and not only on algorithms. The consequences of the deployment
of black-box algorithms can be especially harmful when human lives are at direct
stakes, as in the health-care system. Thanks to the ability of ML algorithms to
leverage large volumes of health-related data, ML-based DSS have the potential to
help physicians in their diagnosis, predict the spread of diseases and identify groups
of high-risk patients [49]. Even though state-of-the-art predictive performances are
achieved by black-box algorithms, more straightforward and less accurate models
have been historically preferred for predictive tasks in this field. The reason behind
this is well exemplified in [55] where the authors employ a high-performance intelli-
gible model to predict the risk of death for pneumonia patients. Thanks to the intel-
ligibility of their model, they discovered that to the asthma patients were wrongly
attributed a lower risk of dying from pneumonia complications. This reflected a
real correlation in the data; in fact, patients with both asthma and pneumonia were
immediately hospitalized, and they were given a more aggressive treatment which
lowered their death risk compared to the general population. However, if asthma pa-
tients are not hospitalized, their death risk from pneumonia complications is higher
compared to the general population. This is a typical example where a critical vari-
able is left out (the aggressivity of the treatment), and therefore the outcome of the
ML model is wrong.
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In the same way, explainability is crucial for gaining a deeper understanding of
mobility too. Recognizing mobility patterns and highlighting biases in the model’s
reasoning is essential also in the urban framework. It is important to develop
mobility-related explanations that provide examples and counter-examples to vali-
date trajectories and crowd flows from different perspectives. While models rely on
many features, either external ones (e.g., weather data, POIs) or spatio-temporal
ones, it is not clear what the role of each feature is to the model’s prediction or gen-
eration [193]. Designing explainable models for human mobility is essential to gain
valuable knowledge for possible users, such as policymakers and urban planners.

2.5.2 Need of interpretability

All these examples underline where the need for an interpretable ML comes from; a
ML algorithm might have high predictive performances without being suitable for
the real purpose it was built for, in other words, there is a mismatch between the
metric used to evaluate the algorithm and its real objective [185]. Seen from this
angle, explaining a model behavior can be considered as a further step in evaluating
its performances, taking into account not only its predictive performances but also
how well it helps in its real-world task. As pointed out in [267] the majority of
questions asked to ML-based DSS are intrinsically causal, especially when the final
purpose is to attend the real world or to take some policy decisions. The problem
is that ML algorithms are not equipped to reason in causal terms, they only know
how to reason in statistical terms; hence they do not have the tools necessary to
reason on real-world interventions [236].

The increasing demand for interpretable algorithms created a new community of
researchers whose aim is to build techniques able to explain the behavior of black box
algorithms [125] in order to make them applicable and reliable in critical domains.
The growing interest in these kinds of techniques outside of academia is exempli-
fied by the US "Defense Advanced Research Projects Agency" (DARPA) initiative
"eXplainable Artificial Intelligence (XAI)" [130]. Furthermore, the European Union
introduced several measures to tackle some legal and ethical concerns about personal
data privacy and data processing that will also impact ML practices. These mea-
sures were introduced in the GDPR to face the highly debated presence of a "right
to an explanation" of the data subject when his or her data are used in the process
of "solely" automated decision-making that envisages "significant effects" on him or
her. As argued by [197] there is the need to combine transparency and comprehen-
sibility of ML algorithms to make them intelligible for the data subject. Indeed the
extensive use of ML-based DSS and weakly regulated use of personal data create
a dangerous imbalance in terms of knowledge, and thus power, between the data
processor, i.e., the person or organization which processes the personal data, and
the data subject, i.e., the person whose personal data have been collected [263].
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2.5.3 Interpretable Models
Saying that a model is interpretable means that it has the ability to explain or to
present in understandable terms to a human [85]. In the literature, there is a small
number of models that are recognized as inherently interpretable: linear models,
decision trees and IF-THEN rules.

• Linear Models: y1 = β0 + β1xi1 + ... + βNxiN are considered interpretable
because of their functional form; once the parameters β which link each feature
xij to the output yi are learned from the data, it is possible to assess straight-
forwardly how much each feature change the output, i.e., a unit increase of
the value in feature xij will increase the value of the output of a factor betaj,
given that all the other features stay the same.

• Decision Tree: are considered interpretable because of their graphical repre-
sentation which allows the user to have a full picture of the model behavior at
once. Following the path from the root to leaf, it is straightforward to under-
stand how the algorithm classifies each input. Furthermore, the hierarchical
structure of the tree allows the user to have a sense of the relative importance
given to each feature.

• IF-THEN Rule:are considered interpretable because they have a textual rep-
resentation which is similar to human language. They are related to decision
trees since a path from root to leaf is an IF-THEN rule

Each of this model is considered inherently interpretable because it is straightforward
to see how its internals work. However, the fact that we can inspect their internal
decision-making process does not guarantee that they meet all the requirements for
interpretable models present in the literature. Indeed, the notion of interpretability
of ML algorithms has still no formal technical definition, it can vary from paper to
paper and it is often vaguely defined. It is possible to find conditions under which
the previous models cannot be considered interpretable. For example, if we consider
a linear model with hundreds of thousands of parameters, it is difficult to claim
that it is interpretable, given that a human being will never be able to contemplate
the entirety of the model at once. More generally, a model could be interpretable
in principle but not in practice, e.g., its size (the number of parameters involved,
the number of nodes in the tree) could make impossible for a human to follow the
process from input to output in a reasonable time.
The reason why these inherently interpretable models are not widely used in real-
world applications is that there is a tradeoff between interpretability and predictive
performances. To reach high predictive performances using simple models such as
those considered inherently interpretable is often necessary to heavily engineer the
features to the point the interpretability is lost.

It appears clear that the problem of interpretability in machine learning is not
an easy one. There are several dimensions that must be taken into account when
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studying the ways a machine learning model can be considered interpretable. In
[85] the authors try to lay the foundations for a more rigorous framework to eval-
uate interpretability. They propose a taxonomy which helps to frame the inter-
pretability problem into several categories; application-grounded, human-grounded
and functionality-grounded. For each category, they propose a methodology to
evaluate interpretability and advise some possible benchmarks. They also try to
delineate which explanatory-needs different tasks might have in common by listing
some interpretability dimensions, e.g., different tasks might have in common some
time constraints; a decision must be taken in a short amount of time; consequently
there is the need for a concise explanation. Their work suggests that there is not a
unique way to define interpretable models because it depends on the context. The
authors also offer a high-level perspective on the dimensions that characterize inter-
pretability; they differentiate the models from a technical point of view contrasting
those who have a global level of interpretability and those who have a local one,
and then they emphasize some properties that must be taken into account when
providing an explanation to a user:

• Global and local interpretation: a model is considered globally inter-
pretable when the user can follow and understand each step of the process
that goes from input to output, whereas a model is considered locally in-
terpretable if it allows the user to understand the reasons behind one single
prediction, one at a time.

• Time limitation: the interpretability of a model might be tightly related to
the time a user is willing to spend in understanding its behavior.

• Nature of user expertise: since different users might have different back-
ground knowledge and expertise, what can be considered interpretable by them
might differ. For example, a user with a mathematical background might con-
sider more interpretable a model comprised of sophisticated formulas than a
logic-based model such as a decision tree.

In [185] the author identifies two main categories of solutions which confer inter-
pretability: the first one is transparency, which is the ability to inspect the internals
of the models in order to elucidate how it works. Linear models with few parameters
are considered transparent models. The second is the post-hoc interpretability or
explainability, which is the ability to provide explanations for the model behavior
without the understanding of how it works. This is the same kind of interpretability
that a human being has, she can make a decision and then explain herself without
the need of understanding how her brain works. The author also warns about the
possible pitfalls of both approaches to interpretability; model transparency might
prevent the use of more powerful models and post-hoc interpretability might mis-
lead the user because, in principle, a model might be trained in order to provide
wrong but plausible explanations. In our framework, we deal in the explainability
context in Sec. 4.3 where we use the Shapley Values (a special techniques described
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in the next paragraphs) to understand the post-hoc interpretability of our results
providing explanations for the model behavior.

2.5.4 Interpretability techniques
In [125] the authors identify two main categories of methods to open the black boxes.

• transparent box design or explanations by design,the techniques which fall in
this category are the ones who try to build high-performance algorithms to-
gether with their explanations relying on the transparency notion of inter-
pretability.

• reverse engineer problem or black box explanation, the techniques which fall in
this category are the ones who try to construct explanations for the black-box
behavior relying on the post-hoc notion of interpretability.

The authors further refine the reverse engineer problem in three sub-categories
of methods which address different problems:

• The black box model explanation problem, which is solved by building an
interpretable model able to mimic the global behavior of the black box.

• The black box outcome explanation problem, which is solved by building in-
terpretable models which explain the model behavior for particular instances.

• The black box inspection problem, which is solved by providing textual or
visual representations explaining why the black box make some predictions
more often than others.

The method we focused on in Sec 4.3 is the one which solve the black box out-
come explanation problem.
The intuition behind these kinds of methods is that even if the decision boundary
learned by the black box in the feature space can be arbitrarily complex, locally it
can always be faithfully approximated by a simpler, more interpretable model.
In [255] the authors present LIME (Local Interpretable Model-Agnostic Explana-
tions), a technique to explain the prediction of any classifier. LIME works perturbing
a human interpretable representation of the selected instance, querying the black box
on the perturbed sample, assigning a weight to each perturbation according to its
distance from the input, and feeding the resulting weighted input-output training
set to an interpretable model. In this case, the interpretable model is a sparse lin-
ear classifier whose weights are interpreted as features importance. The two key
points of LIME technique are the initial transformation of the input representation
into a human-interpretable one and the generation of the instance neighborhood by
random perturbations of the input. During the initial transformation, the original
representation of the input in the feature space −→v ∈ Rd is transformed into a bi-
nary vector −→v ∈ {0, 1}d′ which represents the presence or absence of interpretable
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components. For example, if the original input is an image, the interpretable repre-
sentation will be a binary vector containing the presence or absence of contiguous
patches of similar pixels. Then this interpretable representation of the input is per-
turbed to generate the feature space neighborhood. In LIME this perturbation is
entirely random.
In [124], the authors present LORE (Local Rule-Based Explanations). LORE works
generating a balanced neighborhood of the selected instance through a genetic al-
gorithm, querying the black box on such sample and then feeding the resulting
input-output training set to a decision tree. A local explanation given by LORE is
a pair composed by a logic rule extracted from the decision tree and a set of coun-
terfactual rules explaining which features should be changed in order to invert the
black box decision. The two key points of LORE technique are the logic explanation
augmented by counterfactual rules and the genetic generation of the neighborhood.
The use of a logic rule together with counterfactual rules provide a high expres-
siveness of the explanation making it more human-comprehensible. Furthermore,
the genetic approach to neighborhood generation yields to a neighborhood which is
denser in the boundary regions of the predictor, i.e., a more balanced neighborhood
in terms of classification decisions compared to a randomly generated one.
In [256], the authors present Anchors, an extension of LIME which gives explanations
in the if-then decision rule form. The proposed method produces a set of decision
rules called anchors which are sufficient conditions for the black box prediction. This
approach helps the final user to understand the coverage of each explanation, i.e.,
the region where the explanation applies. Indeed, in regions of the feature space
where the anchor holds the black box decision is almost always the same.

Among the important works to refer to we mention the Shapley Values [194],
a strong method in which an additive method assesses the importance of variables
through the expected conditional value of the original model. The Shapley Values
come from game theory: imagine we have a predictive model, then the "game" is
reproducing the outcome of the model, while the "players" are the features included
in the model. What Shapley does is quantifying the contribution that each player
brings to the game. This means that Shapley Values quantify the contribution that
each features brings to the prediction made by the model. Shapley values are based
on the idea that the outcome of each possible combination (or coalition) of features
should be considered to determine the importance of a single one [315].



Chapter 3
Act I: Human Mobility as a Complex
Network

3.1 What is a Complex Network?
Network science is a scientific discipline that studies the interconnections among
diverse physical, engineered, information, biological, cognitive, semantic and social
networks. A network is defined as a set of nodes connected by links. The study of
this subject was born in the eighteenth century when the legendary mathematician
Leonhard Euler solved the famous “Seven Bridges of Konigsberg ” problem [94]. In
his short paper of 1736, he inadvertently started the immense branch of graph theory,
the basis for our thinking about networks. The city of Konigsberg in Prussia (now
Kaliningrad, Russia) was set on both sides of the Pregel River, and included two
large islands, Kneiphof and Lomse, which were linked to each other, or to the two
mainland portions of the city, by seven bridges (as illustrated in the below figure to
the left). The problem was to draw a walk through the city that would cross each of
those bridges once and only once. Euler, recognizing that the important constraints
were the four bodies of land and the seven bridges, drew out the first known visual
representation of a modern graph.

Figure 3.1.1: The “Seven Bridges of Konigsberg ” problem representation

A modern graph, as seen in Fig 3.1.1, is represented by a set of points, known
as vertices or nodes, connected by a set of lines known as edges. This abstraction
from a concrete problem concerning a city and bridges etc. to a graph makes the
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problem tractable mathematically, as this abstract representation includes only the
information important for solving it. At the end, Euler actually proved that this
specific problem has no solution since the difficulties he faced was about the devel-
opment of a suitable technique of analysis. Moreover he did not have the possiblity
to subsequently test what established this assertion with mathematical rigor. From
there, the branch of math known as graph theory lay dormant for decades. In mod-
ern times, however, its applications are finally exploding.

The field of graph theory continued developing to provide answers to many ar-
rangement, networking, optimization, matching and operational problems. Graphs
can be used to model many types of relations and processes in physical, biological,
social and information systems, and has a wide range of useful applications such as:

• Finding communities in networks, such as social media.

• GPS/Google maps to find the shortest path home.

• DNA sequencing

In this section we provide an introduction about complex network in general and
a brief resume of the main discoveries and researches in network science. Complex
weblike structures describe a wide variety of systems of high technological and in-
tellectual importance. For example, a cell is best described as a complex network
of chemicals connected by chemical reactions; the Internet is a complex network
of routers and computers linked by various physical or wireless links; trends and
ideas spread on the social network whose nodes are human beings and edges rep-
resent various social relationships. These systems represent just a few of the many
examples that have recently motivated the scientific community to investigate the
mechanisms that determine the type of complex networks. The desire to understand
such systems has brought along significant challenges as well. Physics, a major ben-
eficiary of reductionism, has developed several tools to predict the behavior of a
system as a whole from the properties of its constituents. We now understand how
magnetism emerges from the collective behavior of millions of spins, or how do quan-
tum particles lead to such spectacular phenomena as Bose-Einstein condensation or
superfluidity. The success of these modeling efforts is based on the simplicity of the
interactions between the elements: there is no ambiguity as to what interacts with
what, and the interaction strength is uniquely determined by the physical distance.
While for many complex systems with nontrivial network topology such ambiguity
is naturally present, in the past few years we increasingly recognize that the tools
of statistical mechanics offer an ideal framework to describe these convoluted sys-
tems as well. These developments have brought along new challenges for statistical
physics and many links to several other topics.

In mathematical terms a network is represented by a graph:
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Definition 3.1.1. A graph G consists of a collection V of vertices and a collection
of edges E, G = (V,E). Each edge e ∈ E is said to join two vertices, which are
called its end points. If e joins u, v ∈ V , we write e = 〈u, v〉. Vertex u and v in this
case are said to be adjacent. Edge e is said to be incident with vertices u and v,
respectively.

We will often write V (G) and E(G) to denote the set of vertices and edges
associated with graph G, respectively. It is important to realize that an edge can
actually be represented as an unordered tuple of two vertices, that is, its end points.
For this reason, we make no distinction between 〈v, u〉 and 〈u, v〉: they both represent
the fact that vertex u and v are adjacent. A graph that does not have loops (edge
joining the same vertices) or multiple edges in the same two nodes is called simple.
When a simple graph has every pair of distinct vertices connected by a unique edge
is called complete. [311]

Having no ordering is not always convenient. The need for associating a direction
with the edges of a graph leads to the notion of a directed graph.

Definition 3.1.2. A directed graph D consists of a collection of vertices V , and a
collection of arcs A, for which we write D = (V,A). Each arc a =

−−−→
〈u, v〉 is said to

join vertex u ∈ V to another (not necessarily distinct) vertex v.

Once we have a directed graph, we need information about the travel frequency
of every edge. The latter is obtained using a weighted graph: each arc has a weight
that gives an indication on how many times it is traveled during a given period. A
weight is a real-valued number associated with an edge.

Definition 3.1.3. A weighted graph G is a graph for which each edge e has an
associated real-valued number w(e) called its weight. For any subgraph H ⊆ G, the
weight of H is simply the sum of weights of its edges: w(H) = ∑

e∈E(H) w(e).

A commonly adopted convention for weighted graphs is to simply write that
w(〈u, v〉) = 0 when vertices u and v are not adjacent. This also means that for each
edge e ∈ E(G) we demand that w(e) > 0. We often use weighted graphs to find
subgraphs with a maximal (or minimal) weight. In particular, we can use them to
determine the distance between two vertices, which is formally defined as follows.

Definition 3.1.4. Consider an undirected graph G and two vertices u, v ∈ V (G).
Let P be a path between u and v ((u, v)-path) having minimal weight among all
(u, v)-paths in G. The weight of P is known as the (geodesic) distance d(u, v)
between u and v. Path P is called a shortest path (u, v)-path, or a geodesic between
u and v.

3.1.1 Graph Representations
It should be clear from the presentation so far that graphs can be drawn in differ-
ent ways, but also that when considering their formal definition, they are merely
described in terms of vertices and edges. Let us now pay attention to how we can
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conveniently represent graphs. This issue is particularly important when we need
to represent very large graphs for automated processing by computers.

There are several ways to represent graphs. Maybe the most appealing one is
to use an adjacency matrix. Consider a graph G with n vertices and m edges. Its
adjacency matrix is nothing else but a table A with n rows and n columns with
entry A[i, j] denoting the number of edges joining vertex vi and vj. The adjacency
matrix presents the following properties:

• An adjacency matrix of an undirected graph is symmetric, that is for all
i, j, A[i, j] = A[j, i]. This property reflects the fact that an edge is represented
as an unordered pair of vertices e = 〈vi, vj〉 = 〈vj, vi〉

• A graph G is simple if and only if for all i, j, A[i, j] ≤ 1 and A[i, i] = 0. In
other words, there can be at most one edge joining vertices vi and vj and, in
particular, no edge joining a vertex to itself.

• The sum of values in row i is equal to the degree of vertex vi

As an alternative, we can also use an Adjacency list of a graph as its representation.
Given any graph, its adjacency matrix is made up of a square binary matrix whose
row and column indices are the names of the vertices of the graph (see an example
in Figure 3.1.2). Therefore, the adjacency list is convenient for node operations
(i.e., insert, delete or add nodes), and the space cost is only O(|E|), which benefits
effective representations for large sparse graphs.

The Incidence matrix M of a graph G is another tool to describe its representa-
tion. It consists of n rows and m columns such that M [i, j] counts the number of
times that edge ej is incident with vertex vi . Note that M [i, j] is either 0, 1, or 2:
an edge can be only not incident with vertex vi, it has vertex vi as exactly one of
its end points, or is a loop joining vertex vi with itself.
Again, the following properties are easy to verify:

• A graph G has no loops if and only if for all i, j,M [i, j] ≤ 1.

• The sum of all values in row i is equal to the degree of vertex vi .

• Because each edge has exactly two, not necessarily distinct end points, we
know that for all j, the sum of each column M [i, j] = 2.

One of the problems with using either an adjacency matrix or an incidence matrix
is that without further optimizations, the total number of elements for representing
a graph is n × n or n ×m, respectively. This is not very efficient when having to
deal with very large graphs, especially when the number of edges is relatively small.



3.1. WHAT IS A COMPLEX NETWORK? 55

Figure 3.1.2: Different ways to represent a graph.
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3.2 Individual Mobility Networks

The digital traces of human mobility can describe movements with extraordinary
precision and can be exploited for realizing the most disparate location-based ser-
vices [271]: recommender systems [23] , personalized journey planners [122], carpool-
ing systems [36], etc. Such services are based on appropriate modeling of human
behavior, able to capture, for instance, the small set of actions that users typically
repeat frequently [118] such as visiting a limited number of places [281]. In this
section we introduce an approach for extracting the user’s personal mobility model,
which can enable several applications, from simulating the user’s mobility, to pre-
dicting future events, such as crashes. The work stems from early results in [307]
where the concepts of mobility profile and routines are defined, later used in [305] to
build a trajectory predictor, and extends the initial proposal of [257], where a first
simplified network-based model for mobility was used for classification tasks. The
resulting model, named Individual Mobility Network (IMN) will be the basis for sev-
eral other analysis tools described in the other sections of this thesis. An Individual
Mobility Network (IMN) describes the individual mobility of a person through a
graph representation of her locations and movements, grasping the relevant prop-
erties of individual mobility and removing unnecessary details. The challenge of
defining a user’s mobility model is commonly addressed in literature using three
kinds of approach: Markov chains, mixture of general laws and pattern discovery.
An example belonging to the first category is [153] which characterizes and classifies
user’s Point of Interests (POIs) according to their relevance for the user: mostly
visited POIs, occasionally visited POIs, exceptionally visited POIs, and build a
Markov chain using the movements and the stops duration to weight the chain. In
[233] the authors use Markov chains and a mixture of data-driven mobility laws to
generalize the user’s behavior from the geography, and to describe them in terms of
their preferential exploration or return tendencies [234]. Then they use the models
to generate synthetic trajectories maintaining some properties of original data, e.g.
number of locations per user, radius of gyration, mobility entropy.
In [148] a non-parametric Bayesian method for modeling collections of timestamped
events is proposed. The authors use a Dirichlet process for learning a set of in-
tensity functions which form a basis set for representing individual time-periods
which are exploited for “unusual” events detection. A general law approach is also
followed by [118] where the authors state that human trajectories show a high de-
gree of spatio-temporal regularity, each individual being characterized by a time-
independent characteristic travel distance and a significant probability to return to
a few highly frequented locations. The work in [175] presents a data-driven ap-
proach which uses mobility patterns. Those patterns are used to predict the future
positions of a user when it matches the pattern premises.
Other approaches related to pattern discovery consider also external factors such
as social relationship. In [316] a locations recommender is presented, based on
past user behavior, the locations’ venues, the social relationships and the similarity
among users. In [67] it is empirically observed that the movements of a user can be
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classified as short and long distance travels, where the former is based on periodic
behaviors, while the latter is more likely to happen due to social influence.
Besides the type of model, another crucial aspect is the strategy adopted for manag-
ing the spatial and temporal dimensions. Most of the existing approaches discretize
them using grids computed over the whole data. In [12] the authors map the real
position of the users in an hexagonal grid. [343] makes use of a grid-based technique
to extract interesting locations. This over-generalization of the locations simplifies
the problem and makes it more manageable. The model we propose differs from
those described above in various aspects: our approach is user-centric, no global
knowledge is pushed from the expert standardizing the users in any aspect (e.g.
discretization of space, number of locations, etc.); it is fully automatic and adap-
tive, no parameters are used by the analyst to drive the discovery of regularity (e.g.
frequency thresholds).

3.2.1 Problem Formulation
The problem we face consists in summarizing the personal mobility of a user in a
compact, yet rich network-based formalism that captures some of the essentials of
the trips she performs: where she moves (places), how (trips), when (time of day,
day of week, etc.) and how long (length and duration of trips and stops). We
first introduce two basic concepts: trajectory, which is the basic input data type;
and personal mobility history, representing the trips traveled by a user in a specific
period [50].

Definition 3.2.1 (Trajectory). A trajectory is a sequence t = 〈p1, ..., pn〉 of spatio-
temporal points, each being a tuple pi = (loni, lati, tsi) that contains longitude
lon, latitude lati and timestamp tsi of the point. The points of a trajectory are
chronologically ordered, i.e., ∀1 ≤ i < n : tsi < tsi+1

Given a trajectory t we refer to its i-th point pi with the notation t[i], and to its
number of points with t.n. Also, we indicate the longitude, latitude and timestamp
components of point t[i] respectively with the notation t[i].lon, t[i].lat, and t[i].ts.
For a timestamp ts we indicate its associated date and time of the day with date(ts)
and time(ts) respectively.

Definition 3.2.2 (History). The history Hd,d′
u of a user u is the set of trajectories

traveled between dates d and d’: ∀t ∈ Hd,d′
u : d ≤ date(t[1].ts ≤ date(t[t.n].ts) ≤ d′.

Hd,d′
u is denoted Hd,d′

u H u d when d = d’ , and Hu when d = -∞ and d′ =∞.

Our objective is to learn a personal mobility model by observing the personal mo-
bility history. Most of the approaches in the literature related to modeling mobility
behaviors suffer from various weaknesses. Indeed, in order to reduce the complexity
of the problem generated by accurate GPS data, a very common procedure consists
of employing forms of spatio-temporal discretization like a simple spatio-temporal
grid. On one hand, this makes easier to find frequent or interesting areas and mobil-
ity patterns. On the other hand, it affects the precision of the applications they are
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aimed for, since they can only infer areas with a granularity imposed by the apriori
discretization. This weakness sometimes is overtaken by adopting smarter forms of
spatial discretization, like clustering algorithms. Most of these algorithms require a
parameter setting (e.g. the radius to decide when two points should belong to the
same cluster, etc.) that is generally imposed to be equal for all the users. Unfor-
tunately, it has been extensively proved that those kind of settings are frequently
incorrect for the personal data of an individual user and might cause an algorithm
to fail in finding the true patterns, or make the algorithm report patterns that do
not really exist. Finally, also temporal discretization precludes a model from con-
sidering the time continuity. The model we developed tries to overcome the above
limitations, and is able to capture the systematic presences of the user in her most
frequent locations, and the routinary movements that lead the user from a location
to another one. Moreover, the personal mobility model is built (i) without requiring
any apriori spatial or temporal discretization, (ii) in an auto-adaptive fashion and
without the need of any form of parameter tuning for different users, (iii) keeping
time granularity sufficiently fine to approximate continuity. Given a user u and her
history Hu = t1, ..., tn, in the following of this section we define the components of
the personal mobility model Pu .

Definition 3.2.3 (Locations). Given the stops of user u, we define locations Lu =
L1, ..., Lk as a partitioning of her stops into disjoint sets of similar stops.

Besides locations, the mobility of a user is characterized by movements, i.e.,
trajectories with a similar purpose.

Definition 3.2.4 (Movements). Given the history Hu and locations Lu of user u,
we define her movements Mu = M1, ...,Mm as a partitioning of Hu into disjoint
sets such that ∀M ∈ Mu : L,L′ ∈ Lu s.t. M ⊂ Hu,

⋃
M∈Mu

= Hu and M,M ′ ∈
Mu ∧M 6= M ′ ⇒M ∩M ′ = ∅ where ∀m ∈Mu,m = a0, ..., am, s.t.

∑k−1
i=0 |mi| = |Hu|

and ∀M ∈ Mu,∃L,L′ ∈ Lu s.t. start(a) ∈ L ∧ end(a) ∈ L′∨ start(a) ∈ L′∧ end(a)
∈ L.

In other words, a movement is a set of trajectories which start from a location
L and end in a location L′. Each trajectory belongs only to a movement.
The locations and movements can be thought conceptually combined together using
a network data structure which links the elements in a natural way from a mobility
point of view, and is enriched with various spatio-temporal summaries of the original
mobility, generating a individual mobility network :

Definition 3.2.5 (Individual Mobility Network). Given a user u, we indicate with
Gu = (Lu,Mu) her individual mobility network, where Lu is the set of nodes and
Mu is the set of edges. Given an aggregation operator agg, for each node l ∈ Lu we
define the following functions:

• ω(l) = number of trips in Hu reaching location l;

• δ(l) = agg({durations of stops in l});
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Figure 3.2.1: The IMN extracted from the mobility of an individual. Edges represent
the existence of a route between locations. The function ω(e) indicates the number
of trips performed on the edge e, while δ(x) the total time spent in a location x

• ρ(l) = agg({arrival times of trips reaching l});

• πt(l) = agg({durations of trips reaching l});

• πd(l) = agg({lengths of trips reaching l});

Operator agg can return either a single value (e.g. median) or a n-ple (e.g. average
and standard deviation, or quartiles). The same functions are also defined on edges
(movements) m = (li, lj) ∈ Mu in a similar way, this time considering only trips
that start from li and reach lj.

Nodes represent locations and edges represent movements between locations.
We attach to both nodes and edges statistical information by means of structural
annotations: edges provide information about the frequency of movements through
the ω function; nodes provide an estimation of the time spent in each location
through the τ function. To clarify the concept of IMN, let us consider the network
in Fig. 3.2.1. It describes the IMN extracted from the mobility of an individual who
visited 19 distinct locations. Location a has been visited a total of 18 time units (days
in the example), since τ(a) = 18. The edge e = (a, b) has weight ω(e) = ω(a, b) = 20,
indicating that the individual moved twenty times from location a to location b.

The IMN of an individual is an abstraction of her mobility behavior. A location
is an abstract entity without any reference to the geographic space. It can be
interpreted as a subjective point of interest, a place around which the mobility of
that individual gravitates. This allows the modeling of locations that are meaningful
only for that individual, like his home or work place, etc. Accordingly, given the
IMNs of two distinct individuals we are not able to determine whether they have
visited the same location. But it allows to compare the behavior of multiple users
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in different locations.
This, on the other hand, allows us to hide the actual places visited by the individual,
providing a protection layer of sensitive information.

Conclusion

In this section we have introduced IMNs, which represent a fundamental tool for
analysis at the individual level, as it will be testified by the following sections, each
presenting analysis tasks based on them. IMNs easily allow to identify regular travel
habits and to link different parts of the mobility of the individual. Next sections
will also show how further enrichment of basic IMNs is possible through deeper
analysis of the individual data and its combination with collective and contextual
information.
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3.3 Segmentation
Introduction

In mobility analytics one of the fundamental concepts is movement, namely the
part of mobility data that describes a transfer from one place where the individual
(or the object) was staying, to another one were the user will stop. Identifying
movements in the raw stream of positions, for instance the continuous flow of GPS
traces of a vehicle, is essential to many tasks, as it enables the development of
mobility data models [257, 129] and applications like carpooling [127, 36], trajectory
prediction [306] and car crash prediction [126], which are based on stop locations
and the transitions between them.
Errors in identifying stops and movements greatly affect the results of modeling,
and therefore the overall performances.

While it is simple to define a stop in geometrical terms, it is much less clear how
to define significant stops, i.e. stops that might have some meaning for the user (for
instance, stopping to do some activity before leaving), as opposed to stops that are
simply incidental (for instance, due to a small traffic jam).

Practitioners in the mobility analytics domain defined several simple strategies
to select stops in the mobility data stream (a brief account of literature on this topic
is provided in the next section), each of them apparently capturing well some specific
concept or some application-specific idea of stop. For instance, some solutions simply
identify the moments where the object did not move, based on some thresholds, while
others select the stops that have a duration compatible with some specific task, for
instance discarding stops at a supermarket if their duration is physically too short
to be able to enter, buy and exit. However, most existing solutions suffer from two
important limitations: (i) they are based on critical thresholds that the user needs
to choose accurately, and in most cases it is difficult to understand what value is the
best; (ii) such thresholds are global, i.e. the same threshold value applies to all the
individuals, irrespective of any distinctive characteristics they might have or of the
places they visit. The reason of the latter is that, while an overall evaluation might
be performed to select a global threshold, doing that separately for each individual
might be impossible if their number is huge.
In this part of the thesis we try to overcome the limitations highlighted above,
providing a general methodology that inspects the mobility of the individual, and
identifies segmentation thresholds that apparently match their mobility features.
The process allows to get rid of any input parameter, adapts thresholds to each
individual and is completely automatic, thus applicable to large pools of users.
Moreover, we extend the aforementioned approach by observing the typical stops
of other users for areas in which the single individual behavior is not reliable due
to low number of stops, and use the collective behavior to infer a suggested time
threshold for the individual in those areas.

Related Works Segmentation is a technique for decomposing a given sequence
into homogeneous and possibly meaningful pieces, or segments, such that the data in
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each segment describe a simple event or structure. Segmentation methods are widely
used for extracting structures from sequences, and are applied in a large variety of
contexts [297], such as: time series [140, 50], genomic sequences [180, 235, 252],
text [168], video data.
In the latter case, for instance, [200] proposes a trajectory segmentation approach
for image motion, formulating it as an optimization problem aimed at minimizing
the error between the observed motions and the segments approximating them.
However, it is generally adopted in preprocessing steps and it is generally not suf-
ficiently analyzed and evaluated. Various simple approaches are currently adopted
in practice, the most common being based on spatial and/or temporal constraints.
This is the case, for instance, of the application paper in [307] where human tra-
jectories are identified through a predefined rule based on a pair of spatio-temporal
parameters regulating the end of a trajectory and the start of the subsequent one
[131], where the trajectory is divided into subsequent trips if the time interval of
“nonmovement” exceeds a certain threshold. In [344] it is described a change-point-
based segmentation approach for GPS trajectories according to the transportation
means adopting a universal threshold for determining whether a segment is “walk”
or “nonwalk”. The work in [48] presents a theoretical framework that computes an
optimal segmentation through computational geometry methods based on several
criteria (e.g., speed, direction, location disk) that must be satisfied in each partition,
thus making the approach local. However, the approach is rather general and not
clearly applicable to the human trajectory context, where a trip can be complex
and not showing the geometrical/movement uniformity the method looks for. Each
criterion mentioned above corresponds to thresholds that the user must set, without
clear guidelines on how to choose them. Finally, we remark that the implicit ob-
jective of such solutions is to identify the situations where the trajectory physically
stops, regardless of its significance for the user. That allows to overcome the lack
of a specific signal in the input data (e.g. car switch on/off) and the presence of
artifacts introduced by GPS errors (e.g. the coordinates of an object change even
if in reality it does not move), yet it does not distinguish between significant stops
and irrelevant ones, which is a more semantic classification.

The authors of [332] segment the trajectories in two steps. The first segmenta-
tion is performed by means of simple policies aimed at splitting trajectories with
respect to temporal and/or spatial predefined constraints. Then, the trajectories
are divided into stops and moves observing variations of the speed of the object.
If the variations of the speed is below a speed threshold and there is a sufficient
number of observations, then the portion of trajectory is annotated as a stop. The
speed threshold is not general but changes according to the user behavior and also
to the surrounding of the stop. In [277] it is defined a measure of the density of the
points in the neighbourhood of each trajectory point, the Spatio-Temporal Kernel
Window (STKW) statistics. To determine the start and end points of segments, the
algorithm looks for maximal changes in STKW values. The focus of the approach
is on capturing changes of transportation mode, including stops, which are simply
points with low speed.
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Besides to these methodologies, several other solutions to the trajectory segmenta-
tion problem have been proposed in the literature, yet with objectives different from
ours. For example, cost-function based strategies were presented in [163, 162], while
clustering-based ones are introduced in [173, 176], and a method based on interpo-
lation kernels is described in blue[92, 93]. All these approaches are more focused
on splitting a movement into homogeneous parts, rather than discovering significant
stops, which is the purpose of this work.
From a more specific perspective, we can frame our proposal as a methodology for
stop-detection, the segmentation being a consequence of selecting stops as cutting
points. Along this direction, [298] presents a kernel-based algorithm to detect stop
locations and estimate stop durations. The method does not analyze the points
sequentially, and instead builds a kernel density surface from which it extracts lo-
cal maxima that become activity location candidates from which to derive the stay
time. In [6] it is presented an algorithmic framework for criteria-based segmenta-
tion of trajectories through a start-stop matrix that stores the relation between a
trajectory and a criterion. In the criteria-based setting, segments are chosen such
that the movement inside each segment is homogenous w.r.t a given criterion (e.g.,
on speed). The work in [342] describes a solution that derives the users’ activity
locations and times from data collected by their phones (GPS, GSM, WiFi, etc.).
The main steps of the procedure consist in generating a first set of candidate stops
according to predefined spatial/temporal windows, then in checking frequently vis-
ited places and in merging them, and finally in removing extra stops. A refinement
of this procedure is presented in [268]. In [80] it is described a procedure that starts
from fixed atomic segment of a homogeneous state, i.e., not moving or moving very
little), and iteratively extends the segment until a new state is found. Similarly, [68]
illustrates a method for threshold settings for stop detection focusing on periods
of non-movement. In [146] stop points are detected using a density-based spatial
clustering algorithm where a temporal criterion and gaps are also taken into ac-
count. Similarly, in [117] it is proposed a refined version of the DBSCAN clustering
algorithm combined with SVM to identify the activity of stop locations. Finally,
also [151] describes a cluster-centric trajectory segmentation approach exploiting
movement characteristics such as position, direction, and speed of moving objects.
Compared to these solutions, our proposal has a twofold objective, since we aim at
simultaneously labeling a point as a stop and to refine the trajectory among two
consecutive stops.

3.3.1 Trajectory Reconstruction
We start by defining trajectory segmentation based on a spatial and a temporal
threshold, in a way similar to standard approaches in literature.

Definition 3.3.1 (Individual Trajectory). Given a user u, her Individual Trajectory
Tu is the sequence of n points Tu = 〈p1, . . . , pn〉 that describes her position in time,
where each point p ∈ Tu is defined as a triple p = (p.x, p.y, p.t), representing its
spatial coordinates x and y, and the corresponding timestamp t. Moreover, points
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are in chronological order, i.e. ∀1 < i ≤ n.pi−1.t < pi.t.

First of all, we associate to each point a value corresponding to the time needed
to move away from it farther than a spatial threshold:

Definition 3.3.2 (Pseudo-Stop Duration). Given an individual trajectory T =
〈p1, . . . , pn〉 and a spatial threshold σ, the Pseudo-stop duration associated to point
pi is defined as SD(T, i) = min{pj.t − pi.t|i < j ≤ n ∧ d(pi, pj) > σ}, where d
represents the geometrical Euclidean or geographical distance.

Notice that the last point pn will have SD(T, n) = min ∅ =∞. Then, we define
a partitioning of trajectories into segments, each terminating with a point having
an high pseudo-stop duration:

Definition 3.3.3 (Segmented Trajectory). Given a trajectory T = 〈p1, . . . , pn〉, a
spatial threshold σ and a temporal threshold τ , we define the (σ, τ)-segmentation of
T as T σ,τ = 〈S1, . . . , Sm〉, such that:

(i) ∀i s.t. 1 ≤ i ≤ m, Si is a subsequence 〈ps, ps+1, . . . , pe〉 of T
(ii) ⋃m

i=1 set(Si) = set(T ) and i 6= j ⇒ set(Si) ∩ set(Sj) = ∅
(iii) ∀S = 〈ps, ps+1, . . . , pe〉 ∈ T σ,τ , SD(T, e) > τ ∧

∀j s.t. s ≤ j < e : SD(T, j) ≤ τ

where set(I ) = {p ∈ I}.

Conditions (i) and (ii) imply that the segments of the segmented trajectory
of T form a partitioning of the elements of T in the strictly mathematical sense.
Moreover, condition (iii) states that all the points in a segment are movement points,
i.e., their pseudo-stop duration is smaller than the given threshold, excepted the last
point. Therefore, each point in T that has a high pseudo-stop duration will act as
a split point, and corresponds to a distinct partition in T σ,τ . Also, an implicit
consequence of the definition is that partitions are maximal, i.e., they cannot be
extended with additional points and still satisfy the requirements of Definition 3.3.3.

Problem Formulation

Existing trajectory segmentation methods assume that the same rules and the same
parameters should apply to all moving objects. Since different objects can show very
different movement characteristics, the above assumption leads to make choices that
on average fit best the dataset, yet potentially making sub-optimal choices on single
individuals.

Our objective is to overcome this limitation, making the segmentation process
adaptive to the individual and taking into consideration their overall mobility.
Our problem statement extends the traditional formulation of segmentation as a
threshold-based operation, thus the core issue is to find good parameter values for
each user.
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Definition 3.3.4 (Individual Cut Threshold Problem). Given an Individual Tra-
jectory Tu, and a global spatial threshold σ, the problem is to identify the temporal
threshold τ that yields the optimal segmentation T σ,τ .

We notice that the problem definition requires a user-provided parameter σ.
However, as it will commented later in more detail, this is a single global threshold
that only depends on location accuracy and is therefore expected to be rather easy
to select for a given data source type.

In this work we also consider a generalization of the problem, where each user
is actually associated to a set of thresholds instead of just one. In particular, we
assume that the correct temporal threshold can depend on where the user is moving
in each specific moment. We do that by first revising our definition of segmentation:

Definition 3.3.5 (Space-Adaptive Segmented Trajectory). Given a trajectory T =
〈p1, . . . , pn〉, a space partitioning G that maps points to geographical cells, a spatial
threshold σ and a function τG : G→ R that associates a temporal threshold to each
cell in G, we define the (σ, τG)-segmentation of T as T σ,τG = 〈S1, . . . , Sm〉, such that:

(i) ∀i s.t. 1 ≤ i ≤ m, Si is a subsequence 〈ps, ps+1, . . . , pe〉 of T
(ii) ⋃m

i=1 set(Si) = set(T ) and i 6= j ⇒ set(Si) ∩ set(Sj) = ∅
(iii) ∀S = 〈ps, ps+1, . . . , pe〉 ∈ T σ,τ , SD(T, e) > τG(G(pe)) ∧

∀j s.t. s ≤ j < e : SD(T, j) ≤ τG(G(pj))

whereset(I ) = {p ∈ I}.

The change basically consists in replacing the fixed threshold τ of the user with
a set of values, one for each geographical cell visited by the user, formalized as a
function from cells to thresholds. The problem now, therefore, becomes how to find
the assignment of thresholds τG.

Definition 3.3.6 (Individual Space-Adaptive Cut Threshold Problem). Given an
Individual Trajectory Tu, a space partitioning G and a global spatial threshold σ,
the problem is to identify the set of temporal thresholds τG that yields the optimal
space-adaptive segmentation T σ,τG.

Since the number of moving objects can be very large, the process must be
completely automatized and require no human intervention. In Section 3.3.2 we will
introduce a simple and effective approach to solve the first problem, and thus find
a suitable value of τ for each user, also providing some basic guidelines to choose a
value for the global spatial parameter. Then, Section 3.3.3 will revise the approach
to tackle the space-adaptive problem definition, considering a more flexible context
where the temporal threshold of a user can also change based on the areas visited,
thus in principle yielding different values for different spatial locations.
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3.3.2 Self-Adaptive Trajectory Segmentation
The first solution proposed for the individual cut threshold problem consists in
fixing the spatial threshold to a global value (i.e. to be used for all users) and then
in studying the segmentations that we would obtain by applying different temporal
thresholds. We will start describing the process for choosing the temporal threshold,
which is the central part of the solution, and later discuss how the spatial one can
be chosen.

Methodology

When very small values of τ are used, the segmentation obtained will contain a
huge number of very short segments, till the extreme case where each point forms
its own segment. As the threshold is increased, more and more segments will merge
together, since some of the former splitting points will fall below τ . The process
is expected to gradually enlarge the trajectory segments by first including simple
slowdowns (i.e. not really stop points), then temporary stops (e.g. at traffic lights),
and so on.
Our approach consists in (virtually) monitoring such progression, and detecting the
moment where an anomalous increase in the number of segments is observed, which
represents a sort of change of state. This follows the same kind of idea adopted in
various unsupervised classification contexts, such as the knee method for deciding
the number k of clusters for the k-means algorithm [294], or analogous solutions to
choose the radius for density-based clustering (e.g. DBScan).

In our solution, rather than relying on visual or similar heuristic criteria, we will
base the threshold selection on a statistical test. In particular, we will adopt the
Modified Thompson Tau Test [47] which, basically, checks whether a given value fits
the distribution of the rest of the data or not [128]. Since we look for anomalous
values in a sequence, we apply the test iteratively, comparing each value n(t) (the
number of segments obtained with τ = t) against the values n(t′) obtained for
larger thresholds t′. This process yields a set of thresholds that have an anomalous
number of partitions as compared to the successive thresholds. Among them, we
simply choose the smallest one, thus deciding to select the segments that emerge at
the first change of state, also representing shorter and finer granularity movements.

The procedure, named ats (self-Adaptive Trajectory Segmentation) is summa-
rized in Algorithm 1. Step 1 collects the pseudo-stop durations SD of all the points
i of the input trajectory, and step 2 computes the frequency F of each value, basi-
cally representing the number of new segments obtained using that value as τ w.r.t.
the previous smaller thresholds. In our implementation such frequency distribution
is computed through smoothed histograms, grouping values into bins of 1-minute
width. Figure 3.3.1(left) shows the frequency distribution of a sample trajectory,
the vertical line corresponding to a possible cut point. The resulting set of seg-
ments obtained is described in Figure 3.3.1(right) in terms of segments duration.
Finally, step 3 applies the Modified Thompson Tau Test to all possible cut thresh-
olds, corresponding to all the non-zero values of frequency function F , to identify
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Figure 3.3.1: Frequency distribution of pseudo-stop durations for a user trajetory
(left), and the durations of the segments obtained using a specific threshold to cut
the trajectory (right). The threshold used corresponds to the vertical line on the left
image.

the frequency values that appear to be anomalous with respect to the frequency of
larger thresholds. Among all these candidate thresholds, step 4 selects the smallest
one as value for τ .

Computational Complexity. The cost of Algorithm 1 is dominated by step
1, since the computation of each pseudo-stop duration (SD) could in principle re-
quire to scan all the remaining points of the individual trajectory, thus yielding a
O(n2) cost, where n is the size of the individual trajectory. However, in practical
applications the trajectory portion needed for each SD is relatively small, leading
to a quasi-linear cost. The remaining parts of the algorithm can be realized in lin-
ear time, including the Modified Thompson Tau Test, which can be computed for
each point through incremental updates, and considering that the actual size of F
(namely, not considering empty bins where F (a) = 0, which can be simply omitted)
is at most n = |T |.

Algorithm 1: ats(T , σ)
Input : Individual trajectory T , spatial threshold σ
Output: Cut threshold τ

1 S = 〈 SD(T, i) | 1 ≤ i ≤ |T | 〉;
2 F = frequency distribution of S values with 1-minute bins

(F (a) = |{a ∈ S}|);
3 C = {t|t ∈ range(F ) ∧ TT (F (t), 〈F (t′)|t′ > t〉) = true}; TT (a,B) =

Modified Thompson Tau Test of a vs. set B
4 return minC
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Fixing the spatial threshold

In our approach, the threshold σ represents the minimum distance between two
(consecutive) points that can be considered as a movement, and the temporal pa-
rameter is indeed measured as the time needed to make a movement. A simple way
to fix its value is to adopt the minimum value that, according to the accuracy of our
dataset, cannot be mistaken for a positioning error, for instance due to GPS uncer-
tainty. In our experiments we adopt road vehicle GPS traces that are expected to
have errors not larger than 10 meters, therefore we could fix σ = 20 (the worst case
distance between two points that have the maximal error in opposite directions).
We decided to slightly increase it to 50 in order to stay on the safe side, also to take
into account that errors are slightly higher than average in urban centers, which is
the application context where our experiments are performed. Since we do not have
data sources from other kinds of transport (ships, planes, etc.) the selected thresh-
old seems to meet our purposes. However, empirical results confirm that the value
of the global parameter σ is not critical, as our approach shows a low sensitivity
to it. For this reason, the value we chose in our experiments (50 meters) can be
considered a good guess for generic vehicle GPS data. Other data sources with a
higher spatial uncertainty might require larger values, to be ascertained through a
(one-shot) analysis of the data produced.

3.3.3 Individual and Collective Adaptive Trajectory Seg-
mentation

The solution described in the previous section strictly follows the problem formula-
tion of (σ, τ)-segmentation given in Definition 3.3.3, thus implicitly assuming that a
user has a single, optimal threshold that applies well in any area where they move.
Clearly, common sense suggests that this is an artificial assumption, and the thresh-
old that is correct for a user in a given place, might be not optimal for the same
user in a different location.
To loosen such assumptions, we adopt here the more general notion of space-adaptive
segmented trajectory, introduced in definition 3.3.5, and a corresponding strategy
to adapt the thresholds also to geographical locations.
The problem, now, consists in finding for each user an assignment of thresholds τG
that provides a (potentially different) threshold value for each geographical cell in
the space partitioning G. We identify here three possible approaches:

1. Local individual approach: following the same idea of ATS, we could restrict
the statistical test used to fix the threshold τ only to the points of the user
that fall in a given cell g ∈ G. While very appealing, empirical evaluations
show that the data samples associated to each cell are too small to apply
the test, with very few exceptions. For this reason, alternative solutions were
considered.

2. Local collective approach: this solution assumes that the time threshold τ is
actually a function of the location, and does not directly depend on the user.
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Therefore, each cell g is associated to a data sample composed of all the points
of all users that fall in g. This greatly increases the sample size, yet losing the
identity of the single user.

3. Wisdom-of-the-crowd collective approach: the idea here is that each user brings
an opinion about what is the correct threshold, built from their own mobility
data (and therefore their own τ found through ATS), and over each cell g
all users vote for the best local threshold value, each vote having a weight
proportional to the frequency of visit of the cell. This is a simple application
of the classical “wisdom of the crowd” principle [108].

Approaches 2 and 3 provide a candidate threshold value τ ∗ for a user in a given
cell, which can be seen as a suggestion that all users provide as alternative to the
individual value τ . Our proposal is to replace τ with τ ∗ whenever the former has a
weak relation with the cell, i.e. for those locations that the user visited only rarely,
and that therefore were not significantly involved in the computation of the global
τ . Both collective approaches result into a mapping GC : G → R that associates
each geographical cell in G to a suggested τ ∗. The procedure that implements
the management of such suggestions is the same for both approaches, is named
acts (self-Adaptive and Collective Trajectory Segmentation), and is summarized in
Algorithm 2.

Algorithm 2: acts(T , σ, GC , min_stops)
Input : Individual trajectory T , spatial threshold σ, Cell grids and

associated collective threshold multisets GC , Minimum number of
stops min_stops.

Output: Cut thresholds η
1 τ = ATS(T, σ);
2 GI = { (g, freq) | g ∈ GC ∧ freq = |{p ∈ T |p ∈ g}| }; // visited cells and

frequency
3 η = ∅;
4 for (g, freq) ∈ GI do
5 µ = mode(S) for (g, S) ∈ GC ;
6 if freq ≥ min_stops then
7 η = η ∪ {(g, τ)}; // individual threshold prevails
8 else
9 η = η ∪ {(g, µ)}; // collective threshold prevails

10 return η

Besides the individual user trajectories T and the spatial threshold σ, the acts
procedure takes as input the cell grid GC containing the peudo-stop times of all
the observed users grouped per cell, and the minimum number of stops min_stops
that an individual user can have in a cell in order to consider the cell “frequently
visited”. In the first step, acts retrieves the user adaptive threshold τ . After that, it
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identifies the subset GI ⊆ GC of cells visited by the user, with their visit frequencies.
Then, for each cell g (lines 4–10), if the cell is frequently visited, i.e., the user has in
that area at least min_stops points, then the individual global threshold τ is used
(line 7), otherwise we take the most frequent value among those associated to the
cell g (lines 5 and 9).

In order to specify what kind of threshold suggestions we are using in the acts
procedure, we will refer to it as actsLocal when GC is obtained through the lo-
cal collective approach (number 2 of the list above), and as actsWOTC when the
Wisdom-of-the-crowd approach is used.

Spatial Grid Definition. In principle, any definition of grid G can be applied
to acts, provided that it is a partition of space that covers all points in our users’
trajectories. In our experiments we opted for a regular grid, which is the most com-
monly adopted solution in literature, and in particular we implemented it through
a standard geohashing. Geohash [210] is a very efficient mapping of locations into
rectangular grids, and allows to change its spatial granularity in a transparent way.
Its main limitation is in the fact that grids are predefined worldwide, and the spatial
granularity can be changed in a limited set of configurations, the size of each cell
doubling when we move from one granularity level to the next one. Other, more
sophisticated space partitioning strategies are used in literature, such as regular
exagonal grids [283] of quad-tree based adaptive partitioning [101], yet evaluating
all of them is out of the scope of this thesis. Given an encoding length h, Geohash
associates each pair of latitude-longitude coordinates to a string of h letters and
digits, which corresponds to define a partitioning into square or rectangular cells,
each cell corresponding to the set of points that have the same encoding. In partic-
ular, we will consider three levels: h = 5, resulting into cells of diameter ∼ 4.8 Km;
h = 6, with diameter ∼ 1.22 Km; and h = 7, with diameter ∼ 0.152 Km.

Algorithm 3 summarizes the overall process, including the generation of grid G
and collective suggestions GC , for both variants of acts.

Evaluation Measures

The reconstruction error generally used for evaluating segmentation problems [43]
just measures how well each segment can be approximated with one value, and
thus seems not to fit with trajectory segmentation. Therefore, similarly to clus-
tering evaluation, we propose three internal evaluation measures [294]. Let T be
the sequence of n points and TS = 〈S1, . . . , Sm〉 its segmentation. We denote with
At = duration(T ) = pn.t− p1.t the total elapsed time from the first point of p1 ∈ T
to the last point pn ∈ T , and Ad = length(T ) = ∑n−1

i=1 d(pi, pi+1) the total distance
covered by the trajectory, computed by considering every couple of subsequent points
in T . Let Mt = ∑

Si∈TS
duration(Si) be the sum of the segments’ duration, i.e., the

time spent driving, andMd = ∑
Si∈TS

length(Si) be the sum of the segments’ length,
i.e., the distance traveled. Then, we define the following measures:

• time precision: TP = 1−Mt/At

• distance coverage: DC = Md/Ad
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Algorithm 3: actsALL(Method, T , σ, h, min_stops)
Input : Method to apply (Local or WOTC), Individual trajectories of all

users T , spatial threshold σ, geohash level h, Minimum number of
stops min_stops.

Output: Segmented trajectories T ∗
1 G = {geohash(lat, lon)|T ∈ T ∧ (lat, lon) ∈ T};
2 if Method = ‘Local’ then
3 GC = {(g, τ ∗)|g ∈ G ∧ S = 〈SD(T, i)|T ∈ T ∧ T [i] ∈ g〉 ∧ τ ∗ =

ATSgeo(S, σ)};
4 if Method = ‘WOTC’ then
5 GC = {(g, τ ∗)|g ∈ G ∧ S = 〈ATS(T, σ)|T ∈ T ∧ T ∩ g 6= ∅〉 ∧ τ ∗ =

mode(S)};
6 T ∗ = ∅;
7 for T ∈ T do
8 τG = ACTS(T, σ,GC ,min_stops);
9 T ∗ = T ∗ ∪ T σ,τG ; // (σ, τG)-segmentation, see Def. 3.3.5

10 return T ∗

• mobility f-measure: MFβ = (1 + β2) · TP · DC/((β2 · TP) + DC )

Time precision and distance coverage capture two conflicting effects of segmenta-
tion, namely the time covered by stops and the distances covered by the segments
(i.e. the movement points). Indeed, a very aggressive segmentation will identify a
large number of stop points, yielding a high time precision, yet this will make seg-
ments shorter, significantly reducing the distance coverage. Similarly, a very loose
segmentation will yield exactly the opposite results. Any segmentation choice will
yield a trade-off between them. Analogously to the f-measure adopted in Informa-
tion Retrieval, which is a combination of precision and recall measures, our mobility
f-measure accounts for both aspects simultaneously. In the experiments we adopt
β = 0.25, which weighs time precision higher than distance coverage by augmenting
the relevance of missing precision in stop detection. The reason is that i) it is rel-
atively easy to guarantee an high distance coverage, and ii) the main focus of the
work is on the temporal aspects of trajectory partitioning.

3.3.4 Experiments
We experimented the proposed trajectory segmentation approaches ats and acts
over real datasets of GPS vehicle traces. The results commented in the following refer
to 2000 users of the area of Rome (Italy), and London (UK). The means and standard
deviations of the sampling rate for the users analyzed are 12194.67± 22575.66 and
4385.76 ± 9359.14, for Rome and London respectively. The high values and their
high variability is due to the presence of several long time gaps, typically due to
parking periods.
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Figure 3.3.2: Time threshold distributions for trajectories obtained with ats in
Rome and London. The peaks show the ideal thresholds to be set to build the trajec-
tories.

In the following, we first analyze the personal temporal thresholds returned by
ats, and then provide a quantitative and qualitative evaluation of the results for
understanding the benefits of the novel method with respect to existing ones. We
compare, in particular, against the common trajectory segmentation method based
on fixed parameters (ftstemp-thr) as proposed in [307]. Moreover, we consider a
baseline consisting in a random trajectory segmentation method that splits the se-
quence of points T = 〈p1, . . . , pn〉 into m equal-length segments (i) with m randomly
extracted between 2 and n/2 (rts1), or (ii) with m set to the number of segments
returned by ats (rts2).

Next, we show the results obtained with the two variants of acts, actsLOC
and actsWOTC , thus evaluating the impact of considering geography and collective
behaviors in the definition of individual temporal thresholds. Here, we compare our
proposed solutions against a state-of-the-art approach for trajectory segmentation
exploiting a completely different strategy but relying exactly on the same input data
format. We name heh-d the proposal described in [146] for detecting stop points
using the DBSCAN method. In summary, heh-d first runs DBSCAN on the GPS
observations only considering the spatial dimension. Then, it further separates the
points in each cluster that have a temporal gap between each other larger than q
seconds, and turns into noise the spatio-temporal clusters composed by less than
k points. Finally, all the noise points are sorted chronologically and modeled as
trajectories while those in the clusters are treated as stop points. According to the
suggestions in [146], we adopted the following parameters setting: min_pts = 5,
ε = 50 meters, q = 210 seconds. Also, for the parameter k we evaluated all values
between 2 and 6, and eventually selected k = 2 since it yields the best results in terms
of mobility f-measure. Additionally, we also experimented with a variant of this
method that replaces DBSCAN with OPTICS, named heh-o in the experiments,
for which we adopted the same parameters specified for heh-d. The idea is that
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method MF .25 TP DC ratiosr #segms (avg ± std)
ats .951 .951 .981 0.049 837.34 ± 854.52

fts120 .925 .996 .456 0.015 592.26 ± 652.78
fts1200 .948 .947 .997 0.053 746.28 ± 733.96
rts1 .279 .268 .722 0.700 2094.85 ± 2472.36
rts2 .124 .118 .877 0.883 899.59 ± 926.03

Table 3.3.1: Evaluation on Rome data. The first three columns show the measures
illustrated in Section 10. The fourth one reports the ratio between the average sam-
pling period of non-stop points over that of all points, and the last column is the
number of segments.

method MF 25 TP DC ratiosr #segms (avg ± std)
ats .955 .953 .999 0.047 433.92 ± 513.72

fts120 .958 .961 .944 0.040 1131.83 ± 1431.81
fts1200 .952 .950 .999 0.050 359.55 ± 410.61
rts1 .267 .256 .695 1.007 2833.72 ± 4203.05
rts2 .035 .033 .958 1.008 445.65 ± 527.97

Table 3.3.2: Evaluation on London data. The first three columns show the measures
illustrated in Section 10. The fourth one reports the ratio between the average sam-
pling period of non-stop points over that of all points, and the last column is the
number of trajectories.

OPTICS typically performs better than DBSCAN when clusters in the data have
variable densities, and that might help improving the quality of the segmentation.

Finally, we conlcude the section with an evaluation of run times of our methods
when the number of users and the duration of their trajectories vary.

Self-Adaptive Temporal Threshold (ats)

We observe in Figure 3.3.2 the distribution of the time thresholds selected by ats
for each user (vertical axis represents value frequencies in log-scale).

Although every user has her own mobility with its own mix of regular and more
erratic behaviors [231], we observe two clear peaks in the distributions for both Rome
and London. This means that ats mainly recognizes two different types of users
regarding to the minimum duration of the stops. This supports the intuition behind
our approach, namely to have a self-adaptive procedure selecting a personalized
best temporal threshold for each user. Selecting one single threshold value for all
the data might negatively affect the segmentation of some users, partitioning their
trajectories either too much or too little. The first peak is at about 600 seconds
(∼ 10 minutes), while the second peak is around 1200 seconds (∼ 20 minutes).
These values correspond to the temporal thresholds that the ats procedure uses to
cut each trajectory. There is also a minority of users having values relatively far
from the peaks.
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Figure 3.3.3: Boxplots for the MF .25 results. On the Rome data ats yields better
results than the fts solutions, while in London all three produce almost the same
results. The variability of ats results is consistently smaller than the other methods,
which is a sign of robustness.

Comparison of Evaluation Measures In this section we compare the ats ap-
proach with the baseline methods taken into account. In Tables 3.3.1 and 3.3.2
we report the results obtained on our two cities. The first three columns show the
evaluation measures described above. The fourth column shows the ratio between
the average sampling period of movement points (thus discarding the stop portions
of the user’s trajectory) and the average sampling period of the full trajectory, while
the last one reports the average number of segments obtained and its standard de-
viation. In general, we can observe that the best results were obtained with the ats
and fts methods, both for Rome and London. Analyzing the ratio (fourth column)
we can see that values are low for both ats and the fts ones, meaning that the
long stops are ignored (i.e. they are recognized as real stops) and just the short ones
are considered. On the contrary, with the random approaches the ratio is bigger
because the algorithm function evaluates all stops in the same way. Looking at the
number of segments it is possible to note that fts and ats methods produce differ-
ent quantities, especially the fts120 produces less segments in the Rome case and
much more in London. About the last two approaches, the rts1 method works with
a random number of segments, so it is normal that the final result differs from the
others, while the rts2 takes as number of segments the same of the ats approach
so we aspect to achieve similar results.

For the evaluation measures we can see that ats reached the goal we expected,
i.e. yielding a quality of results which is always comparable or higher than fixed-
threshold approaches and more robust. Indeed, for both Rome and London the
values obtained by ats are compatible with the fts results, even better in the
MF .25 for Rome and in the distance coverage for London. In particular, in the
Rome example, having a high MF .25 values means that also the time precision and
the distance coverage are well correlated, leading to satisfying result. Looking at the
fts120 results, we can note that the time precision is high but the distance coverage
is very low, because the algorithm builds short trajectories with few points. An
analogous reasoning can be done analyzing the fts1200 method, which produces
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Figure 3.3.4: Distributions of average number of points per segment obtained by
ats.

an excellent distance coverage score but a lower time precision. The ats solution
reaches a good balance, thanks to its adaptive behaviour that allows to control
and correct the trajectory fragmentation, and all its evaluation measures are always
either the best or the second best of the group.

For a better understanding of the quality of ats, the distribution of MF .25 values
for the different approaches on the two datasets is shown in Figure 3.3.3 through a
boxplot visualization. For the Rome case we can observe that with the ats approach
the median value is the highest (closest to 1) and the inter-quartile range is smaller
than the other two, meaning that we have a smaller variabiliy and thus more robust
results. The London case appears to be different, and the best MF .25 values are
obtained with the fts1200, although the median is very similar to ats and the
box is only slightly narrower. This indicates that in some contexts the flexibility
introduced by ats might be not required, and it only reaches performances similar
to those of simpler solutions.

Comparison of Segmentation Statistics In the following we analyze other
statistical indicators on the trajectory segments extracted by the various methods.
Indeed, discovering some hidden correlations between trajectory features and the
segmentation approach could lead to a better understanding of the problem and
highlight other relevant aspects. In Figure 3.3.4 we report the distributions of the
average number of points per segment for Rome and London. For all methods,
the majority of segments have less than 20 points, probably meaning that most of
the trips take place within the city. However, in the distribution tails some long
trajectories with more points emerge. We observe that the distribution peaks of
ats place somehow in between the peaks of the two fts variants (though closer to
fts1200, especially in London) thus finding a trade-off between them. Moreover, we
can see that the distributions are different in the two cities: London has a wider
distribution than Rome, meaning that the first one has a larger variety of trips.

Figure 3.3.5 shows the distributions of the average number of segments per user.
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Figure 3.3.5: Distribution of the number of trajectory segments over Rome (top)
and London (bottom) with each segmentation method (on the columns, grouped by
family).

Figure 3.3.6: Distributions of the average length (top) and duration (bottom) for
the trajectory segments returned by ats (left) and fts (right) for the area of Rome.

In London most of the users have less than 20 trajectory segments. The peak of
the distribution is between 5 and 10. Between 30 and 100 segments the distribution
remains stable at a small value larger than zero. In Rome we observe a similar result
with a peak between 15 and 20. Also in this case, the peak of ats distribution tends
to stay in the middle of the fts ones.

In Figure 3.3.6 we compare the distribution of average length and average dura-
tion of the segments returned by ats (left) and fts (right) for the area of Rome.
With the ats method the peak value is around 10km, thus confirming that most of
the trips are short, and likely to take place around the city. With the fts methods
the peak position depends on the temporal threshold imposed: with a threshold
of 1200 seconds the average distance is similar to ats, while with 120 seconds it
becomes lower and close to 5 km. The results for the rts methods are omitted,
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Figure 3.3.7: Trajectory segmentation returned by fts1200 (left) and ats (right).
The user is traveling from South to North. Top: spatial representation showing the
trajectory segments. Center: temporal segmentation showing the inter-leaving time
between GPS points. Bottom: zoom on the service area highlighted in the top maps
where the user probably stops for ∼ 15 minutes. Best viewed in color.

since their plots are very similar to fts. Also, the plots for London show exactly
the same behavior observed on Rome.

In terms of segments duration, ats yields a distribution with a peak around
1200− 1500 seconds (∼ 20− 25 minutes). With the fts methods the peaks change:
for fts120 the peak is around 500 seconds while for fts1200 the peak is centered in
1800 seconds. Also in this case, the results on London are very similar and omitted
here.

Case Study

In this section we show qualitatively on a case study the effectiveness of ats with
respect to fts. In Figure 3.3.7 we report the segmentation returned by fts1200 [307]
(left) and by ats (right), the user is traveling from south to north. fts1200 returns
two trajectories (green and blue), while ats returns three trajectories (green, orange
and blue). The second line of plots reports the time gap between consecutive GPS
points. The colors match the trajectory segments, while stops are highlighted in
red. We observe how ats identifies the short stop of less than 15 minutes at the
service area similarly to the subsequent longer stop. On the other hand, fts1200
considers the first stop as part of the green trajectory. The map in the bottom
line of Figure 3.3.7 shows the service area which is very close to the GPS points
reported on the bottom right corner of the map. This case study highlights how
various existing stops under a certain predefined threshold can be missed with a
segmentation approach like fts, while a more data-driven and self-adaptive method
like ats is able to take into account specific user behaviors and return more detailed
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results.

Individual and Collective Adaptive Temporal Threshold (acts)

In this section we show the impact and improvements given by the acts methods
exploiting the collective behavior over ats. First of all we choose a reference geohash
precision looking for a trade-off between the geographical granularity and the number
of pseudostops collected in the cells. We opt for a geohash precision of h = 6
corresponding to an area of size 1.22km × 0.61km. As shown in the next sections,
values h = 5 and h = 7 yield very similar results, suggesting that any value of h
around 6 appears appropriate for this kind of data. The set G of cells obtained this
way are used by Algorithm 3 to compute local suggestions for time thresholds by
collecting the pseudo stops of all the 2000 users in the dataset under consideration.
Then, for the actsLOC method a distribution of pseudo-stop durations for every cell
is created, which will later pass through the Thompson test. Both acts strategies
require to define the minimum number of points (visits) of a user in a cell that make
it significant for them. In order to avoid any manual setting, after a preliminary
experimentation we decided to derive it directly from the distribution of pseudo-
stops durations of the dataset, fixing it to its 50-th percentile. In our dataset, in
particular, that corresponds to min_number = 5, meaning that when a user passes
in a given cell, if they have at least 5 points inside it, for that cell we can use their
own individual time threshold computed by ats; otherwise, we will use the collective
threshold assigned to the cell.

We report in Figures 3.3.8 and 3.3.9 the distributions of the time thresholds
selected respectively by actsLOC and actsWOTC (Rome dataset on the left and
London on the right) for each user (vertical axis represents value frequencies in
log-scale). Similarly to Figure 3.3.2, we can observe two peaks in the distributions
at about 600 seconds (∼ 10 minutes) and 1200 seconds (∼ 20 minutes) for both
cities. Compared to Figure 3.3.2, the two acts variants show a lower variability
and more focused distributions. actsLOC and actsWOTC produce almost identical
distributions, however, as will be shown later, their threshold assignments (and
therefore the trajectory segmentations they imply) are actually different.

Impact of acts strategies In this section we provide a first evaluation of the im-
pact of the selection strategies adopted in the two acts variants to assign threshold
values to grid cells and, as effect, to individuals over those cells. Figure 3.3.10 shows
the spatial distribution of the number of points (and, therefore, of pseudo-stop dura-
tion values associated) that fall in the cells of the two observed areas. In both cases,
cells are obtained with a geohash precision h = 6. We notice that in the London
dataset (right) the higher number of stops are mainly located along locations with
high population density and within the urbanized areas. On the other hand, the
Rome data (left) shows high values also along the main roads, and covers an area
which is larger than the city itself (southern section of the picture), touching a part
of Lazio (outside the city) and a part of Tuscany.
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Figure 3.3.8: Time threshold distributions for the users obtained by actsLOC in
Rome and London. Compared to ats, the distributions are more concentrated on
the two peaks.

Figure 3.3.9: Time threshold distributions for the users obtained by actsWOTC in
Rome and London. The overall distributions are very similar to actsLOC .

The plots in Figure 3.3.11 compare the temporal thresholds that ats and actsWOTC
associate to each user for each cell they visit (remind that the value assigned by ats
will be the same for all the cells of a user, while actsWOTC yields cell-dependent
thresholds that will substitute the ats value when the cell is poorly visited by
the user). In both cities we can see that the differences, and thus the impact of
actsWOTC over ats, is significant and approximately symmetric, i.e. sometimes
the initial ats threshold is increased, some other times it is decreased, with an over-
all balance between them. The corresponding plots for actsLOC vs. ats are very
similar to the previous ones, and is therefore not reported here.

As mentioned above, the geohash precision is in principle a parameter that should
be chosen by the user. In order to evaluate the sensitivity of the approach over such
precision, we show in Figures 3.3.12 and 3.3.13 the same scatter plot replicated with
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Figure 3.3.10: Points distribution in Rome and London datasets over the geohash
grid (h = 6).

Figure 3.3.11: - Comparison of actsWOTC vs. ats thresholds for all user-cell pairs,
on Rome (left) and London (right). In both cases the difference appear significant
and overall symmetric.

precision h = 5, corresponding to cells of twice the area w.r.t. the previous case,
and h = 7, corresponding to cells of half the original area. As we can see, the impact
remains virtually the same as h = 6, suggesting that this is not a critical parameter
– although values much smaller or much larger than these are expected to be not
effective, since very small ones yield huge cells potentially covering entire cities, and
very large ones create cells that are too small to capture significant amounts of
points.

Comparison of Evaluation Measures In the following we first compare the
acts methods against ats, and later we compare their performances with those
of the two variants of the competitor considered, namely heh-d and heh-o. All
evaluations are based on the metrics defined earlier.
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Figure 3.3.12: Comparison of actsWOTC vs. ats thresholds for all user-cell pairs,
lowering the precision value (h = 5), on Rome (left) and London (right). In both
cases the difference appear significant and overall symmetric.

method MF 25 TP DC ratiosr #segms (avg ± std)
ats .9513 .9507 .9876 0.0462 851.551 ± 717.173

actsLOC .9587 .9654 .9174 0.0379 946.743 ± 785.998
actsWOTC .9514 .951 .9856 0.0459 857.157 ± 713.349

heh-o .1560 .1538 .7874 0.0313 2400757.281 ± 2760922.811
heh-d .1877 .1308 .8586 0.0511 2244814.994 ± 3521517.705

Table 3.3.3: Evaluation on Rome data. The first three columns show the measures
illustrated in Section 10. The fourth one reports the ratio between the average sam-
pling period of non-stop points over that of all points, and the last column is the
number of segments.

Comparing our approaches, in Table 3.3.3 we observe that actsLOC improves
the performance of ats in terms of MF .25 and TP for Rome dataset. On the other
hand, in Table 3.3.4 we can see that on the London dataset all three approaches
are comparable in terms of performance, reaching higher levels of DC compared
to Rome. In terms of sampling ratio (fourth column) the acts methods show an
improvement against ats, since their lower value (more pronounced for actsLOC ,
and a bit marginal for actsWOTC ) means that the former create trajectories with
smaller internal time gaps. In addition, by analyzing the number of segments (last
column) we can see that values for actsLOC are higher than ats and those for
actsWOTC are comparable, though slightly higher and with a slightly lower standard
deviation. These factors, combined with the smaller ratiosr of acts methods with
respect to ats, imply that overall the local and wisdom of the crowd mechanisms
suggest more changes towards smaller thresholds, therefore leading to more splits.

Figure 3.3.14 reports the MF .25 for all our approaches and the fts baselines
as boxplots. For the Rome case we can observe that the distribution of values of
actsWOTC is similar to ats, only slightly more compact, while that of actsLOC has
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Figure 3.3.13: Comparison of actsWOTC vs. ats thresholds for all user-cell pairs,
increasing the precision value (h = 7), on Rome (left) and London (right). In both
cases the difference appear significant and overall symmetric.

method MF 25 TP DC ratiosr #segms (avg ± std)
ats .9547 .9523 .9991 0.0480 433.612 ± 525.916

actsLOC .9538 .9517 .9983 0.0472 477.971 ± 588.472
actsWOTC .9545 .9523 .9991 0.0478 433.652 ± 525.845

heh-o .3660 .3492 0.7513 0.0561 66389.061 ± 150547.085
heh-d .8877 .9140 .8401 0.0459 242882.126 ± 963253.651

Table 3.3.4: Evaluation on London data. The first three columns show the measures
illustrated in Section 10. The fourth one reports the ratio between the average sam-
pling period of non-stop points over that of all points, and the last column is the
number of segments.

slightly higher median and a significantly smaller inerquartile range. The differences
in London are much less visible. In summary, the evaluation measures suggest that
the acts methods achieve a small but interesting improvement over the basic ats.

The last two lines of Tables 3.3.3 and 3.3.4 show the measures obtained with
the two competitors. We can observe that there is a great discrepancy between
them and those obtained with our methods, suggesting that, on our dataset, the
clustering-based methods are not able to segment trajectories in an effective way. In
particular, both heh-d and heh-o produce highly fragmented segments (see their
huge number of segments yielded) leading to a medium-low distance coverage and a
very low time precision – the only exception being heh-d on London, which however
further shows how its behaviour is unstable. Figure 3.3.15 reports the boxplots
showing the distribution of MF .25 for the different approaches. We immediately
notice that the scores obtained by heh-o and heh-d are significantly worse than
the others. In light of the results obtained, we will not discuss these two competitors
any further in this work, focusing instead on the behaviour of the other methods.
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Figure 3.3.14: Boxplots for MF .25. On the Rome data actsWOTC yields results sim-
ilar to ats, while actsLOC significantly improves them. On London the differences
are less pronounced.

Figure 3.3.15: Boxplots for MF .25. In this case it is possible to see the comparison
in terms of performance between our approaches and the DBSCAN and OPTICS
cluster methods. In both cases the performance of the cluster methods are visibly
worse than those achievable with ats and acts.

Comparison of Segmentation Statistics Similarly to what done in Section 3.3.4
for ats, in the following we analyze other statistical indicators on the trajectory
segments extracted by the acts methods. In Figure 3.3.16 we report the distribu-
tions of the average number of segments per user and points per segment for Rome
(top) and London (bottom). The average number of segments per user (first col-
umn), highlights that in Rome ats and actsWOTC yield similar distributions, while
actsLOC generates more users with an high number of segments. In London the
distribution is more skewed towards low numbers of segments, again with actsLOC
with a peak on higher values. In terms of number of points per segment (right
column), we can see that in Rome most segments have between 5 and 15 points, yet
actsLOC shows a more concentrated peak on 5-10 points, which is coherent with the
previous results (more segments are generated, and consequently they are shorter,
on average). Something similar happens in London, now the concentration of values
being between 15 and 30 points.
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Figure 3.3.16: Distribution of the number of segments, points and trajectories (from
left to right) over Rome (top) and London (bottom).

Run times analysis We present here some performance experiments regarding
the scalability of our proposed methods w.r.t. the number of input trajectories (i.e.
users) and their duration. In the first experiments, we test how the running time
changes by varying the number of users in a range from 200 to 2000 (in steps of
200 and 250) while in the second ones we test it by varying the number of months
covered by the data. In particular, in the last case we start from the data of a
single month (January) and gradually add the next months one by one, obtaining
12 different datasets. These tests were made on the three ats/acts approaches we
proposed, compared with the two methods used as baseline (fts and rts). The
experimental results for both Rome and London are shown in Figure 3.3.17. As it is
possible to notice, the trends of fts and rts are linear and very low in both plots,
confirming that their simplicity yields very fast executions. As expected, ats and
acts have much higher computation times, yet their trends appear to be linear or
quasi-linear w.r.t. both the dimensions considered (users and duration), confirming
the hypothesis made in Section 4.1.3.

3.3.5 Conclusions
In this work we have presented a set of user adaptive methods for solving the trajec-
tory segmentation problem, a very common and useful task in mobility data mining,
especially in preprocessing phases. The solutions proposed take into consideration
the overall trajectory of the user, identifying an individual cut time threshold (each
user can potentially have a different threshold) and also combining the information
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Figure 3.3.17: Run times experiments in function of the number of users and the
data collection period. In both cases the time trend grows quite linearly.

coming from the different users through the spatial regions they share. This process
yields thresholds for trajectory segmentation which are not only user-adaptive, but
also location-adaptive, thus taking into account that a stop at different places might
require time intervals of different duration to be considered a significant stay and
thus a trajectory cut point. The experiments show that the individual and collec-
tive adaptive strategies have a significant impact on the thresholds obtained, which
lead to a performance improvement in terms of the metrics defined for this purpose.
Having a refined segmentation, as those obtained with ats and the acts family, is
very important in applications where the individual behaviour is under study.
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3.4 On the Pursuit of Graph Embedding Strate-
gies for Individual Mobility Networks

As we have seen previously, graphs are a universal language for describing and mod-
eling complex systems. Network data are ubiquitous across different application
fields, such as brain networks [330] in brain imaging, protein-protein interaction
networks [214] in genetics, social networks [321] in social media and mobility net-
work in mobility science as well. Unlike the regular grid-like Euclidean space data
(e.g., images, audio and text), the graph has a nonlinear data structure so it can
be used as an effective tool to describe and model the complex structure of network
data. Modeling complex systems as graphs helps the characterization of very useful
high-order geometric patterns for the networks, which has a great impact on im-
proving the performance of different network data analysis tasks.
Luckily, graph embedding techniques have shown remarkable capacity of converting
high-dimensional sparse graphs into low-dimensional, dense and continuous vector
spaces where graph structure properties are maximally preserved[52]. The gener-
ated nonlinear graph embeddings in the latent space can be used to face different
downstream graph analytic tasks (e.g., node classification, link prediction, commu-
nity detection, visualization, etc.).
The main aim of graph embedding methods is to encode nodes into a latent vec-
tor space, i.e., pack every node’s properties into a vector with a smaller dimension.
Hence, node similarity in the original complex irregular spaces can be easily quan-
tified based on various similarity measures (e.g., dot product and cosine distance)
in the embedded vector spaces. Furthermore, the learned latent embeddings can
greatly support much faster and more accurate graph analytics as opposed to di-
rectly performing such tasks in the high-dimensional complex graph domain.

In literature, many works analyze the mobility demand both from a lower level
of trajectories, namely the single trips, and from a collective viewpoint, which ag-
gregates the mobility of a population over a territory, aiming to identify traffic
flows characteristics and predicting them [157, 158]. However, when significant data
is available on single users or vehicles, a longitudinal analysis can be developed to
build a model of the individual’s mobility, which can help in several analytical tasks,
from understanding mobility patterns [56] to mobility prediction [306], etc.

The mobility demand of an individual can be effectively represented by means of
networks and graphs, where nodes correspond to spatial locations and edges repre-
sent trips connecting pairs of locations. In particular, we are interested in Individual
Mobility Networks (IMNs). Some simplified examples are visually illustrated in Fig-
ure 3.4.2. By abstracting away the specific spatial position of each location, IMNs
also provide a rather intuitive way to compare users belonging to different places,
aiming to understand common and discriminating characteristics.

The question that arises, however, is now: how to effectively (and efficiently)
compare IMNs? Which features, aspects of their structure or combinations of them
are significant to characterize an IMN w.r.t. others? Very specific applications
and tasks might directly come with an ad hoc answer, yet not providing a general
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approach to the problem. Similarly, while humans can rationalize some discrimina-
tion criteria by visually inspecting IMN examples (e.g. by looking at Figure 3.4.2
one might think to measure the frequency dominance of the node labeled as ’0’, or
to count the number of peripheral connections – i.e. not involving node ’0’ – in
each graph), that might suffer from subjectivity of personal views, and miss some
important aspects.

The scientific literature has tackled this type of problems for over a decade, the
most relevant and interesting approaches belonging to the graph embedding field, i.e.
the art of translating graphs into fixed-size vector representations that encapsulate
the useful information implicitly contained in graphs. However, the landscape is
rather complex, with each method proposing to model various kinds of concepts
and undergoing validation on benchmarks that possess specific, often underexplored,
characteristics. As a result, comprehending whether our graphs genuinely align
with the expected requirements of the provided solution becomes very challenging.
The purpose of this work, then, is to study what the current state-of-art in graph
embedding can do for the specific case of IMNs, starting from a selection of candidate
embedding methods; performing a comparative analysis of IMNs’ characteristics
to see where they are positioned w.r.t. some reference benchmarks in literature;
and finishing with a mixed supervised and unsupervised experimentation aimed to
identify promising existing solutions and lasting issues.

This work provides four types of contribution:
1) we introduce IMNs and their related embedding problem, characterizing them
with respect to other popular graph embedding benchmarks, in particular identify-
ing their key differences. This aspect is often not sufficiently discussed in literature,
as the diversity of datasets employed is typically very limited – mostly belonging to
social networks or molecule data sources – and the characteristics of datasets are
mainly provided to show their size. Understanding how much the data we want to
embed fit the validated benchmarks is an under-explored aspect of the problem;
2) we discuss several families of embedding methods, some of which are selected
for experimental evaluation on IMNs. In particular, we highlight the concepts they
want to model, the type of information they handle and how they design their ag-
gregation / propagation within the graph;
3) we provide a detailed empirical study of various methods, aiming to understand
which approaches seem to extract useful information for IMNs and also what is the
intertwined role of different sets of input features and of inferred graph structure
information. To this purpose, we design a supervised classification task to obtain
objective performance measures, and complement it with a subjective evaluation
based on similarity search and visual inspection;
4) finally, the work is intended to provide also a prototypical example of the process
that analysts need to face when they have to orient in the vast and heterogeneous
literature on graph embedding, since research papers often are mostly focused on
highlighting the originality of the proposed solutions, while more general guidelines
for practitioners are seldom discussed.
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3.4.1 Graph Embedding: State of Art
Since our main objective is to study the applicability of graph embedding methods to
Individual Mobility Networks, we provide here a brief overview of graph embedding
literature. We remark that the expression graph embedding is often ambiguously
adopted to refer both to the strategies that yield an embedding for the whole graph
and those that instead assign an embedding to single nodes. We will refer to the
first type as graph-level embedding and to the second as node embedding. These
two categories are not mutually exclusive, since several graph-level embeddings are
actually derived from a node embedding through aggregation of the output node
representations, yet they might have different objectives to optimize.

Graph-level Embedding

Embedding of a whole graph is typically useful for querying or learning from several
graphs of moderate size, where the final objective is to retrieve or classify/cluster
graphs. The embedding can in principle be achieved by simply computing a fixed
set of user-defined statistics and aggregates, for instance some common properties
studied in network science: number of nodes, edges, closed triangles, the diameter
of the graph, etc. However, that would not capture well the detailed structure of
graphs. In particular, several methods try to consider properties of both the local
structure, i.e. the connections between each node and its neighborhood, and the
global structure, i.e. the connection/reachability among all nodes in the graph.

Kernel-based Features Kernel methods derive features for each node from a
given neighborhood of other nodes, typically capturing the local properties of the
graph around the node. Most solutions in this category are inspired to the basic
Weisfeiler-Lehman (WL) algorithm [177], which starts with initial features associ-
ated to each node and iteratively updates them with an aggregation of the neighbors’
features, repeating the process a given number of times, and finally aggregating the
features of nodes into graph-level features, typically through histograms. Properly
defining the neighborhood and how values are diffused is fundamental. The LDP
method [51] adopts the simplest definition, and is limited to one-step neighbors, com-
puting the distribution of their degrees. Various others follow a wavelet approach,
where propagation is performed “jumping” from one node to the others located at
exponentially increasing distances, thus capturing also long-range dependencies. For
instance, Geometric Scattering [110] computes graph embeddings as statistics of the
node values distributions, as obtained at each iteration of the wavelet propagation
mechanism, while [319] examines the distributions of node features in subgraphs
based on diffusion wavelets.

Neural embeddings This family of methods treats the neighborhood of a node
as its context, following techniques like skip-grams inherited from language models.
For instance, Graph2Vec [213] builds subgraphs for each node and applies a doc2vec
approach [169] where the subgraph represents the document and the nodes’ labels
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the words in it. GL2Vec [64] further improves it by also exploiting labels on edges.
We remark that these methods need node labels, which provide a common reference
vocabulary among different graphs and make their embeddings comparable.

Random Walk Approaches These are basically a specific (and very popular)
variant of kernel methods, where the neighborhood is identified through several ran-
dom explorations of the links in the graph starting from the node and performing
a given number of steps. Beside the neighborhood, the process assigns a weight or
probability to the relation between the explored nodes and the starting one, which
are used to propagate information or features values from the former to the latter.
The Feather methods [261], for instance, use the weights as probabilities in comput-
ing the characteristic function of node features (basically, translating features into
complex numbers and then computing their expected values). Finally, Anonymous
Walk Embeddings (AWE) [150] renames nodes with their order of visit in the ran-
dom walk, which highlights the presence of loops. The basic version of AWE, then,
simply computes the frequency of each possible anonymous sequence, and associates
the frequency distribution to the whole graph.

Spectral Features As for random walks, these methods consider transition prob-
abilities between nodes (usually uniform, though external weights might be applied
in some cases) and study the information diffusion among nodes, now adopting spec-
tral analysis tools, such as the Laplacian matrix and its eigen-vectors and -values.
For instance, NetLSD [308] and IGE [107] adopt a global heat trace signature of
the graph derived from eigenvalues, achieving isomorphism invariance and adaptiv-
ity to scale. FGSD [312] defines a distance function between nodes based on their
eigenvectors, computing the overall distribution of distances in the graph, with the
possibility to emphasize more either local proximity or global structure.

Node-level Embedding

Methods in this category aim to embed the individual nodes of a single, usually
very large, graph. A graph-level embedding can be in principle derived quite easily
by pooling the node embeddings in some way, e.g. through averaging or extracting
other characteristics of value distributions. However, in order for it to make sense,
the node embedding needs to be consistent across the different graphs we want to
embed, so that their representations are comparable. Most works on node embedding
do not discuss this aspect in detail, therefore it is often unclear if node aggregation
is doable and therefore if the proposed methods also apply to graph-level.

Proximity preservation These methods aim to infer node embeddings that cap-
ture the relations between nodes and their neighbors, possibly at various distances.

Several approaches rely on neural embeddings (already mentioned above), such
as DeepWalk [240] (and its improvement Walklets [241]), which applies the skip-
gram approach by defining contexts through random walks. Node2vec [120] does
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something similar, with various node sampling strategies to define neighborhoods,
improved by Diff2vec [262] through the use of diffusion techniques. GraRep [54]
also extends the concept of Deepwalk, considering k-step neighborhoods, and imple-
menting it through Laplacian matrix factorization.

GLEE [303] applies Laplacian Eigenmaps to directly encode the graph structure
(in particular, the proximity) through the geometry of the embedding space, yielding
node embeddings from which we can estimate, for instance, the number of common
neighbors of two nodes or of short paths.

Various papers study the problem in terms of the Laplacian matrix factoriza-
tion, such as NetMF [249], which basically provides a reformulation of Deepwalk;
BoostNE [178], that learns multiple graph representations of different granularity
from coarse to fine; or the simple approach in [34], where the embedding is computed
as the k lowest-frequency Laplacian eigenvectors.

Finally, HOPE [224] introduces the idea of assigning to each node two separate
embeddings, namely a source and a target one, which fits the contexts with ori-
ented graphs, also considering various node proximity measures to capture with the
embeddings, such as Katz’s distance, Rooted Page Rank and others.

Embedding Nodes with Attributes

Most of the works described so far look at the network properties of graphs, not
considering additional existing features of its components. In particular, very fre-
quently the nodes of the graph have either categorical features (e.g. the tags of posts
in social networks) of numerical ones (frequency of visit of a web page, the length
of a document, etc.) that could strongly help the embedding.

MUSAE [259] adopts a neural embedding on top of random walks (thus similar
to Deepwalk), where the sequences of nodes (actually, node values, since they are
attributed) are built with random walks sampling one node every r along the path.
Different r values are used, pooling (AE) or simply joining (MUSAE) the corre-
sponding results of each node into a larger embedding. Also inspired by Deepwalk,
SINE [339] formulates a probabilistic learning framework that separately models
pairs of node-context and node-attribute relationships, where each node learns its
representation by considering context nodes and observable attributes of the node.
BANE [333] adopts a WL diffusion (thus a kernel method) over the nodes attributes,
and aims to obtain embeddings in a (binary) Hamming space. TENE [334] considers
the case where nodes have a text annotation, and thus devise a matrix factorization
schema to create separate embeddings for network structure and text similarity, later
joined and optimized together. An analogous process is followed by FSCNMF [22],
which outputs two regularized embeddings of the network corresponding to structure
and content, later combined as the final representation.

Graph Neural Networks

The most common neural network architectures adopted in the graph domain are
Graph Convolution Networks (GCN), which work in a very similar way to the
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Weisfeiler-Lehman (WL) algorithm, yet with learnable weights driving the aggre-
gation steps. Being a supervised approach, it can be applied only when nodes are
assigned to label values. An alternative approach is provided by self-supervised
learning (SSL) approaches for graphs [186], which extract informative knowledge
through ad hoc pretext tasks without relying on existing labels. SSL is often ap-
plied as pre-training of a model, and is then followed by a refinement step with
conventional GCNs over a labeled dataset. Similarly, encoder-decoder methods (for
instance [295]) learn an encoding function (which produces the embeddings) and
a decoding one that minimizes a loss w.r.t. properties of the graph, typically the
adjacency matrix representing the graph connections. ASNE [182] can be seen as a
representative example, which separately embeds nodes and their features, then fuse
them through NN layers used to estimate edge probabilities between node pairs.

3.4.2 Comparative study of IMN properties
As we mentioned in Section ?? IMNs are rather specific networks that show proper-
ties slightly different from other graph datasets typically used to validate graph-level
embedding methods. Table 3.4.1 compares the averages of six statistics across six
popular datasets plus IMNs. The values include size of the graphs (|V |), diameter,
density (fraction of edges over the theoretical maximum), nodes degree, entropy of
node degrees and, finally, a statistics we called maximal ego coverage, computed as
the fraction of nodes contained in the largest ego-network of the graph. We remark
that, while IMNs are directed graphs, the other datasets considered are undirected.
Thus, in order to have fair comparisons, for these measures also IMNs have been
converted to their undirected version.

From this comparison, it emerges that while the average size and diameter of
IMNs are similar to other graph datasets, their degree and density are rather low,
thus showing a general sparseness of the graphs. At the same time, the entropy is
relatively low and the maximal ego coverage is relatively high – much higher than
what we would expect given IMNs’ low density. This suggests the presence of a
few highly-connected nodes in IMNs counterbalanced by many low-degree ones. A
clearer picture is given in Figure 3.4.1, showing boxplots for the more interesting
measures. We can see that in IMNs the density is always very low, with a smaller
inter-quartile range, while the maximal ego coverage is significantly higher than
the others – excepted three (Deezer, Twitch and IMDB-M) that are however char-
acterized by an extremely small diameter (exactly 2 for the ego-networks Deezer
and Twitch, between 1 and 2 for IMDB-M), which makes high ego coverages easily
very high. The Reddit graphs are those closer to IMNs characteristics, yet they are
significantly smaller and denser.

Sample IMNs. The typical structure of IMNs can be seen in the small sample of
graphs shown in Figure 3.4.2, where in addition to nodes and edges we also represent
their frequency through size and thickness. As the statistics in the previous section
suggested, IMNs are mostly characterized by a central, high-degree node (most likely
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avg avg avg avg avg Deg. avg
Dataset |V| Diam. Density Deg Entropy Ego Cov.
DEEZER 23.49 2.00 0.23 5.55 1.64 0.94
TWITCH 29.67 2.00 0.20 5.84 1.93 0.96
GITHUB 113.79 5.86 0.08 4.12 1.51 0.56
Reddit 23.93 4.58 0.12 2.09 0.84 0.71
MUTAG 17.93 8.22 0.14 2.21 1.02 0.18
IMDB-M 13.00 1.47 0.77 10.14 0.48 0.90
IMN 33.96 3.68 0.12 3.26 1.34 0.78

Table 3.4.1: Comparison of statistics of various graph datasets.
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Figure 3.4.1: Distribution of nodes properties in various graph datasets.
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Figure 3.4.2: Sample IMNs.

corresponding to the home location of users) connected to a large number of other
nodes. Often this location is connected to a second one (usually the workplace) with
high-frequency edges. The presence of these two strong poles drastically reduces the
diameter of the graphs, although IMNs generally show a low density of connections.

3.4.3 Features, algorithms and validation task
In this section we introduce the three components of our experimentation: the (real)
dataset used for evaluation; the embedding methods tested; the downstream tasks
and their result evaluation.

IMNs and features

Our evaluation of embedding strategies is based on a dataset of 1000 IMNs, each
corresponding to a private vehicle moving in the Tuscany region, Italy, over a period
of 4 weeks. In particular, each vehicle belongs to one of five provinces, and the
corresponding IMN was obtained following the process in [212]. The distribution of
vehicles in the five provinces is perfectly balanced, i.e. 200 vehicles per province.

Node features. We enrich IMNs with four classes of features:

• Network Structure features: degree, clustering, node centrality, entropy of next
location.
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• Location usage features: stop frequency, stay duration, all the above stratified
by time-of-day and day-of-week.

• Trajectory features: average length of incoming trips, average incoming trip
duration, radius of gyration of the vehicle w.r.t. the node location.

• Geospatial features: Points of Interest (POIs). We remark that these features
might be strongly location-specific, and thus directly help identifying places
and their characteristics. For this reason, we will experiment both with and
without this information source. Alternative information belonging to the
same wide category might be integrated, such as distance from city center (or
center of gravity, the home location, etc.), land usage, etc.

Edge features. This kind of information is generally not supported by graph em-
bedding methods. One exception is GL2vec, that builds a dual graph where edges
are represented as nodes, and thus their features are used in the embedding gener-
ation. For the others, some algorithms allow to use edge weights or probabilities,
therefore some types of edge features might be translated into usable values. In our
case, edges are associated with trip frequencies, thus we could in principle transform
them into transition probabilities and use them in random walks methods, such as
AWE and FEATHER-G, by modifying their usual transition choice mechanisms.
However, preliminary tests with simple feature translations showed no improvement
in the output quality, thus this option was discarded for the time being, and left as
potential future direction to explore.

Embedding algorithms

The embedding is performed adopting several different algorithms, chosen from the
state-of-art described in Section 3.4.1 in order to cover the most important general
approaches. The selection was also driven by the availability of open source code or
libraries, and in most cases we exploited the Karate Club library [260]. We consider
both graph-level methods, which thus directly return the embedding we needed;
and node-level methods, where a final aggregation step is performed to obtain a
graph representation. We briefly list them and provide details about the selected
parameters and the adaptations performed (where needed).

Graph-level methods include the following:

• LDP[51], a simple kernel method. The only parameter is the number of
bins, that we set to the default value (32);

• GeoScattering[110], another kernel method, requiring as parameters the or-
der and moments adopted in creating the graph spectral descriptors, both set
to the default value (4);

• graph2vec[213] is a neural embeddings approach. Also in this case, default
parameters were used, in particular the output embedding size was set to 128;
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• GL2Vec[64] is another neural embeddings method, similar to graph2vec,
and the same parameters were set;

• FEATHER-G[261] has a random walk component and an aggregation of sam-
pled values, which require to set, respectively, an order for adjacenty matrix
(set to default 5) and evaluation points (set to the default 25 values uniformly
sampled from 0 to 2.5).

• AWE[150] is also a random walks-based method, whose main parameter is
the length of generated walks. After testing values between 3 and 8, we chose
5 as the best one;

• GCN-self is a self-supervised learning approach [186], based on a standard
Graph Convolutional Network to learn predicting a set of classes that is similar
yet different from the downstream task. The output of the last convolution
layer provides an embedding that is used as input for the final classification
task. In our case, the training objective consists in predicting the radius of
gyration (RoG) of the mobility of the user, discretized into 4 equal frequency
intervals. We remark that a similar measure is provided at the level of single
nodes, which however represents a more local view that might miss the overall
picture, since the global RoG is computed w.r.t. the overall mobility center,
which usually does not correspond to any user’s location.

Node-level methods adopted include:

• FEATHER-N is the node-level version of FEATHER-G, described above, thus
basically a random walks method, the main difference being that it also
allows to use node features, whereas FEATHER-G adopts a simple node
degree. Parameters are set as above;

• MUSAE[259] is a neural embeddings method that also uses node features.
The algorithm employs random walks, for which we set 5 walks per node of
length 10, using order 3. Since it makes use of categorical node attributes, the
original node features have been discretized into 5 equal-frequency bins.

• TENE[334] also uses node attributes, yet adopts a matrix factorization
schema. Also in this case, categorical node features are used (mostly adopted
to represent text labels), thus the same discretization as MUSAE was applied.
The technical parameters of the algorithm were set to their default values.

• ASNE[182] is a Graph Neural Network (GNN) approach that, as MUSAE
and TENE, exploits node labels. Also in this case, we translated original
features to discretized values in the same way as above, and the parameters
of the algorithm were set to their defaul values.

The final graph embeddings for node-level methods have been computed through
a concatenation of average-, min- and max-pooling.
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Among the categories of algorithms described in state-of-art, we are omitting
graph-level spectral features methods, whose same ideas are basically implemented
with different technical tools in other approaches; and node-level proximity preserv-
ing methods, since aligning the embeddings they produce across different graphs
can be very problematic.

Evaluation approach

We evaluate the quality of embeddings in two ways. First, in order to have objective
performance measures, we define a downstream graph classification task, using as
target label the reference province of each vehicle/graph. We remark that no node
and edge feature adopted has a direct geographical reference, such as spatial coor-
dinates, thus the task is indeed challenging. We test this approach by building a
simple logistic classification model on top of the embeddings obtained with each of
the embedding methods listed above, measuring the performance with the standard
Area Under the ROC (AUC). Second, we simulate a nearest-neighbors query task,
where a small number of IMNs are randomly sampled (the queries), and for each
of them we select the 10 most similar IMNs in our dataset, based on the cosine
similarity computed between the embeddings of the IMNs to compare. We perform
this task only on a small selection of methods, and visually compare the returned set
of IMNs. Clearly, the outcomes of this task are subjective, and different evaluators
might draw different conclusions.

Baseline and supervised approaches

In addition to the embedding methods listed above, we consider as baseline the usage
of raw feature statistics, where, for each node feature, we compute the average value
and standard deviation w.r.t. all nodes of a graph.

Finally, while we are not directly interested in supervised graph classification ap-
proaches, since the embedding they produce might be too specific for the prediction
task, we tested two of them to provide reference performance values. Clearly, our
expectation is that they can provide better predictions. The first method consid-
ered is a standard GCN (named GCN-PRV, since it is directly built on the target
“province”), with three layers of convolution and a mean pooling before a final dense
neural network to predict the province (five output neurons, hot-encoding the five
provinces). The second method is a simpler dense neural network that takes as in-
put the features of all nodes, stacked according to a node ordering based on nodes’
stop frequency (see Section 3.4.3), padding values for graphs with less nodes. The
network, named DNN-sorted-nodes, is composed of three layers.

3.4.4 Empirical evaluation
In this section we summarize and comment the experimental results obtained in a
downstream classification task, studying the impact of different sets of input fea-
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tures, and then on an unsupervised nearest-neighbors retrieval task, where the re-
sults are visually evaluated through a subjective validation.

Classification with standard embedding methods

Table 3.4.2 reports a comparison of results obtained using the different embedding
methods discussed above. On top of each embedding a classifier is built through
a simple logistic regression. The choice of such simple classifier was intentional,
in order to appreciate how well the embeddings could highlight the characteris-
tics that can discriminate among the classes (in our case, the province where the
user was moving). The performance measure adopted is the area under the ROC
curve (AUC), and, as mentioned in Section 3.4.3, we report it separately on two
columns, corresponding to the case where only non-geospatial features are available
(“no POI”) and that where all features are used (“w/ POI”). For each column, we
highlight the top three results (resp. bold, italic underlined, and just underlined).
Embedding methods are grouped based on whether they exploit features or not.
Finally, we report results for a self-supervised approach that trains the embedding
for a different task (predict the radius of gyration of the user’s mobility), named
GCN-RoG; and for the two supervised methods.

Table 3.4.2: AUC performances of embedding methods on the province classification
problem, based on a logistic classifier.

Method AUC

no
fe
at
ur
es

LDP 0.4997
GeoScattering 0.5000
Graph2Vec 0.4992
GL2Vec 0.4837

FEATHER-G 0.5111
AWE 0.4693

w/out POI with POI

fe
at
ur
es

raw features 0.5603 0.7984
FEATHER-N 0.5860 0.7759

MUSAE 0.5261 0.4940
TENE 0.4928 0.5316
ASNE 0.4904 0.5203

GCN-RoG 0.5558 0.6781
GCN-Sys 0.5297 0.5787

su
p. GCN-PRV 0.5241 0.9174

DNN-sorted-nodes 0.6352 0.9388

First of all, results on the top group of the table clearly show that not using
features yields very poor results, basically highlighting the fact that the plain struc-
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ture information that such methods can derive does not capture the discriminating
characteristics of the different areas. Their performance is significantly worse than
using only aggregate raw features (see the first line of the “features” block).

Embedding methods that use all features excepted POIs are generally better, yet
only Feather-N and self-supervised methods improve over using plain features, sug-
gesting that the aggregation and diffusion processes implemented sometimes can de-
stroy the information content in the original data. Apparently, the specific structure
of IMNs makes most embedding methods add noise and hide the useful component of
the initial node features. The self-supervised approaches perform relatively well, yet
still below plain raw features, and significantly worse than Feather-N. Apparently,
having a global objective to train for helps the emergence of generally useful charac-
teristics, yet the task difference makes the final balance negative, as the information
lost w.r.t. raw features is larger than that gained through the embeddings.

Examining the results using also POI information, we can see that the three
top methods remain the same, yet yielding much higher AUC values. At the same
time, not even Feather-N can improve over raw features. The other feature-based
methods, instead, either do not improve significantly by adding POI information or
even worsen slightly. In general, these results suggest that POI data provide a strong
predictive power as they are, and any aggregation, propagation, or convolution
simply loses useful information along the process.

Impact of features

In this section we focus on the best performer among the unsupervised approaches
(Feather-N) and investigate the role that different input features play. Figure 3.4.3
shows the AUC obtained selecting different subsets of the available features: network
structure measures (NET), trajectory features (TRJ), location usage (USE). In the
top plot geospatial features are excluded, while they are used in the bottom one.

Trajectory features taken alone are the best setting, while network structure and
location usage have a much weaker impact. While the combination of NET and
USE yields much better results than the two taken alone – thus, apparently, they
complement well each other – combinations of TRJ with other features yield slightly
worse results, suggesting that the added useful information is counterbalanced by
the noise they introduce in the simple classification model adopted.

Supervised approaches

Graph convolutional network (GCN-PRV). Following the standard GCN ar-
chitecture, nodes are initially represented through their features, and then updated
through three convolutional layers, i.e. for each node the mean of its neighbors’
features is computed and passed through a linear transformation, then through a
non-linear function. The results become the new node representation, and the pro-
cess is repeated (in our case) three times. The final node representations are then
aggregated (in our case, through mean pooling) and fed to a final dense layer with
one output node for each class.
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Figure 3.4.3: Impact of features: network measures (NET), mobility (TRJ), location
usage (USE). Top plot: without geospatial features; bottom plot: with geospatial
features.
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The results obtained for GCN-PRV are rather heterogeneous, since with no POI
data the performances are slightly worse than the self-supervised approach, while
with POI data the AUC increases beyond 90%, largely improving over embedding
and raw feature approaches. This suggests that, due to IMNs structure, the GCN
mechanism is good at identifying and emphasizing very important basic features (as
in the case of POIs) but not to infer useful information from the graph structure
and other weaker features.

Fully connected layers (DNN-sorted-nodes). This model is a graph-level
classification approach utilizing fully connected layers (Dense layers) and a pooling
operation. The preprocessing stage involves padding the node features of each graph
to ensure consistent input dimensions. The model’s architecture comprises three
hidden dense layers, each followed by a dropout layer to prevent overfitting. The
final dense layer maps the graph-level features to the desired output dimension, while
a softmax activation function is used to derive the predicted class probabilities.

During training, the model optimizes its performance using the Sparse Categor-
ical Crossentropy loss function. The training is conducted on batches of graphs,
with the Adam optimizer adjusting the neural network’s weights based on loss and
accuracy metrics. Subsequently, the graph-level embeddings are obtained, resulting
in final embedding vectors of size equal to the number of classes. This is achieved
by predicting the class probabilities for each graph, providing a comprehensive rep-
resentation of the graphs in the dataset.

The results in Table 3.4.2 show that this less refined approach is actually more
robust than the GCN one, improving over all the other methods, also when no
POI data is involved. This might suggest that nodes’ ids are important to learn
how to treat their features, maybe highlighting more central nodes (home and work
locations) and de-emphasizing the others. In order to inspect this hypothesis, Ta-
ble 3.4.3 shows what happens when we shuffle the order of nodes, independently on
each graph, thus losing their identity. However, the results show that the variation
is surprisingly small (always less than 0.0105) and practically insignificant, both
with and without POI data. This suggests that the most important factor in this
prediction task is how different features are combined, and not the node they come
from. That is similar to what raw features achieve, in addition to the non-linear
combination of features provided by the dense layers that helps to better identify
the most discriminant information.

Table 3.4.3: AUC of Fully Connected architecture

Shuffled nodes AUC (w/o POI) AUC (w/ POI)

PR
V

None 0.6748 0.9682
All - { Home, Work } 0.6727 0.9671

All - { Home } 0.6661 0.9677
All 0.6644 0.9577
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While the performances tend to decrease the more we shuffle nodes, the variation
is surprisingly small and practically insignificant, both with and without POI data.

kNN Query Evaluation

In this section, we use the embeddings obtained above to perform a kNN queries over
a small set of IMNs and then visually review the results. We will present here the
results obtained on two query IMNs, showing the top 10 most similar IMNs returned.
For each query IMN, we perform the task both using the embeddings obtained with
Feather-N (the best performer in the classification task) and with the self-supervised
GCN-RoG, comparing the results. The similarity between two embeddings e1 and
e2 is computed using the cosine similarity s(e1, e2) = 〈e1, e2〉/||e1|| · ||e2||.

An overall comparison of results showed that the two embeddings generally re-
turn very different sets of outputs, on average having an overlap smaller than 10%.
In the following, we consider a query IMN where the overlap is relatively high (two
IMNs over ten) and then one where the overlap is nil.

Figure 3.4.4 shows the first query IMN (on top) and the 10 top results returned,
ranked by similarity. For the sake of readability, the graphs report the frequency of
edges (numerically and as thickness) while nodes only show the frequency rank (‘0’
is the most frequent one, and so on). The overlaps between the two answer sets are
highlighted. A comparison of results shows that Feather-N returns IMNs of similar
size and complexity of the query. Also, the query contains a central open triangle,
namely the most frequent node is strongly connected to the second and third most
frequent ones, which are not (significantly) mutually connected. This same pattern
seems to emerge in most of the Feather-N answers. On the contrary, GCN-RoG
output seems to have fewer open triangles and also tends to include more crowded
IMNs and star-like shapes than the query. From this perspective, Feather-N seems
to return intuitively better answers.

Figure 3.4.5 presents the results with the second query, which show similar char-
acteristics to the previous case: GCN-RoG tends to include much larger and densely
connected answers, where the central node is more predominant than in the query,
whereas Feather-N’s appear more balanced, except very few cases presenting a star-
like shape.

3.4.5 Summary and Conclusions
Our exploration started from realizing how much our data, namely IMNs, are dif-
ferent from typical benchmarks used in the graph embedding literature: a semantic
difference, since most benchmarks deal with human interactions data or physically
connected elements of molecules, whereas IMNs are about movements, thus making
recurring concepts in embedding literature like information propagation and bind-
ings not perfectly fit; and a statistical difference, since the empirical exploration of
IMNs’ properties resulted to be different from many of the others.

The review of existing graph embedding methods highlighted the existence of
a limited set of fundamental approaches, plus several variants and improvements.
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Figure 3.4.4: Query test 1: Top 10 most similar IMNs to a sample user, using
Feather-N (left) and GCN-RoG (right) embeddings.
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Figure 3.4.5: Query test 2: Top 10 most similar IMNs to a sample user, using
Feather-N (left) and GCN-RoG (right) embeddings.
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Many of them are general purpose, yet their validity is typically assessed on predic-
tion tasks (which are not our primary objective) over a limited set of application
domains. That makes it difficult to identify the promising methods to choose, for
which reason we selected approaches from the most representative algorithms in the
literature that could be applied to graph-level embedding. This lack of theoreti-
cal foundations in the selection of an algorithm is an important gap that can only
partially be filled by purely empirical tests.

Empirical evaluations highlighted how the (rich) node features of IMNs are fun-
damental to achieving acceptable results, yet also suggesting that most methods
are not able to handle them properly. Among the methods tested, we could iden-
tify only one – a simple adaptation of Feather-N to work at the graph level – that
seems to perform better than no-embedding input features, and yet with no large
margins. We performed a simple visual check of the embeddings produced through
kNN queries by looking at the exterior graph properties (nodes, connections, and
weights), which showed results close to what we expected intuitively.

Overall, the claim of this work is that current graph embedding literature pro-
vides several appealing approaches and, yet, very poor support to the development of
applications, leaving the analyst alone in orienting within the vast literature, guided
almost exclusively by empirical explorations. Our exploration aims to provide a first
example of how to develop an analytical process in this context.

The natural evolution of this work goes in two directions. The first one is specific
for IMNs and includes the development of embedding methods ad hoc for them,
aimed to better exploit the abundant features at node and edge level and to cope
with their particular graph structure. The second one is more theoretical and aims
to classify existing methods based on what kind of information is actually built
from the input graph structure and features, abstracting away from formalization
and computational aspects, which often cover very similar concepts behind different
covers.





Chapter 4
Act II: Individual Mobility Models at
Work

Realistic human mobility models have great potential benefits to societies. Traces
generated by human mobility models can be used in epidemics, urban planning,
transportation systems, and disaster response. The first step to apply mobility
models to realistic applications is always to have a strong mathematical abstrac-
tion of human behavior. Among many mobility solutions, the Individual Mobility
Network (IMNs), described in Sec.??, fully meet this request. As we have already
seen, a IMN of a user is a directed graph defined by a set of nodes and a set of
edges. Nodes represent locations and edges represent movements between locations.
Having this kind of abstract tool allow us to exploit it in specific application, too.
In this chapter we present some examples of IMNs employment for specific task.
First of all we want to introduce an analysis of the potential risks involved in using
mobility data without the right attention. Even if it looks as anonymized data, it
is easy to extract sensitive information about individuals from them.
Taking this into account, the following sections will present esamples of IMNs adop-
tion for two specific tasks: electrica vehicles simulations and car crash prediction.
In both IMNs play a key role in achieving the aiming results .

4.1 Electrical Vehicles
Electric mobility is one of the main advocated solutions for making urban environ-
ments ecologically more sustainable, improving the quality of life of citizens [196].
Despite the quick development of the Electric Vehicle (EV) market and the strong
commitment of car makers, various social barriers need still to be overcome to com-
plete the transition of mobility towards electric [143]. Indeed, most users are very
little familiar with what driving an EV really means and what it might change in
their daily life if they replace their fuel-based vehicle with and electric one. This
lack of knowledge causes several worries to the average potential user, even though
its many advantages for the environment are clear.

105
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What makes EV mobility different. From the viewpoint of the end user, one of
the biggest differences between a fuel-powered vehicle and a battery-powered vehi-
cle lies in the reduced autonomy: while high-profile EV models have performances
similar to fossil-fuel cars, average EVs have a range in the order of 200 km, which
makes the need for recharging more frequent. This fact can often induce in the
user the so called “range anxiety” [100], which might be reduced by gaining expe-
rience on range management and building trust in range estimation systems. In
addition, the time required to fill a fuel tank is usually just a few minutes, while
a stop to recharge the battery of an EV can take much longer times, up to some
hours, depending on the capacity of the battery and the type of recharger [286]. This
requires a more careful planning of trips and recharges. Finally, in most countries
the recharge infrastructures are currently much less developed than fossil fuel ones,
thus arising further concerns about the capability for a user to satisfy their mobility
needs without introducing significant deviations from original travel plans. On the
positive side, different from conventional fuel, electric energy is an utility available
in any building, and in several cases that makes EV recharging possible at home or
at workplaces.
The objective of our study is to propose a process that, through a mix of mobility
data analytics, ad hoc trip planning and simulation, is able to analyze the current
fuel-based mobility of a user and quantitatively describe the impact of switching
to EVs on their mobility lifestyle. We emphasize that our aim is to reproduce the
study over large sets of users and long periods of time, thus the process needs to be
scalable and completely automatic. As we aim to reproduce the study over large sets
of users and long periods of time, the process needs to be scalable and completely
automatic. The final result is not only a set of general indicators over the whole
population under study, but also insights about how the switch to EVs affected the
mobility of single users.Our solution adds a novel perspective to existing literature
on the topic, the latter being mostly focused on the infrastructural issues, namely
how to organize the energy distribution (e.g. where to place recharge stations) and
how it will impact the current power grid, or on abstract path optimization prob-
lems, trying to minimize the battery consumption of trips or the overall time. Only
a small portion of works try to quantitatively study how much the current mobility
actually fits the constraints imposed by EVs, and in most cases that is done at a
general level, e.g. counting the trips that might fit a given range [219] (with or
without recharges) or studying the mobility characteristics of a territory to evaluate
the sustainability of EV usage [82].

The simulation framework. In order to achieve our objectives, we devel-
oped several components. First, we set up an enriched road network by integrating
the basic OpenStreetMap network with elevation information and estimate battery
consumption for each road segment, obtained through a mathematical estimation
model, and with the availability of recharge stations at each node. Then, we devel-
oped a simulation framework that takes as input the sequence of trips (origins and
destinations) performed by a single user, and returns a simulated travel plan that
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mimicks the original one adapting it to EV requirements. The framework has two
main components. The first one is a fast heuristics for determining the best path to
reach a destination starting with a given battery level, also performing intermedi-
ate stops (and associated deviation from the path) to recharge, when needed. The
second one is a set of mechanisms for simulating passive recharges (i.e. performed
while the vehicle was parked at a destination) at key places, such as the individual
home or work, or nearby recharge stations. The concepts of home and work are
automatically inferred from the input sequence of trips, based on the Individual
Mobility Networks [257] (IMN).

Brief summary of results. The framework was used to analyze a large pool
of users over a significant period of time, providing a deep analysis of results both
at the collective level and at the individual one. Various scenarios were considered,
depending on if recharging at home and/or at work is allowed. The results sug-
gest that the impact of trip deviations and recharge stops are generally negligible
compared to the original mobility, with an increase of time spent not larger than
1.23% and an increase of distances travelled less than 1% in the worst scenarios
(recharges are possible only at public recharge stations), which significantly drop
when recharging at home and work is possible. Also, emergency situations where
no suitable path can be discovered are rather rare. Also, worst case individuals
suffer from increases that do not exceed 4% both in terms of distance and time.
Finally, through an IMN-based summary visualization of the history of a sample of
individual users, it was possible to appreciate how the recharges are distributed on
the different trips, and how recharging at home and work keeps the battery level
always rather high (which is good to reduce “range anxiety” issues) and removes
several recharges during trips in favour of frequent short recharges at home/work.
In summary, the novel contributions of this work are the following:

• we develop a simulation framework for EVs based on a set of (real) individual
trips, that mirrors them according to EV constraints and battery recharge
opportunities, including availability of recharge at home and at work;

• we define and implement a fast heuristics to compute the best path from an
origin to a destination, taking into account the battery constraints and, where
needed, computing a deviation to reach a recharge station;

• we perform an experimentation over a large dataset of real users in the Tuscany
region, Italy, analyzing the impact of EVs on their mobility both at a collective
and at the individual level;

• finally, we select a sample of users and explore the impact of EVs on their
mobility through a network (IMN) representation.

4.1.1 Related Works
Electric vehicles (EVs) are experiencing a rise in popularity over the past few years
as the technology has matured and costs have declined, and support for clean trans-
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portation has promoted awareness, increased charging opportunities, and facilitated
EV adoption. Suitably, a vast body of literature has been produced exploring various
facets of EVs and their role in transportation and energy systems.

Studies on issues and opportunities of EVs

Market and stakeholders studies. Several papers and reports perform surveys
to see how EVs fit individual needs [171, 41, 136], mostly capturing the feelings of
people or general statistics, thus not providing ways to profile the individual electri-
ficability of users in objective terms. Vehicle price, fuel cost, driving range, battery
replacement cost, charging time and maintenance cost are among the significant
attributes considered in consumer choice modelling [86]. Range anxiety, refueling
availability, and vehicle efficiency influence EVs’ purchase. On the same direction,
[70] propose psychologically founded methods of assessing the acceptance of EVs
in everyday use, identifying four key elements for user evaluation of EVs: mobility
aspects, human–machine interaction (HMI), traffic and safety implications and ac-
ceptance. Results show that a great part of daily mobility needs are satisfied, and
ecological aspects play an important role.

Simulation-based EV studies.

The work in [219] investigated the charging behaviour of EV drivers by simulating
EVs travelling and charging at public chargers. The results show that more than 5%
of the trips would require recharging at a public charger for different driving range
and charging assumptions. The location of the charging stations is directly related
to the impact of driving behaviour in urban road transport networks. In [111]
a general corridor model is used to propose the optimal location of EV charging
stations, while the authors of [179] propose a multi-period optimization model to
expand the charging network. Similar studies for an urban environment can be
found in [138] and [57]. A spatial-temporal demand coverage location approach is
used in [309] to address the location problem of electric taxi charging stations. Some
traffic simulator platforms offer EV support and give to the user the ability to run
traffic simulations with all or partially electrified vehicle fleets. Such a simulation can
be found in [74], where EVs are simulated in highway networks with on-line charging.
Another example is found in [21], where a spatial-temporal model is build based on
a Poisson arrival location model (PALM) for EVs charging at public stations on the
highway. Our approach extends the aim of previous works by providing a framework
to derive quantitative feedbacks on potential issues introduced by EVs for individual
users, and their impact on users’ mobility, exploiting large scale mobility traces.
EVs impact on the grid. The charging behaviour of EV drivers at public and
domestic chargers affects the electricity grid. The charging method is of particular
interest, as it defines the magnitude of this impact [69]. In [273], the authors evaluate
different charging strategies through performance indicators, and show that three
characteristics are essential to develop a sustainable charging strategy: the maximum
charging power, the duration of a full recharge, and the shape of the charging curve.
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All three characteristics impact directly the electricity grid. Most works predict the
electricity demand from the EVs charging without considering historical data. They
are mainly based on the traffic patterns, the charging and the battery characteristics
of the EVs. However, in [39],[155] the concept of forecasting the charging demand
is introduced. In [39], a model for Short-Term Load Forecasting for EV charging
was implemented using neural network. In [331] an artificial intelligence EV load
forecasting technique is introduced using Support Vector Machine. Charging events
for one year were created using national statistical data, to cover the lack of real
historical data of EV’s charging events. After the model was trained, the SVM
model provided a forecast for the day–ahead EV demand. Another perspective to
the problem is given in [89], which analizes the use and usability problems that
are faced by EV drivers who rely on workplace recharge facilities, providing a case
study in the UK. Finally, the work in [243] studies the impact on the grid from the
viewpoint of commercial fleets, through an ad hoc data collection and considering
various power sources, such as the public grid and renewable sources.

Simulating the EV mobility

In order to simulate the mobility EV vehicles in a realistic and effective way, various
factors should be taken into consideration.

Route planning. A key part of simulation is the planning of single trips, namely
the most likely path that a user/vehicle will follow to move from an origin location
to a destination. There are different approaches to route planning focused on EVs:
the challenge of finding the optimal solution to save energy consumption, minimize
wasted time and travel the shortest feasible path is computationally hard, thus re-
quiring a strong effort from the transportational engineering community. A detailed
overview about recent advances in algorithms for route planning in transportation
networks can be found in [26]. Classic route planning approaches apply Dijkstra’s al-
gorithm to a graph representation of the mobility network [83]. Speedup techniques
have been also proposed, with different benefits in terms of preprocessing time and
space, query speed, and simplicity. An optimal solution to the Constrained Shortest
Path problem is proposed in [300]: authors propose a general labelling algorithm
to take into account a set of costraints while searching for the shortest path. Such
an approach relies on Dynamic programming, implementing a bidirectional strategy
to optimize the search process. Constrained Shortest Path (CSP) formulations try
to find the most energy efficient route without exceeding a certain driving time or
finding the fastest route that does not violate battery constraints [135]. For example
in [29] authors extend this problem respecting battery constraints, minimize overall
trip time, including time spent at the charging stations. The solutions proposed
include all types of stations: battery swapping stations, regular charging stations
with various charging powers and superchargers. In [288] the problem of finding
an optimal routing and recharging policy is explored using a grid network with
uncertain charging station availability. Similarly, one can consider some trade-offs
between driving time and energy consumption: in [30] a set of routes for EVs mo-
bility is computed by Pareto optimisation considering how to save energy driving
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road segments at different speeds. In literature many works focus their attention in
finding the most energy efficient path for battery powered electric cars [19]. In [289]
the problem of finding a minimum cost path when the vehicle must recharge along
the way is modeled as a dynamic problem. For electric vehicles, most papers have
focused the attention on the integration of battery capacity constraints and negative
edge weights (a result of recuperation) into classical single-criterion route planning
algorithms optimizing energy consumption [266, 31]. However, such paths may have
disproportionate detours: driving slower saves energy at the cost of greatly longer
travel time. Finally, a few works introduce heuristics in the shortest-path and trip
planning problem, e.g. [284], where the authors designed an approximation scheme
to compute the energy efficient shortest route for EV drivers. In our work we pro-
pose a greedy routing strategy that favours travel times (expected to be the priority
criterion for average users) and plans recharge stops at stations in such a way to
minimize the combined cost of deviating the path and the recharge time.

Global optimization of EV mobility. The several trips that make up a user’s
daily mobility clearly influence each other, as battery recharges might be anticipated
or postponed in various ways, in principle calling for an overall optimization based on
the knowledge of a long-term plan of movements. State-of-the-art routing software
provides a set of tools based on operational research algorithms to solve Constrained
Vehicle Routing problem. One of the most popular tool is OR-Tools [242]. However,
such tools do not provide the possibility to analyze and solve the problem with the
level of details we need: as an instance, Vehicle Routing algorithm in Or-tools
requires to pre-compute the shortest path among all the possible destinations. It
would not be possible to evaluate the routing of every new user/vehicle from our
dataset without a huge overhead in terms of data preprocessing. Compared to the
solutions for route/global EV simulation mentioned above, our work provides fast-
yet-accurate and reasonable heuristics, based on greedy single-step optimization,
that reflect typical human behaviours and realistic situations. Since our aim is to
achieve large-scale simulations, computational costs are critical.

Battery charge-discharge. The authors of [289] consider that battery charg-
ing times are nonlinear using a particular cost function which takes this aspect into
consideration. Indeed, while nearly linear for low state of charge, the charging rate
decreases when arriving the battery limit. In [288] this aspect is modeled by match-
ing a linear with an exponential function for high state of charge. At the same time,
practical battery maintenance guidelines (e.g. [166]) suggest to refrain from reaching
such charge limits, thus linear charging can be assumed when operating within the
devised charge ranges. In our work we will adopt such a simplified model, although
our framework can easily accommodate more complex ones.

Mobility data analysis for EVs. Similar to our objectives, some studies on
EVs make use of mobility data, typically to understand the usual mobility needs
of the population, and then check how well they fit the main characteristics of EV
mobility. E.g., [337] analyzes both traditional ICE vehicles and one EV to check if
typical range and mobility needs are compatible with the EV infrastructure in an
extreme environment. In [82] the general urban mobility behaviour in two Italian
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areas is studied, characterising trips length, average speed and parking duration
distributions, which are then used to quantify the urban fleet share suitable to be
converted to battery electric vehicles.
Compared to these works, our approach aims to analyze EVs’ impact at a finer
granularity, analyzing the single vehicle’s mobility, providing more precise estimates
and allowing a better understanding of the general phenomenon and of potential
issues. Moreover, we aim at exploiting the IMNs processing tools and models, in
order to infer basic semantic information that allows a more reliable simulation and
a more insightful analysis of the results.

4.1.2 Problem definition
A simulation framework for EVs should aim to compute a mobility schedule that
satisfies the (real) mobility demand Su of a user u respecting the battery constraints
of EVs and trying to minimize the overall cost that the user would experience in doing
that. In particular, battery constraints require that the simulation identifies when
and where recharges should take place. Also, the cost of a schedule might be defined
in various alternative ways, such as the total time spent (probably the most natural
choice, which will be adopted in our experiments), the amount of charge consumed,
the overall distance travelled (considering that reaching a recharge station might
require significant detours), and so on.

Optimal EV schedule

We start introducing the concept of EV schedules, basically consisting in a sequence
of stops that cover those strictly required by the original mobility demand of the
user, potentially adding new ones for recharge purposes, and that satisfy the basic
requirements enforced by battery-powered vehicles.

Definition 4.1.1 ((Valid) EV-schedule). An EV-schedule is defined as a tuple
(S, c, r, b1, b

∗) composed of: a sequence S = 〈s1, . . . , sn〉 of stop locations; a function
c : {2, . . . , n} → R defining the amount c(i) of battery consumed for traveling from
si−1 to si (1 < i ≤ n); a function r : {1, . . . , n} → R+ assigning the amount of
battery recharged at each stop si; the initial battery level b1 ∈ R+; and a maximum
battery capacity b∗ ∈ R+.

EV-schedule (S, c, r, b1, b
∗) is said to be valid if the following holds:

1. ∀1 ≤ i ≤ n : arrival_batt(i) ≥ 0

2. ∀1 ≤ i ≤ n : arrival_batt(i) + r(i) ≤ b∗

where arrival_batt(i) = b1 +∑i−1
j=1 r(j)−

∑i
j=2 c(j).

Constraints (1) and (2) above express that the battery level at stops never exits
its working limits, namely it never exceeds its maximum capacity and it is never
negative. We also observe that functions c and r basically define, respectively, the
charge and discharge operations applied during the simulation.
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Definition 4.1.2 (Compatible EV schedule). Given the sequence Su of stops per-
formed by a user u and a set R of recharge-enabled locations, we say that the
EV-schedule ξ = (S, c, r, b1, b

∗) is compatible with Su and R (or simply compatible,
when clear from the context) if:

1. ξ is a valid schedule;

2. Su v S;

3. ∀i. r(i) > 0 ⇐⇒ si ∈ R

with v denoting the subsequence relation.

Finally, we introduce the optimization problem in a general way:

Definition 4.1.3 (Optimal EV schedule). An Optimal EV schedule for user u is an
EV schedule ξ = (S, c, r, b1, b

∗) compatible with her sequence of stops Su, such that
it minimizes the total cost C(ξ) = ∑

τ(i) + ∑
σ(i), where τ(i) represents the cost

of performing the trip between locations si−1 and si, and σ(i) represents the cost of
stopping/recharging at location si.

Instantiating of the general problem definition

The definitions provided in the previous section can be instantiated into several
different ways, depending on the factors that are considered more important to
weigh for a specific application or context. In the following, we provide an instance
of the general framework that we consider reasonable for the aim of this work,
namely evaluating the potential impact of EV-based mobility over individual users’
mobility. The instance is given by defining the parameters and functions involved
in the definitions above. We first give some preliminary definitions.

Definition 4.1.4 (EV-Map, path and bestPath). An EV-map is a road network
G = (N,E) composed of nodes (i.e. road intersections) N and edges (i.e. roads) E,
where each edge e ∈ E is a pair e = (n1, n2) of nodes and is associated with three
attributes: length e.len, traversal time e.time, and battery consumption e.battery.

Given two nodes no, nd ∈ N , a path from no to nd is a sequence of connected
nodes < n1, . . . , nk > such that n1 = no, nk = nd and ∀2 ≤ i ≤ k.(ni−1, ni) ∈ E.

Finally, the function bestPathG(no, nd) returns the path that minimizes the total
travel time, i.e. ∑i ei.time, where ei = (ni−1, ni).

Then, we instantiate the general problem by defining the four key functions c(i),
r(i), τ(i) and σ(i) as follows.

Definition 4.1.5 (EV Time Minimization Problem). Given a user u with their
sequence of stops Su, an initial battery level b1 and a maximum battery level b∗,
the EV time minimization problem consists in finding an optimal EV schedule for u
under the following definitions:
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• Battery consumption of trips is computed as c(i) = arrival_batt(i− 1)− chki ,
where bestPathG(si−1, si) =< n1, . . . , nk >, ch1

i = arrival_batt(i − 1) and
∀j > 1.chji = min{b∗, chj−1

i − (nj−1, nj).battery}. This means that we choose
the fastest path between two locations. Also, since roads con have a negative
battery consumption (recharging when traveling downhill) we ensure that the
battery level never exceeds the cap b∗.

• Recharge amount r(i) is defined in two different cases, depending on whether
the visited location was already in the original schedule:

r∗(i) =
{
staytime(i) ∗ power(si) if si ∈ Su
∞ otherwise

r(i) = min{r∗(i), b∗ − arrival_batt(i)}
where staytime(i) represents the duration of stop si in the original sched-
ule and power(si) is the speed of the recharger available in si. In summary,
recharges in the original stop locations last exactly the stop duration, whereas
in other stops it lasts as much as needed to fill the battery up to the cap.
Also, we assume that the recharge speed remains constant for a given station,
regardless of the current battery level, which is an approximation.

• Trip cost τ(i) = ∑k
j=1 ej.time, for bestPathG(si−1, si) =< e1, . . . , ek >. Thus

travel time is our cost for moving between locations, not considering other
parameters at this stage, as for instance the battery consumption.

• Recharge cost σ(i) is computed as:

σ(i) =
{

0 if si ∈ Su
r(i)/power(i) otherwise

thus counting only the time spent recharging in the new stops introduced in the
EV-schedule, and zero in the other cases (what we call also passive recharges).
Recharge time is assumed to be linear in the amount of energy required, while
queue waiting times at stations are not considered

Our final objective is then to evaluate the cost of an optimal EV schedule under
time minimization as compared to that of its original, internal combustion engine-
based one.

The four simulation scenarios

A fundamental aspect that affects EV mobility is the availability of recharge options.
Part of them are determined by the public infrastructures on the territory, which
are basically the same for every user. Others depend on the user’s status, which
therefore might in principle condition their capability of safely replace the current
ICE vehicle with an electric one. We consider the following four basic settings,
covering a range of different recharge opportunities.
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Home Scenario. The user can not only recharge on public stations when
needed (thus making deviations for the actual trip and wasting time while waiting
for the recharge), but also at home every time they stop there for at least a specific
minimum duration, our default threshold being 20 minutes.

Work Scenario. Similarly to the Home Scenario, the user recharges at their
work location every time they stop there for at least a minimum duration, the default
threshold being 20 minutes also in this case.

Home And Work Scenario. Both Home and Work options are available.
Clearly, this is the best scenario for the user, since there are more opportunities of
recharging without spending time for reaching stations and waiting.

Public Station Scenario. The user can only recharge the battery at public
stations. This represents the minimal scenario, and the need for recharging at public
stations is expected to increase as compared to the other scenarios. We remark that,
according to Definition 4.1.5, if the stop at a recharge station was already in the
original schedule (i.e. the user was visiting that area for purposes unrelated to the
station itself) then the recharge is not considered as a cost, since it is not subtracting
free time to the user. In this case the recharge lasts only for the duration of the
original stay. Since it involves a small overhead for the user (namely walking to/from
the station to leave the vehicle and later getting it back in advance if the battery
is full1), we allow this recharge option only for stays of at least 1 hour. In addition
to the scenarios above, we define a situation that can happen when the EV range
limitation makes it impossible to travel a leg of the schedule:

Emergency Situations. When the initial battery at a starting location is not
sufficient to reach the destination nor any charging station, the user runs into an
emergency situation. These cases will be counted separately, and will be a critical
measure of the usability of EVs. In terms of simulation, we assume that in case
of emergencies the vehicle is rescued and transported to destination, where it can
continue the schedule with a fully-recharged battery. According to literature, the
share of users belonging to each scenario is quite variable from country to country,
yet typically showing a majority in the Home and Home-and-Work ones. From EU
estimates [216] it follows that 33% can recharge at home, 11% at work, 44% in
both, and just 12% only at public stations; also, these statistics fit with information
available for Italy (e.g. [53] cites 80% of EV recharges performed at home) and other
countries (e.g. Canada [247].

4.1.3 Simulation framework
Setting the stage: battery charging/discharging on the map

Battery consumption model Our estimation of battery consumption for each
trip of the user is based on a instantaneous consumption model introduced in [310]
and recommended in [11] as a good trade-off between realistic simulation and efficient

1This assumption stems from the fact that many EV station operators apply surcharges if the
vehicle is left unattented after completing the recharge.
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computability. The model considers all the physical forces to which the vehicle is
constantly exposed in order to estimate the amount of electric power needed to
reach a certain speed, including in particular: Rolling resistance, based on tire
characteristics, mass of vehicle and driver, and slope of the road; Aerodynamic
resistance, depending on front surface of the vehicle, air density (in our case fixed
to 20°C) and vehicle speed; Horizontal component of gravity, also depending on
the road slope; Inertia of the vehicle, mainly depending on the acceleration of the
vehicle. The model also considers the efficiency of the vehicle, such as engine and
gear efficiency. Also, the energy consumption due to onboard electronics (lights, air
conditioning, radio, etc.) is estimated.

Electric Vehicles have regenerative breaking that can recover a fraction of the
energy lost during decelerations and use it to recharge the battery.

In our simulations we will consider a medium class car model, with associated pa-
rameters. In particular, we will fix the maximum battery capacity to 40 kWh, which
represents a lower-end setting. More details, including all the physical parameters
adopted, are given in Appendix ??.

The final variation in the capacity SoC of the battery at time step t will be

SoC[t] = SoC[t− 1]−∆Soc− δself_disch

where ∆Soc is the overall balance of energy consumption and δself_disch represents
fixed self-discharge losses.

Estimating elevation and speed Our approach starts with building a road net-
work containing some key information needed to find shortest routes and evaluate
their battery consumption. We obtain a first version of the network through Open-
StreetMap, which provides the map of the region of interest in the form of a graph.
Then, we computed the maximum travel speed on each road, the altitude of the
nodes and subsequently, the slopes of the respective edges. All this additional infor-
mation has been inserted into the nodes and edges of the graph in order to obtain
a structure containing the necessary information.

Speed. Regarding to the speed on the edges, the data provided by Open-
StreetMap can be scarce, inaccurate and often missing. Indeed, only 10% of the
road segments in our area of study had a maximum speed value specified. To rem-
edy the lack of data, we exploited the Highway attribute, which is present on each
edge and represents the type of road, including ’alley’, ’crossing’, ’emergency bay’,
’living street’, ’motorway’, ’motorway link’, ’primary’, ’primary link’, ’residential’,
etc. Each type was then associated to the most common speed limit adopted in Italy.
Figure 4.1.1 depicts a speed-based colored map of Tuscany, comparing the original
available information (left) and that obtained through reconstruction (right). The
speed values are distributed according to a chromatic scale that goes from red for
the lowest speeds to green for the highest speeds. The predominant color is yellow,
representing the speed of 50km/h, which is consistent with the initial distribution
of maximum speeds.
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Figure 4.1.1: Maximum speed in Tuscany (left) using the attribute MaxSpeed and
(right) inferring it from the Highway attribute

Slopes. To calculate the slope of each edge in the network, we started from
the altitude of all the nodes. The Shuttle Radar Topography Mission (SRTM) data
was used to obtain the elevation information (Figure 4.1.2). Then, the difference
in height was calculated between the extreme nodes of each edge (Figure 4.1.3). In
the calculation of the difference in height it was noticed that some were not gradual
but they have jumps of several meters. This happens because the altitude data
are calculated on the ground and therefore do not consider infrastructures such as
tunnels, bridges and overpasses. To overcome this problem it was decided to consider
the slope on those sections equal to zero. Another problem was the lack of altitude
values for some nodes. In these cases, it was decided to assign the average of the
values of the neighboring nodes.

Figure 4.1.2: Nodes altitudes on a portion of Tuscany (blue=low, yellow=high)

Estimating road-level discharge In computing the battery consumption on one
edge (road), the speed and the slope on the edge were assumed constant and the
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Figure 4.1.3: Slopes of roads on a portion of Tuscany (blue=flat, red=steep)

maximum speed limit for that edge was chosen as speed. Finally, the consumption
by the vehicle on the edge was calculated, based on the battery consumption model
described in the previous section.

Integrating public recharge stations Finally, we extracted from the public
repository OpenChargeMap2 the list of recharge stations available in the geograph-
ical area of our interest, and associated each of them with the closest node of our
road network. Such nodes were labelled as public recharge locations, also describing
the maximum recharge power available.

EV-compliant best path computation

Best path heuristics As described in Section 4.1.2, the selected path followed
to reach a destination is simply the fastest one, when the battery constraints allow
that. When that is not possible, an intermediate stop at a charging station is
performed, selecting the one that minimizes the overall time (travel for the new
path plus recharge time). In complex situations, especially with long trips, one stop
might be insufficient, thus requiring a more complex, multi-stop optimization that
might greatly increase computation times. Our approach to the problem is a greedy
solution that identifies the first recharge stop assuming that one stop is sufficient
to reach the destination; then, if that is not the case, we repeat the same process
to reach the destination from the current station (now starting with a full battery),
thus greedily identifying the next stop, as above.

Paths precomputation Our simulation technique relies heavily on shortest-path
computations. To improve the simulation performance, we perform offline shortest
path precomputations to collect some useful information. However, considering the
quadratic space requirements of storing the shortest paths of all node pairs in the
road network graph, we limit the precomputations to/from charging station nodes
and store only the aggregate information about paths.
We precompute the shortest paths between the charging stations and all other nodes

2https://openchargemap.org

https://openchargemap.org


118 CHAPTER 4. ACT II: INDIVIDUAL MOBILITY MODELS AT WORK

in the road network by using Dijkstra’s algorithm [83] adopting the edge traversal
times as weights.

We denote with P(ni, nj) the precomputed values for the shortest path between
ni and nj. For each pair of so-called nodes, we store aggregate information about
the shortest path’s total traversal time P timetot (ni, nj), spatial length P lengthtot (ni, nj),
and consumption Pconstot (ni, nj). Storing only the sum of consumption values for path
edges can not provide enough information to reason about the final battery level of
the vehicle after traversing path edges. Note that the recharge during downhill edges
may take the battery level beyond the maximum capacity. For instance, suppose
the sequence of edge consumptions (and recharges) for a path is 〈−2, 3,−2,−1, 5〉,
and the maximum battery capacity is 7. The path’s total consumption is 3, but
starting with an initial charge of 7 does not necessarily mean that the vehicle will
have a battery level of 7 − 3 = 4 at the end of the path. That is because the first
downhill recharge amount of −2 in the sequence can not increase the battery level
as the battery level is already the maximum capacity.

To account for this dynamic behavior, we store the maximum charge
Pchargemax (ni, nj) which indicates an upper bound for the battery level of the vehicle
that guarantees the battery will not go beyond the capacity considering all the
downhill recharges along the path. For the example above, this upper bound is 5.
If the vehicle starts with a charge of 5, the ultimate battery level at the end of
the path is exactly 5 − 3 = 2. Moreover, we store minimum charge Pchargemin (ni, nj),
which indicates the minimum charge needed for the vehicle to reach from ni to nj.
This value is particularly important to filter the reachable charging stations from
ni based on the current battery level arrival_batt(ni) when the vehicle needs a
recharge.

Algorithm findMinMaxCharge summarizes the computation of the so-called
minimum and maximum initial battery levels for a sequence of path consumptions
consSeq and the battery capacity of C. In line 1, we first compute the sequence
of prefix sums of consSeq. The prefix sum indicates the vehicle’s battery levels,
starting with a battery level of zero from the first edge of the path.

Function findMinMaxCharge
Input : consumption sequence consSeq, and battery capacity C
Output: (minInitCharge, maxInitCharge)

1 prefixSumSeq ← compute prefix sum of consSeq
2 minInitCharge← max(prefixSumSeq)
3 maxInitCharge← C
4 if min(prefixSumSeq) < 0 then
5 maxInitCharge← C + min(prefixSumSeq)
6 return (minInitCharge, maxInitCharge)

The maximum prefix sum of consSeq specifies the minimum amount of charge
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needed for the vehicle to follow the path successfully; obviously, this maximum value
should not exceed C as in that case, the path would be unfeasible for the vehicle
with even a full battery (line 2).
On the other hand, if the minimum of this prefix sum sequence denoted by psmin
is negative, then the path has a subsequence that charges the battery. Thus, if
the vehicle arrives at that edge with a charge of C, no recharge will happen as the
battery is already full. Thus, in that case, the upper bound of the battery level to
avoid exceeding the battery limit is C+psmin (line 4). However, if psmin is positive,
we can infer that the upper bound would be the battery’s capacity (line 3).
For the example above, the prefix sum sequence is 〈−2, 1,−1,−2, 3〉 and the mini-
mum and maximum initial charges are 3 and 7+(−2) = 5, respectively. We formalize
the above discussion in the following, where we also specify how to exactly compute
the final battery level:

Theorem 1. Given a path having prefixSumSeq, minInitCharge and
maxInitCharge as defined in Function findMinMaxCharge, we have that:

• if the initial charge c is such that c < minInitCharge, then the path is not
doable by the vehicle;

• if minInitCharge ≤ c ≤ maxInitCharge, then the path is doable, and the
final charge is c− prefixSumSeq;

• if c ≥ minInitCharge and c > maxInitCharge, then the path is doable, and
the final charge is maxInitCharge− prefixSumSeq.

Proof. If minInitCharge ≤ c ≤ maxInitCharge, then the battery level c(t) re-
mains within the interval [0, C] throughout the path with no battery overflows nor
empty battery issues, thus the final level will simply be c(tfinal) = c−prefixSumSeq.
Assuming that c < maxInitCharge (and thus there are no overflows), if c <
minInitCharge there is a time t∗ in the path where the battery goes below
zero (c(t∗) < 0), and thus the path is not doable. It is easy to see that if
c > maxInitCharge then the battery levels c′(t) obtained at each time t are such
that ∀t : c′(t) ≤ c(t), and thus also in this case c < maxInitCharge ⇒ c(t∗) < 0
and the path is not doable. Finally, if c > maxInitCharge there is at least a time
t> where c(t>) > C and the battery level is capped to C and thus the battery levels
from this point on will be exactly the same we would obtain (with no overflows)
when c = maxInitCharge, hence c(tfinal) = maxInitCharge − prefixSumSeq by
applying the formula of the first case.

The precomputation of the shortest paths is justified mainly due to the fact that
the road network or the charging stations in the network do not change frequently,
and the precomputation can be done offline when significant changes happen to the
network.
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User history EV-simulation

Algorithm 4 summarizes our proposed procedure for the overall simulation of EV
users’ mobility. The procedure is based on a set of general simulation parameters
that are listed in Table findMinMaxCharge and are all passed to Algorithm 4. In
addition, the simulation algorithm receives the road network graph, the user’s indi-
vidual mobility network, and the sequence of the user’s trajectories sorted chrono-
logically. Also, three boolean parameters indicate the possibility of using home and
work chargers and whether moderate discomfort in reaching destinations is allowed
so the user can leave the vehicle in a public charging station instead of the exact
destination.

Parameter Description Default
k1 Weight of the first leg of the path (origin→recharger) 0.4
kc Weight for time to fully recharge the battery at the station 0.2
k2 Weight of the second leg of path (recharger→destination) 0.4
ms Min stay duration threshold for charging 20 mins
mdms Min stay duration threshold for moderate discomfort 60 mins
maxRecharges Maximum number of recharges allowed during a single trip 3
b∗ Battery capacity 40 kWh
b1 Initial charge b∗

P precomputed data N/A

Table 4.1.1: General Simulation Parameters

The simulation starts with obtaining the assumed home and work locations of the
user, and their corresponding nodes on the road network (lines 3-4). Then the origin
and destination for every trip in user’s history T is used to simulate the sequence
of consecutive locations that the user intends to visit. Hence, the graph nodes orig,
dest that correspond to the origin and destination of the trip are obtained (line 6).
The duration of user’s stay at orig which is basically the time they spent from the
end of the previous trip until the start of the current trip is computed in line 7.

If the home and work recharges are allowed, and the user stays there for at least
a predefined amount of time ms, a home or work recharge is done before the next
trip starting from orig (lines 8-11). Moreover, if moderateDiscomfort is enabled
and the user intends to stay for a long enough time, the option of recharging at a
public station close to the orig is also considered (lines 12-13).

Next, in lines 16-21, the algorithm tries a shortest path from orig to dest with
the weight criteria of edge travel times. If the shortest path is feasible given its
sequence of edge consumptions, then reachedDestination is set to True and both
orig and dest are inserted into the simulated path sequence S. Otherwise, depending
on the current battery level cc, a list of reachable charging stations is fetched from
the precomputed information P (line 23). Note that, there might be no reachable
charging stations if the battery level of the vehicle is too low, in which case, the
current trip simulation is interrupted (lines 24-25).

Then, the best charging station recharger is selected among the possible op-
tions using the heuristics described in section 4.1.3 (line 27). Considering the
discussion in section 4.1.3, if the current charge of the vehicle is lower than
Pchargemax (orig, recharger), then the vehicle will consume the energy equal to the sum
of path’s edge consumptions. Otherwise, the same computation will be performed,
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Algorithm 4: (EV Strategy)
Input : Road network graph G, user’s IMN IMN , user’s trajectories T ,

Comfort Parameters: homeCharge, workCharge,
moderateDiscomfort,

General Parameters: k1, k2, kc, ms, mdms, maxRecharges, b1, b∗,
P (Table findMinMaxCharge)
Output: Simulated Path S

1 S ← 〈〉
2 cc← b1 // cc is the current charge
3 homeNode← G.getNode(IMN .homeLoc)
4 workNode← G.getNode(IMN .workLoc)
5 foreach t ∈ T do
6 orig, dest← G.getNode(t.s), G.getNode(t.e)
7 stayDur ← stay duration at orig before starting t
8 if homeCharge and orig is homeNode and stayDur ≥ ms then
9 cc← recharge at home

10 else if workCharge and orig is workNode and stayDur ≥ ms then
11 cc← recharge at work
12 else if moderateDiscomfort and stayDur ≥ mdms then
13 cc← recharge at the fastest charging stations for the stay duration
14 reachedDestination← False; rechargeCount← 0
15 while not reachedDestination and rechargeCount ≤ maxRecharges

do
16 p← SP (G, orig, dest, weight =‘traveltime’)
17 consSeq ← consumptions of p’s edges
18 (isFeasible, cc)← isFeasible(consSeq, batCap, cc)
19 if isFeasible then
20 reachedDestination← True; S.insert(orig); S.insert(dest)
21 break
22 else
23 rcs← {charging stations cs | cc ≥ Pchargemin (orig, cs)}
24 if rcs = ∅ then
25 break
26 recharger ← arg mins∈rcs k1 ·P timetot (orig, s) + k2 ·P timetot (s, dest) +
27 + kc · recharge_time(s)
28 if cc < Pchargemax (orig, recharger) then
29 cc← cc− Pconstot (orig, recharger)
30 else
31 cc← Pchargemax (orig, recharger)− Pconstot (orig, recharger)
32 cc← b∗ (full recharge and collect recharge time statistics)
33 rechargeCount← rechargeCount+ 1
34 S.insert(orig)
35 orig ← recharger
36 if not reachedDestination then
37 EMERGENCY condition
38 cc← b∗

39 return S
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Function isFeasible
Input : consumption sequence consSeq, battery capacity C, and charge b
Output: (isFeasible, remainingCharge)

1 finalCharge← b
2 foreach cons in consSeq do
3 newCharge← finalCharge− cons
4 if newCharge < 0 then
5 return (False, None)
6 else if newCharge > C then
7 finalCharge← C
8 else
9 finalCharge← newCharge

10 return (True, finalCharge)

yet capping the initial battery level at Pchargemax (orig, recharger) (lines 28-31). Then,
a recharge is done at recharge (line 32), the number of recharges for the current
origin/destination pair is incremented (line 33), the node orig is added to S and
recharger is set as the origin node for the next trial in reaching the destination
(lines 34-35). This process repeats until either the vehicle reaches the destination or
the number of recharges exceeds the maxRecharges threshold. In case it was not
possible to reach the destination, the algorithm raises an emergency condition and
continues with simulating the next trip (lines 36-38).

4.1.4 Experiments
Setting up the stage

In this section we describe the dataset used and the general setting of the experi-
ments carried out. Also, some properties of the dataset are explore, to give the reader
a better understanding of the application context. Dataset Our experiments are
based on a dataset of real GPS traces of 1000 private vehicles moving in the Tuscany
region in Italy, and spanning 2 months, namely March and April 2017. The vehicles,
in particular, are residents from (i.e. their main location belongs to) five provinces
of the region: Arezzo, Firenze, Lucca, Pisa, Pistoia, although their trips can span all
the region. The raw data is segmented by identifying stops as points where a vehicle
remains virtually in the same place (namely, within a distance of 50 meters) for at
least 20 minutes. Each trip is then represented by its pair of origin and destination
points, filtering out those that are shorter than 1 km (typically representing cases
where the vehicle is simply parked in a different slot in the same area). This results
in a total of 176’300 trips. In order to make the results of our simulation perfectly
comparable with the real mobility data, the trip between each origin and destina-
tion pair is reconstructed through a fastest path heuristics – the same used in the
simulation, yet with no battery constraints –, storing its length and duration. This
operation reduces the impact of imperfections in the road network (missing edges,
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wrong directions, incorrect speed, etc.) over the comparison process. Each origin
and destination point is snapped to the closest node in the road network, and we
use the shortest path function provided by the OSMnx library [45] with cost defined
as the traversal time of each edge.

Home and Work In order to implement the simulation scenarios it is essential
to identify the locations representing home and those representing the work places.
We do that following the approach described in [257, 212, 126], which infers a graph
structure of the user’s mobility named Individual Mobility Network (IMN), and
identifies visited locations and their frequency. The most frequently visited location
is then selected as home and the second most frequent one as work place of the user.

Dataset statistics As shown in Figure 4.1.4, most users have more than 100
trips in the observations period. Also, the average number of trips per day ranges
from 2 to 8 for the large majority of users. This suggests that the movement history
of the users analyzed is significant.

Figure 4.1.4: Distribution of the number of trips involved in the experiments: (left)
trips per user; (right) trips per day of each user.

The length of the trips is studied in Figure 4.1.5(left), and shows a log-normal
shape, representing the fact that there are many trips of medium-short length (less
than 10km, in most cases), as well as a significant number of moderately long ones
(between 10km and 40km) and a small fraction of long trips (longer than 40km up
to 300km), which appears to be coherent with the extension of the geographical area
considered. Figure 4.1.5(right) compares duration and length of the trips, showing
a linear relation, as expected, with a variability that grows with the trip length.
Longer trips, belonging to the tail beyond 100km, appear to have a more stable
average speed (around 100 km/h), probably due to the fact that they are mostly
performed along high-speed roads.

The experiments make use of two sources of geographical data: OpenStreetMap,
for the road network of Tuscany, which is composed of 138792 nodes (intersec-
tions) and 305804 edges (road segments); and OpenChargeMap, for the catalogue
of recharge stations available on the territory and their power, for a total of 354
stations. Figure 4.1.6 shows the distribution of recharge power and the geographical
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Figure 4.1.5: Distribution of trip lengths (left) and duration (right).

disposition of stations. Recharge stations are grouped by power (expressed in kW)
and power category, following the current standard classification (see, e.g., [184]):
slow if power < 7kW , fast if 7 ≤ power < 25kW , rapid if 25 ≤ power < 100kW ,
ultra-rapid if power > 100kW . The most common ones are fast rechargers, espe-
cially those with a power of 22 kW, although there is a good number of rapid ones,
and a few ultra-rapid. The large majority of stations are on the Northern part of
Tuscany, in particular along the line connecting Florence and Pisa.

Figure 4.1.6: (left) Number of stations by maximum recharge power provided
(in KW); (right) Geographical distribution of stations (red=slow, orange=fast,
green=rapid, blue=ultra-rapid).

Runtime evaluation

In this section we evaluate the scalability of the proposed approach w.r.t. the in-
put dataset size (namely the number of trips involved in the simulation) and its
complexity (namely the length of trips). We consider the two extreme scenarios:
public-only recharges and recharging also at home and work.
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Figure 4.1.7 shows the growth of runtimes for increasing sizes of the input dataset.
In particular, each data sample is composed of the first N trips in chronological order,
and the ticks in the plot at every 20k trips also correspond approximately to one
more week of data. Runtimes grow linearly in the input size for both scenarios,
as we could expect given that each trip is only loosely dependent on the previous
ones. Also, the public-only scenario has slightly higher runtimes due to its higher
chances of deviations to recharge stations, which add complexity to the process and
increase runtimes. We remark that these time measures do not consider the fixed
cost of the pre-computation phase described in Section 4.1.3, which depends only on
the geographical area of interest and not on the mobility data. In our experiments
that added an amortized cost equivalent to ∼221 milliseconds per trip, assuming to
amortize it over a single simulation run (i.e. a single scenario with a single set of
parameters). While still significant, it easily becomes negligible when multiple runs
are needed or larger datasets are employed.

Figure 4.1.7: Simulation runtime for different input sizes (seconds vs. n. of trips).

Simulating short trips is expected to be less expensive than longer ones, since
the latter usually involve a more complex shortest path computation and there also
higher chances that an additional stop at a recharge station needs to be planned.
The plots in Figure 4.1.8 analyze the runtime distribution of single trips grouped by
trip length, for the two scenarios (home and work on the top plot, and public-only
on the bottom). In both cases, we can see that runtimes grow approx. linearly with
the trip length, although trips above 130 km are not frequent enough (see gray line
in the ploy) to draw clear conclusions from them. Also, the vast majority of trips
(more exactly, 96.9%) are less than 30 km, for which the single trip cost is virtually
always less than 50 milliseconds. The main difference between the two scenarios is
the variability of runtimes, which appears to be slightly higher for the public-only
one.

As mentioned in the related works, most competing approaches available in lit-



126 CHAPTER 4. ACT II: INDIVIDUAL MOBILITY MODELS AT WORK

Figure 4.1.8: Average runtime for trips, divided by trip length, for the Home and
Work scenario (top) and the Public-only one (bottom). The black line represents the
number of trips in each group (log-scale).

erature aim to precisely optimize the single trip, yet requiring much higher compu-
tational costs – indeed, the optimal routing algorithm behind them (e.g. [300]) is
known to be NP-hard, and thus hardly applicable to medium-sized setting as the
one we are considering here, which requires to simulate over 170k trips over a road
network composed by over 300k edges. Our heuristics, instead, results to be efficient
enough to run each experiment in around 1.2 hours on a single commodity machine.

Simulation results

Overall impact of EV on individual mobility The core of the experiments
consists in a comparison of the original trips against the simulated ones on the
four scenarios (charge at public stations only; public and home; public and work
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Table 4.1.2: Overall impact of EVs on trips. We focus on the comparison between
the average length and the average duration of real and simulated trips.

Avg. length (km) Avg. duration (s) Emergencies Recharges
Scenario REAL EV DELTA REAL EV DELTA
public-only 9.323 9.415 +0.98 % 7’9" 8’26" +18.11 % 1270 (0.72%) 2.26 %
work 9.358 +0.37 % 7’36" +6.29 % 328 (0.19%) 0.95 %
home 9.337 +0.15 % 7’18" +2.06 % 94 (0.05%) 0.41 %
home + work 9.334 +0.12 % 7’16" +1.79 % 60 (0.03%) 0.34 %

sample mix avg 9.347 +0.26 % 7’27" +4.34 % 246 (0.14%) 0.66 %
std ±0.00 ±0.02 % ±0’1" ±0.22 % ±15 (±0.01%) ±0.02 %

place; public and home + work) over the whole dataset. In addition, we created 100
random sample mixes of the four scenarios, associating each user to one of them by
following the representative distribution statistics for (some) EU countries provided
in [216], according to which 77% of users can recharge at home, 55% at work and 12%
in none of them. The results are summarized in Table 4.1.2.First, we can see that
the average lengths of the trips in the four scenarios are very similar to the original
ones, with an increase of less that 1%, signifying that deviations for recharging are on
average modest. In terms of trip duration, the worst-case scenario yields increments
that are moderate in absolute terms (+1’17") and yet, given the typical short lengths
of trips, are significant in relative terms, reaching a 18.11%. This percentage very
quickly drops to moderate levels when recharge-at-work is introduced, and to modest
ones with recharge-at-home. In general, we observe that the highest increases are
observed when only public stations are available for recharging, which are strongly
reduced by recharges at home, and slightly less by recharges at work. When both
options are available, their synergy actually produces slight improvements.

The simulations yield a 0.75% of emergencies in the public-only scenario, which
is relatively large. We believe this to be an overestimate of real user issues, mainly
caused by the insufficient distribution of recharge stations in Tuscany (currently
covering only larger cities and main ways), aggravated by the incompleteness of
OpenChargeMap (we estimate it is missing 3̃0% stations). With the growth of the
EV infrastructures, we expect that these factors will be greatly alleviated in the near
future. Introducing other recharge options drastically reduces emergencies down to
0.03% for the home + work case. Similar results are obtained for the percentage
of trips with recharges at stations. Finally, we observe that the representative sam-
ple mix achieves rather low values, that are between the recharge-at-work and the
recharge-at-home scenarios. Overall, the results show that by applying the simple
charge management heuristics considered in this paper, the majority of trips incurs
into minor deviations from the original ones. Considering the sparseness of the cur-
rent recharge infrastructures available in the area of study, that provides positive
feedbacks for individual users about the feasibility of switching to an EV without
changing any aspect of their mobility habits.

These results can be seen from the perspective of the single individual, in or-
der to understand if the overall moderate average impact measures shown actually
hides some portion of users that are largely affected. Figure 4.1.9 represents the
distribution of the duration increase (left) and distance increase (right) measured
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Table 4.1.3: Temporal variations of EVs impact for the four scenarios. The two
months period is split in four shorter periods of two weeks each (t1, t2, t3 and t4) in
order to see how the percentages change inside the selected time.

Increment Length % Increment Time % % Recharge Trips
t1 t2 t3 t4 t1 t2 t3 t4 t1 t2 t3 t4

public-only 0.68 0.99 1.04 1.19 12.24 18.82 19.5 20.8 1.61 2.25 2.3 2.77
work 0.3 0.36 0.35 0.42 4.77 6.67 5.89 7.64 0.7 0.94 0.9 1.23
home 0.08 0.18 0.13 0.23 1.49 1.79 1.82 3.12 0.31 0.37 0.36 0.59

home/work 0.05 0.12 0.1 0.19 1.33 1.52 1.59 2.73 0.26 0.3 0.3 0.5

aggregating times and distances by user. As we can see, the figure not only confirms
that introducing home/work as recharge opportunities the impact is reduced (the
peak around a 0 increase grows significantly), but also that virtually no user suffers
increases above 4% in any of the scenarios.

Figure 4.1.9: Distribution of trip lengths and duration aggregated by user for the 4
scenarios.

Temporal stability of results In order to evaluate if the results obtained are
time dependent, we provide in Table 4.1.3 aggregates over four consecutive bi-weeks
for the four scenarios. We can observe that there is indeed some variability, and also
a general slight increase on all measures considered, yet always remaining at low
levels and well below 1%. The increase can be justified by considering that some
vehicles travel relatively little, and thus it is unlikely that they will need recharging
during the first bi-weeks, concentrating recharges (and, consequently, deviations)
later in the period.

Spatial stability of results Since our dataset spans a significantly large area,
and the recharge infrastructures are not homogeneously distributed, we try to un-
derstand if trips in different provinces suffer from deviations of different intensity.
Table 4.1.4 summarizes the results. Here we can see that, indeed, different areas
show a different impact level. In particular, Pisa benefits from a larger number and
better distribution of recharge stations at least in relation to its size, and thus shows
a significantly smaller impact than the others. Firenze and Lucca have similar val-
ues that are much larger than Pisa, most likely because of the large extension of
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Table 4.1.4: Geographical variations of EVs impact. Each province is associated to
the trips that start from it.

Increment Length % Increment Time % % Recharge Trips
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public-only 1.0 1.13 0.96 0.55 0.93 14.3 22.2 17.0 13.6 19.6 1.5 2.59 1.96 2.04 1.9
work 0.21 0.4 0.38 0.14 0.26 3.35 7.21 4.81 3.99 5.76 0.47 1.05 0.76 0.67 0.65
home 0.03 0.1 0.09 0.04 0.03 0.42 0.92 0.87 0.96 1.0 0.1 0.28 0.21 0.24 0.15

home/work 0.02 0.06 0.05 -0.01 0.01 0.27 0.71 0.62 0.52 0.5 0.07 0.21 0.16 0.13 0.08

Firenze, resulting in a lowed density of stations, and the limited number of stations
in Lucca, only partially balanced by the proximity to Pisa and its infrastructures.
Finally, Arezzo and Pistoia are less covered by stations and also slightly peripheral
to the other big cities. As final remark, we notice that the impact of the single
provinces are smaller than the aggregates shown in Table 4.1.2. This is due to the
fact that trips originated outside provinces are not included here, and they indeed
tend to be longer and traversing less populated (also in terms of stations) areas.

Impact of heuristics’ parameters When a direct trip to a given destination
is not possible because of a battery charge shortage, the proposed heuristics builds
a path passing through a reachable recharge station, which is chosen by considering
the travel time to reach the station, the travel time to reach the destination from
the station, and the recharge time. The weight associated to each component is
defined, respectively, by parameters k1, k2 and kcharge. In this paragraph we discuss
the effects of different choices of parameters, in terms of performances and also in
terms of station usage.

Since stations can have very different recharge speeds, it can happen that the
heuristics chooses to perform large deviations (and thus spend more time to travel)
in order to reach a fast recharger and thus spend less time recharging. For this
reason, high values of kcharge are expected to increase the usage of highest speed
stations. Figure 4.1.10 shows the distribution of recharges on the different station
types, grouped by power/speed, for different values of kcharge. As we can see, when
the weight of recharge time is null, recharges are strongly concentrated on relatively
slow stations, namely those labeled as “fast”, which are the most popular on the
territory. With kcharge = 0.2 the distribution immediately changes, and the peak is
now on the “rapid” group. Further increasing kcharge has little effect on the slow/fast
group, whereas the rapid one slightly decreases in favour of the “ultra-rapid”. In
all cases, the slowest stations in the “fast” category and those in the “slow” one
have a marginal role, since they are not common enough nor convenient in terms of
recharge time.

Tables 4.1.5 describes how the impact of EVs changes when varying the travel
time parameters (k1 and k2). Increasing k2 has no clear effect on the length and
duration of trips, while it apparently leads to a slight reduction on the number of
recharges required. This might be motivated by the fact that high values of k2
promote recharges which are closer to the final destination, which is thus reached
with more charge in the battery for the following trips. A low k2, instead, would
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Figure 4.1.10: Usage frequency of stations by power by increasing values of kcharge
(weight of recharge time in the path selection algorithm).

Table 4.1.5: Effects of varying k1 and k2 on EVs impact. kcharge is fixed to 0.2.
Parameters % Increment % Increment % Trips
k1 k2 Length Time with Recharge
0.1 0.7 0.89 19.25 2.19
0.2 0.6 0.93 18.65 2.22
0.3 0.5 0.96 18.31 2.24

favor early stops at stations along the trips, resulting in lower battery levels at the
destination.

Validation of results In order to test whether our solution provides results
coherent with other existing EV-related services, we compared it against the popular
online EV-based trip planner ABRP (https://abetterrouteplanner.com/) through a
small-scale experiment covering 20 users over one day. Results show that the trips
generated by ABRP have a similar length (average difference around 2%) and a
significant, yet stable increase in driving time (35.3%) and recharging time (24.6%)
– which can be attributed to ABRP referring to real-time, and thus traffic-affected,
road status information. This small comparison suggests that our results, expressed
as relative increase/decrease of times, are overall coherent with ABRP. More details
are provided in [? ].

Case studies

In this section we closely examine the impact of EVs on two sample users, each
under two scenarios: charge at home and work, and charge only at public stations.
User A is characterized by a moderate number of recharges performed (12 in the
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worst case), while user B had a higher number (28 in the worst case). Figures 4.1.11
and 4.1.12 show the results respectively for user A and user B, adopting a double
visual representation of the EV-based mobility for each scenario.

The IMN representation in Figure 4.1.11(top-left) shows that in the public-only
scenario user A performed several recharges along different trips of their history
(see the red edges), plus rather frequent passive recharges (i.e. while stopping at a
trip destination) in two locations (see the small red nodes). The temporal charge
plot on the bottom-left also confirms that recharges at stations (in red) are approx.
uniformly distributed in time, while passive recharges (in green) are less frequent.
The corresponding home + work scenario is shown on the right plots. As we can
see, recharges are now much more concentrated on the home and work location,
significantly reducing the recharges at stations (especially for trips starting/ending
at home or at work) and also strongly reducing the other passive recharges. The
temporal graph confirms this, and also shows that the battery level is generally kept
much higher than in the previous scenario. For this user, the overhead in adopting
an EV seems to be moderate, and reduced almost to zero when recharging at home
and work is possible.

User B, shown in Figure 4.1.12, starts from a much more complex situation, as
they require rather frequent recharges at public stations in the public-only scenario
and does not benefit of passive recharges. Moving to the home and work scenario,
recharges at home reduce significantly the usage of public stations, yet there is no
dominant work place, and the overall result is that also in this scenario a significant
number of stops at public stations is needed, especially in the central period of time.
User B is not only energy-hungry, but their mobility distribution also makes the
effect of passive recharges less incisive. Overall, this appears to be a user that might
require more effort in the transition to EVs.

4.1.5 Notes on privacy and ethical issues

In this paragraph is presented a brief analysis of the potential privacy risks that
could be hidden in this work. The simulation framework for EVs described above
should aim to compute a mobility schedule that satisfies the (real) mobility demand
of a user respecting the battery constraints of EVs and trying to minimize the overall
cost that the user would experience in doing that. All the simulation is based on
extracting some information from real data and then creating alternative trips that
take into account the EV needs. Starting from the individual real trajectories the
only points of departure and arrival for each trip are extracted and the identification
of the places most frequented by each user (probably home and work). This involves
many risks related to the possibility of matching this data and tracing the identity of
the user. Simulating the rest of the journey instead, there is no knowledge about the
trip, the speed or any driving characteristics of the user. Above all, nothing is known
about stops or detours made before arriving at the point of arrival. Compared to
the many hidden risks behind the individual mobility network (see details in sec
4.4), for this research the identification risks are minimized since the full use of GPS
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WH WH

Public-only Home + Work

Figure 4.1.11: Use case A: IMNs (top) and temporal graph of charge (bottom).
Left: Home + Work scenario; right: Public-only. Size and width in IMNs repre-
sent frequency of stop/trip, darkness of red represents frequency of recharge. In the
temporal graph, passive charges are green, those at stations are red.

data it is outside the scope of the work.
Therefore there are not other obvious risks of privacy attacks than those already
mentioned in 4.4.

4.1.6 Conclusions
In this work we proposed a methodology to analyze the process of switching the
current private mobility from fossil fueled cars to their corresponding electric version.
Our process, which combines mobility data analytics, ad-hoc trip planning, and
simulation, allows for a quantitative analysis of the current fuel-based mobility of a
user and the potential impact of transitioning to EVs.

Through the use of our approach, we can analyze the impact of EVs on the
mobility routine of a real-world user, considering the potential challenges posed by
limited driving range and charging infrastructure availability.
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Figure 4.1.12: Use case B: same layout as Figure 4.1.11.

Overall, our proposed process provides a valuable tool for individual users to
understand how much their mobility fits the EVs’ requirements, as well as for deci-
sion makers to make informed choices about designing charger networks to meet the
specific needs of a given region. By considering the user’s specific mobility needs
and habits, we can provide personalized insights and recommendations to help guide
their decision-making process. Use case results and application. The results
obtained over an Italian region shows how the electrification process is expected to
generate only moderate issues at the collective level (mainly, marginal increases in
distance traveled and overall moderate time spent at recharge stations), and yet
individual users can expect slightly different impacts in they travel & refuel habits.
We envision that these results (and the tool in general) can help various actors of
the mobility scene: decision makers in better planning the charging infrastructures
by simulating the impact of installing new stations or improving their speed; car
makers to support the design of models that better fit users’ needs; and the single
users, that can better understand their personal fitness to EV under different con-
ditions and car models (e.g. choosing their personal best trade-off between battery
capacity and cost).
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Limitations and open problems. Though a ready-to-use tool, the proposed
approach is still amenable to improvements in several directions that we aim to
explore: integrating/estimating waiting times at stations, as well as a more complete
map of charge stations; considering the variability of power provided by chargers as
effect of the time-variable energy grid load; studying the effect of different battery
capacities; studying the impact of EVs on user costs and environmental factors;
finally, devising processes and setting up experiments to achieve a stronger validation
of results, and a better calibration of the tool.
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4.2 Comparative cities studies through City Indi-
cators

Classifying a geographical territory into semantic categories is one of the most com-
mon tasks in research areas such as urban geography, urban planning and mobility
data analytics. Characterizing human mobility is a key component of this process,
and it is well known that mobility often does not work the same way across different
regions. A movement pattern in a mountainous countryside may have other impli-
cations than the same pattern has in the suburbs of a large town. The movement
trajectories in a planned city with rectangular streets and strict zoning laws might
be completely different than the ones in a town that has grown organically without
any clear structure. Therefore, any kind of property that was learned in a particular
area, in general cannot simply be assumed to hold in another one.

Figure 4.2.1: The areas of study: 10×10km squares centered on each municipality
in Tuscany.

4.2.1 Local City Indicators
Here we introduce the local city indicators designed individually for each municipal-
ity. They are grouped in spatial concentration measures, flows measure, individual
mobility and street network.

Spatial Concentration

Spatial concentration is one of the most important aspects in the description of
urban regions and answer the question how the density of people and activities vary
across the area? This question was traditionally focused on people’s residency and
workplace, since that was the only available data, mostly coming from census or
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government records. More recent research is profiting from the availability of more
detailed data from mobile phones, vehicle trackers and satellite imaging [154, 306,
15]. Spatial concentration is used in a vast range of different fields [106, 275, 116,
127, 126]. In this work, the concept of spatial concentration is focused on the overall
amount of mobility, undifferentiated by types of activity. The question of interest
is: are the activities concentrated in cluster-like centers of high density or are they
spread-out across the map?

In the following, we present three approaches to answer this question: spatial
entropy, Moran’s measure, and the average nearest neighbor distance. The first two
approaches can only be calculated after the geographical space has been partitioned
into a set of disjoint areas. In this work, we do that adopting an equally-spaced
grid, and divide the 100km2 region representing each area using different resolutions,
including a grid of 10x10 (i.e. each cell is a square of side 1 km), 20x20 and 50x50
cells.

Entropy

It can be used to measures how equally activities are distributed across the grid.
Let X be a discrete random variable modeling the positions of an individual ending
up in n different fields [28]. The entropy is defined as [274]:

E(X) = −
n∑
i=1

P (xi) logP (xi)

where {x1, . . . , xn} are the possible values of X and P (xi) is the probability of X
being in state i. For maximum entropy (log(n)) there is an equal amount of activity
in all fields; for minimum entropy (0) all the activity is amassed in a single field.
In order to compare entropy scores of different-sized grids, the measure must be
normalized by dividing it by the expected entropy of a uniform distribution, i.e.,
log(n).

Moran’s I

It overcomes the entropy weakness by considering how the fields are positioned in
space: spatial autocorrelation [258] that represents the degree to which the fields’
values are correlated to the value of neighboring fields. For spatial autocorrelation,
the nearness between all pairs of fields must be defined with a so-called weight
matrix w, where wij is the nearness between nodes i and j. A simple form of weight
matrix is an adjacency matrix, with the value 1 if fields are adjacent, 0 otherwise. An
important difference to the entropy is that spatial autocorrelation has two directions.
A high autocorrelation indicates that values of the same magnitude are prone to be
next to each other, while a low autocorrelation means that similar values are less
likely to be near each other than under random positioning. Somewhere in between
lies a value of autocorrelation in which the population of the fields is how one would
expect it to be under a random distribution with no spatial autocorrelation. The
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most famous autocorrelation measures is Moran’s I [209]:

I(X) = N

W

∑
i

∑
j wij(xi − x̄)(xj − x̄)∑

i(xi − x̄)2

where N is the number of fields, x is the amount of activity or population, x̄ is
the average field value, and W is the sum of all the weights. The minimum and
maximum values of Moran’s I depend on the weight matrix. We highlight that the
absence of autocorrelation is given at Moran’s I equals to −1/(N − 1), that tends
to zero in grids with an high amounts of fields.

Nearest Neighbor Distance

The Average Nearest Neighbor Distance (ANND) is not dependent on a grid and its
parameters. For every point, the distance to its nearest neighbor is calculated. The
mean of those values is the ANND :

ANND =
∑
imin(di)
N

where di is a vector containing the distances of point i to all the other points, and
N is the amount of points. The lower the ANND , the higher is the average spatial
concentration in the areas surrounding the points. We highlight that this definition
bears a similar weakness as the entropy. The expected ANND under assumption
of a uniform distribution of points across the area is the Mean Random Nearest
Neighbor Distance (MRNND) MRNND = 0.5

√
A/N , where A is the surface of the

area and N the amount of points. By dividing the ANND by MRNND we obtain the
Nearest Neighbor Index (NNI ) which is comparable among samples with different
sizes and areas. A NNI smaller than 1 indicates a higher spatial concentration than
in a random case, whilst value above 1 shows that the points are spread out across
the map more than one expects in a random scenario.

4.2.2 Flows in a Grid Network
In order to capture the information about flows in urban regions, the data can be
transformed into a directed weighted graph that represents the flow of the people’s
trajectories:

• a set of nodes V representing places that are origins and destinations of tra-
jectories,

• a set of edges E representing the directed connections between the nodes,

• a weight function w : E → R that maps each edge to a weight, which indicates
the amount of trajectories that occur along the edge.
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The map is split into fields of a grid and all origins and destinations of the trajecto-
ries in the area are assigned to the field in which they lie. The network is created by
assigning every node to a cell, and to each edge the weight the amount of flows oc-
curring along the edge. The weight function w is equivalent to an origin destination
matrix. The network allows us to gain knowledge about the structure of a region
by looking at the properties of the resulting network described in the following.

Node Degrees

A basic property of the network is the distribution of its degrees. Degree is hereby
defined as the total traffic (sum of in- and out-flow) of a grid field. This measure is
sometimes also referred to as node-flux [265].

Louvain Modularity

An interesting quality of networks is the degree to which nodes can be partitioned
into groups, such that the connectivity is high within those groups, and low in
between. In the context of urban regions, the corresponding question is: can the
city be split into areas that are relatively autonomous and have only low interaction
between them? In network science, modularity measures this property for a given
partitioning: a graph partitioning separates the graph’s nodes into non-overlapping
communities. Modularity shows the difference between the relative amount of inner-
community links and the expected relative amount under random linking in a non-
directed weighted graph [25]. The modularity goes from −1 to +1, where 0 marks
the value expected in a network where all possible edges have the same expected
weight. We highlight that the direction of traffic flow is not important here. Thus,
the grid networks in this work are transformed into non-directed networks before the
modularity is calculated. Modularity does not describe a network on its own, but
a network along with its partition. In order to quantify how well an urban region
is separable into different sub-areas we adopt the Louvain Algorithm [44] that does
not guarantee an optimal solution but it performs well empirically.

Interaction Models

The flow network allows us to test how well the empirical data aligns with two estab-
lished models that describe human interaction in space. The Gravitation Model [10]
idea is that the traffic flow from place i to place j depends on the origin population
mi and the destination population nj. Highly populated places, attract flow towards
them. The classic model predicts the traffic flow from i to j which have a distance of
r as Gij = Amα

i n
β
j /r

γ, where A is a normalization factor, and α, β, γ are the model’s
parameters. They can be optimized by multiple regression when fitting data to the
model. In this work we adopt a simpler model [204] with α = β = 1. The Radiation
Model [278] updates Gij by introducing sij that is the population within a circle
around place i, with a radius of its distance to place j, minus mi and nj. The
intuition is that outgoing trips are being attracted by nearby populations [204]. It
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predicts the flow Tij as Ti

1−mi
M

minj

(mi+sij)(mi+nj+sij) where Ti is the sum of outflows from
i, and M = ∑

imi is the total sample population.

4.2.3 Individual Mobility
Here we consider the mobility at level of individual users. From this perspective,
urban regions can be described by aggregated values of their inhabitants’ mobility,
therefore a set of statistics are calculated for each individual from their trajectories:

• Average distance and duration per trip

• Average driving distance and duration per day

• Average amount of trips per day

As we see in Sec.3.2 individuals’ mobility data can be transformed into a Indi-
vidual Mobility Network, which describes the individual mobility of a user through
a graph representation of her locations and movements, grasping the relevant prop-
erties and removing unnecessary details.

From an IMN , we can describe the individuals travel behavior with the following
indicators:

• Size of the network: number of nodes and edges.

• Temporal-uncorrelated entropy: measure how equally the different places of
the IMN are visited.

• Radius of gyration [232]: approximates the average distance of an individual
from its center of mass [118].

• Regularity of trajectories: percentage of trips that are driven more often than
a certain threshold per time [129, 126].

• Modularity: the Louvain Algorithm [44] applied to the IMN .

4.2.4 Roads and Traffic
Static Road Network

This section focuses on the road network modeled as a directed graph (G = (E, V ),
where V is a set of nodes representing roads intersections, E is the set of directed
edges which model the the road segments, and l : E → R maps each edge to its
length in meters. Some basic statistics of the road network can be calculated:

1. amount of edges and nodes/node density

2. amount of intersections/intersection density

3. average node degree/average intersection degree
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4. total length of edges/mean edge length

In addition, since nodes in any network can be evaluated w.r.t. their centrality,
we evaluate the road network’s closeness centrality in terms of the length of the
shortest path to any given node. The average of those path lengths is a node’s
average farness from other nodes. The reciprocal of this value is a node’s closeness
centrality C(x) = 1∑

y
d(y,x) , where x and y are nodes and the d returns the length

of the shortest path between its arguments. As distance function we consider the
length as the summed road lengths of the edges of the shortest path [245].

Traffic in the Road Network

To investigate how traffic is distributed in a road network one must map match the
sequences of GPS locations that represent the trajectories to nodes and edges in the
road network. There is a variety of algorithms that handle this problem, such as
hidden Markov models [217]. In the case study of this work, a simpler algorithm was
implemented due to the high reliability of the data. It independently maps every
point of a trajectory to a node in the road network. The nodes are then connected
and build a path that describes the individual’s trajectory.

Given a map matching, it is possible to create a function that reveals the fraction
of total traffic that flows through a given percentage of the most dense roads. For
this purpose, all edges are sorted by their traffic flow in a non-ascending order.
Cumulative traffic, measured as #cars×meters, is calculated for the end of every
edge by multiplying the edge length with the amount of traffic flow and adding the
result to the previous amount of cumulative traffic. The intermediary values within
edges can be calculated by linear interpolation. For any given percentage of roads,
the percentage of traffic in those roads is calculated by dividing the cumulative
traffic until that point by the total amount of traffic.

4.2.5 Global City Indicators
In this section we introduce the global city indicators designed to compare two
cities. To compare and cluster cities in groups, we need some quantitative features.
Therefore, we have to define some metrics describing a city with respect to traffic.
A possible approach is to exploit again a network structure where each city (in our
case study, 276 municipalities in Tuscany) is a node, and edges are drawn based on
the trajectories between them. Starting from the trajectories we infer descriptive
attributes from two perspectives: (i) graph measures from the complete network of
cities; (ii) graph measures from the ego-network of each city.

4.2.6 Complete Network of Cities
We can derive a set of global indicators through a network of cities as described
in the following. Given the trajectories on the territory, we can derive an Origin-
Destination Matrix (OD), which measures the number of trips that starts from city
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Figure 4.2.2: Disconnected nodes vs. flow threshold.

A and ends in city B for each pair (A,B). Since connections established through
very few trajectories might be not significant, a threshold is needed to establish if
an edge should be drawn. In our case study, after empirical evaluation, we fixed
this threshold to 110 trajectories by analyzing the results yielded by different values
through Figure 4.2.2. The plot shows the number of disconnected nodes correspond-
ing to a selected threshold. The fraction of “isolated” cities grows as the threshold
increases, but there is a little plateu between 110 and 130, which led to our choice.

With the selected threshold, the final graph consists of 276 nodes (corresponding
to municipalities), 22 of which are disconnected from the giant component.

The properties related to each node of the network constitute the first set of
attributes to be considered for clustering:

• Self-loops: # trajectories starting and ending in that node.

• In/Out degree: fraction of nodes its incoming/outgoing edges are connected
to.

• Closeness: the closeness centrality of a node u is the reciprocal of the average
shortest path distance (see Section 4.2.4).

• Betweenness: the betweenness of a node v is the sum of the fraction of
all-pairs shortest paths that pass through v.

• Clustering coefficient: the local clustering coefficient Ci for a vertex vi is
given by the proportion of links between the vertices within its neighborhood
divided by the number of links that could possibly exist between them.

• Radius of Gyration: the radius of gyration of a city c is defined as rg(c) =√
1
N

∑N
i wi(ri − rcm)2, where N is the total number of travels from c, wi is the

number of travels from c to i, ri is the pair of coordinates of location i and rcm
is the center of mass (i.e., the average position) of the visited cities starting
from c.
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• Random Entropy: the random entropy captures the degree of predictability
of the destination starting from a city i if each location is visited with equal
probability Sran = log2M , where M is the number of distinct cities visited
starting from city i;

• Uncorrelated Entropy: the temporal-uncorrelated entropy is the historical
probability that a location j was visited starting from a city i, characterizing
the heterogeneity its of visitation patterns Sunc = −∑N

j pj log pj where pj is
i’s probability of visiting location j. We can also normalize the uncorrelated
entropy by dividing it by log2N .

4.2.7 Ego-Networks
In Social Network Analysis, it is usual to refer to Ego Networks as social networks
made of an individual (called ego) along with all the social links he has with other
users (called alters)[75, 18]. Several fundamental properties of social relationships
can be characterized by studying them. Adapting the terms to the present context,
we can obtain an ego network for each city, where the ego is the city itself and the
alters are its neighbors. The additional set of attributes obtained consists of:

• Number of nodes of the ego network.

• Number of edges of the ego network.

• Average clustering coefficient: the clustering coefficient is the average
C = 1

n

∑
v∈G cv, where n is the nbr. of nodes in G and cv is the clustering

coefficient of each node;.

• Diameter : is the longest shortest path of the ego network.

• Assortativity: is measured as the Pearson correlation coefficient of degree
between pairs of linked nodes. It measures the preference for a network’s nodes
to attach to others that are similar in some way.

Case study: transfer-compliant geographical locations

The huge amount of urban data generated by smartphones, vehicles, and infrastruc-
tures (e.g., traffic cameras, air quality monitoring stations) opens up new oppor-
tunities to learn about city dynamics from a variety of perspectives and facilitates
various smart city applications for traffic monitoring, public safety, urban planning,
etc. – all contributing to what is called urban computing.

However, there are some questions that remains still almost unexplored: what if
the administration of a city wanted to predict the impact of an event on the urban
mobility without having historical data on it? Is it possible to infer some useful
insights exploiting the experience gained by other municipalities? Can knowledge
be transferred from any city or are there some constraints? How can you compare
two cities, for example in terms of urban mobility? Lately there have been different
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Figure 4.2.3: Network of correlations for the first set of attributes (total graph).

attempts to overcome the data scarcity issue in “new” urban contexts. All these
studies have in common the application of Transfer Learning, a very broad family
of approaches which focuses on developing methods to transfer knowledge learned
in one or more “source tasks”, and use it to improve learning in a related “target
task”. This section studies these questions in the context of Machine Learning (ML)
and big data analytics for mobility data. In particular, our goal it to verify the
feasibility of a model transfer, i.e., a ML model is trained in the source domain and
then transferred to the target domain, in the prediction of urban traffic, exploiting
the city indicators developed in the previous sections.

The basic idea is that cities that are similar can be represented by the same
model more easily than very different cities. For instance, a highly populated city
with heavy traffic and users that frequently make long trips is expected to have
mobility dynamics very different from small, country-side cities with low traffic. The
approach proposed in this section is developed in three steps: first, using a similarity
measure between cities based on the indicators presented in Sections ?? and 4.2.5,
cities are clustered into similarity groups; next, for each city a traffic prediction
task is defined, which is approached through a standard machine learning solution
(XGBoost regression [65]); finally, the prediction model of a city is applied to make
predictions in each of the others, aiming to test whether cities in the same cluster
show a better transferability of their models.

4.2.8 City Clustering
In this step, the city indicators built in the previous sections are first preprocessed
and filtered, and then used to cluster cities.

Preprocessing and Feature Selection Since the range of different indicators
varies widely, we applied a form of normalization to make them homogeneous. We
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Figure 4.2.4: Dendogram and selected clusters.

cluster id # of cities % of cities
0 22 8.0
1 53 19.2
2 47 17.0
3 110 39.9
4 44 15.9

Table 4.2.1: Cluster Population

adopted the min-max scaling, where feature are re-scaled in the interval [0, 1]. Then,
we performed a study of correlation on each set of features (local and global) to
eliminate unnecessary ones. To efficiently filter them, we adopted a network-based
correlations finder, where the features are interpreted as nodes of a graph, and a link
is drawn between two features if they are highly correlated. As evaluation metrics,
the standard Pearson’s Correlation Coefficient is used [237].

Considering each couple of features (i, j), an edge is drawn if ρi,j > 0.65. The
result obtained on the global features is shown as example in Figure 4.2.3. The
removal of features is an iterative process that removes the node (feature) with the
highest degree (thus is correlated to the highest number of non-filtered features) and
repeats until the average degree of the network is 0. The remaining nodes are the
features which are preserved. This preprocessing step is applied to global and local
indicators separately, and then on the set of survived features of both categories.
Applying the procedure to our case study, the initial set of indicators, composed of
a total of 178 measures, was reduced to 21 features.

Hierarchical Clustering The city clustering step has been realized through a
Hierarchical agglomerative clustering schema, adopting Ward’s linkage criterion,
which at each step of aggregation aims to minimize the total within-cluster variance.
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Figure 4.2.5: Map of clustered municipalities

In our case study, a small fraction of cities resulted to be disconnected from all the
others in terms of flows, thus making them outliers w.r.t. the global features (e.g.,
the assortativity measure is null). Therefore, we decided to put them in a separate
cluster, and apply the hierarchical clustering on the remaining ones. The results of
applying the clustering to our dataset is shown in Figure 4.2.4 as a dendogram of
the hierarchical clusters found (notice that the dendogram is truncated, in order to
show only the last 12 aggregations. Based on the gaps between splits/merge points
in the dendogram, the aggegration is stopped at distance 4.0, yielding four clusters.
To these, we add another cluster (id 0) containing the isolated cities. A summary
of clusters’ size is in Table 4.2.1.

An analysis of the properties of each cluster reveals that they may be distin-
guished based on the kind of traffic flows they involve. Also, clusters are depicted
on the map in Figure 4.2.5. Cluster 0 was named Disconnected, since it is composed
by the nodes not connected in the inter-city flows network. These municipalities
also have a low entropy and low Moran’s I score, meaning a not significant pattern
of traffic, and most of them are located at the boundary of Tuscany and in the
country-side areas, where there is a lower concentration of roads. Cluster 1, named
Self Sufficient, is characterized by high entropy, high modularity and high fraction
of regular trips, yet a low radius of gyration and low diameter of the associated
ego networks. Also, they are mostly far from the highways that cross the region.
Cluster 2, called Visited Sites, have a very low entropy (almost as low as those in
the disconnected group), low modularity and the lowest fraction of regular trips,
and yet a relatively high betweenness. Cluster 3 was named Drive Through, as these
cities are crossed by a great flow of traffic, which is however basically coming from
outside or going outside. Indeed, they have high values for entropy and low values
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Figure 4.2.6: Selected cells for some municipalities.

for Moran’s I, the highest number of nodes regularly visited from users and a large
ego network radius. This cluster is the most populated, comprising almost 40% of
the dataset. Finally, cluster 4 was called Hubs, since it comprises all the biggest
cities, encompassing most of the busiest roads in Tuscany. Municipalities are pretty
similar to those belonging to cluster 3, excepted that they have a large Moran’s I,
which reflects the presence of specific patterns within the city.

Traffic Forecasting in City Grids

Urban traffic prediction is a discipline that aims to exploit ML models to capture
hidden traffic characteristics from substantial historical mobility data, making then
use of trained models to predict traffic conditions in the future [187]. However, there
is a main problem to face: is it possible to extract specific traffic patterns that reflect
the peculiarities of a city structure?

*A Grid to Split the City Following one of the most used approach in traf-
fic prediction problems [187], we divide every geographical area corresponding to
municipalities in adjacent squared cells having side of 0.5 km, and our predictive
objective is to forecast the traffic flow that crosses a given cell. In our case study
we select a subset of representative cells and, in order to avoid the possible issues
emerging when a random or top-frequency subset is selected, we adopt a mixed ap-
proach, randomly selecting 5 cells among those having a traffic volume above the
90th percentile over the municipality, and other 5 cells among those having a traffic
volume between the 80th and the 90th percentiles.

Time Series Preprocessing

Based on the trajectories that cross the representative cells identified above, we
compute a time series for each cell with a 1-hour sampling rate, by counting the
number of vehicles that crossed the cell within each hour of each day. A first
operation performed was to compute a moving-average smoothing of the time series,
since a preliminary test with the Augmented Dickey-Fuller test (ADF) [102] reveals
that they are not stationary, i.e. it could not be rejected the null hypothesis that
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a unit root is present in the time series sample (ADF=-2.38 against a critical 90%
threshold at -2.57). On the contrary, after smoothing, the null hypothesis is rejected
with a very large confidence (ADF=-5.57 against a 99% threshold at -3.43, p-value
= 2 · 10−5).

Predictive Features

Similarly to what done by several time series forecasting solutions [91], we base our
predictions for the next value of the time series on more recent observations of the
same time series. In particular, we adopt as basic features the 24 most recent lagged
values, i.e., the observations of the last 24 hours. We remark that in this simplified
approach we do not include features about other time series in the same municipality,
as done in more complex solutions that exploit the spatial autocorrelation of this
kind of phenomena.

Another important property that can be encoded is related to the weekday; at
this regard, we introduce the boolean feature is_weekend that is true if the weekday
is Saturday or Sunday and false otherwise, since we expect to see different behaviors
in the weekends. Finally, we can encode information about a weekday by inserting
the average traffic volume at that day.

Having a total of 26 new features, we can now try to forecast the smoothed time
series.

Predictive Model

As regressive model, we selected the popular and effective algorithm XGBoost [65].
XGBoost has proved to be highly reliable in regression tasks, providing in general
a good accuracy of predictions and remarkable speed of execution, yielding good
results in term of robustness with its default settings, which simplifies our task.
XGBoost adopts a Boosting procedure, i.e., is a ML ensemble meta-algorithm for
primarily reducing bias and variance in supervised learning, where a set of weak
learners is turned into a single strong learner.

Figure 4.2.7: XGBoost traffic forecasting on Florence (green) against real values
(blue).

In Figure 4.2.7 we can see an example of XGBoost predictions exploiting the
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features previously introduced over the municipality of Florence, which shows results
very close to the real values. The model performance is evaluated through the

standard Normalized Root Mean Squared Error, defined as RMSE =
√∑T

t=1(ŷt−yt)2

T
,

having predicted values ŷt for times t of a regression’s dependent variable yt, with
variables observed over T times. RMSE is always non-negative, the lower is the
value the better are the predictions. Since RMSE is scale-dependent, we adopt
the Normalized RMSE (NRMSE), computed as: NRMSE = RMSE

σ
, where σ is the

standard deviation of the observed values.
Empirical evaluation shows that the most important feature is the value of traffic

1 hour before, as expected, while the previous hours have all a comparable influence.
Instead, it is apparently almost irrelevant to know if a day is a week-end day or not.

4.2.9 Testing Model Transferability
In this section we study the transferability of the predictive models built above, and
its relation with the similarity groups found through clustering. The hypothesis we
want to test is that the similarity based on our city indicators is indeed useful to
identify groups of areas such that any model built from an area in the cluster is
usable in other areas within the same cluster. The first step is to split the traffic
time series of each city in training and test sets. In this way it is possible to obtain
a matrix of prediction scores where on the rows there are the cities in which the
model is trained and in the columns those where the model is tested. The algorithm
implemented iteratively trains a model on each city, tests it against all the cities
and fills the score matrix with the corresponding NRMSE score obtained. To enable
a more meaningful comparison, NRMSE scores are log-transformed to reduce the
skewness.

The final result is visually shown Figure 4.2.8 which shows the transfer scores
by sorting the cities based on their cluster belonging. Keeping in mind that the
squares around the diagonal represent training and testing on cities of the same
cluster, while the other rectangles depict training and testing on different clusters,
we can observe:

1. the transfer is far better between cities of the same cluster (the NRMSE values
are lower);

2. it is worth noting that also cluster 0, that we built up artificially behave exactly
as the others;

3. the matrix is not symmetric: training on city A and testing on B is different
from training on B and testing on A.

The trend noticed in Figure 4.2.8 can be better identified by computing the average
error among the clusters, i.e., considering all the possible source areas in each cluster
(where the models are built) and all the possible target areas in each other cluster
(where the model is tested), including the case source = target. This is shown in
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Figure 4.2.8: Transfer scores matrix with cluster separation.

Figure 4.2.9, where each bar corresponds to one of the rectangles outlined in red in
Figure 4.2.8. We observe that the lowest mean values are always those corresponding
to central squares, where the source and the target cities are from the same cluster.

Conclusions

In this work we have defined a large array of local and global city indicators, we
have calculated them on a real case study, and we have proved that they can be
successfully exploited in a task of mobility transfer learning. In particular, we have
clustered municipalities based on the mobility behavior described by the city indi-
cators. Then, we have assessed the transferability of a machine learning model for
traffic forecasting. Experimental results show that models trained on a municipality
perform markedly better when tested on other municipalities belonging to the same
cluster, and thus more similar (according to the city indicators) to the first one.

As future work, it would be interesting to extend the set of features used to de-
scribe a city, for example including census and cartographic data or some indicators
related to economy, industry level and information about the most florid commercial
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Figure 4.2.9: NMRSE mean values for all train-test pairs.

activities in each area. All these extra properties would also help to interpret the re-
sults of clustering, to identify patterns of similarity and eventually to supervise with
some kind of feedback the allocation of a city to a determinate group. More models
should be analyzed and compared to evaluate which is the most effective. Finally,
the approach presented here works on a city-to-city transfer, namely the model of
a single city is used to make prediction on the destination city. That assumes that
there exists at least one origin city that is similar enough to perform the transfer.
Alternatively, all the data and known city models can be exploited to achieve better
prediction on the target city.
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4.3 Car Crash Prediction

Collecting and processing mobility data is a fundamental task of car telematics and
(modern) car insurance companies. Their main objective in doing that is typically
to provide to end-users services like pay-as-you-drive contracts, anti-theft control,
and prompt emergency rescue in case of accidents [191]. One of their foremost
priorities, however, is to adapt policy pricing to customers in the best way, which
mainly consists in finding a trade-off between profit and competitiveness. In this
context, risk assessment is probably the most critical problem addressed. The risk
from the company perspective can involve several aspects, yet the most impactful
one is the customer’s risk of having accidents in the future [322] since high-risk
ones are likely to cause the company a loss (paying the costs of her accidents),
while low-risk ones are more likely to provide a plain profit. In this context, since
the car insurance markets are quickly expanding also towards new (for the market)
geographical areas,there is the need to establish services in areas where very little
or no prior knowledge at all is available, making the risk assessment task even more
challenging.

Along the lines mentioned above, our research pursues two distinct objectives.
First, develop a methodology for predicting the customer’s risk score: given

a car insurance customer, provide a risk score relative to the long-term future,
e.g., the next month or the next year. Since this estimate is expected to depend
both on how the customer drives and on the conditions of the surrounding environ-
ment [172, 20, 77], we adopt an approach based on the computation of individual
driving features, describing how much the user drives and how much dynamically,
also related to the general characteristics of mobility in the places that the user
visits. Since the raw mobility data collected by car telematics and car insurance
companies is tipically limited to positions and events of the vehicle [191], with no
vision of what happens around it, our approach elaborates the data to infer higher-
level knowledge, such as driving behaviours (frequent accelerations, average speed,
etc.), individual mobility demand (detecting frequent trips, travel times during the
day, etc.), habit changes, etc. [126]. That is achieved, in particular, by exploiting
the Individual Mobility Networks (IMNs), described in detail in Sec3.2, that are a
network-based representation that integrates important locations, movements, and
their temporal dimension in a succinct way. Therefore, the proposed approach takes
into account several different aspects: individual components of the driving behavior
including those that can be derived from IMNs, elements considering the collective
mobility of other users, and static contextual information such as road categories
and the presence of points of interest. In this context, it is also important to iden-
tify possible risk mitigation strategies, namely to identify the characteristics of a
driver labeled as risky that determine her risk score, since they could provide to
the user indications of how to lower down her risk score, with benefits for her (in
terms of safety and insurance costs) and the insurance company (in terms of costs
for accidents).

The second objective is to enable the geographical transfer of crash prediction
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models, i.e. to make the customer’s risk score prediction system usable and effective
also on areas where historical data about crashes is unavailable or too limited. Given
an area where we want to asses the customers’ risk scores and yet there is not a local
training dataset to learn from, we derive a prediction model through techniques for
geographical transfer learning which exploit the models and data available in other
areas, in particular those similar to the one analyzed [211]. We define an array of
geographical transfer learning strategies based on the data and the models available
in certain areas that can be applied to target areas individually or as an ensemble.
In particular, we rely on a set of city indicators (explained in detailed in Sec 4.2)
that can be retrieved for every area to evaluate the similarity between two or more
areas. The measures considered covers a wide spectrum of features, thus providing
a multi-perspective description of area. They include a set of spatial concentration
indexes of human activities; network features of intra-city traffic flows; mobility
characteristics of the individual mobility, obtained from networks that represent the
places and movement of single users; last, characteristics of road networks and how
traffic is distributed in them. The city indicators allow to compare the different
areas, using this similarity measure as a way to properly weight the contribution
that each source area (i.e. areas where data are available and local models could be
built) should give to the construction of a predictive model for the target area (i.e.
the one where no data for training a model is available). We tried several different
strategies that exploit such weights in different ways, and provides an empirical
comparison to find out the best one in terms of prediction performances. When
comparing models, performances are an important aspect to consider, but not the
only one. Indeed, two models might have a similar accuracy, and yet implement
completely different logics, for instance considering completely disjoint subsets of
features. In the experimental section of this work we aim to understand in depth
in what aspects the different models actually differ, and we realize that through the
adoption of explainable AI approaches. That allows us to provide some hints about
the reasons why the transfer of the models trained on certain areas and applied to
a certain target area works better than in other cases.

We evaluate the proposed methodology on three datasets of real cars moving in
three different areas, namely two cities (Rome and London), and one region (Tus-
cany, Italy). In particular, a deep study on the models’ transferability is performed
on the Tuscany dataset working at the province level, which provided a good vari-
ability of city contexts yet involving areas of comparable complexity. The results
show that the individual mobility-based and context-aware modelling of the users
that we propose improves the performance over the baselines that adopt state-of-art
features. Also, the analysis of predictions with the SHAP explanation methods [194]
reveals that, indeed, most of the main factors that lead the models to decide for the
riskiness of users belong to the newly introduced features. Finally, we observe that
the best results in geographical transfer learning are obtained by the solutions based
on the city indicators for training the most adequate classifier in a certain area. The
explanation of these transfered models with SHAP reveals that the most important
aspects for the crash prediction on the transfers are related to events that happens
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while driving towards regularly visited locations such as harsh accelerations or harsh
cornerings.

Related Work

In this section we report an overview of the most relevant works related to the two
research areas involved in this paper: crash prediction and transfer learning.

Crash Prediction. The literature on crash prediction is relatively large, study-
ing car accidents from various perspectives, such as the risk of roads, the failure of
safety devices or drivers’ lack of attention. Yet, at the time of writing there are no
works trying to exploit mobility data analysis and user modeling for crash prediction
and risk assessment, with the only exception of [126]. A large part of the works fo-
cuses on real-time prediction of individual crashes, i.e., try to identify the events that
lead to a crash in the next few seconds, thus providing feedbacks to the user as she
drives [317]. Similarly, [269] developed a model for real-time collision detection at
road intersections by mining collision patterns, while [20], using different data, tries
to relate crashes to both behavioral characteristics and physiological parameters.
Other approaches (e.g., [172, 3, 201]) work on identifying areas that show charac-
teristics usually associated with accidents, such as increased traffic density, adverse
weather conditions, etc. Besides features describing areas, the work in [167] also
used individual vehicular data of cars (speed and time headway) passing through
predefined detector stations for improving the performance of a probabilistic model.
In [192] it is presented a review of the key issues associated with crash-frequency data
as well as strengths and weaknesses of similar methodological approaches. While
extremely useful, such approaches result in being not applicable to fields like car
insurance, where the focus is in creating a general risk profile of the user, thus im-
plicitly involving the prediction of her crash risk in the long run, such as few months
in the future. Only a few, preliminary works are available in this direction. The
most significant one is [322], which applies machine learning methods to predict the
users’ driving behaviors, based on movement statistics. In particular, the authors
extend the standard approaches, which consisted in global aggregates of speed and
mileage information, by separating daytime and nighttime driving statistics, and
computing minimum, maximum and average aggregates. This increased detail of
aggregation was shown to improve performances over simpler statistics. The work
in [126], which provides the starting point of our work, further develops the general
idea, and designs a data-driven model for predicting car drivers’ risk of experiencing
a crash based on the Individual Mobility Network model of the user and on statis-
tical features which describe her driving characteristics. Here we extend the work
and results of [126] with additional experimental studies and by boosting the crash
prediction model with geographical transfer learning.

Geographical Transfer Learning. Individual mobility models and crash pre-
dictors, which are the basis of our proposed approach, are expected to strongly
dependent on the specific geographical area under study. For instance, it has been
empirically verified that the trip purpose classifiers in [257] work very well in the
geographical area where they were extracted, but their performances dramatically
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degrade if applied to areas with different characteristics. Since some geographical
areas could be insufficiently covered by data, due to the non-homogeneous pene-
tration of tracking devices, it would be very difficult to build different models for
different areas from scratch. A possible approach to the problem, then, is given by
methodologies that make it possible to adapt models built in data-rich areas to less
rich ones, which is basically a geographical instance of the general transfer learning
problem [225, 345]. The transfer learning research area aims to transfer the knowl-
edge available in one domain, called the source domain, to another one, called the
target domain [227]. We refer to the particular case where the different domains
are actually different geographical areas as geographical transfer learning. This spe-
cific topic is studied only sparsely in the literature, usually with objectives rather
different from ours. The most common problem considered is image recognition,
typically satellite image labeling, as in [32] and [290]. Both papers deal with deep
learning classifiers that are requested to work on data-poor areas, and therefore the
models learned in data-rich areas (usually CNN-based models) are adapted to the
new domain. The authors of [24] focus on crime prediction and, again, try to exploit
the knowledge available in some areas to make reliable predictions on a different one
having too little data to build a model. Finally, [188] builds shared bike demand
prediction models over some cities (especially large ones, where more data is gen-
erally available) and then adapt them to other (usually smaller) ones. The work
in [147] shares some ideas with ours since it tackles the problem of labeling road
networks and shows how assessing the similarity of street networks improves the
transfer of a model from one city to another one. Our work tackles a more complex
prediction problem, and compares areas through a multi-dimensional view, yet our
results confirm the general message of the cited paper. The methods we propose
start from the city indicators work (see Sec 4.2 and [211], which exploited a set of
descriptive features of cities to assess their similarities, studying whether the trans-
fer of models across cities works better among similar ones. Both the prediction
problems tackled and the model transfer method adopted were very simple. In this
work, we expand those results considerably, considering a complex crash prediction
problem and developing several more sophisticated model transfer strategies, yet
still, exploit city similarities.

Problem Formulation

We define the crash prediction problem as the association of a user’s probability of
having an accident in the next time period with their recent historical mobility. The
duration of the user’s history to consider and of the next time period for which we
make predictions are two fixed parameters. Reasonable durations for the context at
hand will have the scale of one or more months.

Definition 4.3.1 (Crash Prediction and Risk Assessment). Given the prediction
time τp, history depth τh and prediction span τs, we define the two time intervals
z̄p = [τp − τh, τp], named predictors interval, and z̄t = (τp, τp + τs], named target
interval. Then, the crash prediction problem consists in evaluating if user u will have
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a car crash during period z̄t and what is the crash probability, based on the analysis
of the user’s mobility during period z̄p. More formally, we want to estimate:

pcrash(u) = P
(
u has crash in z̄t

∣∣∣ H z̄p
u

)
The period z̄p is the knowledge we have about the user at the moment of assessing

her risk, while z̄t is redwhere/the period when the crash to predict will or will not
happen.

In a geographical transfer learning context, crash prediction has the same overall
objective, yet the available information for estimating pcrash mainly comes from areas
that are different from that of the user.

Definition 4.3.2 (Geographically Transferred Crash Prediction). Given a set A =
{A1, . . . , An} of n geographical areas, each associated to a set Ui of users, to a
function π(i) that estimates pcrash within Ai (1 ≤ i ≤ n), and to the training set
H train
u of each user used to infer π(i) (u ∈ Ui, 1 ≤ i ≤ n); the predictors and

target intervals z̄p and z̄t; and an area A∗ 6∈ A, associated to a set U∗ of users;
the geographically transferred crash prediction problem consists in computing the
function π∗ estimating the crash risk probability for each user u ∈ U∗:

π∗(u) = P
(
u has crash in z̄t

∣∣∣ H z̄p
u ,
{
π(i)

}
1≤i≤n

,
{
H train
v

}
v∈Ui,1≤i≤n

)
The definition emphasizes the fact that the crash prediction function can use both

the training data and the locally inferred models of the geographical areas in A, while
for the area A∗ we do not have access to a training dataset, the only information
available being the data of the user in the predictors interval H z̄p

u (u ∈ U∗). Also,
while it is in general possible that a user u belongs to two or more different areas,
in the rest of the paper we will assume for simplicity that ∀i.U∗ ∩ Ui = ∅, i.e. the
users in the target area are completely disjoint from those in the source ones.

Features Importance-based Explanations Given a machine learning classifier
b trained on a dataset X, a feature importance-based explanation method takes
as input b, X, an instance x for which we want to explain the decision b(x) taken
by b on x, and returns for each feature an importance value which represents how
much that particular feature was important for the prediction of that instance. For
understanding the contribution of each feature, the sign and the magnitude of each
value are considered. A positive value means that a feature contributes negatively
for the outcome; otherwise, the feature contributes positively. The magnitude, in-
stead, represents how great the contribution of the feature is to the final prediction.
SHAP, SHapley Additive exPlanations [194], is a local-agnostic explanation method
that calculates feature importance based on the Shapley values, a concept from co-
operative game theory. In particular, the explanation returned SHAP are additive
feature attributions and guarantee the fact that the sum of all the contributions cor-
responds with the deviation of the prediction of a certain outcome with the baseline
prediction, i.e., the average prediction among the instances in the training set.
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Methodology

In this section we present the methodology proposed in [126] for long-term crash
risk prediction based on IMNs. Finally, we design a set of novel strategies for the
geographical transfer of crash prediction models across different areas.

4.3.1 IMN-based Crash Risk Prediction
Our objective is to estimate the probability pcrash(u) in the crash prediction problem
definition. In this section we do that through approximation, along two steps: (i)
first, the knowledge contained in H z̄p

u is represented through a set of meaningful yet
(necessarily) lossy features, that will be discussed in details in the next sections;
then, (ii) the probability function is learned through machine learning predictors.

Predictive Features Each user u is represented by a vector of m features com-
puted over her predictors interval, namely: xz̄p

u = 〈f1, f2, . . . , fm〉. We denote with
X z̄p = 〈xz̄p

1 , x
z̄p

2 , . . . , x
z̄p
n 〉 the matrix of n vectors describing the behavior of n users.

We indicate with yz̄t the vector saying if a user has experienced a crash in the target
interval z̄t, i.e., yz̄t

u = 1 if user u had a car crash in period z̄t, yz̄t
u = 0 otherwise.

Machine Learning Models The matrix of features X z̄p and the vector of target
values yz̄t are used to train a machine learning classifier, which yields as output a
car crash predictor function pcrash(·). The crash predictor takes as input a vector
x
z̄′

p
u , describing user u’s mobility in a given predictors interval z̄′p, and returns the

probability she will have a crash in the corresponding target period z̄′t, based on
the training performed on X z̄p and yz̄t . As machine learning classifiers [293] we
considered several possible options, including K-Nearest-Neighbors, Decision Trees,
Support Vector Machines, Deep Neural Networks, Random Forests, LightGBM, etc.
Indeed, any prediction model working on standard tabular data could be in principle
applied, since the specificities of the data domain are already captured by the user’s
features xz̄p

u . Through preliminary experiments, we decided to mainly focus on
Random Forest (RF), Deep Neural Network (DNN), and LightGBM (LGBM), since
they yielded the best and most stable results. The case studies in Section 4.3.2 are
based on these models.

A secondary (yet very relevant) objective of our work is to find the possible factors
that lead to a crash, whatever the nature of each factor, either causal or simply
correlated. In order to achieve that, we adopt three ways to infer the role played by
each feature in the classification. The first one comes as a built-in feature of RFs,
namely the feature importance score, which says how much important is overall a
feature, though not describing if that is a positive or negative factor. The second
way exploits recent results in the explainable AI domain, in particular, the SHAP
method [194], which assigns the positive/negative impact of each feature on every
single prediction allowing to make both single-user and collective considerations.
The third approach consists in aggregating the absolute SHAP values of different
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predictive models, in order to compare them and get a glimpse of their differences
in terms of logics followed, in addition to performances.

Predictive Features A key component of the proposed approach consists in
translating the raw mobility information contained in H z̄p

u into a set of features
〈f1, . . . , fm〉 able to capture its significant elements, and in particular, those useful
for crash prediction. The following were computed:

• Trajectory-based features. These features include position-based features, con-
taining classic indicators of trajectories, i.e., number of trajectories, length,
duration, speed. Each indicator is aggregated through four operators: counts,
sums, means, and standard deviations. Moreover, aggregates are computed
over several time periods: morning (6am - 12am of all days), afternoon (12am
- 6pm), evening (6pm - 10pm), night (10pm - 6am). The same applies for event-
based features, measuring characteristics of the acceleration- and direction-
related events contained in the data.

• IMN-based Mobility features. These features adopt IMNs as higher level of
aggregation of the user’s mobility, to extract three different types of informa-
tion: (i) the network properties of the IMN, (ii) mobility aggregates focused
on high-frequency locations and movements, and (iii) temporal stability mea-
sures of the IMN. A not exhaustive list includes the number of locations, i.e.,
nodes in the IMN, the number of movements, i.e., edges, the average degree,
the IMN density, etc. In addition, for every feature is reported the variation
between consecutive time periods in which the IMN is calculated.

• Mobility Context features. These features estimate contextual indicators by
extracting collective aggregates from the history of all users in the dataset.
Information like the number of events, average speed, and acceleration statis-
tics are computed on geographical sections (a partitioning of space obtained
through a quadtree structure derived from the distribution of Points-of-Interest
on the territory, ref. [126], Section IV-E), and they are associated to the single
user based on which sections they stopped in at least once, compute an average
of each characteristic of the sections. A not exhaustive list includes indica-
tors of other users with respect to the areas visited buy the user described in
terms of number of starting and stopping trajectories, average speed, average
accelerations, number of different events, etc.

Details for each family of features are available in [126]. The features considered can
be inferred from the basic information that any car telematics service is expected
to provide, and in that sense provides a minimal solution that can be very easily
adapted to work in different geographical areas. Where available, this set can be
extended with other useful measures about details of accidents, physical features of
roads (pavement quality, size, visibility, etc.), weather, and so on. Real applications
that need to be fine-tuned over a specific geographical area could indeed benefit from
other information layers that can be easily integrated into our solution as additional
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features. Considering such extra layers and studying their impact, however, goes
beyond the scope of this paper, and is left as interesting future work. Finally,
we highlight that typically, state-of-art car crash approaches used in the insurance
practice, are only based on trajectories and do not account for all the mobility
aspects considered by our proposal.

Geographical Transfer of Crash Prediction Models

The basic idea of transfer learning is that the phenomena we want to capture (and
that determine the value of the target variable to predict) are inherently present
in other datasets, although in different proportions and maybe in different shapes.
Therefore, the problem is to understand which parts of the data (in our case, which
geographical areas) are more likely to contain cues and information useful to capture
relevant phenomena, and thus exploit them for predictions. Hence, our objective for
geographical transfer learning in crash prediction, is to explore ways for exploiting
all the knowledge available on areas different from the target one, i.e., the one
where we need a predictive model. With respect to the categorization presented in
Section 2.3, we design a geographical transfer learning which is homogeneous (the
data and the prediction tasks in the source and target domains are of the same
type), multi-source (in general, we have several geographical areas with data we can
exploit in the transfer) and transductive (we assume that labeled data is available
in meaningful quantities only in the source domains).

The solutions proposed in this work try to overcome some of the main issues
highlighted in [126] (and further confirmed in our experiments in Section 4.3.2).
First, blindly applying a model from one region to another does not consider at any
level the differences that the two areas might have. In our context, for instance, the
road conditions in one area might require a different driving style than another one
(reflected in the accelerations and contextual features), or the city size and traffic
might impact the routine behaviors of users. Second, adopting standard weighting
schemata based on feature distribution is possible only if rather significant data
is available for the target domain, although unlabeled, which can be difficult in
practical applications. In particular, in our reference insurance case study, the data
is always associated with labels (crash or no-crash), the problem being instead to
reach in a geographical region a sufficient mass of historical data. Also, since in our
experiments we study the transfer between areas in the same region (Tuscany), it
resulted that the differences between the features distributions are in most cases not
significant. Third, the empirical studies in [126] focused on rather large areas. This
leads to building models that are more generic, and therefore might not be able to
capture local behaviors of smaller locations.

In the following, we introduce a few solutions based on the following principles:

• a good prediction model for an area can profit from the information (data
or models) coming from other areas, the main open question being how to
account for the differences;
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Figure 4.3.1: Schema of the three geographical transfer learning approaches explored.
The input city data is used either to extract individual city models (downward) or
create a resampled dataset (upward). In the first case, Approach 1 selects the best
model, while Approach 2 creates an ensemble. In the second case, a new model is
built on the resampled data.

• while each area might have its own local factors and patterns, driving and
crash risk are expected to follow a common (potentially large and diversified)
set of rules, although each area might adopt them in different proportions –
total absence being mainly an exception;

• the factors behind the events to predict, i.e., crashes, are strongly linked with
the mobility context where the users move, therefore the city indicators de-
scribed in Section 4.2 should provide a good basis for understanding how much
two areas share the same type of context.

Based on these principles, we propose three approaches of varying complexity
that follow them at different extents. Each solution is described in detail below,
while a schematic summary is provided in Figure 4.3.1.

Approach 1: Best City Transfer This is a direct application of the lessons
learned in [126], namely that the model built on a city (or geographical unit) can
be sometimes usable as is in another one, and that compliance is generally more
likely to happen between cities that have similar spatial and mobility characteristics.
Following this idea, Approach 1 selects among the source domains, i.e., the source
cities where a model can be trained, the one that best matches the destination city
in terms of city indicators, and applies its corresponding predictive model to the
destination. With reference to Figure 4.3.1, the process starts from the individual
city data, representing all possible source domains, over which we build individual
city models. Finally, based on city indicators, we identify the source city that is
most similar to the destination, and select its model. More formally:

pbest
crash(u) = pk(u) with k = arg maxisim(d, i) (4.3.1)
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where pi(u) is the crash probability of user u estimated by the individual model
of source city i, and sim(d, i) is the similarity between cities d (the destination) and
i (the sources). More precisely, sim(d, i) is computed from the Euclidean distance
between the corresponding (normalized) city indicators of d and i, i.e.:

sim(d, i) = EuclidDist (z−score(CI(Ad)), (z−score(CI(Ai)))−1 (4.3.2)

where z−score computes the attribute-by-attribute normalization of the city indica-
tors.

We name the model individual best city model (bottom line of Figure 4.3.1).

Approach 2: Weighted Ensemble Model It extends the ideas used in Ap-
proach 1, considering that each individual city dataset brings not only information
that is specific for that location, but also information of more general validity, that
might apply to all cities or at least to a subset. That means that each individual
city model might, in principle, highlight a pattern or rule of general validity that, for
statistical reasons or noise in data, could not be spotted in other cities. The idea is,
therefore, to combine together the knowledge brought by all the individual models
in an ensemble fashion, i.e., a meta-model is built by combination of the single ones,
and predictions are performed by a voting schema where every single model provides
a prediction, and the collection of results are combined. Since more similar cities are
more likely to share common rules, the models in the ensemble can be associated
with a weight corresponding to the city indicators-based similarity. Also, since our
models provide a crash probability, the single predictions are combined through a
weighted average. Formally:

pensemble
crash (u) =

N∑
i=1

wi · pi(u) with wi = sim(d, i)∑
k sim(d, k) (4.3.3)

As before, sim(d, i) is the similarity between the destination city d and sources
i, and pi(u) is the crash probability of u estimated by the local model of source city
i. In Figure 4.3.1 this corresponds to the central arrow, which yields the weighted
ensemble model (or simply ensemble model, if clear from the context) that is then
applied to the destination city data.

Approach 3: Weighted Sampling The ideas of the ensemble approach are
applied here from a slightly different perspective. The ensemble model assumes that
if the overall dataset contains a pattern or rule that is relevant for the destination
city, then at least a subset of the individual models should be able to identify it,
allowing the voting schema to bring it to the destination. However, this is expected
to hold only for relatively strong rules, which can emerge from individual datasets,
while that might not work for smaller patterns that leave many weak traces in
the various datasets. Basically, the ensemble approach filters at the source weaker
patterns, some of which might actually result to be significant overall. As possible
counter-measure for this effect, Approach 3 creates an ensemble of datasets rather
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than models, i.e., it builds a representative dataset by a weighted sampling of all
individual datasets. This combined dataset, then, is used to build a predictive
model. Since, again, we expect to find more useful information in source cities that
are similar to the destination, the sampling weights are proportional to the city
similarities. More formally:

presample
crash (u) = P

(
u has crash in z̄t

∣∣∣ H z̄p
u ,
{
H train
v

}
v∈D

)
(4.3.4)

where D is the data sample built for destination d from sources A, and is defined
as:

D =
⋃
Ai∈A

Di with Di ⊆ Ui s.t. |Di| = N · wi (4.3.5)

where Ui represents the set of users described in source city i, and N is the requested
size of the sampled dataset, i.e., N =|D|. Weights wi are computed as for Approach
2. The more complex form of Equation 4.3.4 highlights the fact that this approach
requires learning a model from scratch rather than simply combining or selecting
existing local ones.

In relation to existing generic transfer learning solutions, the first two approaches
presented above provide a form of relational-based transfer learning, since the mod-
els built in one domain are used (possibly adapted) in the other; the last approach,
instead, works through an instance weighting strategy, which belongs to the cat-
egory of instance-based transfer learning [227]. In particular, the latter is close in
principle to Domain Weighting [35], yet it relies on a higher-level notion of city simi-
larity, rather than a comparison of features distribution – which might be difficult to
implement if only little (unlabeled) data is available in the target domain, as it is ex-
pected to happen in our application scenario. Also, as already mentioned, depending
on the spatial granularity, in some cases the attribute distributions might not vary
significantly across geographical units, thus making it a weak criterion. Indeed,
preliminary tests on the datasets adopted in our experiments (see Section 4.3.2)
showed that the feature distributions over the provinces were rather similar, being
statistically not clearly distinguishable at the level of single features (around 58%
of province-vs-province comparisons over all features did not pass the Kolmogorov-
Smirnov rejection test [59] with threshold 0.05), and obtaining PCA projections over
the two largest principal components having visually almost identical distributions.

4.3.2 Experiments
In this section, we present a case study on two datasets of private cars in which
we employ the proposed methodology. We first introduce the datasets, and then
summarize the results obtained on the crash prediction problem with and without
geographical transfer learning, with a comparison between our solution and some
baselines. We also extract explanations of the predictions returned by the various
models, and try to infer useful general hints for improving personal driving behaviors.
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Figure 4.3.2: Geographical areas of experiments. Dataset 1 includes London in UK
(left), Tuscany and Rome in Italy (center). Dataset 2 is a zoom on the Tuscany area
(highlighted in the center) by also considering its 10 provinces, shown on the right.

Dataset Description

The two datasets considered in our experiments consist of GPS traces of private
vehicles tracked by an international car telematics company and made accessible
to us within the Track & Know project[142]. The first dataset, named Dataset 1,
includes London in UK (Figure 4.3.2 left), Tuscany and Rome in Italy (Figure 4.3.2
center), each area having about 5,000 drivers. The drivers were sampled among
those that had consistent data throughout the 12 months, and also ensuring to keep
all those that had at least one crash in the year. This latter step was not possible
on Dataset 2, a side effect being that Dataset 1 has a higher percentage of crash
events. The second dataset, named Dataset 2, includes about 26,000 drivers and it
is a zoom on the Tuscany area (highlighted in Figure 4.3.2 in the center) by also
considering its administrative division into 10 provinces (Figure 4.3.2 right). We
consider the partitioning of the Tuscany region in subareas in order use them as
source and destination domains for transfer learning experiments. Each subarea is
populated with the data of users whose most frequent location is contained in that
subarea. We decided to report results with respect to provinces because they provide
a good trade-off between granularity and data availability on each partition. While
testing model transfer across very different areas as Rome and London would be
interesting, the different scale and complexity of these cities would require a more
extensive dataset covering many other international cities, which was not possible
in the scope of this work. In the rest of this section we will use the terms city,
geographical unit, and province interchangeably, when there is no risk of confusion.

For both datasets, the raw mobility data consists of anonymized traces of ve-
hicles of car insurance customers, containing the following information: (i) a list
of GPS timestamped positions (latitude and longitude); (ii) a list of events in the
form of timestamped position data enriched with labels describing events such as
harsh acceleration, harsh braking and (possibly multiple) harsh cornering, with addi-
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tional accelerometer metrics related to each event position. These data are collected
whenever the accelerometer detects an acceleration exceeding predefined parame-
ters; (iii) a list of crashes in form of timestamped position data related to crash
events. Such events were originally detected through onboard accelerometers and
filtering algorithms, and later checked by human operators with customers to remove
false positives. The dataset is collected at an average rate of one position every 1.5
minutes, though there are some exceptions.

Experimental Settings

We organize the experimentation as follows. We use Dataset 1 to analyze the per-
formance of the models for the basic car crash prediction problem, focusing the
attention on the effect of the various features described in Section 4.3.1 and on the
temporal dimension. On the other hand, we rely on the greater data availability of
Dataset 2 to address the geographically transferred crash prediction problem with
the city indicators described in Section 4.2 through the transfer learning method-
ologies illustrated in Section 4.3.1.

Local Crash Prediction. In the experimental setting for Dataset 1 (D1 ),
we consider different time periods, corresponding to prediction times τ 1

p =
end of March, . . . , τ 9

p = end of November . The corresponding experiment periods
z̄i are obtained by fixing the history depth τh to 3 months (used to compute fea-
tures) and prediction span to 1 month (the period where crashes are checked).
We run the experiments in three different experimental settings, depending on
how we consider the temporal and geographical components. In the first setting
(D1.1 ) we keep separated each experiment period z̄i and each spatial region r
(r ∈ {London,Rome, Tuscany}) from all the others. In particular, for each given
pair (z̄i, r) we train a classifier over the corresponding data of all the users in r,
namely Xzi,p and yzi,p , and then use the model to make predictions one month
later, i.e., it is applied over Xzi+1,p and the results are compared against the ground
truth in yzi+1,p . Notice that we must have i + 1 ≤ 9, therefore we obtain a total of
|{τ ip}|×|{r}| = 24 sets of experimental results. In the second setting (D1.2 ), we still
keep regions separated, while all experiment periods are considered together. Users
are split into a training set and a test set, following a hold-out division, all the 9
experiment periods of a user in the training set are used (as 9 separate records) in
the model training and, similarly, all the 9 experiment periods of a user in the test
set are used for the model testing. The main difference between the two settings is
that in (D1.1 ) we check if we can predict the crash of observed users in the future
using a limited amount of data, while in (D1.2 ) we try to predict the crash of un-
observed users using a consistent amount of data but without a temporal reference.
Finally, the third setting (D1.3 ) amplifies the effects obtained by (D1.2 ) by putting
the users of different areas in a unique training dataset.

Geographical Transfer Learning. The experimental setting for Dataset 2
(D2 ) is organized similarly to (D1.2), i.e., geographical areas are kept separated,
yet putting together all time periods. The main distinction is that now we have
10 areas corresponding to the provinces of Tuscany. In turn, each province will be
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Table 4.3.1: Datasets summary as average values of some features.
#users % crash #traj #traj/day #evnt #evnt/day #mov #loc degree

D1
London 5k 1.08 280.54 3.39 2967 34.81 66.84 31.23 4.31
Rome 5k 2.82 307.48 3.13 2655 25.74 82.80 41.10 4.02

Tuscany 5k 3.12 327.11 3.28 3041 29.13 81.48 41.19 4.07
D2 Tuscany 26.7k 0.84 375.41 3.92 1088 11.59 77.64 34.81 4.53

selected as target domain, while all the others are used as source domains, the task
being to make predictions on the former using the models or data from the latter.
The data related to each province is partitioned into a training and a test set, which
are used to extract a local predictive model for each province, and then to test it
on the other ones. The transfer learning approaches proposed will either select or
combine such local models or build a training set by resampling the local training
data, and then test the resulting model over the test partition of the province under
analysis.

Datasets Preparation

In both experimental settings, before training the classifiers, we face two problems
with the datasets analyzed. The first one is a class imbalance issue. Indeed there is a
very low number of crashes compared to the number of no crashes (see Table 4.3.1).
We tackle this problem by adopting the SMOTE oversampling approach [62]. The
minority class is over-sampled by taking minority class samples and introducing syn-
thetic examples along the line joining the kSMOTE minority class nearest neighbors.
Depending upon the amount of over-sampling required, neighbors from the kSMOTE

nearest neighbors are randomly chosen. We adopt kSMOTE = 5 by default as sug-
gested in [62]. The effect of adopting SMOTE is to improve class balance and to
reinforce the presence of the minority class in the decision regions where it appears.
We highlight that we re-balance only the training datasets and not the test ones
making the evaluation harder but more realistic. The second problem is the high
dimensionality of the datasets analyzed. Indeed, the rich data engineering described
in the previous sections leads to the construction of more than 400 features, some
of them being highly correlated and redundant. This high dimensionality can cause
difficulties in the learning of classification models. Thus, we adopt a dimensional-
ity reduction technique based on correlation analysis. We calculated the Pearson
correlation coefficient [294] between every pair of features for the various settings.
Then, we removed one attribute for each couple having a correlation higher than
0.85. This operation reduced the dimensionality of the datasets to 162 features,
with a balanced presence of trajectory-based, event-based, IMN-based, and contex-
tual features. Table 4.3.1 reports the per-user average values of a small sample of
features.
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Machine Learning Models

Our crash prediction approach and our geographical transfer learning strategies
can be in principle applied using any existing machine learning algorithm as an
underlying predictive model. In this work, we consider three modern and powerful
types of classifiers: Random Forests (RF, basically an ensemble of several small
decision trees), LightGBM (LGBM, a decision tree algorithm based on gradient
boosting, with an emphasis on scalability) and Neural Networks (NN, here used in
the simple form of a multi-layer perceptron).

Configuration details. For LGBM we used the lightgbm library[1], while for
NN we experimented with both the Keras and Scikit-Learn libraries [170]. Since the
latter two libraries are applied to the same algorithm type (NN), and the models
obtained with Keras yielded worse performances than Scikit-Learn, in the next sec-
tions we show only results for the latter. For all models we used the Randomized
Search Cross Validation to select the best combination of parameters. The parame-
ters of the estimator used to apply these methods are optimized by cross-validated
search over parameter settings. For RF, we use the RandomForestClassifier that is a
meta estimator that fits a number of decision tree classifiers on various sub-samples
of the dataset and uses averaging to improve the predictive accuracy and control
over-fitting. The sub-sample size is controlled with the "max samples" parameter if
"bootstrap=True" (default), otherwise the whole dataset is used to build each tree.
We try different settings to decide the number of trees in the forest (‘n estimators’ :
[8, 16, 32, 64, 128, 256, 512, 1024]),the minimum number of samples required to
split an internal node and the minimum number of samples required to be at a leaf
node (‘min samples split’ :[2, 0.002, 0.01, 0.05, 0.1, 0.2], ‘min samples leaf’ : [1, 0.001,
0.01, 0.05, 0.1, 0.2]). Final setting we adopted is the following:

• ‘number of estimators’: 128,

• ‘min samples split’: 0.05,

• ‘min samples leaf’: 0.05,

For NN we use the MLPClassifier, a Multi-layer Perceptron classifier that opti-
mizes the log-loss function using stochastic gradient descent. Also in this case we
tried different settings in order to find the optimal hidden layer size and the learning
rate. We tried the ‘relu’, ‘tanh’ and ‘logistic’ functions as activation ones and we
made experiments to try all configurations: ‘hidden layer sizes’: [(64, 128), (128,
256), (512, 1024), (512, 1024, 256), (1025, 512, 256)]. After testing, the final setting
we adopted is the following:

• ‘hidden layer sizes’: (128, 256),

• ‘activation function’: ‘relu’,

• ‘learning rate’: ‘constant’,
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LightGBM is a gradient boosting framework that uses tree based learning al-
gorithms. It has a high training speed and low memory usage. LightGBM uses
the leaf-wise tree growth algorithm to get good results, and requires to select a few
important parameters. The number of leaves (num leaves) is the main parameter
to control the complexity of the tree model. Theoretically, we can set num leaves =
2maxdepth to obtain the same number of leaves as a depth-wise tree. However, this
simple conversion is not good in practice. We tried to use num leaves = (10, 31, 50)
with a maxdepth = (−1, 2, 5, 10). The best parameters setting found is the following:

• ‘number of leaves’: 31,

• ‘max depth’: 5,

• ‘boosting type’: ‘gbdt’,

About the Keras experiments, we use the same configurations of MLPC Classifier
with the only addition of the dropout parameter that is used to regularize the
neurons activation and selection during the training phase. For our experiments we
set ‘dropout rate’=0.1.

Evaluation Measures

Given the application context around this work, our objective is to highlight future
risky and potentially harmful events, also with the aim of raising an alarm that might
help to prevent them. From this perspective, false positives are less critical than
false negatives. To this aim we use as main evaluation guidelines [294] the recall
of the positive class (rec1), i.e., aiming to find as many risky drivers as possible,
the f1-measure, i.e., the harmonic mean of precision and recall of the positive class
weighted with respect to the number of crashes (f1 1), and the area under the roc
curve (auc) of the positive class that is the area under the curve comparing the false
positive rate (FPR) and true positive rate (TPR). All measures range from 0 to 1,
the optimum being 1.

Crash Prediction Evaluation

In this section, we evaluate the results for the experimental settings in D1. Among
the various classifiers, we found out that Random forests (RF) overcome those of
the other algorithms. Thus, in the following, we report the results obtained using
RF classifiers. In particular, we used RF with 100 estimators, allowing leaves with
at least 1% of the training data, and with a cost matrix weighting a crash 100 times
more than a no crash. We show the effectiveness of RF using the sophisticated
IMN-based and contextual features described in Section ?? by comparing against
three alternatives. The first two are baselines: a constant classifier (CST) always
returning the positive class (crash); a random classifier (RND), predicting uniformly
randomly crash or no-crash.
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Table 4.3.2: Performance for the experimental setting D1. For D1.1 the metrics
are aggregated in terms of means and standard deviation over different periods. The
best performance results are those underlined.

Rome Tuscany London
Model rec1 f1 1 auc rec1 f1 1 auc rec1 f1 1 auc

D
1.

1

CST 1.00±.00 .024±.01 .500±.00 1.00±.00 .025±.01 .500±.00 1.00±.00 .009±.00 .500±.00
RFI .877±.10 .149±.08 .588±.05 .992±.01 .056±.04 .719±.05 .994±.01 .574±.02 .962±.01
RFP .891±.08 .140±.07 .574±.03 .992±.01 .042±.03 .577±.04 .719±.10 .308±.05 .612±.04
RND .486±.05 .352±.02 .500±.00 .488±.03 .355±.01 .500±.00 .499±.08 .341±.00 .500±.00

D
1.

2

CST 1.00 .028 .500 1.00 .029 .500 1.00 .010 .500
RFI .882 .216 .619 .944 .243 .775 1.00 .580 .955
RFP .866 .180 .586 .970 .061 .584 .624 .329 .574
RND .500 .361 .500 .480 .355 .500 .489 .344 .500

All
Model rec1 f1 1 auc

D
1.

3

CST 1.00 .022 .500
RFI .991 .206 .776
RFP .996 .025 .641
RND .485 .352 .500

Their purpose is to provide reference performance values that can help inter-
preting the results of the other methods. The third one (RFP), instead, implements
the approach in [322] by adopting an RF based on the features suggested in the
state-of-the-art of crash prediction, including both those used in [322] (aggregates
of speed and mileage, divided by night and day) and those suggested in previous
works (e.g. statistics about accelerations [320], and harsh turns [159]). We name
RFI the RF classifier that improves over RFP by extending the classical features
used in literature with those we designed.

Table 4.3.2 reports the result for the experimental settings in D1, showing the
evaluation measures returned by the classifiers for Rome, Tuscany, and London.
Note that for the D1.1 case the values are averaged among the various periods. The
overall results we observe in the various experimental settings of D1 are the follow-
ing. The simultaneous analysis of the reported indicators shows that RFI provides
the best and most reliable performances. Indeed, the CST baseline obviously has
the highest recall but a zero precision on no crashes, making it useless for practical
usage. On the other hand, RND easily gets a high f1 1, thanks to the high imbalance
of data, but it loses half of the real crashes, with a recall below 0.5. RFP gives a
better trade-off than CST and RND for the f1 1, but it shows an auc just slightly
better than CST and RND, with a value around 0.6. On the other hand, RFI has
always similar or larger f1 1 and recall compared to RFP, and it has systematically
a higher auc3insert ý 3An ablation study (omitted due to space limits) showed that both
IMN- and context-based features significantly contributed to such performances..

In D1.1 we observe different behaviors of RFI in the three areas considered. In
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Figure 4.3.3: ROC curve for different areas for D1.2 and D1.3.

London, RFI has the highest rec1, f1 1, and auc. Notice that the other methods
considered show much worse results. In other words, the new features introduced
in this paper appear to make crashes easy to predict in London. Understanding
the reasons for this effect is part of our future works. For D1.2 we observe how
the increased number of available records for the training leads to a not negligible
improvement in the performance of the classifiers in the Rome, Tuscany, and London
areas when compared to those of D1.1. In addition, the setting D1.3 that puts
together records from all the different areas (“All” section in Table 4.3.2) leads to a
classifier even better than those resulting from D1.2. We highlight in Figure 4.3.3 the
Receiver Operating Characteristic (ROC) curve of the classifiers for the experimental
settings D1.2 and D1.3. These plots show that London classifiers are much more
accurate than the others and that RFI classifiers markedly benefit from the usage
of IMN-based and contextual features with respect to RFP, whose ROC curve is
always below.

Role of the features. By exploiting the feature importance indexes of the
models extracted it was possible to evaluate which features are more heavily used in
making predictions. In general, the top ones involve driving events data jointly with
the annotations inferred from IMNs: the number of starts in IMN locations labeled
as occasional, the angle of accelerations around the most frequent locations, the
radius of gyration of regular trips, etc. Then, various aggregations of simple driving
features (duration of cornering events, standard deviation of speed, average speed
during nighttime, etc.) as well as purely structural features of IMNs (betweenness
coefficient of regular trips, centrality of second most frequent locations, etc). A more
detailed evaluation can be found in [126].

LSTM-based approaches The key component of our approach that makes it
superior to its closest competitor (RFP) is its extensive set of carefully engineered
features, which are the result of a long experience in mobility analytics and driving
behavior modeling. However, recent works in machine learning show that deep
learning solutions are able to skip the human-made features construction phase in
many tasks, and autonomously learn effective data representations directly from raw
data, achieving exceptionally good performances. It is, therefore, natural to wonder
if that can be the case also in the complex scenario we are considering. Along
this line, we tested an alternative approach to our problem-based deep learning. In
particular, we model the user’s mobility as time series of basic mobility indicators,
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Figure 4.3.4: F1 score and auc for the RFI and RFP approaches on the Tuscany
dataset by varying the prediction span from 1 month to 4 months.

namely: maximum speed, distance covered, driving time and average trip duration.
Then, we apply an LSTM network to learn the association between such time

series (containing the values in the 3-month predictors intervals) and the target vari-
able (crash / no-crash, observed in the 1-month target intervals, as for the previous
experiments). The training and test data are partitioned exactly as in the experi-
ments described above, and the time series has a 1-hour sampling rate. Experiments
have been performed on Tuscany only since it is the richest dataset.

The network adopted follows the most commonly used structure for LSTM and
time series classification: one LSTM level with 1024 units, followed by a drop-out of
0.5; then a dense layer with 256 nodes, followed by a drop-out of 0.2; finally, another
dense layer with 64 nodes, and a drop-out of 0.01. In particular, the drop-out was
necessary for the unbalance of the classes. A ReLu activation function was used in
the internal layers, and a sigmoid function for the output. The training adopted an
Adam optimizer with a binary cross-entropy loss function, using the area under the
ROC curve (auc) as evaluation metrics. The misclassification weights were set to 0.5
for no-crashes and 95 for crashes, again due to the class unbalance. The preliminary
results obtained, however, show rather poor performances. The auc has values close
to random classification (0.5± .008), and the f1 measure is significantly lower than
those obtained with the other methods (0.01 ± .005). That is mainly caused by a
low precision (0.005 ± .003), whereas the recall is relatively good (0.66 ± .491) yet
rather unstable and lower than the other methods.

Our conclusions are, therefore, that the approach, although interesting and worth
exploring, does not work well with the basic features and the standard setting
adopted, and further investigations are needed. We point them out as possible
future works..

Testing longer prediction spans

An interesting aspect to study is whether predicting crashes over a longer time
horizon is harder or actually simpler. Indeed, on the one hand we are trying to
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Table 4.3.3: Crash prediction performance for the various geographical units inside
Tuscany in D2. Each model is trained and tested in the same area similarly to D1.2.
The last line report the performance of a model trained and tested on the whole
dataset similarly to D1.3.

RF NN LGBM
City rec1 f1 1 auc rec1 f1 1 auc rec1 f1 1 auc

Arezzo 0.15 0.08 0.84 0.27 0.14 0.81 0.00 0.00 0.50
Florence 0.91 0.09 0.92 0.31 0.11 0.84 0.00 0.00 0.90
Grosseto 0.04 0.07 0.94 0.12 0.15 0.93 0.00 0.00 0.50
Livorno 0.83 0.10 0.90 0.00 0.00 0.97 0.00 0.00 0.50
Lucca 0.98 0.07 0.89 0.32 0.16 0.85 0.04 0.00 0.43
Massa 0.89 0.11 0.88 0.32 0.15 0.89 0.95 0.09 0.80
Pisa 0.53 0.12 0.92 0.31 0.26 0.85 0.00 0.00 0.10

Pistoia 0.31 0.06 0.83 0.40 0.07 0.85 0.00 0.00 0.50
Prato 0.35 0.25 0.91 0.45 0.21 0.94 0.00 0.00 0.91
Siena 0.36 0.20 0.86 0.36 0.34 0.93 0.00 0.00 0.50
All 0.44 0.12 0.91 0.34 0.11 0.96 0.46 0.07 0.83

infer events that are further in the future, and therefore harder to capture; on the
other hand, since we are enlarging the prediction window, and not just moving
the same window further, the number of positive cases we are considering in the
training phase is bound to increase, making the problem less unbalanced. In order
to understand what is the resulting trade-off, we repeated the experiments made
on the Tuscany area by changing the prediction span, now ranging from 1 month
(the value used in the previous experiments) to 4, and measuring the f1 and auc
scores. The results are plotted in Figure 4.3.4, where also the values obtained by
our main competitor RFP are given. In both cases, we can observe that longer
spans are overall better captured by our models, meaning that the class unbalance
is a stronger factor of the problem. We see, in particular, that while the f1 score
grows at an almost constant rate, the auc quickly reaches a sort of plateau, meaning
that the associated risk probabilities produced by the model form a significantly
better sorting when passing from 1 month to 2, yet no large improvement is given
by further extending the window to 3 and 4 months. Interestingly, RFP follows
exactly the same behavior, yet with much worse performances.

4.3.3 Geographically Transferred Crash Prediction Evalua-
tion

In this section we evaluate the three geographical transfer learning strategies pro-
posed in Section 4.3.1 in the experimental setting (D2).

Testing local models First, we analyze the performances of local models built
separately on each province, applying them to the test set of the same area, similarly
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Table 4.3.4: Geographically transferred crash prediction auc for NN and RF.
The best transfer are underlined, the transfer suggested by Approach 1 – Best City
Transfer w.r.t the similarity of city indicators are in bold.

NN auc RF auc
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Arezzo .73 .73 .80 .81 .81 .73 .84 .80 .79 .82 .83 .83 .82 .83 .83 .82 .63 .82
Florence .69 .80 .86 .89 .90 .85 .93 .90 .86 .93 .92 .93 .92 .92 .93 .92 .57 .83
Grosseto .65 .87 .92 .82 .88 .81 .91 .90 .90 .92 .93 .92 .92 .93 .91 .90 .55 .84
Livorno .57 .93 .78 .92 .93 .90 .97 .97 .89 .96 .97 .96 .97 .97 .97 .98 .49 .98
Lucca .70 .72 .72 .87 .86 .74 .89 .85 .83 .88 .87 .89 .88 .87 .86 .87 .66 .86
Massa .58 .78 .64 .80 .86 .81 .87 .83 .77 .88 .87 .87 .89 .89 .85 .86 .68 .74
Pisa .46 .81 .71 .86 .89 .87 .88 .88 .83 .91 .90 .91 .91 .89 .89 .89 .68 .79

Pistoia .62 .63 .60 .79 .82 .83 .79 .82 .80 .84 .86 .84 .86 .86 .86 .83 .66 .80
Prato .69 .86 .69 .93 .85 .91 .73 .89 .85 .91 .90 .91 .92 .93 .89 .91 .91 .84
Siena .74 .73 .59 .86 .90 .89 .86 .90 .87 .91 .88 .90 .92 .93 .92 .89 .91 .64

Table 4.3.5: Geographically transferred crash prediction auc for NN and RF for the
various approaches. Best results for each target area are highlighted in bold.

NN auc RF auc
City A0 A1 A2.1 A2.2 A3 A0 A1 A2.1 A2.2 A3

Arezzo .546 .575 .828 .813 .813 .822 .969 .841 .841 .892
Florence .501 .636 .882 .845 .849 .921 .864 .928 .915 .848
Grosseto .645 .590 .849 .931 .931 .686 .908 .918 .938 .888
Livorno .493 .803 .775 .966 .961 .885 .834 .885 .896 .863
Lucca .451 .824 .842 .847 .808 .781 .861 .885 .890 .888
Massa .602 .811 .852 .887 .886 .678 .836 .890 .885 .865
Pisa .548 .818 .844 .854 .854 .877 .918 .898 .920 .868

Pistoia .561 .892 .763 .847 .850 .728 .872 .864 .833 .811
Prato .735 .823 .863 .937 .937 .843 .661 .905 .906 .860
Siena .522 .799 .869 .925 .920 .783 .826 .916 .856 .686
Avg .561 .756 .836 .885 .880 .800 .854 .893 .887 .847
Std .08 .11 .03 .05 .05 .08 .08 .02 .03 .06

to what was done for setting (D1.2). We adopt and compare the three predictive
models described in Section 4.3.2: Random Forests (RF, the same used in (D1)),
Deep Neural Networks (NN) and LightGBM. The results are summarized in Ta-
ble 4.3.3, reporting recall, f11 and auc for each province and each algorithm. We
can easily see that both RF and NN have high and stable performances, especially
in terms of auc, which is the most informative measure. On the contrary, LGBM
performs poorly in most provinces (7 out of 10), and is always worse than the other
methods. This led us to focus the rest of the experiments only on RF and NN. The
last line of Table 4.3.3 reports the performances obtained merging the data of all
the provinces, thus building a unique global model and testing it on all provinces.
This is equivalent to setting (D1.2) on a different data sample or, from a different
perspective, to setting (D1.3) at a smaller, regional scale. The results show per-
formances that are perfectly aligned with the single provinces, suggesting that the



172 CHAPTER 4. ACT II: INDIVIDUAL MOBILITY MODELS AT WORK

larger training set of the global dataset is well balanced by the specificities of the
local models of the provinces. In particular, this means that the local training data
of provinces is sufficient to infer reasonable models.

A0: Baseline approach The straightforward approach to exploit the data avail-
able in the source domains is to directly build a model using all the data, and try
to apply it as is to the target domain. We experimented this approach as a solu-
tion zero, and its results are shown in Table 4.3.5, which will be used in the rest
of this section as a reference for evaluating our proposed approaches A1-A3. As
expected, this baseline results to be competitive with (though generally worse than)
the simpler approaches (A1), and in most cases, significantly worse than the more
sophisticated ones (A2-A3).

A1: Best City Transfer Here we consider the first geographical transfer learning
strategy we proposed, namely to make predictions on a target domain (i.e., the
province under analysis) using a local model selected among the source domains
(in our case, the 9 provinces left) by taking the province which is most similar
to the target one. The results are summarized in Table 4.3.4, which reports the
performances for all the pairs “source province vs. target province“, marking in bold
the values suggested by our first strategy. The performances are reported in terms
of auc, and are shown for both the NN and RF algorithms. The values obtained
suggest that the strategy works slightly better with RF, yet in general, it does
not achieve satisfactory results, in most cases performing worse than the average.
Apparently, single models do not provide knowledge which is directly usable, as is,
in other areas, and then something more refined is needed.

A2: Weighted Ensemble Model We test the second proposed approach, which
consists of combining all the local (source) models into an ensemble, where their
predictions over the target domain are aggregated. We compare our weighted com-
bination, where each province votes with a weight proportional to its similarity w.r.t.
the target, against a baseline where the weights are perfectly homogeneous. The
baseline is named A2.1, while the weighted solution is named A2.2. Table 4.3.5 re-
ports the results obtained for the two methods over each province, taken in turn as
target domain, compared against the corresponding results of the best city transfer
approach, named A1. Again, the results are shown bot for NN and RF, using auc
as reference metrics, and highlighting in bold the best results. We can see that both
A2.1 and A2.2 consistently improve over A1, thus confirming that combining the
information of multiple sources is better than focusing only on one. At the same
time, we can observe that A2.2 performs overall much better than A2.1, especially
with NN, proving that in this strategy, the similarity information becomes much
more useful than what happened with the single-domain approach. Besides that,
we can also notice that between NN and RF there is not a clear winner.
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Figure 4.3.5: Receiver Operating Characteristic (ROC) curve for geographically
transferred crash prediction with target areas Pisa and Florence for D2.

A3: Weighted Sampling With the third strategy, we combine the local informa-
tion of all (source) provinces at a lower level, combining data rather than models. As
before, each province is considered in turn as target domain, yet this time we build a
predictive model from scratch, obtaining the training data by sampling the training
set of each source domain, taking larger samples from more similar provinces. The
results are shown again in Table 4.3.5, under the column A3. Since the method in-
volves a random sampling, the values shown are obtained as average over 10 distinct
runs. The values point out that the strategy works relatively well in combination
with NN, reaching very often performances equal or close to the best ones, yet pro-
viding overall slightly less convincing results (on average, there is a drop of 0.5% of
auc w.r.t. A2.2 ). Also, the performances with RF are much worse since the average
drop is 4%, and it never gets close to the best solutions.

An additional overall comparison of the results is provided by Figure 4.3.5, which
shows the ROC curves of the models obtained with all four strategies discussed
above, over two sample provinces: Pisa and Florence. In the case of A3, one of the
10 models generated was (randomly) selected. The plots show that in both cities,
despite the differences in total auc, all strategies provide rather steep curves, and
thus reasonable results, except for A1, which is less stable and, indeed, in the case
of the NN predictor has significantly worse performances w.r.t. the others.

Conclusions on selecting the best transfer learning method Summarizing
the results seen above, we can conclude that combining the local knowledge of mul-
tiple sources is the key to improve performances in this transfer learning setting.
This means, in particular, that using the baseline method A0 and the single-source
method A1 is not recommended. In addition, the best level to perform such com-
bination appears to be the weighted ensembling of local models (A2.2), rather than
directly combining local datasets (A3), suggesting that in our data, the more detailed
information that resampling strategies could in principle provide is outweighed by
the noise that they introduce – noise that the local models have lost, together with
other bits of (potentially useful) information. However, the data size and variability
in different applications might change this equilibrium. Thus we suggest considering
both approaches as reasonable candidates to test.
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Figure 4.3.6: Aggregated SHAP exlanation of the five most important features for
geographically transferred crash prediction with target areas Pisa and Florence for
D2 using A1.

Geographically Transferred Crash Prediction Explanation Like in [126],
a parallel objective of this work is to understand which behaviors in a driver more
likely could lead to future crashes. We realize it by adopting the SHapley Additive
exPlanations (SHAP) method [194] to locally estimate for each prediction the ex-
pected contribution of each feature. SHAP returns the shapely values: the higher
is a shapely value, the higher is the contribution of the feature; if the shapely value
is positive, it contributes towards the positive class (crash); otherwise it contributes
towards the negative class (no crash). From [126] emerges that IMN-based features
and collective features are fundamental for detecting crashes: the average maximum
acceleration of break events in areas visited occasionally performed by other users
is crucial in pushing towards the crash. Another feature having this effect is the
number of acceleration and break events between the second and third most visited
locations.

In the following, we summarize SHAP explanations by reporting the mean values
of the absolute SHAP values for the drivers having a car crash. We focus our study
on A1 and A3 to observe the differences between an approach trained on a single
geographical unit (A1), and an approach trained on multiple weighted areas (A3).
The idea is to understand which features are the most important for recognizing
crashes in geographical transfer learning. The results are reported in Figure 4.3.6
for A1 and in Figure 4.3.7 for A3. We report the explanations for the records for
both NN and RF, using Pisa and Florence as target domains. The longer is the
value bar, the higher is the contribution of the corresponding feature. We focus on
the top five values.

In general, we observe that there is not a clear pattern among the different clas-
sifiers and geographical units. Similarly to the observation reported in [126], for
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Figure 4.3.7: Aggregated SHAP exlanation of the five most important features for
geographically transferred crash prediction with target areas Pisa and Florence for
D2 using A3.

A1 in Figure 4.3.6, we have the presence of several IMN-based features like the
betweenness of the movement from the first and third most important locations
(l1l1_betweenness), the number of incoming edges in the second most visited loca-
tion (l2_indegree), the events at the most important locations (tot_events_loc1),
and the acceleration for reaching them (avg_max_acc_loc1). Moving the observa-
tions to Figure 4.3.7, we notice how all the classifiers highly rely on features related
to events. This means that, when aggregating data from different sources, it be-
comes fundamental to predict a crash to discriminate along dimensions involving
harsh accelerations, harsh braking, and harsh cornering. In particular, besides the
events happening in general (like tot_duration_Q that means the total duration of
harsh cornering), we notice how the focus is on events happening when driving to-
wards the second most visited location (like tot_events_type_Q_loc2 that counts
the number of harsh cornerings for going to loc2). Finally, we underline again how
IMN-based features are important. For instance, with NN over Florence using A3
(bottom right of Figure 4.3.7) we have that the most important feature for deriving
a car crash is avg_reg_mov_duration, i.e., the average duration of the movements
performed regularly. This suggests that performing general actions to reduce the
travel time for such a specific portion of the mobility can have a significant impact
on the probability of a crash in the area, improving safety overall.

4.3.4 Notes on privacy and ethical issues
Many large-scale urban services have explicitly or implicitly collected anonymized
mobility data of residents to understand personal mobility patterns, e.g., cellphone
data (CDR and Connection), vehicular GPS data [34], and electronic toll collection
data (ETC) [36]. Unfortunately, as it is shown in Sec. 4.4, while providing the
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improvement for urban services, the collection of human mobility data is sensitive
and it is possible to reidentify users from the dataset. In the context of our work
some key aspects have to be considered about the IMNs adoption and the geo-
graphical transfer learning task. An IMN describes the individual mobility of a user
through a graph representation of her locations and movements, grasping the rele-
vant properties and removing unnecessary details. Its nodes correspond to locations
that represent a group of stop points identified through a spatial clustering-based
aggregation; and its edges correspond to movements representing groups of similar
trips between two locations. That means we are able to identify the major point
of interest of every driver (home place, work place, ecc) and reconstruct their daily
trajectories. As mentioned in the previous chapter this could involve different levels
of privacy. From the point of view of the single IMNs the risk hidden behind the
use of these models are related only to the location of the most frequented places.
However, no track or GPS data used is actually linked to a user but each trajectory
is associated with an ID. The GPS data of our work is made anonymous through
several techniques during each preprocessing phase.

A different situation applies to the transfer learning context. As explained in
details in Sec. 2.3 Transfer Learning has quickly become an established pillar of
deep learning for good reason. Base models allow for a new wave of extraordinarily
accessible and effective deep learning applications. Whilst being incredibly powerful,
one should always remember the general modeling principle that has proven appli-
cable in all sorts of regimes: shortcuts and advancements in performance are almost
invariably associated with externalities. In the case of transfer learning, there is one
externality: security. A malicious hacker, it has been demonstrated, can effectively
corrupt any deep learning model that utilizes transfer learning even if they don’t
have any access to it by exploiting publicly available base models. As deep learning
models are increasingly being deployed in important decision-making applications,
they become subject, like any other global technology, to hijacking and corruption.
Adversarial learning is the name given to the study of how the fabric of deep learn-
ing models’ learned knowledge representations can be exploited to yield malicious
outputs. On the other hand, no major risks have been proven on personal privacy
with the use of transfer learning: there are quite various works in the literature
on techniques for preserving privacy using transfer learning. For example, in [329]
authors presented an efficient mobility privacy risk prediction model,TransRisk, to
predict the privacy risk of users based on transfer learning. Compared to previous
work, TransRisk unifies multiple mobility datasets and employs an additional input,
spatial-temporal tensor, to represent the spatial-temporal information of users from
mobility data. In [132] a novel method is proposed, which is based on HTL, to solve
the knowledge sharing problem from the source to the target. This method draws a
best balance between privacy-preserving concern, transfer learning performance and
target-domain data sizes proving that the algorithm has an ε-differential privacy
guarantee for both the source and target. Therefore this work does not present any
further risks than those detailed in the previous section.
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4.3.5 Conclusion and Future Work
In this section, we have introduced the long-term car crash prediction problem,
its associated task of risk assessment and the geographically transferred car crash
prediction problem. For the first problem, we proposed a solution consisting in ex-
tracting sophisticated features of the user’s mobility, able to capture not only basic
characteristics of her mobility, but also higher-level information derived from a net-
work view of her mobility history as well as contextual knowledge directly inferred
through analysis of the collective data of all users. On top of such features, machine
learning models can be trained and successfully employed. Experiments on real data
showed that our solution outperforms basic solutions based on state-of-art features,
and a preliminary inspection of the prediction models through explainable AI meth-
ods allowed us to identify a few representative features associated with crash risk.
For the second problem, the solution proposed consists in exploiting city indicators
that can be derived from mobility data to design geographical transfer learning so-
lutions based on the ensemble principle and weighted through city similarities. The
experimentation on real data demonstrated that solutions employing city indicators
for driving the transfer overcome standard baselines that do not use them. Expla-
nation techniques also revealed some of the features that are most important for the
success of the transfer learning methodology.

The results and insights obtained with this work opened several research and
practical questions that we would like to address in the future, among which we
mention the following. First, the IMN representation adopted in the driving mod-
eling phase appears to be the right tool for enriching the data with higher-level
semantics, such as the purpose of trips and stops, as done in [257], the driving
moods (e.g., through unsupervised analysis of speeds and accelerations, or driving
through dangerous intersections [269]), or by better describing the evolution of driv-
ing habits. Also, contextual data might be expanded, integrating several external,
public data sources, such as the presence of Points of Interest, the road network
structure, weather conditions, etc. While the model explanation tools were used
in this work as a means for understanding the causes of crashes, their application
can be further extended to improve the performance of the models by integrating
feedback from domain experts – a human in the loop approach that can be made
possible by model explanation itself. The city indicators we adopted, which are at
the basis of our transfer learning proposals, are just a subset of a large spectrum of
possible choices, our current purpose being to yield a general characterization of the
urban areas involved. However, searching the optimal set of city indicators to reach
the best model transferrability on the specific prediction problem would be indeed
an interesting extension of the current work. Also, while the paper was focused
on crash prediction, the transfer learning methods proposed are based on rather
general principles (see Section 4.3.1) that can apply to a much broader set of prob-
lems. In particular, any learning problem related to mobility in the urban context
might fit the framework, from the classification of points-of-interests to the estimate
of a driver’s fuel consumption. We consider exploring some of these alternative
application settings as an interesting line of future work.
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4.4 Assessing privacy risks in human mobility
Nowadays, mobility data include a set of data types with different origins and sources
but that alone, or combined, give information on how an individual moves, where she
usually goes and what activities she carries out. From a legal point of view, mobility
data are not considered as such per se sensitive data (as health or political opinions
data are) because they do not reveal sensitive personal information of the individual
on their own as described in article 9 of the GDPR (like ethnic origin, sexual or
religious preferences, political opinions, etc.). However, what we highlight is how
apparently unproblematic mobility data can become risky for privacy when they
are combined or thoroughly analyzed with the relevant methods and/or external
data. Indeed, even if they are not per se sensitive personal data they may easily
reveal sensitive and confidential information which need to be shielded. If data are
mined appropriately, from mobility data it is possible to find out or infer not only
the user behaviours and the places she visits, but also who the user is (initially
anonymized), where she lives and what her health status might be. From the places
regularly visited, often sensitive data can be inferred with a high degree of reliability.
For instance, Sunday visits in a church or Friday ones to a mosque easily reveal
religious beliefs as it does the presence at a political event for political opinions.
From harmless data it is possible to build an identikit of anyone, and a deeply
disturbing one both for its content and for its possible use. Note in fact that,
although the GDPR does not apply to anonymous data (art. 2, 4 (1)) it is also
true that the borderlines between anonymity and re-identification are progressively
thinner. Indeed recital 26 clarifies that to determine whether a natural person is
identifiable, account should be taken of all the means reasonably likely to be used,
such as singling out, either by the controller or by another person to identify the
natural person directly or indirectly’. This clarification is a key element of our
journey because the principles of data protection should therefore not apply to
anonymous information, namely information which does not relate to an identified
or identifiable natural person or to personal data rendered anonymous in such a
manner that the data subject is not or no longer identifiable’. Such reasonableness
needs to be ascertained considering all objective factors, such as the costs of and the
amount of time required for identification, taking into consideration the available
technology at the time of the processing and technological developments’.

4.4.1 Personal Data vs Sensitive Data
Personal data [313] protection legal rules represents the technical-juridical tool
through which national and EU legislators protect all the rights connected to
personal identity.
A data is considered personal if it allows the identification of the individual (natural
person) or if it describes the individual in such a way as to allow identification by
acquiring other data. Both types of data are protected in the same way.
With the term identification, therefore, we mean the possibility of distinguishing
the person from any other subject (e.g. qualification as secretary of State) or within
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a category. If identification requires the acquisition of additional data for which
unreasonable time and costs are required, then the person cannot be considered
identifiable. Thus data are not personal and the legal rules on personal data
protection do not apply at all.
However, it is not necessary to reach a high level of identification (let us think of
the names that correspond to more than one person) for the data to be subject to
protection.

The European Union Court of Justice has developed a test for identifiability
already under the EU Directive 95/46/EC, the so called Breyer test (Case C-
582/14 ECLI:EU:C:2016:779) clarifying that (at 43) “it is not required that all the
information enabling the identification of the data subject must be in the hands of
one person”). Thus, personal data is a dynamic concept, which must always be
referred to the context, in the sense that even if an isolated information is not able
to lead to the identification of an individual, such an information could be used
for identification through crossing with other data. This determines the nature of
personal data.

Hence the nature of personal data is not an absolute one but it depends on
“all the means reasonably likely to be used, such as singling out, either by the
controller or by another person to identify the natural person directly or indirectly”
(Recital 26 [313]).
What makes a “means” reasonably expected to be used depends on many factors.
As anticipated, recital 26 suggests that “account should be taken of all objective
factors, such as the costs of and the amount of time required for identification,
taking into consideration the available technology at the time of the processing and
technological developments”.
Thus the notion of “personal data” depends on many variables. Here we argue a
similar path for sensitive personal data (called “special category” by the GDPR
at article 9) whose borders with non-sensitive data are fading away. Whether or
not a personal data turns into a sensitive one (belonging to the special category
listed by art 9) depends on several factors. We move in this analysis along the lines
theoretically set already by [198] adopting mobility data as a use case. In [198]
authors defined as “ quasi health data” those data useful to predict or determine
the health status but that are not directly related to it [71].
We are going to see if the case of mobility data falls in the category. Thus the
notions we are elaborating upon are anonymous data, personal data, sensitive
personal data and inferred data. Personal data that has been rendered anonymous
in such a way that the individual is not or no longer identifiable is no longer
considered personal data. For data to be truly anonymised, the anonymisation
must be irreversible with the caveats illustrated by recital 26. The notion it results
in is dependent on, among else, security measures, the chosen architecture for
ingesting and processing data, accessibility of data (connected or not to internet).
The GDPR protects personal data regardless of the technology used for processing
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them.

Examples of personal data are:

• a name and surname;

• a home address;

• an email address;

• an identification card number;

• location data

A special attention is given to the so-called sensitive data (special categories of data
subjected to more stringent rules). These are categories of data that historically
lent themselves to larger abuses against fundamental rights and freedoms (e.g. via
discrimination). Their heightened protection aims at protecting the core values
of our societies, human dignity and prevent possible discrimination. That is
why society perceives them as more delicate than simple personal data and their
processing is as a default rule a prohibition (art. 9 [313]). The general principle
is that their processing is prohibited unless one of the specific exceptional grounds
apply. Moreover, access to sensitive data should be limited through sufficient
data security and information security practices designed to prevent unauthorized
disclosure and data breaches. Article 9 GDPR lists the special categories of data
considered “sensitive”. They are “personal data revealing racial or ethnic origin,
political opinions, religious or philosophical beliefs, or trade union membership,
and the processing of genetic data, biometric data for the purpose of uniquely
identifying a natural person, data concerning health or data concerning a natural
person’s sex life or sexual orientation shall be prohibited.”
Therefore, sensitive personal data is a specific set of “special categories” inside the
personal data context that must be processed with extra caution.
Our departing analytical point is that the borderlines between the two categories
of personal data is more fluid than appears from the formal statutory definitions.
There are data that might not be considered prima facie sensitive as such or
even personal data, but that could produce sensitive information enabling either
discovery or inference of personal and even sensitive data.
These data apparently seem harmless but potentially conceal confidential informa-
tion. The protection standard for this type of data is much less clear-cut. Note
also that applicable legal regimes range from non-application of the GDPR to the
application of its most stringent rules. Note also that in redefining the boundaries
between personal and non-personal data and between personal data and special
categories of personal data an important role is played by both the notion of
inferred data and the kind of attacks data can endure [206].

In this work we concetrate in understanding how mobility data are classified
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from a legal point of view and how they should be classified according to how
dangerous they can be for privacy attacks. More in details we will illustrate that,
although at first glance not considered personal (or at least sensitive) data, some
mobility data can generate sensitive data or lead to infer sensitive data (without
certainty on their accuracy and correspondence to reality) that are used to make
decisions upon individuals impacting their rights. With reference to this last
element a key point is the purpose of inferred personal data processing and the
relevance of their (un)accuracy that can lead to serious violations of fundamental
rights and plain violations of the core principles set in the GDPR.

4.4.2 What can I infer with mobility data?
The quick evolution and wide diffusion of technologies for the localization of devices
(especially smartphones and vehicles’ GPS) as well as location-based services, is
leading to the production and collection of large and diversified traces of human
mobility, every day more detailed and pervasive. These traces potentially contain a
huge amount of information that might allow inferring models of human mobility
spaces at unprecedented levels of precision and depth. They would be key enablers
of many applications, ranging from monitoring urban traffic features to reconstruct
inter-city mobility demands and region scale structures, which could help in making
modern urban spaces more sustainable, efficient and comfortable for citizens. They
can also enable the monitoring of epidemic like the COVID-19.
Starting from trajectory reconstruction (translating sequences of single location
fixes into a complete movement trajectory, possibly including map- matching) is
possible to develop several methods for processing and analyzing mobility data.

In this section we would like to give an overview about mobility data and
their potential to “generate” sensitive personal data. Based on the level of data
enrichment, it is possible to infer more and more information about individual users.
Furthermore, the addition of semantics or external information (road conditions,
weather conditions, etc.) makes it even easier to make predictions.
We will start considering the so called ”Observed data” to see what happens en-
riching them with more information step by step, until arriving to have ”Inferred”
or ”Predicted” data.
There is a long way to go from raw data to useful representations of mobility
behaviors: we can call it a mobility knowledge discovery process [115].

Raw Data

Once you have an available mobility dataset what you really have is a sequence of
points with a different sensitivity depending on the data type (if we have CDRs the
spatial sensitivity is lower than the GPS one).
Let us consider a dataset compound of GPS points which are spatio temporal
points (longitude, latitude and timestamp).
The first step is to analyze the data in order to recognize and build the trajectories
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and paths taken by users. A strict definition of movements relates this notion to
change in the physical position of an entity with respect to some reference system
within which one can assess positions.
A trajectory is a path made by the moving entity through the space where it moves.
In studying movements, an analyst attends to a number of characteristics, which
can be grouped depending on whether they refer to states at individual moments
or to movements over time intervals. Moment related features include position
in a particular moment, position of the entity in space, direction of the entity’s
movement, change of direction, speed of the movement [112].
Several mobility data sources also provide information about events of various types,
detected by the device. They are usually related to acceleration and direction, or
to events happened within the device: harsh acceleration, harsh braking, harsh
cornering, multiple cornering, vehicle switch-on(start) and switch-off(stop). In some
cases the acceleration magnitude, the maximum acceleration, angle and duration
are available too.
Now suppose we can add semantic data to our dataset. For instance if we consult a
road map we could overlap the GPS path with the real streets in order to discover
the geographic movements of the users. A road map is enough to start inferring
knowledge: which are the most frequent routes, which are routine paths and which
just occasional ones. Moreover, if we suppose to have also information about road
conditions, the speed limits and the synchronization of the traffic lights we can
define how a user drives or how a pedestrian moves in the city.

An analogous reasoning could apply to wearable devices. The terms ‘wear-
able devices’ and ‘wearables’ all refer to electronic technologies or computers that
are incorporated into items of clothing and accessories which can comfortably be
worn on the body [296]. A wearable should have sensors for the physical environ-
ment such as location (for example GPS), cameras, microphones, temperature,
humidity, movement, etc. This list of sensors can be extended with biometric signal
sensors, such as heart rate or Galvanic Skin Response sensor (GSR), etc. In any
case, these definitions could be applied to many different kinds of devices.
Indeed, a plethora of devices can be found in the market fitting more or less in
the previous definitions, from small appliances that are built into the shoes sole
or the insole to small devices that can be incorporated into users’ glasses. Despite
all these options, the more adopted wearables today are wrist wearables namely
smartbands and smartwatches [81]. During the past decade, rapid progress in
wearable sensor technologies eased long-term physical activity behavior monitoring
in real-life conditions. Among the existing sensors included in the wearable devices,
three-dimensional (3D) accelerometers have gained the most attention. A 3D
accelerometer measures acceleration forces in x, y and z dimensions, and therefore
can sense the status of a body’s motion or postures [7].
Combining GPS and accelerometer sensors has been useful in improving movement
monitoring of humans, particularly in daily life. In the transport mode detection
domain, the combination of GPS and accelerometer sensors is more useful than
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using each sensor individually, specifically in differentiating transport related
activities such as walking, cycling and running.
We can categorize the use of GPS sensors into two broad applications. The first
application mainly focuses on utilizing GPS spatial coordinates to link mobility
behavior derived from accelerometer data to the location and relevant spatial
data such as land use, walkability, green spaces, neighborhood and exposure
in a geographic information systems environment [8]. These links enhance our
contextual knowledge of the relationship between objectively measured physical
activities and social environments [58]. The second application uses features such
as time, distance, altitude and speed derived from GPS data to inform classifiers in
mobility detection[9].
So, following the examples mentioned above, it is easy to recognize how with few
accessible information it is possible to find out a lot about an individual, entering
his/her privacy area.

Trajectories and POIs

As mentioned in the previous chapters, people perform movements in specific areas
and time instants. These people are called users and each movement is composed
by a sequence of spatio-temporal points (x, y, t) where x and y are the coordinates,
while t is the timestamp. We call trajectory the sequence of spatio-temporal points
which describe a movement. The set of trajectories travelled by a user makes her
individual history.
Thanks to these two elements it is possible to enrich mobility data with annotations
about human activities. These approaches are focused either on places of general
interest (like restaurants, shopping center) or on individual based destinations (like
home or work) and yet they might lead to discover other individual destinations
(e.g. clandestine meeting points for mistresses, political activities,...).
The mobility history of a driver may enable many services such as location recom-
mendation or sales promotion.
Hence, analyzing the trajectories of individuals, it is possible to obtain a great deal
of information. For every user a data scientist can create a mobility profile that
describes an abstraction in space and time of her systematic movements, ignoring
exceptional paths. Thus, the systematic behavior of every driver can be modeled
with her mobility profile and the daily mobility of each user is characterized by her
routines [123].
Instead, if we focus the attention not on the single user but we consider the collective
aspect, having the trajectories it is possible to trace even the relationships between
users. Indeed using raw trajectories, we can first compute flocks and encounters,
then from these encounters find a method to infer relationships.
The basic idea is the following: if two users travel the same roads at the same time
or attending the same places then they are likely to know each other.
Moreover, counting how many times two people stay together (according to how
many time their trajectories coincide) it is possible to build a hierarchy of relation-
ship in order to understand the degree of relationship between two users.
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A similar work is found in [105]. Therefore we can see that already by considering
the trajectories instead of the raw data allows us to reach a much higher level of infer-
ence and deduction turning mobility data into sensitive data. A conclusion already
reached by the WP29 [88] . The same WP29 in an earlier opinion concluded that
special categories cover “not only data which by its nature contains sensitive infor-
mation but also data from which sensitive information with regard to an individual
can be concluded” [73].

Social Media Data

The introduction of location-based services in social media applications of smart-
phones has enabled people to share their activity related choices (check- in) in
their virtual social networks (e.g. Facebook, Instagram, Twitter etc.) providing
unprecedented amount of user-generated data on human movement and activity
participation. This data contains detailed geo-location information, which reflects
extensive knowledge about human movement behavior. Moreover, the venue
category information for each check-in is recorded from which user activities can be
inferred.
If analyzed properly, such data can help to better understand how citizens experi-
ence the cities they live in. Note that all these data are already from the outset
personal data since they are linked to specific profiles. Also they can help identify
mobility data which are not related to individuals by allowing the association of
devices to individuals and to run cross-device associations[38].

Compared with other data sources, social media data has its unique charac-
teristics such as more social information, which provides a multidimensional view
of studying human mobility patterns. A direction to obtain accurate estimates of
people’s activities is to combine data from different sources, for example combining
GPS data with geo-tagged social network data could be very useful to improve the
data mining process [121]. The former provide a sample of a user’s whereabouts but
are noisy and lack semantics, the latter provide visits to venue of exact locations
but they are not able to give information about the paths.
There have been extensive studies in mining geo-tagged social media data. For
example in [137] the authors analyzed urban human mobility and activity patterns
using location-based data collected from social media applications also exploring
the frequency of visiting a place with respect to the rank of the place in individual’s
visitation records. Therefore, if there is the possibility to collect different kind of
mobility data, from raw data to social networks ones, we not only have the ability
to predict future behavior but also to reconstruct their personal information and
relationships. Attackers may combine the data to identify the anonymized users
invading the privacy area of everyone [71].
By following all these crumbs and connecting the dots any attacker could recon-
struct the personal’s file of everyone harnessing inferential analytics[104].
With wearable sensors data it is possible to make a similar reasoning since they
are another type of data that is interesting to recall. As mentioned in the previous
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paragraphs wearable devices offer new opportunities to monitor human mobility
activity continuously with the miniature wearable sensors embedded. However,
there are few challenges faced on smartwatches about security issue which put
users’ safety and privacy appear at risk [66].
For instances sensors as accelerometer, which is used to measure linear acceleration
and it can determine whether the device is horizontal or vertical, and whether
it is moving or not counting the steps a user takes, may hide several others
functionalities. GPS sensors are integrated in wearable devices too, in order to
locate a person’s location and create a whole picture of her own mobility history.
But these kind of sensor allows also to go beyond their primary purpose: for
example using accelerometers is possible to detect a range of activities including
step counts, worn/not worn state, overall physical activity levels, eating behavior,
pill bottle opening movements, scratching, cardiopulmonary resuscitation (CPR)
compression depth and frequency.
In [299] a study used smartwatch accelerometer as compared to ground truth video
to identify eating moments in 7 participants for a single day with 66.7% precision
and 1 participant for 31 days with 65.2% precision. Besides that in [190][79] authors
used accelerometry to detect seizures in epilepsy patients and tremors. That is
not all, since wearable devices also include sophisticated sensors specially designed
to monitor health parameters which provide human activity measurement such as
sleep quality, burned calories and other personal health metrics like heart-rate,
body temperature, stress and hydration levels.
Some studies used gyroscope data in conjunction with accelerometer data for
posture diagnosis and to detect palm- upward wrist rotation with 100% recall and
82.5% precision [164].
Wearables are collectors of a large set of confidential information in a way that
allows to infer a lot about people lifestyle and their own health status. Just to
give a current example: during 2021 Covid pandemic researchers and experts
fielded a new app that aimed to exploit data extracted from smartwatches to
prevent Covid-19 cases [133]. In short, researchers wanted to develop a new remote
computer model capable of carrying out a first screening in the monitoring activity
of people positive to the Covid-19 virus of a large portion of the population.
The most sophisticated smartwatches are able to measure oxygen saturation, heart
rate and blood pressure, all important parameters to be included in an Artificial
Intelligence engine to build the risk profiles of the individual citizens.
However, even in these moments, when the end seems to be able to justify any
means, it is essential that the privacy rights of each person are preserved [87].

4.4.3 Hidden Risk behind Mobility Data

After considering all these data types, it is evident how the manipulation and
the combination of this information can lead to obtain a whole picture of an
individual’s mobility. Starting from the raw data, which only supply the position
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of the subject, some singularities of the individual user can already be identified.
With the adequate computational capacity it is possible to analyze the data and
recognize significant stops within the same trip for instance. After that, by adding
semantics and recognizing the geographical areas, it is possible to understand the
reason for the stops (a supermarket, take the children to school, go to the swimming
pool, visiting an healthcare facility, etc.)[71].
We could offer many other examples to show the ease with which everyone could
deal with this kind of data inferring sensitive personal data.
Focusing the attention on mobility paths, trajectories and semantics of the territory
enable to identify daily travel routes, attackers may use trajectory data to deduce
individual’s mobility patterns and identify their home and workplaces or other
“special” ones.
But that is not all: it is possible to reconstruct the individual behavior and
understand the relationships between users who travel the same roads or frequent
the same points of interest. Even if the data are originally anonymized, it is clear
that if we know how a user moves, what places she attends, where she lives and
works, it becomes immediate to go back to her identity.
Anonymizing user identities is not enough to protect people privacy. Then using
social networks data any attacker could use the location tags (or hashtags) to verify
the visit frequency of a given point of interest in order to correlate by matching
people profiles and trajectory data to identify the users. They could also infer
users’ preferences, relationship and personal habits.
In conclusion, adding knowledge from wearable devices one can map the user,
recognize the locations where she goes, the speed of her movements (how many
steps, how many calories burned) and at the same time the heart rate, the
percentage of oxygen usage and the hydration level. Leaving aside for a moment
the specific sensors that collect health data within smartwatches it is important to
underline again that is possible to infer health information, or possible risks related
to that, only from tracking and mobility sensors. Only by using mobility data we
get to define the health status of any person.

4.4.4 Conclusions

In summary, after the presented analysis, we could say that mobility data become
quasi-health data [198] since we are able to infer users health conditions from
studying their movements. Even if mobility data are not inherently medical data,
without the right protection level any attackers could easily lead to conclusions
about individual’s health conditions. Note also that the “attacker” could be the
legitimate data processor gathering the mobility data if she has a legal basis for
such a further processing. We showed how the label “sensitive data” does not
guarantee that there can be no privacy attacks through the use of other data not
tagged as such. It is necessary to identify the non-sensitive data that provide
information with a high degree of confidentiality and which are equally risky for
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privacy protection.
All this, if we consider a third party attack that might lead to reidentification. The
situation gets more problematic once we consider the actual/potential uses of these
inferred (sensitive) data by data controllers themselves.
As we noted, location and mobility data are collected by different sources and often
transferred to third parties who have other datasets of information enabling both
reidentification and further data inferences by applying models and correlation
patterns to the enriched mobility data. Again, regular presence on Fridays at a
location corresponding to the address of a mosque easily lead to infer religious
belief without the need to apply a complex model.
Mobility data described above can trigger the application of models “qualifying”
the individual for specific features, health risks, for instance or sexual habits (e.g.
recurrent passage and stops in an area of prostitution), religious habits. Once this
qualification is obtained, what is relevant is its use, that is the actual application
of the model with all the obvious implications in term of decision-making.
If a decision maker has to act upon a large number of individuals it might be
satisfied with a certain degree of accuracy in the application of the model to the
dataset triggering it.
Recalling the previous example of the risk prone behavior, a zip code might become
the data triggering the application of the model. In other words, “users of data
mining outputs could be willing to use these results although aware that the output
might not be correct ” [71]. Note that the WP29 has clearly identified as personal
data those “likely to have an impact on a certain person’s rights and interests” [72].

Once the model applied to mobility data suggests a certain degree of health
risk (e.g. developing diabetes, a risk prone driving attitude), what matters is not
the fact that the suggestion can be considered “data concerning health” but the
actual use of this inferred information as such. The emerging issues here can be
characterized both in terms of ownership of the inferred information (to the data
controller or the data subject) and in terms of accuracy of the information itself.
On the latter, personal data need to be accurate. The accuracy principle provided
for by art. 5.1.d requires that personal data are “accurate and, where necessary,
kept up to date; every reasonable step must be taken to ensure that personal data
that are inaccurate, having regard to the purposes for which they are processed, are
erased or rectified without delay” [244]. On the former, it has been questioned that
inferred data are personal data at all [314].
However, both issues rely on the fact that such information is considered as personal
data and have to cope also with the impact on groups, not only individuals. Indeed,
the ability to challenge conclusions deriving from inferred data is problematic for
individuals, it is even more so when the application of inferences does not reach
directly the individual level [327]. Noteworthy is the fact that individuals have
little or no power on data made anonymous before creating the models applied to
them unless specific legislation is triggered (e.g. antidiscrimination rules). For this
reason the call to establish a “right to reasonable inferences” as a normative goal
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de iure condendo, although acceptable, lacks of bite.
Once it is accepted that mobility data, although originally anonymous, can lead to
identification and to reveal special categories of personal data pursuant to art. 9
GDPR (“data concerning health” for instance) an higher level of protection can be
channeled by art, 35 GDPR. It imposes a Data Protection Assessment (“DPIA”),
with consequent actions, every time “a type of processing in particular using new
technologies, and taking into account the nature, scope, context and purposes of the
processing, is likely to result in a high risk to the rights and freedoms of natural
persons”.
A DPIA is especially required in case of “a systematic and extensive evaluation
of personal aspects relating to natural persons which is based on automated
processing, including profiling, and on which decisions are based that produce
legal effects concerning the natural person or similarly significantly affect the
natural person”. Pursuant to the previous analysis, every time inferred data trigger
the application of a model producing “legal effects concerning the natural person
or similarly significantly affect the natural person”, especially when based on
automated processing would impose a DPIA with its characteristics.

As described by art 35.7 [313] this must include “(a) a systematic descrip-
tion of the envisaged processing operations and the purposes of the processing,
including, where applicable, the legitimate interest pursued by the controller; (b)
an assessment of the necessity and proportionality of the processing operations in
relation to the purposes; (c) an assessment of the risks to the rights and freedoms of
data subjects referred to in paragraph 1; and (d) the measures envisaged to address
the risks, including safeguards, security measures and mechanisms to ensure the
protection of personal data and to demonstrate compliance with this Regulation
taking into account the rights and legitimate interests of data subjects and other
persons concerned.”

Once the implication of inferred data leads to generalize a duty to perform a
DPIA, the recommended publicity of the DPIA forces upon data controllers
the adoption of appropriate safeguards and information duties, expanding the
protection potentials of the GDPR even before a formal recognition of a right to
reasonable inferences.

In conclusion, it is clear that human mobility data since they are so an im-
portant proxy to understand human mobility dynamics and develop analytical
service, need to be protected with the right level of privacy. Unfortunately this kind
of data are very sensitive since they may enable the re-identification of individuals
in a database in several different ways. It is essential to consider them as sensitive
data and apply to them the best privacy protection framework.



Chapter 5
Epilogue

To keep the jargon of the play I called this final chapter "Credits". In it we summarise
the results, discuss the limitations of our work, and sketch an outlook on future work.

5.1 Conclusions
We began this thesis by introducing in Chapters 2 and 1 the overarching theme
and motivation for our research: that of finding valuable knowledge about mobility
in terms of individual behaviors through a data-driven approach which combines
techniques from network science and data mining.
The common thread of the work of my PhD program is the study of mobility at
an individual level. All the works presented and published start from the study of
the behavior of the individual user. In this thesis we investigated the potential of
Mobility Data and their ability to reveal patterns useful both for single users and
for mobility managers, owing to the availability of GPS data sources. We faced
the challenge firstly focusing on GPS data and traffic estimation, providing efficient
methods to extract traffic knowledge from low sampled GPS trajectories, discovering
where drivers move.

In Chapter 3.1 we saw in details the importance of studying human mobility in
terms of complex networks. The goal was to show the potential behind this kind of
abstraction that allows many level of applications. We focused our studies on graph
theory and on how to exploit it in the urban context by creating the Individual
Mobility Networks (IMNs). Moreover, in the same chapter 3.3 we presented the
work about user adaptive methods for solving the trajectory segmentation problem,
a very common and useful task in mobility data mining, especially in preprocessing
phases. The solutions proposed take into consideration the overall trajectory of
the user, identifying an individual cut time threshold and also combining the
information coming from the different users through the spatial regions they share.
This process yields thresholds for trajectory segmentation which are not only
user-adaptive, but also location-adaptive, thus taking into account that a stop at
different places might require time intervals of different duration to be considered a
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significant stay – and thus a trajectory cut point.
In the same chapter we also explored some Graph Embedding methods (Sec. 3.4)
in order to understand how much our IMNs are different from typical benchmarks
used in the graph embedding literature. We found that there are both semantic and
statistical difference. On the one hand, the majority of benchmarks deal with human
interactions data or physically connected elements of molecules, whereas IMNs are
about movements, thus making recurring concepts in embedding literature like
information propagation and bindings not perfectly fit; from the other, the empirical
exploration of IMNs’ properties resulted to be different from many of the others.
The review of existing graph embedding methods highlighted the existence of a
limited set of fundamental approaches, plus several variants and improvements.That
makes it difficult to identify the promising methods to choose, for which reason
we selected approaches from the most representative algorithms in the literature
that could be applied to graph level embedding.Empirical evaluations highlighted
how the (rich) node features of IMNs are fundamental to achieving acceptable
results, yet also suggesting that most methods are not able to handle them properly.

In the second part of the thesis (also called Act II ) we focused on applica-
tions enabled by IMNs. Besides that we also approached the big open challenges
we mentioned in the first part of the thesis: explainability in mobility field and
transfer learning. We leveraged some specific works to explore them in depth.
In particular three contributions has been presented in detailed. In Section 4.1 we
proposed a methodology based on mobility data analytics, ad-hoc trip planning and
simulation, that provides detailed quantitative information about what the switch
from a petrol vehicle to an electric one can mean for the single users and for the
collectivity. The proposed approach is efficient – thus suitable for large-scale studies
– and takes into consideration the main aspects involved in EV-based mobility:
limited driving range, sparse recharge infrastructures, potentially long recharge
times, the possibility of recharging at home/work, and so on. The experimentation
performed over an Italian region shows how the electrification process is expected
to generate only minor issues at the collective level and yet individual users can
expect slightly different impacts in they travel & refuel habits.
In Section 4.2 we have defined a large array of local and global city indicators
providing that they can be successfully exploited in a task of mobility transfer
learning. In particular, we have clustered municipalities based on the mobility
behavior described by the city indicators and we have assessed the transferability
of a machine learning model for traffic forecasting.
In Section 4.3 we have introduced the long-term car crash prediction problem, its
associated task of risk assessment and the geographically transferred car crash
prediction problem. For the first problem, we proposed a solution consisting in
extracting sophisticated features of the user’s mobility, able to capture not only
basic characteristics of her mobility, but also higher-level information derived from
a network view of her mobility history. On top of such features, machine learning
models can be trained and successfully employed. Experiments on real data showed
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that our solution outperforms basic solutions based on state-of-art features, and a
preliminary inspection of the prediction models through explainable AI methods
allowed us to identify a few representative features associated with crash risk. For
the second problem, the solution proposed consists in exploiting the city indicators
mentioned before to design geographical transfer learning solutions based on the
ensemble principle and weighted through city similarities. Explanation techniques
also revealed some of the features that are most important for the success of the
transfer learning methodology.
In conclusion, it is essential to outline another significant aspect of the thesis: the
analysis about the privacy aspects and the risks behind mobility data usage. As
a larger part of modern life is digitized, individuals generate an increasing volume
and variety of digital traces, which reveal information about their everyday activity
and movements. In this context, we analyzed from a technical and legal point of
view the potentials to infer personal sensitive data from mobility information and
underline the importance of GDPR rules in terms of citizen safe.

5.2 Future Works
The natural evolution of this thesis can go in many directions. Each of the topics
described involves future ways or research.
About the Segmentation task, the results obtained so far suggested us to explore
the feasibility of some more flexible individual mobility models. In particular, the
idea is to depart from the notion of single trips, and instead allow a multiresolution,
hierarchical view where the same movement is interpreted both as one trip and,
possibly, as a sequence of several small ones. The different levels of the hierarchy
might be obtained by moving the time threshold up and down, linking the segments
that originate from a split of an existing one. The resulting model would clearly
be complex and its computation and management challenging. Moreover it will be
interesting the integration of our methods into existing applications in the domain
of crash prediction and simulations of Electric Vehicles mobility which are based on
a detailed modeling of users’ mobility history.

Also the Graph Embedding task provides the opportunity for new researches
and improvements. In particular we think there are two main directions: the first is
specific for IMNs and includes the development of embedding methods ad hoc for
them, aimed to better exploit the abundant features at node and edge level and to
cope with their particular graph structure. The second one is more theoretical and
aims to classify existing methods based on what kind of information is actually built
from the input graph structure and features, abstracting away from formalization
and computational aspects, which often cover very similar concepts behind different
covers.

In the framework of Electric Vehicle Simulations, the proposed approach is
still amenable to improvements in several directions that we aim to explore, such
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as integrating a longer look-forward planning, prioritizing recharges on trips that
appear to have a more flexible timing and considering waiting times due to queue
length at stations.
While, about the work on the Car crash prediction, the transfer learning methods
show a plenty of possibilities to improve and develop new solutions. Indeed the
methods are based on rather general principles (see Section 4.3.1) that can apply
to a much broader set of problems. In particular, any learning problem related
to mobility in the urban context might fit the framework, from the classification
of points-of-interests to the estimate of a driver’s fuel consumption. We consider
exploring some of these alternative application settings as an interesting line of
future work.
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