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9 Singular periodic solutions to a critical equation

in the Heisenberg group

Claudio Afeltra∗

Abstract

We construct positive solutions to the equation

−∆Hnu = u
Q+2
Q−2

on the Heisenberg group, singular in the origin, similar to the Fowler
solutions of the Yamabe equations on R

n. These satisfy the homogeneity

property u◦δT = T−
Q−2

2 u for some T large enough, where Q = 2n+2 and
δT is the natural dilation in H

n. We use the Lyapunov-Schmidt method
applied to a family of approximate solutions built by periodization from
the global regular solution classified in [JL].

MSC2010: 35R03, 35H20, 35J20, 35J61.
Keywords: Subelliptic equations, Perturbation methods.

1 Introduction

Let Hn be the Heisenberg group with its standard pseudohermitian structure.
The problem of studying constant Webster curvature pseudohermitian struc-
tures conformal to the standard one, in the spirit of the classical Riemannian
case, is equivalent to find the positive solutions of the equation

−∆Hnu = u
Q+2
Q−2 , (1)

where ∆Hn is the sublaplacian and Q = 2n+ 2 is the homogeneous dimension
(in Section 2 we will recall the preliminary definitions about the Heisenberg
group).

The positive solutions of equation (1) satisfying some integrability hypothe-
ses were classified by Jerison and Lee [JL], and they correspond to conformal
factors that trasform the standard pseudohermitian structure of Hn into the
push-forward of the pseudohermitian structure of the sphere S2n+1 ⊂ Cn+1

with respect to the Cayley transform, up to translations and dilations. This
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classification plays an important role in the solution of the CR Yamabe prob-
lem, see [JL2], [GamYac], [Gam] and [CMY].

In the Euclidean space the analogous equation,

−∆Hnu = u
n+2
n−2 , (2)

is well studied, being related to the Yamabe problem, and being analytically
interesting due to a lack of compactness.

The Yamabe equation in Rn also arises when looking for extremals of the
critical Sobolev-Gagliardo-Nirenberg inequality. These were classified as “bub-
ble functions” independently by Aubin [Au] and Talenti [Ta].

A complete classification for solutions of (2) (without integrability hypothe-
ses) was given by Caffarelli, Gidas and Spruck [CGS]. In the this case also
the solutions on Rn \ {0} were classified. In addition to the regular ones on
the whole space, there is a singular solution corresponding geometrically to the
cylindrical metric, and a family of singular solutions, the Fowler solutions, which
correspond to a family of periodic metrics on the cylinder which are isometric
to the Delaunay surfaces (see [MP1] and the references cited therein).

This terminology is in analogy with the structure structure for axially sym-
metric constant mean curvature surfaces: in this case Delaunay surfaces bridge
the sphere and the cylinder (see [MP2] and the references cited therein). Fur-
thermore, the Fowler solutions have been used as building blocks (see for ex-
ample [MP1]) for the construction of more general solutions (as well as for the
constant mean curvature Delaunay surfaces).

The above classification has been used to study the asymptotic profiles of
general singular solution (see [KMPS]), and solutions with singular behavior as
the Fowler’s ones arise in the study of blow-up limits for the prescribed scalar
curvature problem (see [L1], [L2], [CL]).

The aim of this article is to prove, in analogy with the Euclidean case,
the existence of a family of solutions to equation (1) satisfying a periodicity
condition with respect to dilations, that is such that u◦ δT = Tαu for some T, α
(see Section 2). for the notation). A simple computation shows that it must
necessarily hold that α = −Q−2

2 . The main result of the paper is the following.

Theorem 1.1. There exists T0 such that for T ≥ T0 there exists a positive

solution of the equation (1) on Hn \ {0} such that u ◦ δT = T−Q−2
2 u, and T is

the smallest period.

On the Euclidean space the proof of the uniqueness of such solutions relies
on a result (in [CGS]), proved by the moving planes method, stating that the
positive solutions of equation (1) are radially symmetric. In this way the con-
struction of solutions and their classification is carried out by a standard ODE
analysis. This cannot be done on Hn. We point out that on the Heisenberg
group one cannot expect a symmetric solution, because the sublaplacian is not
rotationally invariant. We also point out the recent results in [GMM], where
solutions with singularities at higher-dimensional sets were constructed with
different methods.
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Theorem 1.1 is proved by writing equation (1) as the variational equation of
the functional

JT (u) =

∫

ΩT

(
|∇Hnu|2 − 1

2∗
|u|2∗

)

on a space of functions satisfying u ◦ δT = T−Q−2
2 u (the integral is with respect

to the Haar measure, see Section 2).
In Section 3 we will find an estimate of the Sobolev constant for periodic

solution through a Hardy-Littlewood-Sobolev type theorem for Lorentz spaces.
This will be used to carry out the estimates in the subsequent sections.

In Section 4 we will build a family ZT of approximate critical points of JT

by gluing a sequence of suitable dilations of the global regular solution ωλ. We
will show that these solutions are “almost critical” points, in the sense that on
ZT the differential of the functional JT is small.

In Section 5 we will prove that a non degeneracy condition holding for ωλ

can be carried on Ψλ.
In the final Section we will prove the existence of the desired solutions

through the Lyapunov-Schmidt method, reducing the problem to the orthogonal
of the tangent of the curve ZT , and therein applying the contraction Theorem.

We believe that the construction should give perspectives for the study of
more general singular solutions in the Heisenberg group, in the spirit of the cited
results on the Euclidean space.

2 Preliminaries and notation

In this section we recall some basic definitions and facts on the Heisenberg
group, widely present in the literature. See, for example, Chapter 10 of [CS].

Let us consider the Heisenberg group Hn = Cn×R, with the convention on
the product

(z1, t1) · (z2, t2) = (z1 + z2, t1 + t2 + 2 Im(z1 · z2)).
Let

Xi = Ti =
∂

∂xi
+ 2yi

∂

∂t
,

Yi = Tn+i =
∂

∂yi
− 2xi

∂

∂t
,

T = T0 =
∂

∂t
be the standard basis of left invariant vector fields,

∇Hnu =
∑

i

Xi(u)Xi + Yi(u)Yi

the subriemannian gradient,

div

(
∑

i

fiXi + giYi

)
=
∑

i

Xi(fi) + Yi(gi)
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the divergence (which coincides with the divergence with respect to a Haar
volume form), and

∆Hn = div ◦∇Hn =
∑

i

X2
i + Y 2

i

be the sublaplacian. There exists a constant C = C(n) such that

K(x) =
C

|x|Q−2
(3)

is a fundamental solution of the sublaplacian. Let

S1(Hn) = {u ∈ L2(Hn) | Xiu, Yiu ∈ L2(Hn)}.

We endow Hn with the set of dilations

δλ(z, t) = (λz, λ2t)

and with the homogeneous norm

|(z, t)| =
(
|z|4 + t2

)1/4
.

The Lebesgue measure dx is a biinvariant Haar measure on Hn satisfying

(δλ)#dx = λQdx;

this is essentially the reason why Q takes the place of the topological dimension
n in many analytic questions.

Let us set Br = {|x| < r} and ΩT = BR \B1. We define the Hilbert space

XT = {u ∈ S1
loc(H

n) | u ◦ δT = T−Q−2
2 u}

with the product

〈u, v〉 =
∫

ΩT

∇Hnu · ∇Hnv.

Let X̃T the closed subspace of XT of the functions of the form u(|z|, t).
It is known that the positive solutions of the equation (1) are

ωλ = λ(2−Q)/2ω ◦ δλ−1

and the translates thereof, where

ω(z, t) = c0
1

(t2 + (1 + |z|2)2)(Q−2)/4
.

The problem is variational: the solutions in S1(Hn) of the equation are the
critical points of the functional

J (u) =

∫

Hn

(
|∇Hnu|2 − 1

2∗
|u|2∗

)
.
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Analogously the solutions of the equation of the equation in XT are the critical
points of the functional

JT (u) =

∫

ΩT

(
|∇Hnu|2 − 1

2∗
|u|2∗

)
.

It holds that

dJT (u)[ϕ] =

∫

ΩT

∇Hnu · ∇Hnϕ− u|u|2∗−2ϕ

and that

d2JT (u)[ϕ, ψ] =

∫

ΩT

∇Hnϕ · ∇Hnψ − (2∗ − 1)|u|2∗−2ϕψ.

We call J ′′
T the operator associated with this bilinear form in the natural way:

〈J ′′
T (u)[ϕ], ψ〉 = d2JT (u)[ϕ, ψ].

Let us notice that, if u ∈ XT and E ⊆ Hn then
∫

δr(E)

|u|
2Q

Q−2 =

∫

E

|rQ−2
2 u ◦ δr|

2Q
Q−2 (4)

and ∫

δr(E)

|∇Hnu|2 =
∫

E

|rQ−2
2 ∇Hn(u ◦ δr)|2. (5)

In particular, if 1 ≤ r ≤ T then
∫

δrΩT

|u|
2Q

Q−2 =

∫

ΩT \Ωr

|u|
2Q

Q−2 +

∫

ΩrT \ΩT

|u|
2Q

Q−2 =

=

∫

ΩT \Ωr

|u|
2Q

Q−2 +

∫

Ωr

|T Q−2
2 u ◦ δT |

2Q
Q−2 =

∫

ΩT

|u|
2Q

Q−2 ,

(6)

and by induction and inversion one can extend this formula to every value of r.
Analogously ∫

δrΩT

|∇Hnu|2 =

∫

ΩT

|∇Hnu|2, (7)

and by polarization
∫

δrΩT

∇Hnu · ∇Hnv =

∫

ΩT

∇Hnu · ∇Hnv. (8)

The following lemma shows that in integration by parts in XT boundary
terms are null.

Lemma 2.1. If u, v ∈ XT then
∫

ΩT

∇Hnu · ∇Hnv = −
∫

ΩT

∆Hnu · v.
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Proof. Let us write v = v1 + v2 with u1, u2 ∈ XT , suppu1 ∩ ΩT ⊂ B7(T+1)/8 \
B(T+1)/8 and suppu2 ∩ δ(T+1)/2ΩT ⊂ B(T+1)2/8 \B3(T+1)/4 (this can be carried
out through a partition of unity).

Then, using formula (8),

∫

ΩT

∇Hnu · ∇Hnv =

∫

ΩT

∇Hnu · ∇Hnv1 +

∫

ΩT

∇Hnu · ∇Hnv2 =

= −
∫

ΩT

∆Hnu · v1 +
∫

δ(T+2)/2ΩT

∇Hnu · ∇Hnv2 =

= −
∫

ΩT

∆Hnu · v1 −
∫

δ(T+2)/2ΩT

∆Hnu · v2 =

= −
∫

ΩT

∆Hnu · v1 −
∫

ΩT

∆Hnu · v2 = −
∫

ΩT

∆Hnu · v.

We will need to restrict ourselves to solutions in X̃T . In order to do this,
we observe that, under the identification Hn = R2n × R, the functional JT

is invariant by the group of transformations of the form (z, t) 7→ (Az, t) with
A ∈ O(R2n) ∩ Sp(R2n). In fact it is known that if A = (aij) ∈ Sp(R2n) then
this transformation is a group automorfism of Hn (see [Fol], Chapter 1, Section
2), and so it maps the fields Ti into the fields

∑
j aijTj . So, using the fact that

A ∈ O(R2n), it is easy to verify that JT is invariant by this group.
Furthermore, under the canonical identification of R2n with Cn, O(R2n) ∩

Sp(R2n) = U(Cn) ([Fol], Proposition 4.6).

Since U(n) acts transitively on the unit sphere of Cn, X̃T is the set of the
functions in XT invariant under the transformations of this form, and so, by
Palais’ criticality principle [Pal], the critical points of the restriction of JT to
it are critical points in all of XT .

In the sequel we will need also a particular vector field that plays an impor-
tant role in Hn (and more in general in homogeneous groups), the generator of
the dilations. It is characterized by the equation

d

dλ

∣∣∣∣
λ=1

(u ◦ δλ) = Zu

for every u ∈ C 1(Hn). An explicit expression for it is

Z =

n∑

i=1

xi
∂

∂xi
+ yi

∂

∂yi
+ 2t

∂

∂t
.

It is easy to verify that

λ
d

dλ
(u ◦ δλ) = Z(u ◦ δλ) = (Zu) ◦ δλ. (9)
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Using this formula, it is easy to prove that a function u is homogeneous of degree
α if and only if Zu = αu (an extension to Hn of Euler’s theorem).

Furthermore it holds that [Xi, Z] = Xi and [Yi, Z] = Yi, and so [∇Hn , Z] =
∇Hn .

2.1 Lorentz spaces

In Section 3, to overcome the non integrability of the functions in XT in the
whole space, will need to use the Lorentz spaces, which we recall briefly.

Given a σ-finite measure space (X,µ) and 1 ≤ p < ∞, 1 ≤ q ≤ ∞, the
Lorentz quasinorm is defined as

‖u‖Lp,q(X) = p1/q
∥∥∥λµ{|u| > λ}1/p

∥∥∥
Lq(dt/t)

.

Furthermore one defines ‖u‖L∞,∞(X) = ‖u‖L∞(X). The Lorentz space Lp,q(X)

is the set of functions such that this quantity is finite. When p = q, ‖u‖Lp,p =
‖u‖Lp , while when q = ∞, Lp,∞ coincides with weak Lp.

We will need the following generalization of the Young inequality, which
sometimes is referred in the literature as Young-O’Neil inequality. It can be
deduced applying Theorem 2.6 in [ON] (with the corrections in [Yap]) and The-
orem 1.2.12, Remark 1.2.11 in [Gr].

Theorem 2.2. If 1 < p, p1, p2 <∞, 1 ≤ q, q1, q2 ≤ ∞ are such that

1

p1
+

1

p2
= 1 +

1

p
and

1

q1
+

1

q2
=

1

q

then there exists C such that for every f ∈ Lp1,q1(Hn), g ∈ Lp2,q2(Hn) it holds

‖fg‖Lp,q(Hn) ≤ C ‖f‖Lp1,q1 (Hn) ‖g‖Lp2,q2 (Hn) .

2.2 Basic definitions on CR geometry

For convenience of the reader, we recall the basic definitions about CRmanifolds,
also if we will not use them. The reader can find more on the topic in [Bog],
[DTom].

A CR manifold is a real smooth manifold M endowed with a subbundle
H of the complexified tangent bundle of M , TCM , such that H ∩ H = {0}
and [H ,H ] ⊆ H . We will assume M to be of hypersurface type, that is
that dimM = 2n + 1 and that dimH = n. There exists a non-zero real dif-
ferential form θ that is zero on Re(H ⊕ H ); it is unique up to scalar mul-
tiple by a function. Such a form is called pseudohermitian structure. On
a pseudohermitian manifold, the Levi form is defined as the 2-form on H
Lθ(V,W ) = −idθ(V,W ) = idθ([V,W ]). A CR manifold is said to be pseu-
doconvex if it admits a positive definite Levi form (this implies every Levi form
to be definite).
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The Heisenberg group is the simplest pseudoconvex CR manifold, if endowed
with the bundle H = span(Z1, . . . , Zn) with Zj =

1
2 (Xj − iYj).

On a nondegenerate pseudohermitian manifold one can define a connection,
the Tanaka-Webster connection. This allows to define curvature operators in an
analogous manner as in Riemannian geometry: the pseudohermitian curvature
tensor is the curvature of the Tanaka-Webster connection, the Ricci tensor is

Ric(X,Y ) = trace(Z 7→ R(Z,X)Y ),

and the Webster scalar curvature is the trace of the Ricci tensor with respect
to the Levi form.

Being a pseudohermitian structure defined only up to a conformal factor
on a CR manifold, in CR geometry the Yamabe problem is even more more
natural than in Riemannian geometry. If θ̃ = u2/nθ, the transformation law of
the Webster curvature is

W̃ = u−1−2/n

(
2n+ 2

n
∆bu+Wu

)
,

where ∆b is the sublaplacian, which can be defined in a similar way as the
Heisenberg group. So the Yamabe problem takes to the equation

2n+ 2

n
∆bu+Wu = λu1+2/n.

Since the Heisenberg group has zero Webster curvature, and since the pseu-
dohermitian sublaplacian coincides with the sublaplacian defined formerly, the
Yamabe problem, up to an inessential constant, is equivalent to find positive
solution to equation 1.

The solution of this case plays in the solution in the general case the same
role that the solution on Rn plays in the solution of the general Riemannian
case.

3 Estimate of the Sobolev constant on XT

In order to carry out the estimates in the next Sections, we will need an explicit
bound on the Sobolev constant on XT . We will achieve this relating the Lp

norm on ΩT and the Lp,∞ norm on the whole space.

Proposition 3.1. If f is an Lp
loc function on Hn \{0} such that f ◦δT = T−αf

and αp = Q then

(
TQ − 1

TQ

)1/p

‖u‖Lp,∞(Hn) ≤ C2 ‖u‖Lp(ΩT ) ≤ Q1/p(logT )1/p ‖u‖Lp,∞(Hn) .

Proof. Let us call f(λ) = µ{x ∈ ΩT | u(x) > λ} and g(t) = µ{x ∈ Hn | u(x) >
λ}. Then it holds that

g(λ) =
∑

k∈Z

TQkf(λTα).

8



Therefore for every λ > 0

‖u‖pLp(ΩT ) = p

∫ ∞

0

ξp−1f(ξ)dξ = p
∑

k∈Z

∫ λTαk

λTα(k−1)

ξp−1f(ξ)dξ ≥

≥ p
∑

k∈Z

f(λTαk)

∫ λTαk

λTα(k−1)

ξp−1dξ =
TQ − 1

TQ
λp
∑

k∈Z

TQkf(λTαk) =

=
TQ − 1

TQ
λpg(λ).

Taking the supremum with respect to λ we get the first inequality.
For the other one, let us pick an integer N > 0 and write

‖u‖pLp(ΩT ) = p

∫ ∞

0

ξp−1f(ξ)dξ = p
∑

k∈Z

∫ Tα(k+1)/N

Tαk/N

ξp−1f(ξ)dξ ≤

≤ p
∑

k∈Z

f(Tαk/N )

∫ Tα(k+1)/N

Tαk/N

ξp−1dξ =

=

N∑

m=1

∑

j∈Z

(Tαp/N − 1)TαpjTαpm/Nf(TαjTαm/N ) =

= (TQ/N − 1)

N∑

m=1

TQm/N
∑

j∈Z

TQjf(TαjTαm/N) =

= (TQ/N − 1)
N∑

m=1

TQm/Ng(Tαm/N) ≤ N(TQ/N − 1) ‖u‖pLp,∞ .

Taking the limit for N → ∞ we get the second inequality.

Using the Theorem 2.2 we can prove a Sobolev type inequality for weak Lp

spaces.

Proposition 3.2. There exists a constant C such that for every function u ∈
L2,∞(Hn) such that ∇u ∈ L2,∞(Hn) verifies

‖u‖
L

2Q
Q−2

,∞
≤ C ‖∇u‖L2,∞ .

Proof. Let E = u > 1, Ec = Hn\E, u1 = uχEc+χE and u2 = (u−1)χE, so that
u = u1 + u2. It is standard to prove that u1 and u2 have weak subriemannian
gradient and that ∇Hu1 = (∇Hu)χEc , ∇Hu2 = (∇Hu)χE (the proof is the
same as on Rn). It is easy to prove that u1 ∈ Sp(Hn) for p > 2 and that
u2 ∈ Sq(Hn) for q < 2. If ϕ ∈ C∞

c (Hn) it holds that

ϕ(x) = (ϕ ∗ δ)(x) = (ϕ ∗ (−∆HnK))(x) =

9



=

∫

Hn

(∇Hnϕ)(xy−1) ∗ (∇HnK)(y)dy := (∇Hnϕ ∗ ∇HnK)(x) (10)

Formula (3) implies that ∇HnK ∈ L
Q

Q−1 ,∞, and so, by Theorem 2.2, the opera-
tor f 7→ f ∗ ∇HnK is bounded from Lp and Lq to some other Lebesgue spaces.
Therefore, using the density of C∞

c in Sp(Hn) for 1 ≤ p < ∞, formula (10)
holds almost everywhere for functions in these spaces, and so it holds for u1 and
u2. By summing one obtains that

u = ∇Hnu ∗ ∇HnK.

The thesis follows applying Theorem 2.2 once more.

We point out that in the proof of the last Proposition the splitting of u in
two pieces belonging to some Lp space was necessary because C ∞

c functions are
not dense in the weak Lp spaces.

Combining Propositions 3.1 and 3.2 we get the following Sobolev theorem
for XT spaces with an explicit constant.

Proposition 3.3. There exist a constant C independent by T such that for
every u ∈ XT

‖u‖
L

2Q
Q−2 (ΩT )

≤ C(logT )
Q−2
2Q

(
TQ

TQ − 1

)1/2

‖u‖XT
.

4 Construction of a family of approximate solu-

tions

In order to apply a perturbative method, we find a family of approximate sta-
tionary points of JT for T big enough.

The family is the following:

Ψλ,T =
∑

k∈Z

ωλ/Tk =
∑

k∈Z

T
Q−2

2 kωλ ◦ δTk

(we will hide the dependence by T whether not necessary). The series converges
uniformly on compact sets, because, if x ∈ K,

Ψλ(x) =
∑

k∈Z

T
Q−2

2 kωλ ◦ δTk ≤

≤ Cλ,K

∑

k≥0

T
Q−2

2 k 1

T k(Q−2)
+ Cλ,K

∑

k<0

T
Q−2

2 k ≤ Cλ,K .

The subriemannian gradient satisfies

|∇HnΨλ(x)| ≤
∑

k∈Z

T
Q−2

2 kT k|∇Hnωλ| ◦ δTk ≤

10



≤ Cλ,K

∑

k≥0

T
Q
2 k 1

T k(Q−1)
+ Cλ,K

∑

k<0

T
Q
2 k ≤ Cλ,K

and so it converges uniformly on compact sets. The same holds for higher order
subriemannian derivatives. Ψλ ∈ XT because

Ψλ ◦ δT =
∑

k∈Z

T
Q−2

2 kωλ ◦ δTk ◦ δT = T−Q−2
2

∑

k∈Z

T
Q−2

2 kωλ ◦ δTk = T−Q−2
2 Ψλ.

It holds that

ΨTλ =
∑

k∈Z

T
Q−2

2 kωTλ ◦ δTk =
∑

k∈Z

T
Q−2

2 k 1

(Tλ)
Q−2

2

ω ◦ δ1/Tλ ◦ δTk =

=
∑

k∈Z

T
Q−2

2 (k−1) 1

λ
Q−2

2

ω ◦ δ1/λ ◦ δTk−1 =
∑

k∈Z

T
Q−2

2 (k−1)ωλ ◦ δTk−1 = Ψλ.

Therefore the set ZT = {Ψλ | λ ∈ (0,∞)} is a closed curve in XT .
Moreover, using formula (9), it can be computed that

∂Ψλ

∂λ
=

∂

∂λ

∑

k∈Z

ωλ/Tk =
∑

k∈Z

∂

∂λ

(
λ−

Q−2
2 ω1/Tk ◦ δλ−1

)
=

=
∑

k∈Z

(
−Q− 2

2

1

λ
ωλ/Tk − λ−

Q−2
2

1

λ2
λZ(ω1/Tk ◦ δλ−1)

)
=

=
∑

k∈Z

(
−Q− 2

2

1

λ
ωλ/Tk − 1

λ
Z(ωλ/Tk)

)
=

= −Q− 2

2

1

λ
Ψλ − 1

λ
Z(Ψλ). (11)

This implies that the curve ZT is immersed for T big enough, because if ∂Ψλ

∂λ

was zero then Z(Ψλ) = −Q−2
2 Ψλ would be zero, and by the aforementioned

Euler’s theorem Ψλ would be homogeneous of degree −Q−2
2 ; but it is clearly

not by construction if T is big enough.
We want to prove the following proposition.

Proposition 4.1. For every ε there exists T0, depending only on by n, such
that if T ≥ T0 then ‖∇HnJT ‖ < ε on ZT .

We divide the proof in several lemmas.
First we compute the differential of JT in Ψλ:

dJT (Ψλ)[u] =

∫

ΩT

∇HnΨλ · ∇Hnu−Ψ2∗−1
λ u =

=

∫

ΩT

∑

k∈Z

∇Hnωλ/Tk · ∇Hnu−
(
∑

k∈Z

ωλ/Tk

)2∗−1

u =

11



=
∑

k∈Z

(∫

ΩT

∇Hnωλ/Tk · ∇Hnu− ω
Q+2
Q−2

λ/Tku

)
+

−
∫

ΩT



(
∑

k∈Z

ωλ/Tk

)Q+2
Q−2

−
∑

k∈Z

ω
Q+2
Q−2

λ/Tk


u =

:= A+ B. (12)

Lemma 4.2. In the above notation, A = 0.

Proof. We have

A =
∑

k∈Z

∫

ΩT

T
Q−2

2 k(∇Hnωλ) ◦ δTk · ∇Hnu− (T
Q−2

2 k)
Q+2
Q−2 (ωλ ◦ δTk)

Q+2
Q−2u =

=
∑

k∈Z

∫

ΩT

T
Q
2 k(∇Hnωλ) ◦ δTk · ∇Hnu− T

Q+2
2 k(ωλ ◦ δTk)

Q+2
Q−2u =

=
∑

k∈Z

∫

δ
Tk (ΩT )

T−kQ

[
T

Q
2 k∇Hnωλ · (∇Hnu) ◦ δT−k − T

Q+2
2 kω

Q+2
Q−2

λ u ◦ δT−k

]
=

=
∑

k∈Z

∫

δ
Tk (ΩT )

T−Q
2 kT k∇Hnωλ · ∇Hn(u ◦ δT−k)− ω

Q+2
Q−2

λ u =

=
∑

k∈Z

∫

δ
Tk (ΩT )

∇Hnωλ · ∇Hnu− ω
Q+2
Q−2

λ u =

∫

Hn

∇Hnωλ · ∇Hnu− ω
Q+2
Q−2

λ u

Let us pick a family of smooth functions ϕε,R such that ϕε,R ≡ 1 on BR \B2ε,
ϕε,R ≡ 0 on Bε and Hn \BR+1, |∇Hnϕε,R| ≤ C

ε on B2ε \Bε and |∇Hnϕε,R| ≤ C
on BR+1 \BR. Then

A = lim
ε→0
R→∞

∫

Hn

(
∇Hnωλ · ∇Hnu− ω

Q+2
Q−2

λ u

)
ϕε,R =

= lim
ε→0
R→∞

∫

Hn

−(∆Hnωλ + ω
Q+2
Q−2

λ )uϕε,R − u∇Hnωλ · ∇Hnϕε,R =

= − lim
R→∞

∫

BR+1\BR

u∇Hnωλ · ∇Hnϕε,R − lim
ε→0

∫

B2ε\Bε

u∇Hnωλ · ∇Hnϕε,R.

If x→ ∞ then ∇Hnωλ . 1
|x|Q−1 and u . |x|−Q−2

2 , and so the first limit is zero.

If x→ 0 then ∇Hnωλ . 1 and u . |x|−Q−2
2 , and so also the second limit is zero.

Therefore A = 0.

Now we have to estimate the term B from formula (12).

12



Lemma 4.3. In the above notation

|B| ≤ C(T ) ‖u‖XT
,

where C(T ) tends to zero uniformly in λ as T tends to infinity.

Proof.

|B| ≤
∫

ΩT



(
∑

k∈Z

ωλ/Tk

)Q+2
Q−2

−
∑

k∈Z

ω
Q+2
Q−2

λ/Tk


 |u| ≤

≤
∫

ΩT



(
∑

k∈Z

ωλ/Tk

)Q+2
Q−2

− ω
Q+2
Q−2

λ


 |u| ≤

≤





∫

ΩT



(
∑

k∈Z

ωλ/Tk

)Q+2
Q−2

− ω
Q+2
Q−2

λ




2Q
Q+2





Q+2
2Q

‖u‖
L

2Q
Q−2 (ΩT )

≤

≤ C(logT )
Q−2
2Q ‖u‖XT





∫

ΩT



(
∑

k∈Z

ωλ/Tk

)Q+2
Q−2

− ω
Q+2
Q−2

λ




2Q
Q+2





Q+2
2Q

=

= C(log T )
Q−2
2Q ‖u‖XT

·

·





∫

ΩT



(
∑

k∈Z

|x|Q−2
2 ωλ/Tk

)Q+2
Q−2

− (|x|Q−2
2 ωλ)

Q+2
Q−2




2Q
Q+2

dx

|x|Q





Q+2
2Q

by Proposition 3.3 (taking T ≥ T0 > 1, since we are going to make a limit for

T → ∞). Let us define ηλ = |x|Q−2
2 ωλ. Then

|B| ≤ C(logT )
Q−2
2Q ‖u‖XT





∫

ΩT



(
∑

k∈Z

ηλ/Tk

)Q+2
Q−2

− η
Q+2
Q−2

λ




2Q
Q+2

dx

|x|Q





Q+2
2Q

.

By periodicity we can suppose that |x|
λ ∈

[
1√
T
,
√
T
]
, with λ = λ(x). The

function ηλ is bounded and tends to zero for |x| → 0,∞. If k ≥ 0 and T is large
enough then ηλ/Tk satisfies estimates

|ηλ/Tk(x)| .




(
Tk

λ

)
|x|

1 +
(

Tk

λ

)2
|x|2




Q−2
2

.

(
T k |x|

λ

)−Q−2
2

≤
(
1

T

)(k− 1
2 )

Q−2
2

13



and

|ηλ/T−k(x)| .




(
T−k

λ

)
|x|

1 +
(

T−k

λ

)2
|x|2




Q−2
2

.

(
1

T k

|x|
λ

)Q−2
2

≤
(
1

T

)(k− 1
2 )

Q−2
2

uniformly in λ. It is easy to verify that, for α, β ≥ 1 the function

[(x+ y)α − xα]
β

x(α−1)βyβ + yαβ

is bounded on (0,∞)2, and so there exist C such that

[(x+ y)α − xα]
β ≤ C(x(α−1)βyβ + yαβ)

for x, y ≥ 0. Taking

x = ηλ, y =
∑

k∈Z\{0}
ηλ/Tk , α =

Q+ 2

Q− 2
and β =

2Q

Q+ 2

one gets that

|B| ≤ C(log T )
Q−2
2Q ‖u‖XT





∫

ΩT


η

8Q
(Q+2)(Q−2)

λ


 ∑

k∈Z\{0}
ηλ/Tk




2Q
Q+2

+

+


 ∑

k∈Z\{0}
ηλ/Tk




2Q
Q−2



dx

|x|Q





Q+2
2Q

.

Let
Ω1

T = {x ∈ ΩT | λ(x) < 1}
and

Ω2
T = {x ∈ ΩT | λ(x) ≥ 1}.

Then

|B| ≤ C(log T )
Q−2
2Q ‖u‖XT





(∫

Ω1
T

+

∫

Ω2
T

)
η

8Q
(Q+2)(Q−2)

λ


 ∑

k∈Z\{0}
ηλ/Tk




2Q
Q+2

+

+


 ∑

k∈Z\{0}
ηλ/Tk




2Q
Q−2




dx

|x|Q





Q+2
2Q

.
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. C(log T )
Q−2
2Q ‖u‖XT

{∫

ΩT

[(
1

T

)Q−2
4 · 2Q

Q+2

+

(
1

T

)Q−2
4 · 2Q

Q−2

]
dx

|x|Q

}Q+2
2Q

.

. C(log T )
Q−2
2Q ‖u‖XT





(
1

T

)Q(Q−2)
2(Q+2)

∫

ΩT

dx

|x|Q





Q+2
2Q

.

. C(logT )
Q−2
2Q ‖u‖XT





(
1

T

)Q(Q−2)
2(Q+2)

logT





Q+2
2Q

−→ 0

uniformly in λ.

Proof of Proposition 4.1. It follows from the above lemmas.

5 Non degeneracy of the second differential

In order to verify the non degeneracy of the second differential, we restrict
ourselves to the space X̃T defined in Section 2 (which contains ZT ). We recall
the following result [MU].

Proposition 5.1. A function u ∈ S1(Hn) is a solution of the following equa-
tion:

−∆Hnu = (Q∗ − 1)ωQ∗−2u (13)

if and only if there exist coefficients µ, ν1, . . . , ν2n ∈ R such that

u = µ
∂ωλ

∂λ

∣∣∣∣
λ=1

+
2n∑

i=0

νiTi(ωλ).

For u to solve (13) is equivalent to being in the kernel of J ′′. Since the oper-
ator J ′′ is the sum of an isomorphism and a compact operator on S1(Hn) (see
[MU]) and that it only a negative eigenvalue whose one-dimensional eigenspace
is spanned by ωλ (see [BCD] there exists a constant C such that if u ∈ S1(Hn)
and
∫

Hn

∇Hnu ·∇Hn

∂ωλ

∂λ
= 0,

∫

Hn

∇Hnu ·∇HnTi(ωλ) = 0,

∫

Hn

∇Hnu ·∇Hnωλ = 0

(14)
then

d2J (ωλ)[u, u] ≥ C

∫

Hn

|∇Hnu|2. (15)

Furthermore, since J ′′ is selfadjoint and ωλ is an eigenfunction,

d2J (ωλ)[ωλ, u] = 0. (16)

We want to use this to prove a similar non degeneracy result for Ψλ on ΩT

for T large enough.
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In order to do this, we introduce on XT the norm

‖u‖2T,H =

∫

ΩT

(
|∇Hnu|2 +

∣∣∣∣
u

|x|

∣∣∣∣
2
)
.

Thanks to Hardy’s inequality in Hn (see Lemma 2.1 in [BCX], or otherwise
apply Hölder inequality for Lorentz spaces), if u ∈ S1(Hn), then, under the
aforementioned hypotheses (14),

|d2J (ωλ)[u, u]| ≥ C

∫

Hn

|∇Hnu|2 +
∣∣∣∣
u

|x|

∣∣∣∣
2

.

Using this we will prove that, if u ∈ X̃T satisfies
∫

ΩT

∇Hnu · ∇Hn

∂Ψλ

∂λ
= 0 (17)

and ∫

ΩT

∇Hnu · ∇HnΨλ = 0, (18)

then, given ε > 0, for T large

d2JT (Ψλ)[u, u] ≥ C

∫

ΩT

|∇Hnu|2 +
∣∣∣∣
u

|x|

∣∣∣∣
2

,

|d2JT (Ψλ)[Ψλ,Ψλ]| ≥ C

∫

ΩT

|∇HnΨλ|2 +
∣∣∣∣
Ψλ

|x|

∣∣∣∣
2

and
|d2JT (Ψλ)[Ψλ, u]| < ε ‖Ψλ‖T,H ‖u‖T,H .

This implies that J ′′
T (Ψλ) is invertible orthogonally to ∂Ψλ

∂λ , and that the norm
of the inverse is bounded uniformly in T .

Let us take a radial function ρ = ρ(|x|) such that ρ = 1 on ΩT , ρ = 0 on
B1/2 ∪ (Hn \ B2T , 0 ≤ ρ ≤ 1, |∇Hnρ| ≤ C on B1 \ B1/2, |∇Hnρ| ≤ C/T on
B2T \BT .

By the computations in formula (11) follows that

∂ωλ

∂λ
= −Q− 2

2

1

λ
ωλ − 1

λ
Z(ωλ).

Thanks to formula (11), it can easily be proved that
∣∣∣∣∇Hn

∂Ψλ,T

∂λ

∣∣∣∣ ≤
C

λ

1

|x|Q2
. (19)

By periodicity with respect to dilations we can suppose the quantity

rQ
∫

B2\B1/2

(
|∇Hn(u ◦ δr)|2 +

∣∣∣∣
u

|x| ◦ δr
∣∣∣∣
2
)
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to be minimal for r = 1. Since there are ∼ logT mutually disjoint annuli in ΩT

of the form δr{1/2 ≤ |x| ≤ 2}, by easy computations one gets that

∫

B2\B1/2

|∇Hnu|2 +
∣∣∣∣
u

|x|

∣∣∣∣
2

≤ C

logT
‖u‖2T,H ,

and so, calling W = (B2T \BT ) ∪ (B1 \B1/2),

∫

W

|∇Hnu|2 +
∣∣∣∣
u

|x|

∣∣∣∣
2

≤ C

log T
‖u‖2T,H . (20)

Lemma 5.2. If ρ is a cut-off function as above, for every ε there exists T0 such
that for T ≥ T0 if (17) holds then

∣∣∣∣
∫

Hn

∇Hn(ρu)∇Hn

∂ΨT,λ

∂λ

∣∣∣∣ ≤ ε
1

λ
‖u‖T,H

and ∣∣∣∣
∫

Hn

∇Hn(ρu)∇HnΨT,λ

∣∣∣∣ ≤ ε ‖u‖T,H .

Proof.
∫

Hn

∇Hn(ρu)∇Hn

∂Ψλ

∂λ
=

∫

Hn

∇Hn(ρu)∇Hn

∂Ψλ

∂λ
−
∫

ΩT

∇Hnu · ∇Hn

∂Ψλ

∂λ
=

=

∫

W

[
(ρ∇Hnu+ u∇Hnρ)∇Hn

∂Ψλ

∂λ

]
.

Thanks to formulas (19) and (20) the first estimate follows by easy computa-
tions. The proof of the second one is identical.

Lemma 5.3. For every ε there exists T0 such that for T ≥ T0 if (17) holds
then ∫

Hn

∇Hn(ρu)∇Hn

∂ωλ

∂λ
≤ ε

1

λ
‖u‖T,H

and ∫

Hn

∇Hn(ρu)∇Hnωλ ≤ ε ‖u‖T,H .

Proof. Thanks to Lemma 5.2, we can estimate
∫

Hn

∇Hn(ρu)λ∇Hn

∂Ψλ

∂λ
−
∫

Hn

∇Hn(ρu)λ∇Hn

∂ωλ

∂λ
≤

≤ C ‖u‖T,H

(∫

ΩT∪W

∣∣∣∣λ∇Hn

∂Ψλ

∂λ
− λ∇Hn

∂ωλ

∂λ

∣∣∣∣
2
)1/2

.

This quantity can be estimated almost identically as in the proof of Lemma 4.3.
The proof of the second inequality estimate is identical.
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Lemma 5.4. For every ε > 0 there exist constants T0 and C such that for
T ≥ T0 if (17) and (18) hold then

|d2J (ωλ)[ρu, ρu]| ≥ C

∫

Hn

|∇Hn(ρu)|2 +
∣∣∣∣
ρu

|x|

∣∣∣∣
2

,

|d2J (ωλ)[ρΨλ, ρΨλ]| ≥ C

∫

Hn

|∇Hn(ρΨλ)|2 +
∣∣∣∣
ρΨλ

|x|

∣∣∣∣
2

and
|d2J (ωλ)[ρΨλ, ρu]| ≤ ε ‖Ψλ‖T,H ‖u‖T,H .

Proof. Since u ∈ X̃T , uρ is invariant with respect to the symmetry (x, t) 7→
(−x, t), one has ∫

Hn

∇Hn(ρu) · ∇HnTi(ωλ) = 0.

The claim follows by Lemma 5.3, by equations (15) and (16), and elementary
linear algebra.

Lemma 5.5. For every ε > 0 there exist constants T0 and C such that for
T ≥ T0 if conditions (17) and (18) hold, then

|d2JT (Ψλ)[u, u]| ≥ C

∫

ΩT

|∇Hnu|2,

|d2JT (Ψλ)[Ψλ,Ψλ]| ≥ C

∫

ΩT

|∇HnΨλ|2

and
|d2JT (Ψλ)[Ψλ, u]| < ε ‖Ψλ‖XT

‖u‖XT
.

Proof. By direct computation we find

∣∣d2J (ωλ)[ρu, ρu]− d2JT (Ψλ)[u, u]
∣∣ =

=

∣∣∣∣
∫

Hn

|∇Hn(ρu)|2 − (2∗ − 1)|ωλ|2
∗−2ρ2u2+

−
∫

ΩT

|∇Hnu|2 − (2∗ − 1)|Ψλ|2
∗−2u2

∣∣∣∣ ≤

≤ (2∗ − 1)

∣∣∣∣
∫

ΩT

(
|Ψλ|2

∗−2 − |ωλ|2
∗−2
)
u2
∣∣∣∣+

+(2∗ − 1)

∣∣∣∣∣

(∫

B2T \BT

+

∫

B1\B1/2

)
|ωλ|2

∗−2ρ2u2

∣∣∣∣∣+

+2

∣∣∣∣∣

(∫

B2T \BT

+

∫

B1\B1/2

)
(u2|∇Hnρ|2 + ρ2|∇Hnu|2)

∣∣∣∣∣ .
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The first term can be estimated as in Lemma 4.3, the second in a trivial way,
and the third has been essentially already estimated, to prove that for every ε
there exists T big enough to ensure that the whole sum is bounded by ε ‖u‖2XT

.
Analogously

∣∣∣∣
∫

Hn

|∇Hn(ρu)|2 −
∫

ΩT

|∇Hnu|2
∣∣∣∣ ≤ ε ‖u‖2XT

.

This implies the first part of the thesis. The other statements are deduced in
an analogous manner.

Proposition 5.6. There exist constants T0 and C such that for T ≥ T0 the
operator J ′′

T (Ψλ) is invertible on the orthogonal space of ∂Ψλ

∂λ in XT , and∥∥J ′′
T (Ψλ)

−1
∥∥

L (XT )
≤ C.

Proof. It follows from the preceding lemmas and elementary Hilbert space the-
ory.

6 Proof of the main Theorem

We have proved that, for T big enough, on the orthogonal in X̃T of the tangent
of the curve ZT the second differential of JT is non degenerate, with norm
bounded independently by λ and T . Let us call W this orthogonal in the point
Ψλ ∈ Z and π the orthogonal projection on W . We remember that our aim
is to solve ∇HnJT (u) = 0. Following the standard reasoning in [AM] we note
that this is equivalent to solve

π∇HnJT (Ψλ + w) = 0

(auxiliary equation) and

(I − π)∇HnJT (Ψλ + w) = 0

(bifurcation equation) with w ∈ W .

Lemma 6.1. There exists T0 such that the auxiliary equation has a unique
solution wT (λ); furthermore supλ ‖wT (λ)‖ → 0 for T → ∞.

Proof. Write

∇HnJT (Ψλ + w) = ∇HnJT (Ψλ) + J ′′
T [w] +R(Ψλ, w)

with R(Ψλ, w) = o(‖w‖) and R(Ψλ, w) − R(Ψλ, v) = o(‖w − v‖), so that the
auxiliary equation becomes

π∇HnJT (Ψλ) + πJ ′′
T (Ψλ)[w] + πR(Ψλ, w) = 0,

namely

w = −(πJ ′′
T (Ψλ))

−1 [π∇HnJT (Ψλ) + πR(Ψλ, w)] := Nλ(w).
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By Propositions 4.1 and 5.6, N is a contraction if T is big enough, and so the
auxiliary equation has an unique solution w = wT (λ). Furthermore for every
r > 0 there exists T big enough such that Br(Ψλ) ∩W is mapped into itself by
N . So supλ ‖wT (λ)‖ tends to zero for T → ∞.

Proof of Theorem 1.1. Let us consider the function

Φ(λ) = JT (Ψλ + w(λ)).

It is continuous and periodic, so it a stationary point λ0. Following the standard
argument of Theorem 2.12 and Remark 2.14 in [AM], with the need for only

formal modifications, the fact that Φ′(λ0) = J ′
T (Ψλ0 +w(λ0)) · (

∂Ψλ0

∂λ +w′(λ0))
implies u = Ψλ0 + w(λ0) to solve the bifurcation equation, and so to be a
stationary point of JT .

The smoothness of the solution can be proved with the same method of
Appendix B in [Str].

Also λ(2−Q)/2u ◦ δλ−1 is a critical point of JT , and by the unicity in the
fixed point theorem it must be equal to Ψλ0λ +w(λ0λ), and so the whole curve

Z̃T = {Ψλ + w(λ)} consists of critical points of J .
To prove the positivity, let us notice that from the proof of Proposition 5.6

follows that J (ωλ) has Morse index one on
{
λ∂ωλ

∂λ

}⊥
. By continuity, the same

holds for the orthogonal to the tangent space to Z̃T . Since dJT is zero on Z̃T ,

the tangent of Z̃T is in the kernel of J ′′
T . So the Morse index of JT on X̃T is

one.
By a slight adaptation of the proof of Proposition 3.2 in [BCD] the set

{u 6= 0} has at most one connected component modulo δT , and so u does not
change sign. By construction it is evident that it must be weakly positive (and
even if it was not, it would be enough to change sign). The strict positivity
follows from Bony’s maximum principle (see [Bon]).

The last assertion follows by construction.
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