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Abstract. In this paper we survey some results concerning the construction

of spike-layers, namely solutions to singularly perturbed equations that ex-
hibit a concentration behaviour. Their study is motivated by the analysis of

pattern formation in biological systems such as the Keller-Segel or the Gierer-

Meinhardt’s. We describe some general perturbative variational strategy useful
to study concentration at points, and also at spheres in radially symmetric sit-

uations.

1. Introduction. This paper surveys some results over the past decades concern-
ing the study of spike-layers, on which W.M. Ni gave some of the most important
contributions. Here we denote by spike-layers solutions of the following problem

−ε2∆u+ u = up in Ω,
∂u
∂ν = 0 on ∂Ω,

u > 0 in Ω,

(Pε)

where Ω is a smooth bounded domain of RN , p > 1, ε > 0 is a small parameter
and ν stands for the unit normal to ∂Ω. We will also consider the same problem
under Dirichlet boundary conditions: although our equation is of specific type, in
the literature more general nonlinearities were also considered.

Such a problem has different motivations, which are well described for example
in [32] or [47]. One of them concerns the stationary Keller-Segel system, meant to
describe chemotactic aggregation

D1∆U − χ∇ · (U∇ logV) = 0 in Ω,

D2∆V − aV + bU = 0 in Ω,
∂U
∂ν = ∂V

∂ν = 0 on ∂Ω.

(KS)

Here χ, a, b and D1, D2 are positive parameters in suitable ranges of (0,+∞), while
U ,V are unknown functions in Ω. Another relater system is the Gierer-Meinhard’s,
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describing an activator-inhibitor system in biological pattern formation


d1∆U − U + Up

Vq = 0 in Ω,

d2∆V − V + Ur
Vs = 0 in Ω,

∂U
∂ν = ∂V

∂ν = 0 on ∂Ω,

(GM)

where all parameters involved are again positive.
In both models, U and V represent densities of either some chemical substance

or of a biological population, and a phenomenon that is observed is the presence
of solutions that are higly concentrated near some subsets of Ω, especially when
the two diffusivities of the components are very different. This is in the spirit of
Turing’s instability for reaction-diffusion systems, [57], while single equations may
not exhibit (stable) patterns ([13], [45]).

In some asymptotic regimes for the diffusivities, one component tends to become
more and more homogeneous in Ω, so the above systems in their parabolic versions
reduce to shadow systems where an unknown function is coupled to a constant that
depend on time. In the static version, the other unknown will solve (Pε) with
a good approximation. Another motivation for the study of (Pε) (in presence of
a potential and/or in unbounded domains like the whole Euclidean space) arises
from the nonlinear Schrödinger equation in the semi-classical limit, where the small
parameter ε plays the role of Planck’s constant: some classical references will be
given below.

Among the first papers analyzing rigorously the pattern formation for the above
two systems we mention [33] and [48]: here it was shown via a-priori estimates that
for small values of the diffusivity of V in (KS) (or of U in (GM)) only constant
solutions may arise. On the other hand, in the opposite regime, there is the appear-
ance of solutions with sharp profiles. In showing the latter property, the analysis
of (Pε) was crucial: in particular the authors analysed its variational structure and
derived basic estimates on its mountain-pass energy level. This study was continued
in [49], where a detailed analysis of the least-energy solutions was performed (even
for non-linearities more general than those in (Pε)). Using rather sharp estimates,
where the main asymptotic of the energy was derived, it was shown that those have
to converge to the boundary of the domain, and that as ε→ 0 they only have one
global maximum.

The prototypical asymptotics for solutions uε to (Pε) can be guessed making

the change of variables uε(x) ∼ u0

(
x−Q
ε

)
, where Q is some point of Ω (to be

determined), and where u0 solves

−∆u0 + u0 = up0 in RN (or in RN+ = {x1, . . . , xN ∈ RN : xN > 0}).
(1)

The choice of the limiting domain depends on whether solutions concentrate in the
interior of Ω or at the boundary the domain: in the latter case Neumann conditions
are imposed.

When p < N+2
N−2 (in fact, only in this case, see [11]), problem (1) is well-known to

have a positive radial solution U satisfying

lim
r→+∞

err
N−1

2 U(r) = αN,p, (2)
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where αN,p > 0 depends only on N and p, as well as

lim
r→+∞

U ′(r)

U(r)
= −1; lim

r→+∞

U ′′(r)

U(r)
= 1. (3)

Problem (Pε) has variational structure, with Euler-Lagrange functional given by

Iε(u) =
1

2

∫
Ω

(
ε2|∇u|2 + u2

)
dx− 1

p+ 1

∫
Ω

|u|p+1dx; u ∈ H1(Ω). (4)

In [50] it was proved that solutions with minimal energy converge to a boundary
point with maximal mean curvature. For doing this, the authors expanded the
energy of the mountain-pass solution up to the second main term, showing that the
correction in the expansion is proportional to that of the volume (induced by the
mean curvature) of metric balls in the domain centered at points of the boundary.
Rigorous estimates were obtained using the decay of the above solution U , together
with the study of the linearized equation of (1) at U .

As we will explain, the characterization of the kernel of the linearized equation
(both in the whole RN or in a half space), together with the variational feature of
the problem allows also the construction of solutions at suitable critical points of
the mean curvature of the boundary. These methods, relying on finite-dimensional
reductions, can be used to construct a rich family of solutions, namely with interior
peaks (even with Dirichlet boundary conditions), or with multiple ones, both at
the boundary and at the interior of the domain, see e.g. [14], [16], [18], [25], [26],
[27], [28], [31], [32], [52], [59], [60], [61]. Related results were obtained regarding
semiclassical states of nonlinear Schrödinger equations, see e.g. [1], [17], [22], [53].

As it was conjectured for some time, see e.g. [47], one might expect that (Pε) also
has solutions concentrating at k-dimensional sets, for every integer k ∈ {1, . . . , N −
1}: the literature on this phenomeon is indeed more recent.

In [3], [4] the finite-dimensional reduction technique was used to prove existence
of solutions concentrating on spheres, for both problem (Pε), the corresponding
Dirichlet problem and also for the nonlinear Schrödinger equation in the whole
space. An interesting feature of this phenomenon is that the location of the con-
centration set is driven not only by the geometry of the domain (or the potential
in case of the NLS) but also on the volume of spherical shells where concentration
occurs.

The general case, without symmety assumptions, is more delicate since strong
resonance phenomena occur (see also [37], [46] for the geometric problem of finding
constant mean curvature surfaces). In fact, radially symmetric solutions concentrat-
ing on spheres have bounded Morse index within the class of radial functions, while
the index among arbitrary Sobolev functions diverges as ε tends to zero. Moreover,
in this limit, more and more eigenvalues approach zero.

A different strategy was then needed, relying on more sophisticated implicit func-
tion arguments. We will not discuss them in detail here (some general description
can be found in [40]), limiting ourselves to mention the principal ideas of the con-
struction and some more recent progress. First, approximate solutions with high
degree of accuracy are constructed. Then, a detailed study of the linearized equa-
tion is done, for which invertibility is shown only for a suitable sequence εj → 0. In
[42], [43] existence of solutions concentrating at the whole boundary was proved (in
dimension two and arbitrary, respectively), while in [39], [37] concentration at non-
degenerate minimal k-dimensional submanifolds of the boundary was proved (for
(N, k) = (3, 1) and (N, k) arbitrary, respectively). In [6], solutions developing an
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increasing number of boundary spikes were found, approaching a proper subset of
the boundary (see also [55] for the special case of a rectangle). In [21] instead, a su-
percritical problem was considered, and existence of solutions with interior profiles
approaching suitable submanifolds of the boundary were found (see also [15]).

In [34] solutions with a growing number of peaks (as ε→ 0) were constructed. In
[29] and [62] solutions concentrating at interior lines or surfaces (orthogonal to the
boundary) were found. In [5] the authors built solutions forming a triple junction
in the interior of the domain, relater to the entire profiles constructed in [41] (see
also [54]).

The plan of the paper is the following. In Section 2 we recall a general pertur-
bative and variational theory that allows to treat concentration at points: we will
focus on both Dirichlet and Neumann conditions. In Section 3 instead we will treat
concentration at spheres in radially symmetric situations, showing a competing ef-
fect between volume energy and boundary conditions, than generate solutions with
spherical profiles.

2. Concentration at points and spheres. In this section we recall a general
perturbative method, variational in nature, which allows to produce solutions con-
centrating at points via a finite-dimensional reduction, see e.g. [2] for a general
treatment on this topic.

2.1. Perturbative critical point theory. Here we recall some general strategy
to tackle variational problems involving a small parameter ε. We consider a Hilbert
space H (possibly depending on ε) containing a finite-dimensional submanifold Zε
satisfying the following properties

: i) Zε has dimension d and ∃C, r > 0 such that for any z ∈ Zε, Z ∩ Br(z) is
parameterized by ξ ∈ B1(0) ⊆ Rd with C3-derivative bounded by C.

On H it is defined a C2,α functional Iε such that

: ii) ‖∇Iε(z)‖ ≤ a(ε) for every z ∈ Zε and ‖∇2Iε(z)[q]‖ ≤ b(ε)‖q‖ for every
z ∈ Zε and q ∈ TzZε, where a, b : (0, ε0)→ R are a smooth functions tending
to zero as ε→ 0;

: iii) ∃C, α ∈ (0, 1], r0 > 0 such that ‖I ′′ε ‖Cα ≤ C in {u : dist(u, Zε) < r0};
: iv) let Pz be the projection on the orthogonal complement of TzZε. Then
∃C > 0 such that, on (TzZε)

⊥, Pz∇2Iε(z) is invertible from (TzZε)
⊥ in itself,

with inverse satisfying ‖(Pz∇2Iε(z))
−1‖ ≤ C.

Let W denote the orthogonal space W = (TzZε)
⊥: since by the above property

ii) all points of Zε are approximate critical points of Iε, it is natural to look for true
critical points in the form u = z + ω, z ∈ Zε ω ∈W . The conditions I ′ε(z + ω) = 0
then becomes the following system:{

PzI
′
ε(z + ω) = 0 (auxiliary equation);

(Id− Pz)I ′ε(z + ω) = 0 (bifurcation equation).
(5)

From the contraction mapping theorem one can prove the following result.

Proposition 1. Suppose the above conditions i)-iv) hold. Then ∃ ε0 > 0 such
that for all |ε| < ε0 and z ∈ Zε, the auxiliary equation in (5) possesses a unique
solution ω = ωε ∈ W = (TzZε)

⊥, of class C1 in z and such that, for |ε| → 0,
‖ωε(z)‖ ≤ C1a(ε) and such that ‖∂ξωε(z)‖ ≤ C1(a(ε)α + b(ε)).
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Given the equivalence I ′ε(z+ω) to the above system (5), we are left with solving
the bifurcation equation. For doing this, it is possible to exploit the variational
structure of the problem, considering the reduced functional Iε : Z → R given by

Iε(z) = Iε(z + ωε(z)). (6)

As stated in the next proposition, this finite-dimensional quantity determines pre-
cisely the critical points in a neighborhood of Z of fixed size.

Proposition 2. Consider the same assumptions as in Proposition 1. If Iε has a
critical point zε then uε = zε+ωε(zε) is also critical point of Iε. Moreover, ∃ c̃, r̃ > 0
small so that if u is critical for Iε with dist(u, Zε,c̃) < r̃, where

Zε,c̃ = {z ∈ Zε : dist(z, ∂Zε) > c̃} ,
then there exists zε ∈ Zε such that u is of the form zε + ωε(zε).

The proof of the first statement can be geometrically described as follows. Con-
sider the perturbed manifold

Z̃ε := {z + ωε(z) : z ∈ Zε} .
Since also the C1-norm of z 7→ ωε(z) tends to zero as ε → 0, the two tangent

spaces TzZε and Tz+ωε(z)Z̃ε are nearly parallel. By Lagrange’s multipliers rule, the

gradient of Iε at zε+ωε(zε) is orthogonal to Tzε+ωε(zε)Z̃ε. On the other hand, by the
auxiliary equation in (5), this gradient must also be orthogonal to TzεZε, but since
the two tangent spaces are nearly parallel, it must eventually vanish identically. The
proof of the second statement relies instead on the uniqueness of the fixed point in
the contraction mapping.

The above abstract results will be next applied to the concrete settings of singu-
larly Neumann and Dirichlet problems, dealing with both concentration at points
or spheres.

2.2. Concentration at boundary points for the Neumann problem. Here
we discuss the construction of boundary spike-layers for problem (Pε), giving only
general ideas and referring to [2] for more details. It is convenient to perform a
change of variables, so that the Neumann problem (Pε) becomes

−∆u+ u = up in Ωε;
∂u
∂ν = 0 on ∂Ωε;

u > 0 in Ωε,

Ωε =
1

ε
Ω. (7)

For p ≤ N+2
N−2 , solutions of the latter problem are critical points of the Euler-Lagrange

energy

Jε(u) =
1

2

∫
Ωε

(
|∇u|2 + u2

)
− 1

p+ 1

∫
Ωε

|u|p+1, u ∈ H1(Ωε). (8)

In the limit ε → 0, after a proper translation and rotation, Ωε converges to the
half-space RN+ . The limit problem then becomes

−∆u+ u = up in RN+ ;
∂u
∂ν = 0 on ∂RN+ ;

u > 0 in RN+ .
(9)

The last problem admits as a solution the radial function U discussed in the in-
troduction, satisfying the asymptotics in (2) and (3). It is also known that the
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linearization of (9) at U has minimal degeneracy, namely its kernel is formed by
the infinitesimal generators of translations of U along the boundary, namely by the
functions ∂x1

U, . . . , ∂xN−1
U . This will guarantee property iv) is the abstract setting

of Subsection 2.1.
We construct next the manifold Zε for this concrete setting: for doing this,

we need to introduce a parametrization of the boundary of Ωε near one of its
points, which we call X. We can suppose that X = 0 ∈ RN , that {xN = 0} is
the tangent plane of ∂Ωε (or ∂Ω) at X, and that the unit normal to Ωε at X is
ν(X) = (0, . . . , 0,−1). Assuming the same conditions on the original domain Ω, let
xN = ψ(x′) be a local parametrization of ∂Ω. Then for some µ0 small there holds

xN = ψ(x′) := 1
2 〈AXx

′, x′〉+O(|x′|3); |x′| < µ0. (10)

Here AX is the hessian of ψ, and the mean curvature H at X satisfies H(X) =
1

N−1 trAX . Dilating the domain, we easily see that the boundary of Ωε is parame-

terized by the function yN = ψε(x
′) := 1

εψ(εx′), and one has that

ψε(x
′) =

ε

2
〈AXx′, x′〉+ ε2O(|x′|3).

The outer unit normal ν to ∂Ωε can be expanded in these coordinates as

ν =

(
∂ψε
∂x1

, . . . , ∂ψε
∂xN−1

,−1
)

√
1 + |∇ψε|2

= (ε(AXx
′),−1) + ε2O(|x′|2). (11)

Given µ0 as in (10), we straighten the coordinates on Bµ0
ε

(X)∩Ωε as follows. Define

y′ = x′; yN = xN − ψε(x′) : (12)

It these coordinates the metric coefficients (gij) are given by

(gij) =

(
〈 ∂x
∂yi

,
∂x

∂yi
〉
)

=


∂ψε
∂y1

δij + ∂ψε
∂yi

∂ψε
∂yj

...
∂ψε
∂yN−1

∂ψε
∂y1

· · · ∂ψε
∂yN−1

1

 ,

and they satisfy?

gij = Id+ εA+O(ε2|y′|2); ∂yk(gij) = ε∂ykA+O(ε2|y′|), (13)

where A =

(
0 AXy

′

(AXy
′)t 0

)
. It is also easy to check that the inverse matrix

(gij) is of the form gij = Id − εA + O(ε2|y′|2), and that ∂yk(gij) = −ε∂ykA +
O(ε2|y′|). Since (12) preserves volume, one has also that det(g)ij ≡ 1. The Laplace
operator with respect to a given Riemannian metric is

∆gu =
1√

det g
∂j

(
gij
√

det g
)
∂iu+ gij∂2

iju,

so when the determinant of g is identically equal to 1 this simplifies to

∆gu = gijuij + ∂i(g
ij)∂ju.

From (13), is u is a smooth function, we then obtain

∆gu = ∆u− ε (2〈AXy′,∇y′∂yNu〉+ trAX∂yNu)

+O(ε2|y′|)|∇u|+O(ε2|y′|2)|∇2u|.
(14)
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The area-element of the boundary of Ωε can be written as

dσ = (1 +O(ε2|y′|2))dy′. (15)

Choose a radial non-increasing cut-off function ψµ0 identically equal to 1 on Bµ0
4

(0),

vanishing outside Bµ0
2

(0), and then define

zε,X(y) = ψµ0
(εy)U(y). (16)

We next want to apply the abstract framework in Subsection 2.1 by choosing
Iε = Jε (see (8)) and as Zε the following manifold

Zε = {zε,X : X ∈ ∂Ωε} . (17)

We already discussed the role of non-degeneracy of U with respect to condition iv):
we next aim to show here the first part of conditions i) with a(ε) = O(ε), the other
ones being more technical. We have the following result.

Lemma 2.1. There exists a constant C > 0 such that for ε small one has the
inequality

‖∇Jε(zε,X)‖ ≤ Cε; for all X ∈ ∂Ωε.

Proof. Consider an arbitrary function v ∈ W 1,2(Ωε). Since zε,X is supported in
Bµ0

2ε
(X), see (16), the coordinates y are globally defined in this set, and we get

∇Jε(zε,X)[v] =

∫
∂Ωε

∂zε,X
∂ν̃

vdσ +

∫
Ωε

(
−∆gzε,X + zε,X − zpε,X

)
vdy. (18)

Concerning the normal derivative
∂zε,X
∂ν̃ , one has

∂zε,X
∂ν̃

= U∇ψµ0
(εy) · ν̃ + ψµ0

(εy)∇U · ν̃.

Since ∇ψµ0
(ε·) is supported in RN \Bµ0

4ε
, and by properties (2)-(3), we have

|U∇ψµ0
(εy) · ν̃| ≤ C(1 + |y|C)e−

1
Cε e−|y|.

On the other hand, since U has zero normal derivative on hyperplanes passing
through the origin and by (11) we find that

∂zε,X
∂ν̃

= O(ε2|y′||∇w|) +O(ε2|y′|2|∇U |); |y| ≤ µ0

4ε
;∣∣∣∣∂zε,X∂ν̃

∣∣∣∣ ≤ Ce−|y| + Cε(1 + |y|C)e−|y| ≤ Cε−Ce− 1
Cε ;

µ0

4ε
≤ |y| ≤ µ0

2ε
.

By last two bounds, formula (15), and the trace Sobolev embedding we find that∣∣∣∣∫
∂Ωε

∂zε,X
∂ν̃

vdσ

∣∣∣∣ ≤ Cε‖v‖. (19)

Furthermore, from (14) and the fact that U solves the equation in (9) we obtain∣∣∣−∆gzε,X + zε,X − zpε,X
∣∣∣ ≤ Cε2

(
|y′||∇U |+ |y′|2|∇2U |

)
,

for |y| ≤
(

1
4εC supX ‖AX‖

)
1
C

, and∣∣∣−∆gzε,X + zε,X − zpε,X
∣∣∣ ≤ C(1 + |y′|C)e−|y

′| ≤ Cε−Ce− 1
Cε ,
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for
(

1
4εC supX ‖AX‖

)
1
C
≤ |y| ≤ µ0

2ε . Hence from the last two formulas we deduce that∣∣∣−∆gzε,X + zε,X − zpε,X
∣∣∣ ≤ Cε(1 + |y|C)e−|y|; |y| ≤

(
1

4εC supX ‖AX‖

)
1

C
,

which from Hölder’s inequality implies∣∣∣∣∫
Ωε

(
−∆gzε,X + zε,X − zpε,X

)
vdy

∣∣∣∣ ≤ Cε‖v‖. (20)

From (19) and (20) we finally get the conclusion.

With the aim of applying Proposition 1, we next expand Jε(zε,X) up to the first
order in ε.

Lemma 2.2. As ε→ 0, the following formula holds uniformly on ∂Ωε

Jε(zε,X) = C0 − C1εH(X) +O(ε2),

where

C0 =

(
1

2
− 1

p+ 1

)∫
RN+

Up+1, C1 =

(∫ ∞
0

rnU2
r dr

)∫
Sn+

yN |y′|2dσ.

Proof. Since z is supported in Bµ0
2ε

(X), we can still use the above coordinates y, so

we can write that

Jε(zε,X) = 1
2

∫
RN+

(
|∇gzε,X |2 + z2

ε,X

)
dy − 1

p+1

∫
RN+

zp+1
ε,X dy.

An integration by parts yields

Jε(zε,X) =
1

2

∫
∂RN+

zε,X
∂zε,X
∂ν̃

dσ +
1

2

∫
RN+

zε,X (−∆gzε,X + zε,X) dy

− 1

p+ 1

∫
RN+
|zε,X |p+1dy.

Using formulas (16) and (14) we obtain

1

2

∫
RN+

zε,X (−∆gzε,X + zε,X) dy − 1

p+ 1

∫
RN+
|zε,X |p+1dy =

=

(
1

2
− 1

p+ 1

)∫
RN+

Up+1dy +
ε

2

∫
∂RN+

U〈AXy′,∇y′U〉dσ

+ε

∫
RN+

U〈AXy′,∇y′∂yNU〉dy +
ε

2
trAX

∫
RN+

U∂yNUdy +O(ε2).

Also, from (11) we obtain that

1

2

∫
∂RN+

zε,X
∂zε,X
∂ν̃

dσ =
ε

2

∫
∂RN+

U〈AXy′,∇y′U〉dy +O(ε2).

Collecting the above formulas we find

Jε(z) =

(
1

2
− 1

p+ 1

)∫
RN+

Up+1dy +
ε

2

∫
∂RN+

U〈AXy′,∇y′U〉dσ

+ ε

∫
RN+

U〈AXy′,∇y′∂yNU〉dy +
ε

2
trAX

∫
RN+

U∂yNUdσ +O(ε2).
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A further integration by parts shows that the terms of order ε are given by

1
4

∫
∂RN+
〈AXy′,∇y′U2〉dσ +

∫
RN+

U〈AXy′,∇y′∂yNU〉dy + 1
4 trAX

∫
RN+

∂yNU
2dy

= − 1
2 trAX

∫
∂RN+

U2dσ −
∫
∂RN+

U〈AXy′,∇y′U〉dσ −
∫
RN+

∂yNU〈AXy′,∇y′U〉dy

= −
∫
RN+

∂yNU〈AXy′,∇y′U〉dy.

Since U is radial, we have that

∂yNU =
yN
|y|
Ur; ∇y′U =

y′

|y|
,

and therefore∫
RN+

∂yNU〈AX(y′),∇y′U〉dσ = −
∫
RN+

yN 〈AX(y′), y′〉
|y|2

dy.

Expressing the integral in radial coordinates, we obtain the conclusion.

The latter result allows to expand the finite-dimensional functional in (6). In fact,
from the regularity of Jε and from the fact that by Lemma 2.1 and by Proposition
1 ‖ωε(z)‖ = O(ε), we have that

Iε(z) = Iε(z + ωε(z)) = Jε(zε,X) + ‖∇Jε(zε,X)‖ ‖ωε(zε,X)‖
+O(‖ωε(zε,X)‖2) = Jε(zε,X) +O(ε2).

As a consequence we obtain the following:

Proposition 3. Let Zε be as in (17) and let Iε = Jε. Let Iε(z) be as in (6). Then

Iε(z) = C0 − C1εH(X) +O(ε2); z ∈ Zε,

with C0, C1 as in Lemma 2.2.

A similar result holds for the expansion of the derivatives of Iε in terms of the
gradient of the mean curvature of Ω. Using a direct maximization (resp., minimiza-
tion) argument, or a local degree computation one finds the following result.

Theorem 2.3. Let p < N+2
N−2 and suppose P is a strict local minimum (resp.,

maximum) or a non-degenerate critical point for the mean curvature H of ∂Ω.
Then there exist spike-layers uε of (Pε) concentrating at P for ε→ 0.

As discussed in the introduction, the papers [49], [50] studied the limiting be-
haviour of solutions with minimal energy. Once it is proven that, after a proper
translation and dilation in ε the limiting profile is at the boundary and converges
to the radial solution U , it is intuitive from the above proposition that minimality
in energy corresponds to maximality of boundary mean curvature. Therefore, from
the second part of Proposition 2 one can then show also the following result.

Theorem 2.4. ([50]) Let p < N+2
N−2 . Then solutions of (Pε) with minimal energy

form, as ε → 0, spike-layers concentrating at boundary points of Ω with maximal
mean curvature.

As again discussed in the introduction, a variant of the above finite-dimensional
reduction allows to find solutions with multiple boundary peaks, concentrating at
suitable stationary points of the mean curvature.
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2.3. Concentration at points for the Dirichlet problem. We consider next
the singularly-perturbed Dirichlet problem

−ε2∆u+ u = up in Ω,

u = 0 on ∂Ω,

u > 0 in Ω,

(Dε)

Our goal is to apply again the abstract method in Subsection 2.1 starting with
approximate solutions that are dilations (by a factor ε) of the radial soliton U , and
centered at interior points Q of the domain.

We need though to achieve boundary conditions, so these approximate solutions
need to be suitably adjusted near the boundary, which is possible to the exponential
decay of U . However a generic cut-off function will not be precise enough, and it
is useful to consider a projection operator which associates to each u ∈ H1(Ω) its
closest element (w.r.t. the Sobolev distance) in H1

0 (Ω). This amounts to subtracting
to such a function u the solution of{

−ε2∆ϕ+ ϕ = 0 in Ω;
trace(ϕ) = trace(u) on ∂Ω.

We choose u = U
(
x−Q
ε

)
for Q ∈ Ω, and we will need to determine some asymptotic

behaviour of ϕ as ε→ 0. By (2), the trace of u behaves like e−
|x−Q|
ε .

It is convenient now to make a change of variables: setting ψ = −ε logϕ, one
finds that it satisfies {

ε∆ψ − |∇ψ|2 + 1 = 0 in Ω;

ψ(x) = −ε logU
(
x−Q
ε

)
.

(21)

By the asymptotic behaviour of U at infinity, one has that

−ε logU

(
x−Q
ε

)
→ |x−Q| as ε→ 0.

Using a barrier argument it was shown in [52] that the above functions ψ are
uniformly Lipschitz as ε → 0. Moreover, it is possible to prove that that their
limit, guaranteed by Ascoli’s theorem, is a Lipschitz function that can explicitly
characterized as follows.

Proposition 4. ([52]) Let ψ = ψε be the solutions to the above boundary value
problem. Then, as ε → 0, ψε converge uniformly in Ω to a Lipschitz function ψ0

which is defined as

ψ0(x) = inf
P∈∂Ω

(|P −Q|+ L(P, x)) ; x ∈ Ω.

Here L(x, y) stands for the infimum of the numbers T such that there exists ζ(s) ∈
C0,1([0, T ]; Ω̄) with ζ(0) = x, ζ(T ) = y and |dζds | ≤ 1 a.e. on [0, T ].

Taking straight curves from Q to its closest point to the boundary, one obtains
the following result.

Corollary 1. If ψ0 is as above, one has that

ψ0(Q) = 2d(Q, ∂Ω).
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The above results can be used to generate good approximate solutions. We
first scale the boundary as in the previous subsection, and consider the equivalent
problem 

−∆u+ u = up in Ωε,

u = 0 on ∂Ωε,

u > 0 in Ωε;

Ωε =
1

ε
Ω. (22)

For Q ∈ Ωε, define

uDQ,ε = U(x−Q)− ψε,Q(εx).

By construction the above function uDQ,ε satisfies the Dirichlet boundary conditions

on Ωε. We will next give an idea of the fact that uDQ,ε is a good approximate solution
for the Dirichlet problem in the following sense. Consider the Euler-Lagrange energy
for (22)

Îε(u) =
1

2

∫
Ωε

(
|∇u|2 + u2

)
dy − 1

p+ 1

∫
Ωε

up+1dy.

We have then the following result.

Lemma 2.5. Suppose uDQ,ε is as before, and that Q belongs to the ε-dilation of a
fixed compact set of Ω. Then one has

‖∇Îε(uDQ,ε)‖ ≤ Ce−min{2,p}d(Q,∂Ωε); u ∈ H1
0 (Ωε)

Proof. We only give a sketch of the proof, referring to papers mentioned below for
full details. Consider any test function v ∈ H1

0 (Ωε): then integrating by parts and
using the fact that uDQ,ε satisfies

−∆uDQ,ε + uDQ,ε = UpQ,

we have that

∇Îε(uDQ,ε)[v] =

∫
Ωε

(
∇uDQ,ε · ∇v + uDQ,εv

)
dx−

∫
Ωε

(uDQ,ε)
pvdx

=

∫
Ωε

(
−∆uDQ,ε + uDQ,ε − (uDQ,ε)

pv
)
v dx

=

∫
Ωε

(
UpQ − (UQ − ψε,Q(εx))p

)
v dx.

(23)

By construction, it turns out that |ψε,Q(εx)| ≤ CUQ, hence from a Taylor expansion
one has

(UQ − ψε,Q(εx))p = UpQ − pU
p−1
Q ψε,Q(εx) +O(Up−2

Q ψε,Q(εx)2). (24)

Therefore from the last two formulas it follows that

∇Îε(uDQ,ε)[v] =

∫
Ωε

(
pUp−1

Q ψε,Q(εx) +O(Up−2
Q ψε,Q(εx)2)

)
v dx

Using then Hölder’s inequality and the decay properties of UQ and ψε,Q, the con-
clusion follows.

We have then the following energy expansion (where we neglect the power-like
terms in (2)).
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Proposition 5. Suppose that Q belongs to the ε-dilation of a fixed compact set of
Ω. The following asymptotic expansion holds:

Îε(u
D
Q,ε) = C2 + C3e

−2d(Q,∂Ωε) + l.o.t..

for some C2, C3 ∈ R, C2, C3 > 0.

Proof. We again give a sketch of the argument, referring to [32] for full details.
Integrating again by parts we write that

Îε(u
D
Q,ε) =

1

2

∫
Ωε

(
|∇uDQ,ε|2 + (uDQ,ε)

2
)
dx− 1

p+ 1

∫
Ωε

(uDQ,ε)
p+1dx

=
1

2

∫
Ωε

(
−∆uDQ,ε + uDQ,ε − (uDQ,ε)

p
)
uDQ,εdx

+

(
1

2
− 1

p+ 1

)∫
Ωε

(uDQ,ε)
p+1dx.

(25)

Using the equation satisfied by uDQ,ε we then get

Îε(u
D
Q,ε) =

1

2

∫
Ωε

(
UpQ − (UQ − ψε,Q(εx))p

)
(UQ − ψε,Q(εx)) dx

+

(
1

2
− 1

p+ 1

)∫
Ωε

(UQ − ψε,Q(εx))p+1dx.

(26)

Fro the first term we can use formula (24), together with the analogous expansion

(UQ − ψε,Q(εx))(p+1) = UpQ − (p+ 1)UpQψε,Q(εx) +O(Up−1
Q ψε,Q(εx)2) (27)

to write that

Îε(u
D
Q,ε)

=
1

2

∫
Ωε

(
pUp−1

Q ψε,Q(εx) +O(Up−2
Q ψε,Q(εx)2)

)
(UQ − ψε,Q(εx)) dx

+

(
1

2
− 1

p+ 1

)∫
Ωε

(Up+1
Q − (p+ 1)UpQψε,Q(εx) +O(Up−1

Q ψε,Q(εx)2))dx.

(28)

Collecting all terms, from the decay of UQ and ψε,Q one finds that

Îε(u
D
Q,ε) =

(
1

2
− 1

p+ 1

)∫
Ωε

Up+1
Q dx+

1

2

∫
Ωε

UpQψε,Q(εx)dx+ l.o.t.

For the first term, from the exponential decay of U one has∫
Ωε

Up+1
Q dx =

∫
RN

Up+1dx−
∫
RN\Ωε

Up+1
Q dx = C0 +O(e−(p+1)d(Q,∂Ωε))

For the second term instead, from the decay of U and Corollary XX one has that∫
Ωε

UpQψε,Q(εx)dx ' 1

2
ψε,Q(εQ)

∫
RN

Updx+ l.o.t. = C1e
−2d(Q,∂Ωε) + l.o.t..

This concludes the proof.

Similarly to Proposition 3, we obtain the following expansion.

Proposition 6. Fix a compact set K in Ω, define Zε =
{
uDQ,ε : Q ∈ 1

εK
}

, and let

Iε = Îε. Let Iε(z) be as in (6). Then, if z = uDQ,ε one has that

Iε(z) = C2 + C3e
−2d(Q,∂Ωε) + l.o.t.; z ∈ Zε,
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for some positive constants C2, C3.

Using this proposition and the above abstract arguments, it is possible to prove
results of the following type.

Theorem 2.6. ([32]) Let p < N+2
N−2 and let V ⊂ Ω be an open set with compact

closure in Ω and let d denote the distance function from ∂Ω. Suppose that

deg(d, V, 0) 6= 0.

Then as ε → 0 problem (Dε) admits spike-layer solutions concentrating at some
point in V .

As for Theorem 2.4, the following result for the Dirichlet problem was proved,
regarding solutions with minimal energy.

Theorem 2.7. ([52]) Let p < N+2
N−2 . Then solutions of (Dε) with minimal energy

form, as ε → 0, spike-layers concentrating at interior points of Ω with maximal
distance from the boundary.

Expansions similar to the ones discussed in this subsection were used to construct
interior spikes for (Pε) as well, and solutions with multiple spike-layers, even of
mixed interior and boundary types. We refer to the introduction for more precise
references.

3. Concentration at spheres in symmetric domains. Here we consider again
problem (Pε) for the unit ball Ω = B1 =

{
x ∈ RN : |x| < 1

}
, N ≥ 2, showing the

existence of radial solutions concentrating near the boundary, but with the profile
of interior one-dimensional spike-layers. The phenomenon is peculiar of the higher-
dimensional case and is due to a balancing effect between the volume energy of
radial spike-layers, which would tend to shrink their radius, and an attractive force
due to the imposed boundary condition: there are indeed no such solutions in one
dimension.

It is convenient to scale the domain by a factor 1
ε , i.e. to consider{

−∆u+ u = up, in B 1
ε
,

∂u
∂ν = 0 on ∂B 1

ε
, u > 0.

(29)

and to use the functional Iε defined in (4).
We next construct a family of approximate solutions to (29), imposing approx-

imate Neumann boundary conditions. Given r0 <
1
2 , let φε(r) be a smooth cutoff

function satisfying

φε(r) =


0 for r ∈

[
0, r08ε

]
;

1 for r ∈
[
r0
4ε ,

1
ε

]
;

|φ′ε(r)| ≤ Cε for r ∈
[
r0
8ε ,

r0
4ε

]
;

|φ′′ε (r)| ≤ Cε2 for r ∈
[
r0
8ε ,

r0
4ε

]
.

(30)

Consider the one-dimensional solution U to

− U ′′ + U = U
p

in R. (31)

Let α = limt→+∞ etU(t), recalling (2), and let zρ(r) = U(r − ρ): define then

zNρ = φε (zρ + vρ) := φε(·)
(
zρ(·) + αe−( 1

ε−ρ)e−( 1
ε−·)

)
; ρ ≥ 3

4ε
. (32)
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For the normal derivative, we have the following estimate

(zNρ )′
(

1

ε

)
= z′ρ

(
1

ε

)
− αe−( 1

ε−ρ)

= zρ

(
1

ε

)(
z′ρ
zρ

(
1

ε

)
− αe−( 1

ε−ρ)

zρ
(

1
ε

) )
= o

(
e−( 1

ε−ρ)
)
.

(33)

The term vρ in the definition of zNρ can be heuristically viewed as a virtual spike
outside Ω, which has the effect of attracting the interior spike to the boundary.

We have next the following result concerning approximate solutions.

Lemma 3.1. Then there exists C > 0 such that, testing on radial functions

‖∇Iε(zNρ )‖ ≤ Cε
1−N

2

(
ε+ o

(
e−( 1

ε−ρ)
))

for every zNρ as in (32).

Proof. As zρ = U(·−ρ) and vρ satisfy −z′′ρ +zρ = zpρ and −v′′ρ +vρ = 0, for arbitrary

radial functions u ∈ H1
r (B 1

ε
) there holds

I ′ε(z
N )[u] =

∫ 1
ε

0

(
−(zNρ )′′ − N − 1

r
(zNρ )′ + V (εr)zNρ − (zNρ )p

)
urN−1dr

+ ε1−N (zNρ )′(1/ε)u(1/ε)

= ε1−N (zNρ )′(1/ε)u(1/ε)− (N − 1)

∫ 1
ε

0

1

r
(zNρ )′urN−1dr

−
∫ 1

ε

0

(
2φ′ε(z

N
ρ )′ + φ′′ε (zNρ )

)
urN−1dr −

∫ 1
ε

0

(
(zNρ )p − φεzpρ

)
urN−1dr.

For brevity, we might omit next the index ρ in zρ and vρ and for simplicity we will
write ∫

(·) :=

∫ 1
ε

0

(·)rN−1dr. (34)

From Strauss’ Lemma, see [56], and (33) we obtain that

ε1−N |(zN )′(1/ε)u(1/ε)| = ε
1−N

2 o
(
e−( 1

ε−ρ)
)
‖u‖. (35)

It is easy to check that ‖(zN )′‖ ≤ Cε
1−N

2 and moreover, since zN is supported in{
r ≥ r0

8ε

}
, one also has∣∣∣∣∫ 1

r
(zN )′u

∣∣∣∣ ≤ Cε‖(zN )′‖‖u‖ ≤ Cε
3−N

2 ‖u‖. (36)

By the exponential decays of z = zρ and v = vρ, the fact that φ′ε, φ
′′
ε are supported

in
[
r0
8ε ,

r0
4ε

]
and from the condition ρ ≥ 3

4ε , one finds∣∣∣∣∫ φ′ε(z + v)′u

∣∣∣∣ ≤ Cε1+ 1−N
2 e−

r0
4ε ‖u‖;

∣∣∣∣∫ φ′′ε (z + v)u

∣∣∣∣ ≤ Cε2+ 1−N
2 e−

r0
4ε ‖u‖.

(37)
Let us consider now

∫ (
(zN )p − φεzp

)
u, noticing that

(zN )p − φεzp = φpε ((z + v)p − zp) + φpε (φpεz
p − φεzp) .

Since z is uniformly bounded in L∞ we find that∣∣(z + v)p − zp − pzp−1v
∣∣ ≤ C max{|v|2, |v|p}.
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As a consequence∣∣∣∣∫ [(z + v)p − zp]u
∣∣∣∣ ≤ p ∣∣∣∣∫ zp−1v|u|

∣∣∣∣+ C

∣∣∣∣∫ |u|max{|v|2, |v|p}
∣∣∣∣ .

From Hölder’s inequality we obtain∣∣∣∣∫ |v|2∧p|u|∣∣∣∣ ≤ Ce−(2∧p)( 1
ε−ρ)

∫
e−(2∧p)( 1

ε−r)|u| ≤ Ce−(2∧p)( 1
ε−ρ)ε

1−N
2 ‖u‖,

and we notice that also
∣∣∫ zp−1v|u|

∣∣ ≤ (∫ z2(p−1)v2
) 1

2 ‖u‖. For the latter integral

we consider separately the sets r ≤ ρ+ε−1

2 and r ≥ ρ+ε−1

2 . For r ≤ ρ+ε−1

2 , v satifies

|v| ≤ e−
3
2 ( 1

ε−ρ) and therefore(∫
r≤ ρ+ε2

z2(p−1)v2rN−1dr

) 1
2

≤ Ce−
3
2 ( 1

ε−ρ)

(∫
r≤ ρ+ε2

z2(p−1)rN−1dr

) 1
2

≤ Ce−
3
2 ( 1

ε−ρ)ε
1−N

2 .

If instead r ≥ ρ+ε−1

2 , z satisfies |z(r)| ≤ e−
1
2 ( 1

ε−ρ) so one finds(∫
r≥ ρ+ε2

z2(p−1)v2rN−1dr

) 1
2

≤ Ce−
p−1
2 ( 1

ε−ρ)

(∫ 1
ε

0

|v|2rN−1dr

) 1
2

≤ Ce−(1+ p−1
2 )( 1

ε−ρ)ε
1−N

2 .

Notice that also∣∣∣∣∫ (φpεz
p − φεzp)u

∣∣∣∣ ≤ C (∫ (φpε − φε)
2
U

2p
) 1

2

‖u‖ ≤ Ce−
pr0
2ε ε

1−N
2 ‖u‖.

All the above inequalities yield∣∣∣∣∫ ((zN )p − φεup
)
u

∣∣∣∣ ≤ Cε 1−N
2

(
e−( 3∧(p+1)

2 )( 1
ε−ρ) + e−

pr0
4ε

)
‖u‖. (38)

Therefore (35)-(38) guarantee that

‖I ′ε(zNρ )‖ ≤ Cε
1−N

2

(
ε+ o

(
e−( 1

ε−ρ)
)

+ e−
r0
4ε

)
,

concluding the proof.

Even though the norm of the gradient in Lemma 3.1 is not small in ε, it is small
relatively to that of the zNρ ’s. It is possible then to perform a contraction argument
as in the previous sections, working in the set of radial functions

C̃ε =
{
w ∈ H1

r (B 1
ε
) : ‖w‖H1

r (B 1
ε

) ≤ γε‖zNρ ‖H1
r (B 1

ε
), |w(r)| ≤ γε for r > 0

}
.

One can then prove the following result (see [2]) for complete details.

Proposition 7. For ε small there exists µ > 0 such that for ρ ∈
[
r0
ε ,

1
ε − µ

]
, there

exists a function wN = wN (zρ,ε) ∈ C̃ε with the following property. Set

Iε(ρ) = Iε(z
N
ρ + wNρ,ε) :

if ρε is stationary point of Iε, then ũε = zNρε + wNρε,ε is a critical point of Iε.

The reduced functional Iε can then be expanded as follows.
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Proposition 8. Let zNρ be defined in (32), and set

α =
(

1
2 −

1
p+1

)∫
R
U
p+1

; β = 1
2α

∫
R
U
p
er. (39)

Then for all ρ ∈
[

3
4ε ,

1
ε

]
one has

Iε(ρ) = ε1−N (ερ)N−1
[
α− βe−2( 1

ε−ρ)
]

+O(ε2−N ) + ε1−No
(
e−2( 1

ε−ρ)
)
.

Proof. It will be sufficient to estimate Iε(z
N
ρ ) since the contribution of wNρ,ε will be

negligible, as for the previous cases. Integrating by parts we obtain

Iε(z
N ) = 1

2

∫ (
|(zN )′|2 + (zN )2

)
− 1

p+1

∫
|zN |p+1

= 1
2

∫ (
−(zN )′′ − N−1

r (zN )′ + zN
)
zN

+ 1
2ε

1−NzN (1/ε)(zN )′(1/ε)− 1
p+1

∫
|zN |p+1

= 1
2ε

1−NzN (1/ε)(zN )′(1/ε) + 1
2

∫
φεz

pzN − 1
p+1

∫
|zN |p+1

− N−1
2

∫
(zN )′zN

r
−
∫
φ′εz
N (z + v)′ − 1

2

∫
φ′′εz

N (z + v).

(40)

We next estimate each term separately. By (33) we get

ε1−N ∣∣zN (1/ε)(zN )′(1/ε)
∣∣ = ε1−No

(
e−2( 1

ε−ρ)
)
. (41)

To control the second and the third terms in the r.h.s. of (40), we can write

1
2

∫
φεz

pzN− 1
p+1

∫
|zN |p+1 =

(
1
2 −

1
p+1

)∫
φp+1
ε zp+1

+ 1
2

∫ (
φ2
ε − φp+1

ε

)
zp(z + v)− 1

2

∫
φp+1
ε zpv

− 1
p+1

∫
φp+1
ε

(
|z + v|p+1 − zp+1 − (p+ 1)zpv

)
.

(42)

There holds ∣∣∣∣∫ φp+1
ε zp+1 − ρN−1

∫
R
U
p+1

dr

∣∣∣∣
≤ ρN−1

∫
r≥1/ε

U
p+1

(r − ρ)dr +

∫
(1− φp+1

ε )zp+1

+

∣∣∣∣∣
∫ 1

ε

0

(rN−1 − ρN−1)U
p+1

(r − ρ)dr

∣∣∣∣∣ .
Taylor expanding rN−1 − ρN−1 and using r ≤ C(r0)ρ (by ρ ≥ r0/ε), we find∣∣∣∣∣

∫ 1
ε

0

(rN−1 − ρN−1)U
p+1

(r − ρ)dr

∣∣∣∣∣
≤ C(n, r0)ρN−2

∫ 1
ε

0

|r − ρ|Up+1
(r − ρ)dr ≤ CρN−2.
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By the exponential decay of U , we obtain

ρN−1

∫
r≥1/ε

U
p+1

(r − ρ)dr ≤ Cε1−N
(
e−(p+1)( 1

ε−ρ) + e−
(p+1)r0

4ε

)
;∫ 1

ε

0

rN−1(1− φp+1
ε )U

p+1 ≤ Cε1−Ne−
(p+1)r0

4ε .

From the last three formulas we get∣∣∣∣∫ φp+1
ε zp+1 − ρN−1

∫
R
U
p+1

dr

∣∣∣∣ ≤ Cε1−N
(
e−(p+1)( 1

ε−ρ) + ε
)
. (43)

The term
∫
φp+1
ε

(
|z + v|p+1 − zp+1 − (p+ 1)zpv

)
in (42) can be estimated in the

following way: from∣∣|z + v|p+1 − zp+1 − (p+ 1)zpv − p(p+ 1)zp−1v2
∣∣ ≤ C max{|v|3, |v|p+1},

we get∫ ∣∣|z + v|p+1 − zp+1 − (p+ 1)zpv
∣∣ ≤ C ∫ zp−1v2 + C

∫
max{|v|3, |v|p+1}.

The first term in the r.h.s. can be controlled considering separately the sets {r ≤
ρ+ε−1

2 } and {r ≥ ρ+ε−1

2 }, as before, while for the second it is sufficient to use the
explicit expression of v. We then get∣∣∣∣∫ φp+1

ε

(
|z + v|p+1 − zp+1 − (p+ 1)zpv

)∣∣∣∣
≤ Cε1−N

(
e−3( 1

ε−ρ) + e−
(p+3)

2 ( 1
ε−ρ) + e−(3∧(p+1))( 1

ε−ρ)
)
.

(44)

The term
∫
φp+1
ε zpv in (42) is of order ε1−Ne−2( 1

ε−ρ). We also have∫
φp+1
ε zpv = αρN−1e−2( 1

ε−ρ)
∫
R
U
p
erdr

− αρN−1e−2( 1
ε−ρ)

∫
r≥1/ε

U
p
(r − ρ)e(r−ρ)dr

+

∫ 1
ε

0

(rN−1 − ρN−1)zpv +

∫
(φp+1
ε − 1)zpv.

As before, we find

ρN−1e−2( 1
ε−ρ)

∫
r≥1/ε

U
p
(r − ρ)e(r−ρ)dr ≤ Cε1−Ne−(p+1)( 1

ε−ρ);∣∣∣∣∣
∫ 1

ε

0

(rN−1 − ρN−1)zpvdr

∣∣∣∣∣ ≤ Cε2−Ne−2( 1
ε−ρ);∫

(1− φp+1
ε )zpv ≤ Cε1−Ne−

(p+1)r0
4ε .
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The last formulas imply∫
φp+1
ε zpv

= αρN−1e−2( 1
ε−ρ)

∫
R
U
p
erdr + ε1−Ne−2( 1

ε−ρ)O
(
ε+ e−(p−1)( 1

ε−ρ)
)

= αε1−N (ερ)N−1e−2( 1
ε−ρ)

∫
R
U
p
erdr + ε1−Ne−2( 1

ε−ρ)O
(
ε+ e−(p−1)( 1

ε−ρ)
)
,

(45)

for ε small. The fourth term in (40) can be controlled similalry to (36), and yields∣∣∣∣∫ (zN )′zN

r

∣∣∣∣ ≤ Cε2−N . (46)

The fifth and the sixth terms in (40) can be controlled by∣∣∣∣∫ φ′εz
N (z + v)′

∣∣∣∣ ≤ Cε2−Ne−
r0
2ε

∣∣∣∣∫ φ′′εz
N (z + v)

∣∣∣∣ ≤ Cε3−Ne−
r0
2ε , (47)

concluding the proof.

Choosing some special values and using the above expansion, it is possible to show
that Hence it follows that the reduced functional Iε possesses a maximum point in
a suitable interval (ρ1,ε, ρ2,ε), where both values approach 1

ε at a logarithmic rate
in ε. From the first part of Proposition 7 one then finds the following result.

Theorem 3.2. [4] Given n ≥ 2 and p > 1, there exists a family of radial solutions
uε of (Pε) concentrating at |x| = rε, where rε is a local maximum point of uε
satisfying 1− rε ∼ ε| log ε|.

The same proof, with minor modifications, also applies when Ω is an annulus: in
this case there are still solutions concentrating near the exterior boundary. However
when Dirichlet conditions are imposed the boundary has a repelling effect on radial
spike-layers, so concentration occurs at inner boundaries of annuli. One has indeed
the following result.

Theorem 3.3. ([4]) Let Ω ⊆ RN be the annulus {a < |x| < 1}, with a ∈ (0, 1).
Then there exists a family of radial solutions uε of (Dε) concentrating near |x| = a.
More precisely, uε possesses a local maximum point a < rε < 1 for which rε − a ∼
ε| log ε|.

As for the construction of multiple peaks mentioned at the end of the previ-
ous section, it is possible to construct via a finite-dimensional analysis solutions
with multiple spherical layers that approach parts boundary of balls or of annuli,
depending on the boundary conditions one imposes, see [44].

The above results hold more in general for the problems{
−ε2∆u+ V (|x|)u = up in Ω;
∂u
∂ν = 0 on ∂Ω, u > 0 in Ω;{
−ε2∆u+ V (|x|)u = up in Ω,

u = 0 on ∂Ω, u > 0 in Ω,

(48)

or for the above equations in the whole Euclidean space. Here one assumes V to
be positive, bounded in C2 norm and bounded away from zero. In this case, the
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location of an interior concentration set is determined by the critical points of the
auxiliary function M(r) = rN−1V θ(r) (see also [12]). We also mention [7], [10]
for similar results obtained with different techniques and [8], [9] for problems with
reduced symmetries. For general potentials (without symmetry restrictions), see
[19], [38] and [58], especially for what concerns a conjecture in [3].

Concerning concentration at the boundary, it occurs for the Neumann problem
provided M ′(1) > 0 or M ′(a) < 0: for the Dirichlet problem, opposite inequalities
are needed.

In [3], where the equation appearing in (48) was studied in the whole RN was
studied, it was also shown that, as ε→ 0, there is bifurcation of non-radial solutions
from the radial one. This is related to the divergence of the Morse index of such
solutions within Sobolev spaces of general (non-radial) functions, as discussed at
the end of the introduction.
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