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A B S T R A C T 

Upper limits from the current generation of interferometers targeting the 21-cm signal from high redshifts have recently begun 

to rule out physically realistic, though still extreme, models of the Epoch of Reionization (EoR). While inferring the detailed 

properties of the first galaxies is one of the most important moti v ations for measuring the high- z 21-cm signal, they can also provide 
useful constraints on the properties of the intergalactic medium (IGM). Moti v ated by this, we build a simple, phenomenological 
model for the 21-cm power spectrum that works directly in terms of IGM properties, which bypasses the computationally 

e xpensiv e 3D semi-numerical modeling generally employed in inference pipelines and a v oids explicit assumptions about galaxy 

properties. The key simplifying assumptions are that (i) the ionization field is binary, and composed of spherical bubbles with 

an abundance described well by a parametric bubble size distribution, and (ii) that the spin temperature of the ‘bulk’ IGM 

outside bubbles is uniform. Despite the simplicity of the model, the mean ionized fraction and spin temperature of the IGM 

reco v ered from mock 21-cm power spectra generated with 21 cm FAST are generally in good agreement with the true input values. 
This suggests that it is possible to obtain comparable constraints on the IGM using models with very different assumptions, 
parameters, and priors. Our approach will thus be complementary to semi-numerical models as upper limits continue to impro v e 
in the coming years. 

Key words: galaxies: high-redshift – intergalactic medium – dark ages, reionization, first stars – diffuse radiation. 
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 I N T RO D U C T I O N  

he 21-cm background (Madau, Meiksin & Rees 1997 ) has long been
ecognized as a powerful probe of the intergalactic medium (IGM)
efore cosmic reionization is complete (see re vie ws by, e.g. Furlan-
tto, Oh & Briggs 2006 ; Morales & Wyithe 2010 ; Pritchard & Loeb
012 ; Liu & Shaw 2020 ). Because ionized regions are transparent at
edshifted 21-cm wavelengths, maps of the 21-cm background during
eionization will consist of ‘holes’ in regions where there are many
alaxies, and a mostly neutral ‘bulk’ IGM beyond with a 21-cm signal
hat traces the gas density, temperature, and Lyman α background
ntensity. While the ultimate goal is to map this patchy structure
n detail with, e.g. the Square Kilometer Array (SKA), the current
eneration of interferometers are seeking a statistical detection of the
1-cm power spectrum (LOFAR, MWA, HERA, GMRT , L WA; van
aarlem et al. 2013 ; Tingay et al. 2013 ; DeBoer et al. 2017 ; Paciga

t al. 2013 ; Eastwood et al. 2019 ), while a complementary suite of
urrent and planned experiments (Bowman & Rogers 2010 ; Burns
t al. 2017 ; Singh et al. 2017 ; de Lera Acedo 2019 ; Philip et al. 2019 )
re targeting the sk y-av eraged ‘global’ 21-cm signal (Shaver et al.
999 ), which traces the average properties of the IGM as a function

f redshift. 

 E-mail: jordan.mirocha@mcgill.ca 
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In the last few years, several experiments have reported upper
imits on the power spectrum of 21-cm fluctuations during reion-
zation (Parsons et al. 2014 ; Patil et al. 2017 ; Barry et al. 2019 ;

ertens et al. 2020 ; The HERA Collaboration 2021b ) and the earlier
osmic-dawn era (Eastwood et al. 2019 ; Gehlot et al. 2019 , 2020 ;
arsden et al. 2021 ; Yoshiura et al. 2021 ). Scenarios in which the
ulk IGM is still colder than the cosmic microwave background
CMB) during reionization give rise to the strongest fluctuations and
o will be the first models to be tested as upper limits continue
o impro v e (e.g. P arsons et al. 2014 ; Pober et al. 2015 ; Greig,

esinger & Pober 2016 ). Similarly, stronger-than-expected 21-cm
ignals can arise if the cosmic radio background has contributions
ther than the CMB (Feng & Holder 2018 ), e.g. synchrotron emission
rom accreting black holes (Ewall-Wice et al. 2018 ), star-forming
alaxies (Mirocha & Furlanetto 2019 ), or from decaying particles
Fraser et al. 2018 ; Pospelov et al. 2018 ). Indeed, constraints from

WA, HERA, and LoFAR disfa v our models with negligible X-ray
eating at z ∼ 8–9 or very strong radio backgrounds (Ghara et al.
020 , 2021 ; Mondal et al. 2020 ; Greig et al. 2021a , b ; The HERA
ollaboration 2021a ). Of course, the recent report of an absorption

ignal in the sk y-av eraged spectrum at z ∼ 17 from EDGES (Bowman
t al. 2018 ) requires an even colder IGM (Barkana 2018 ; Boddy
t al. 2018 ; Fialkov, Barkana & Cohen 2018 ; Ko v etz et al. 2018 ;
u ̃ noz & Loeb 2018 ) or a brighter background (Ewall-Wice et al.

018 ; Feng & Holder 2018 ; Fialkov & Barkana 2019 ; Mirocha &
© 2022 The Author(s) 
lished by Oxford University Press on behalf of Royal Astronomical Society 
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urlanetto 2019 ) than models in � CDM cosmologies generally 
redict. Ho we ver, the most stringent power spectrum upper limits
rom The HERA Collaboration ( 2021b ) are derived at sufficiently 
o w redshifts relati v e to EDGES ( z � 10 v ersus z � 18) that the y
annot yet directly address the EDGES contro v ersy (Hills et al. 2018 ;
radley et al. 2019 ; Singh & Subrahmanyan 2019 ; Sims & Pober
020 ; Tauscher, Rapetti & Burns 2020 ; Singh et al. 2021 ). 
The theoretical interpretations of 21-cm measurements have thus 

ar been guided mostly by semi-numerical models of reionization 
Santos et al. 2010 ; Mesinger, Furlanetto & Cen 2011 ; Fialkov
t al. 2014 ; Hutter 2018 ) and other approximate techniques (Thomas
t al. 2009 ; Ghara, Choudhury & Datta 2015 ) designed to a v oid
ore accurate, but e xpensiv e, radiativ e transfer simulations (see 

.g. Gnedin 2014 ; Rosdahl et al. 2018 ; Ocvirk et al. 2020 ; Kannan
t al. 2022 ). Though several inference frameworks have emerged to 
ointly fit 21 cm and other constraints on reionization (e.g. Mirocha, 
arker & Burns 2015 ; Greig et al. 2016 ; Ghara et al. 2018 ; Mondal

t al. 2020 ), current power spectrum limits are still quite weak,
nd MCMC fits have thus yet to provide a strong constraint on
ny individual astrophysical parameter, with the exception of the 
atio of X-ray luminosity to SFR in high- z galaxies (The HERA
ollaboration 2021a ), and instead reveal the ∼2–3 dimensional 
orners of parameter space that are most strongly disfa v oured by
he data. Of course, as upper limits impro v e and eventually become
etections, constraints on astrophysical and cosmological parameters 
re expected to be exquisite (e.g. McQuinn et al. 2006 ; Greig &
esinger 2015 ; Ewall-Wice et al. 2016 ; Liu et al. 2016 ; Liu &

arsons 2016 ; Kern et al. 2017 ; Mu ̃ noz 2019b ). In the meantime,
o we ver, it may be prudent to focus also on simpler derived
uantities, e.g. the mean neutral fraction and temperature of the 
GM (or ratio of background temperature to 21-cm spin temperature, 
 R / T S ), which are more directly probed by 21-cm experiments, and
ay thus be easier to constrain. 
In this paper, we present a simple, phenomenological model for 

1-cm fluctuations during reionization that abstracts away galaxies 
nd instead works directly in terms of the mean properties of the
GM and the size distribution of ionized regions. The goal is first and
oremost to build intuition for the results of more sophisticated semi-
umerical models in use today. In addition, our phenomenological 
pproach lets us break key assumptions built-in to physical models, 
nd may thus help gauge the extent to which constraints on the
GM derived from 21-cm power spectra are model dependent. Our 
ormalism is similar to that of Furlanetto, Zaldarriaga & Hernquist 
 2004 ) and extensions (Paranjape & Choudhury 2014 ; Paranjape, 
houdhury & Padmanabhan 2016 ), though we do not attempt to 
odel the size distribution of ionized regions using excursion set 

rguments. Instead, we parametrize it directly, which offers more 
exibility than physical models. Our approach is similar in spirit to 
ther recent efforts aimed at building intuition for, and providing a 
ross-check of, more detailed numerical simulations of reionization 
e.g. Kaurov 2016 ; McQuinn & D’Aloisio 2018 ; Raste & Sethi 2018 ;
chneider, Giri & Mirocha 2021 ), but conceptually simpler than 
ach. It is also complementary to efforts to constrain the IGM while
bstracting away astrophysical parameters as much as possible (e.g. 
irocha, Harker & Burns 2013 ; Cohen et al. 2017 ; Mason et al.

019 ). 
In order to gain ground analytically, we will assume fully ionized 

nd spherical bubbles with infinitely crisp edges, whose abundance 
s well described by a bubble size distribution (BSD) function. In
eality, the ionization field is more complicated; as bubbles merge 
ith neighbours their morphologies become complex, resulting in an 

nterconnected network of ionized regions when the global ionized 
raction is just ∼10 per cent (Furlanetto & Oh 2016 ). Partial ioniza-
ion due to small-scale clumping – which we neglect here – can affect
he BSD and 21-cm power spectrum (e.g. Sobacchi & Mesinger 2014 ; 
ianco et al. 2021 ), as could a strong X-ray background, if sources
ith soft spectra dominate. Despite these known shortcomings of the 

pproach, we forge ahead none the less, in order to thoroughly assess
he accuracy of analytical models and the prospects for using them to
erive meaningful constraints on the high- z IGM. To our knowledge, 
here has yet to be such an attempt to push any analytical model of
1-cm fluctuations through to parameter inference, and compare its 
esults to those of a semi-numerical model (though see e.g. Santos
t al. 2008 ; Schneider et al. 2021 , for more general comparisons of
nalytical and seminumeric models). 

The structure of the paper is as follows. In Section 2 , we introduce
ur phenomenological approach to 21-cm fluctuations and present 
ts basic predictions. Then, in Section 3 , we compare various
omponents of the phenomenological model to two illustrative 
1 cm FAST models, in order to gauge its accuracy and moti v ate
ifferent modelling choices. We present a forecast in Section 4 ,
onducted by fitting our model to mock signals created both by the
henomenological model itself as well as 21 cm FAST . We conclude
n Section 5 . 

 P H E N O M E N O L O G I C A L  M O D E L L I N G  

R A M E WO R K  

n this paper, we attempt to remain as agnostic as possible about
he source of 21-cm fluctuations at high redshifts. We assume only
hat the 21-cm field is composed of discrete bubbles embedded in
 medium of uniform temperature. We make no effort to model the
ize distribution of these bubbles via forward modelling, nor do we
ttempt to evolve the properties of the ‘bulk IGM’ beyond bubbles.
nstead, we absorb all the astrophysics of reionization and reheating 
nto the size distribution of bubbles, the volume of space they occupy,
heir mean density, and the mean temperature of the bulk IGM.
his section describes the core components of the model, which is

mplemented in the publicly available MICRO21CM package. 1 The 
ey predictions of the model are summarized in Figs 1 , 2 , and 3 , with
omparisons to 21 cm FAST and forecasts to follow in Sections 3 and 4 .

.1 Preliminaries 

he brightness temperature of the 21-cm field at an arbitrary location
n space is given by (see e.g. Madau et al. 1997 ; Furlanetto et al. 2006 ) 

T b � 27 mK 

(
�b , 0 h 

2 

0 . 023 

)(
0 . 15 

�m , 0 h 

2 

1 + z 

10 

)1 / 2 

× x H I (1 + δ) 

(
1 − T R 

T S 

)(
H 

∂ r v r 

)
, (1) 

here x H I = 1 − x H II is the neutral hydrogen fraction, δ is the baryon
ensity relative to the cosmic mean, ∂ r v r is the line-of-sight gradient
f the velocity, T R is the temperature of the background (assumed
ere to be spatially uniform), generally assumed to be the cosmic
icrowave background T γ , and T S is the spin temperature, which

uantifies the relative abundance of hydrogen atoms in the ground 
yperfine triplet and singlet states. Each of these quantities carries an
mplicit redshift dependence, while bolded quantities are those that 
ary spatially as well, e.g. δT b = δT b ( x) , which we will discuss
n detail momentarily. In general, T S depends the hydrogen and 
MNRAS 514, 2010–2030 (2022) 
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M

Figure 1. Connection between bubble size distribution (top), bubble correlation function (middle), and 21-cm power spectrum (bottom), both for lognormal 
BSDs (left) and BSDs modelled as a power law with an exponential cut-off (right). Each model assumes the same mean ionized fraction, Q = 0.2, and adopts 
T S = 1.8 K, as is appropriate for a uniform, adiabatically cooled z = 8 IGM. Vertical grey bars in the top and middle rows indicate the location of the peak in 
the volume-weighted BSD, while in the bottom row we instead show the scale k peak = R 

−1 
peak . Horizontal lines in the middle row indicate the limiting behaviour 

of the one- and two-bubble terms, which are shown individually in grey. We describe the many terms contributing to 21-cm fluctuations in Section 2 and Fig. 2 . 
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lectron densities, gas kinetic temperature, and Lyman α background
ntensity, though in this work we abstract away all the physics
mbedded in T S and simply treat it as a homogeneous free parameter.
e take the same approach to T R , though in general, e.g. radio

mission from galaxies may dri ve non-tri vial fluctuations in T R as
ell, and leave interesting signatures in the 21-cm background in

ome scenarios (Reis, Fialkov & Barkana 2020 ). 
Given our assumption of a field composed of bubbles, it will be

onvenient in what follows to rewrite equation ( 1 ) as 

T b = T 0 ( z)(1 + δ)(1 + αb )(1 + δϕ ) , (2) 

here T 0 is a redshift- and cosmology-dependent normalization, 

 0 ≡ 27 

(
�b , 0 h 

2 

0 . 023 

)(
0 . 15 

�m , 0 h 

2 

1 + z 

10 

)1 / 2 (
1 − T R 

T S 

)
mK (3) 
NRAS 514, 2010–2030 (2022) 
nd δϕ is a fractional perturbation in the temperature ‘contrast,’ 

 = 

T S − T R 

T S 
, (4) 

hich is related to fractional perturbations in the spin temperature
ia 

ϕ = 

(
T R 

T S − T R 

)
δT S = ϕ 

−1 

(
T R 

T S 

)
δT S . (5) 

he variable b in equation ( 2 ) represents a binary field of bubbles,
nd thus takes on values of 0 or 1 only, with 1 indicative of a fully
onized or fully heated bubble. In this work, we will focus entirely
n ionized bubbles, noting here the possibility of heated bubbles for
ompleteness – one can easily switch from one to the other with a

art/stac1479_f1.eps
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Figure 2. Main contributions to the 21-cm power spectrum. Starting from a universe with only linear density fluctuations (dotted black; left column), we 
add corrections for adiabatic compression/expansion (dotted blue), and redshift-space distortions, with spherical averaging (cyan) as well as pure line-of-sight 
modes (magenta). Then, in the right-hand column, we add the autocorrelation contributions from bubbles ( 〈 bb 

′ 〉 ; dotted orange) and the cross-correlation terms 
inv olving b ubbles and the density field (solid red). The bottom row in each column shows the relative amplitude of the 21-cm power spectrum relative to a model 
with matter fluctuations only, which we indicate as P 21 , mm 

. 

Figure 3. 2D parameter study showing the effects of ionized fraction Q and spin temperature T S for lognormal bubble size distributions. The colour-scale 
indicates the dimensionless power, 
 

2 
21 , at z = 8 and k = 0.2 h Mpc −1 . We assume σ b = 1 for characteristic bubble sizes of 1, 5, and 10 cMpc (left to right). 

The horizontal band in each panel corresponds to T S = T γ at z = 8, where the brightness temperature goes to zero, while the cross-hatched region in the bottom 

indicates spin temperatures below the adiabatic limit for a uniform medium at z = 8, T adi = 1.82 K. 
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uitable choice of α, i.e. 

= 

⎧ ⎨ 

⎩ 

0 no bubbles 
−1 ionized bubbles 
T R / ( T S − T R ) heated bubbles 

(6) 

his expression assumes that heated ‘bubbles’ are fully saturated, T S 

T R , in which case plugging α = T R /( T S − T R ) into equation ( 2 )
educes to the brightness temperature of a saturated patch of the IGM.
ne could alternatively leave the temperature of heated bubbles as a

ree parameter. 
From this point onward, we will discontinue the use of bold-faced

ariables, meaning any occurrence of T S or ϕ refers to the mean,
hile δ’s and b ’s carry all spatial information. 
If we assume for the moment that the spin temperature field is

patially homogeneous, leaving δϕ = 0, we can write the correlation
unction of the 21-cm field, ξ21 ≡ 〈 δT b δT ′ b 〉 − 〈 δT b 〉 2 , relatively
ompactly as 

 

−2 
0 ξ21 = 〈 δδ′ 〉 + α2 〈 b b ′ 〉 − α2 〈 b〉 2 

+ 2 α〈 bδ′ 〉 + 2 α2 〈 bb ′ δ〉 + 2 α〈 bδδ′ 〉 + α2 〈 b b ′ δδ′ 〉 
− 2 α2 〈 b 〉〈 b δ〉 − α2 〈 bδ〉 2 . (7) 

ere, angular brackets indicate ensemble averages and primed
uantities indicate points a distance r from unprimed points. So
ar, our results are exact, as only terms proportional to 〈 δ〉 have been
ropped (the o v erdensity field has mean zero by definition). The
nsemble average of the bubble field is equi v alent to the volume-
lling fraction in this framework, so in what follows we will use Q
〈 b 〉 . 
In the next few sections, we will discuss methods for modelling the

arious terms in equation ( 7 ), as well as ‘correction terms’ that arise
hen δϕ > 0 and peculiar velocities (i.e. redshift-space distortions)

re included. We will adopt the following convention for correction
actors that relate an arbitrary fluctuation in δX to the density field,
.e. 

X ≡ βX δ. (8) 

n all that follows, we will plot only the dimensionless power
pectrum 

 

2 
21 ( k) = k 3 P 21 ( k) / 2 π2 , (9) 

here P 21 is related to the 21-cm correlation function by the
ransform 

2 

 21 ( k ) = 

1 

(2 π ) 3 

∫ 
4 πR 

2 sin ( k R ) 

k R 

ξ21 ( R )d R . (10) 

ote that it is common in the literature to plot δT b 
2 

 

2 
21 ( k), i.e.

he global 21-cm signal squared times 
 

2 
21 . The difference is

ne of definitions and notation. If one works in terms of the
ractional perturbation in the 21-cm brightness temperature, such that
T b ( x ) = δT b (1 + δ21 ), and defines the 21-cm correlation function as
21 ≡ 〈 δ21 δ

′ 
21 〉 − 〈 δ21 〉 2 , then the appropriate quantity to plot is indeed

T b 
2 

 

2 
21 ( k). Ho we ver, we work directly in terms of the 21-cm signal’s

onstituent terms, i.e. δ, b , δφ , etc., which leaves a normalization
actor of T 2 0 only, where T 0 = δT b (1 − Q ) −1 (see also equation 3 ).

e absorb this factor of T 2 0 into the 21-cm correlation function, as
n equation ( 7 ), which implicitly lends equations ( 9 ) and ( 10 ) units

f mK 

2 . Hence, the absence of δT b 
2 

as a multiplicative pre-factor
pplied to 
 21 2 ( k ) in the y labels of our figures. 
NRAS 514, 2010–2030 (2022) 

 We discuss numerical solutions to this integral in Section 2.6 . 
w  

w  
.2 Adiabatic expansion and compression 

he first correction we consider addresses the correlation between the
ensity and temperature due to adiabatic expansion or compression
lone (i.e. no X-ray heating from astrophysical sources). For clarity,
e allow δϕ > 0 but hold b = 0, in which case the correlation function
f the 21-cm background can be written as 

 

−2 
0 ξ21 ,b= 0 = 〈 δδ′ 〉 + 〈 δϕ δ

′ 
ϕ 〉 

+ 2 〈 δϕ δ
′ 〉 + 2 〈 δϕ δ

′ 
ϕ δ〉 + 2 〈 δϕ δδ

′ 〉 + 〈 δϕ δ
′ 
ϕ δδ

′ 〉 
− 2 〈 δϕ 〉〈 δϕ δ〉 − 〈 δϕ δ〉 2 . (11) 

e further assume that density and temperature fluctuations are
mall, which allows us to eliminate all 3- and 4-pt terms from the
bo v e e xpression, and note that the ensemble av erage of δϕ is zero
y construction and can thus be remo v ed as well. 
Perturbations in the density, temperature, and ionization can

e evolved numerically (e.g. Barkana & Loeb 2005b ; Naoz &
arkana 2005 ; Pritchard & Furlanetto 2007 ). Ho we ver, Mu ̃ noz, Ali-
a ̈ımoud & Kamionkowski ( 2015 ) found that fluctuations in the
inetic temperature can be more straightforwardly related to δ from
ecombination and throughout the cosmic dark ages up to whenever
nhomogeneous X-ray heating occurs, via 

T ≡ δT K 

T K 
= βT ( z) δ. (12) 

he coefficient βT , usually termed the adiabatic index, would be
xactly 2/3 for pure adiabatic cooling, though the Compton scattering
ith the CMB produces a deviation from this factor. For the

edshift range of interest, the result in Mu ̃ noz et al. ( 2015 ) can be
pproximated as βT ( z) = c 0 − c 1 ( z − 10), with c 0 = 0.58 and c 1 =
.005 to within 3 per cent precision (for z = 6–50). 
Using this linear relationship between δ and δT , and assuming

aturated Wouthuysen–Field coupling (so that Ts ≈ T K .), we have 

 

−2 
0 ξ21 ,b= 0 = 〈 δδ′ 〉 + β2 

ϕ 〈 δδ′ 〉 + 2 βϕ 〈 δδ′ 〉 
= 〈 δδ′ 〉 [1 + βϕ 

]2 
, (13) 

here we have made use of equation ( 5 ) and defined βϕ ≡
T ϕ 

−1 
(

T R 
T S 

)
. 

The o v erall effect of adiabatic e xpansion and compression is to
educe the amplitude of the 21-cm emission in a given patch of the
GM relative to the uniform density case. To see this, we now write
quation ( 1 ) with a correction term βδ( z) ≡ 1 + βϕ applied to the
ensity, i.e. 

T b � T 0 (1 + βδδ) , (14) 

hich yields 

T b � 

T 0 

1 − T γ /T S 

[
1 − T γ

T S 
(1 − βT ) 

]
δ. (15) 

s expected, βT > 0 reduces the amplitude of the signal, holding all
ther quantities fixed. 
For scenarios where the gas has a temperature above the adiabatic

rediction, we ought to account for how heating changes this picture.
e can al w ays write that at every point and z, 

 g = T ad 
g + 
T X g , (16) 

here T ad 
g is the adiabatic prediction, and 
T X g is the heating term,

hich we assume to be approximately homogeneous, as predicted
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or instance for hard X-rays. Therefore, δT g = δT ad 
g = βT δ, and thus 

T = δad 
T 

T ad 
g 

T g 
= βT 

T ad 
g 

T g 
δ, (17) 

r equi v alently, we can use our result in equation ( 14 ) with the
orrection 

T → βT min 

( 

1 , 
T ad 

g 

T g 

) 

. (18) 

e note that for T g < T ad 
g , as predicted by models of DM-induced

ooling (see e.g. Mu ̃ noz, Ko v etz & Ali-Ha ̈ımoud 2015 ; Barkana
018 ; Berlin et al. 2018 ; Mu ̃ noz, Dvorkin & Loeb 2018 ), our formula
redicts an increase in the βT term. To remain conserv ati ve, we cap
T at its adiabatic value of 2/3. 

.3 Statistics of bubbles 

e now turn our attention to 21-cm fluctuations sourced by fluctu- 
tions in the ionization field, starting with the autocorrelation term 

 bb 
′ 〉 (see equation 7 ). Much of this follows from Furlanetto et al.

 2004 ) (hereafter FZH04 ), but we re vie w it here none the less for
ompleteness. Given that b is binary, the ensemble average greatly 
implifies 

 b b ′ 〉 ≡
∫ 

d b 
∫ 

d b ′ b b ′ f ( b , b ′ ) = P bb (19) 

ince the integrand is only non-zero when both b and b 
′ 

are unity.
n this case, the double inte gral o v er the joint distribution f ( b 

′ 
, b 

′ 
)

s simply the probability that two points are both in bubbles, hence
ur use of the notation P bb . This probability will be determined
ntirely by the BSD, which we parametrize flexibly rather than model 
rom physical arguments (see Furlanetto et al. 2004 ; Paranjape & 

houdhury 2014 , for excursion set models). Several example BSDs 
re shown in Fig. 1 and discussed in more detail in Section 2.3.2 . 

For a field composed of discrete bubbles, P bb can be w ork ed out for
n assumed size distribution of bubbles, n b ( R b ), following FZH04 .
rawing inspiration from the halo model (Cooray & Sheth 2002 ), 
nly two configurations are possible: either two points are in the 
ame bubble or they are in different bubbles, i.e. P bb = P 1 + P 2 . 

The probability P 1 that two points are in the same bubble depends
n the fraction of the volume in which a single bubble can enclose
wo points separated by a distance r . This amounts to an integral over
he bubble size distribution weighted by the ‘o v erlap volume,’ V o , 

 

′ 
1 ( r) = 

∫ 
d R b n b ( R b ) V o ( r, R b ) . (20) 

he o v erlap v olume is the intersectional v olume of two spheres of
adius R b separated by r , 

 o = 

{
4 π
3 R 

3 
b − πr 

[
R 

2 
b − r 2 / 12 

]
r < 2 R b 

0 otherwise 
. (21) 

 single bubble can only engulf two points separated by r if it is
entred within this region. Note that the probabilities in equation ( 20 )
as well as equation 22 below) are primed to indicate that they are
ot the final probabilities used in the model, as corrections are in
rder (see Section 2.3.1 ). 
The other possibility is that two points reside in different bubbles. 

n this case, we need the probability that a single source can ionize
ne point but not the other, which is proportional to V ( R b ) − V o , with
 ( R b ) = 4 πR 

3 
b / 3: 

 

′ 
2 ( r) = (1 − P 

′ 
1 ) ×

(∫ 
d R b n b ( R b ) [ V ( R b ) − V o ( r, R b ) ] 

)2 

. (22) 

he leading factor of (1 − P 

′ 
1 ) ensures that the two points under

onsideration do not reside in a single bubble. 
The one- and two-bubble terms are sho wn indi vidually in the
iddle row of Fig. 1 ; the former dominates on small scales, and

symptotes to a value of Q , while the latter dominates on large scales,
nd asymptotes to Q 

2 . On intermediate scales comparable to the
ypical bubble size, both terms are comparable. The smoothness of 
he transition from the one-bubble regime to the two-bubble regime 
s go v erned by the details of the BSD, which we discuss more in
ection 2.3.2 . 
We currently neglect the clustering of bubbles – a more sophisti- 

ated approach may be warranted at early times and/or intermediate 
cales where clustering of bubbles is important, in which case a
actor of 1 + ε within one of the integrands of equation ( 22 ) would
e necessary, indicating an excess probability that a second source 
onizes point 2 given that the first point is ionized (see e.g. section 3.3
n FZH04 ). 

.3.1 Bubble overlap 

erhaps the most obvious shortcoming of the treatment so far is
hat it neglects the potential for overlap between bubbles. In reality,
 v erlapping bubbles cease to be distinct entities, and will instead
orm a single larger bubble – indeed, (Furlanetto & Oh 2016 ) showed
hat throughout most of reionization the vast majority of the ionized
olume is contained in a single ‘percolating cluster’ with a very
omplex shape (although simulations do suggest that the percolating 
luster is composed of subunits with a finite size; e.g. Lin et al. 2016 ;
usch et al. 2020 ). The percolation process qualitatively changes 

he meaning of the BSD, so that we cannot treat these stages self-
onsistently. Ho we ver, moti v ated by the existence of a characteristic
cale in simulations of reionization, we can modify our probabilities 
lightly to account for o v erlap in a statistical sense. 

To assess the importance of o v erlap, it is useful to first consider
he total volume contained in bubbles 

 tot = 

∫ 
d R b n b ( R b ) V ( R b ) . (23) 

his quantity is not equi v alent to the volume-filling fraction of
onized gas, Q tot �= Q , since there is nothing stopping two (or more)
ubbles from co-occupying the same space in our model. It is more
ccurate to consider Q as the probability that a single point is ionized,
hich is a sum o v er all possible configurations, e.g. that a point is

ngulfed by a single bubble of radius R 1 , or that a point is instead
ngulfed by a bubble of radius R 2 (but not R 1 ), etc., i.e. 

 b = P 1 + (1 − P 2 ) + (1 − P 1 )(1 − P 2 ) P 3 + ... (24) 

ote that each P i term in the abo v e sum requires an integral, and
eglects the possibility that a single point resides within multiple 
ubbles. 

One can dramatically simplify this computation by realizing that 
e only care if a point is ionized, regardless of how many bubbles

ontain it. The ionized fraction is simply the complement of the
robability P 0 that no bubbles engulf a point, which we can write as
 Poisson distribution (see also sections 3.1–3.2 in FZH04 ), 

 = 1 − exp 

[
−

∫ 
d R b n b ( R b ) V ( R b ) 

]
. (25) 
MNRAS 514, 2010–2030 (2022) 
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he same logic applies to the calculation of one- and two-bubble
erms. As a result, we take our final, unprimed probabilities to be 

 1 ( r) = 1 − exp 

[
−

∫ 
d R b n b ( R b ) V o ( r, R b ) 

]
(26) 

nd 

 2 ( r) = (1 − P 1 ) 

×
(

1 − exp 

[
−

∫ 
d R b n b ( R b ) ( V ( R b ) − V o ( r, R b ) ) 

])2 

. 

(27) 

To gauge the importance of o v erlap, we can easily compute the
ifference of Q tot and Q , i.e. the fraction of the volume composed
f more than one bubble. We find that this ‘global inter-sectional
olume’ 

 int ≡ Q tot − Q (28) 

s �1 when Q is small, indicating that o v erlap is unimportant at
arly times, as expected. Ho we ver, Q int rises as Q grows, reaching
 value of Q int � 0.2 when Q = 0.5, and Q int � Q when Q � 0.8,
.e. o v erlap is likely an order unity effect for the last � 20 per cent
f reionization. Note that for this calculation we normalize n b to
atisfy a user-supplied value of Q using equation ( 25 ). Note also
hat Q tot and Q int can exceed unity, because these volumes include
very occurrence of overlap at a given point, e.g. a single region will
ontribute three times its volume if three separate bubbles contain it.

.3.2 Bubble size distributions 

e have yet to explicitly define the BSD, instead leaving it as a
eneric function n b ( R b ). Rather than model the BSD from a galaxy
ormation model and the excursion set approach, we parametrize it
exibly. 3 Our fiducial model adopts a lognormal form 

d n b 
d R b 

∝ ( R c σ ) −1 exp 

[
− ( R b − R c ) 2 

2 σ 2 
b 

]
, (29) 

eaked near a radius R c , and with a width σ b . We also consider a
ower-law times an exponential 

d n b 
d R b 

∝ 

(
R b 

R c 

)γ

exp 

[
− R b /R c 

]
, (30) 

ith the index γ as a free parameter rather than σ . In each case, the
SD is normalized to preserve the mean ionized fraction defined in
quation ( 25 ). 

Note that the more rele v ant quantity in our analysis is actually
he volume-weighted BSD, V d n b /dlog R b , where V = 4 πR 

3 
b / 3, since

he probability that two points are ionized is related to volume more
irectly than bubble size. The peak in the volume-weighted BSD is
ot equal to the peak in d n b /d R b . As a result, in all that follows, we
se the variable R p or R peak to indicate the location of the peak in
 d n b /dlog R b . For both BSDs we explore, it is easy to translate R c to
 p via 

 p = R c exp { 3 σ 2 } (31) 

or the lognormal, and 

 p = R c ( γ + 4) (32) 

or the power-la w-times-e xponential model. 
NRAS 514, 2010–2030 (2022) 

 The parametric forms we choose are known to mimic physically motivated 
odels reasonably well (see e.g. Kakiichi et al. 2017 ) 
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v
 

i  
.3.3 Limiting behaviour checks 

efore moving on to cross-terms, let us examine the limiting
ehaviour of the correlation function of the bubble field, ξ bb ≡ 〈 bb 

′ 〉
Q 

2 . We have only two obvious requirements: (i) fluctuations must
anish on large scales r � R b , and (ii) fluctuations must vanish at Q =
 and Q = 1. First, for an arbitrary value of Q , on large scales ( r �
 b ) we find V o → 0, so ξbb → P 2 − Q 

2 � 0, and fluctuations vanish
s they must, since P 2 tends towards Q 

2 on large scales. Secondly,
he Q = 0 limit is satisfied by construction in our framework, since
he BSD is normalized by Q , thus forcing P 1 = P 2 = 0 when Q = 0.
his leaves only the question of whether or not ξ bb vanishes at Q =
. 
On large scales, fluctuations vanish regardless of Q , as shown

bo v e. On small scales, r � R b , the o v erlap volume tends to the
 ubble v olume, V o ( r , R b ) → V ( R b ). As a result, P 1 → Q , and P 2 →
. This leaves a bubble correlation function ξ bb � Q − Q 

2 = Q (1 −
 ), which is indeed zero when Q = 1. 

.4 Cr oss-corr elations between ionization and density 

e have thus far neglected correlations between the density field and
ubbles (see second and third rows of equation 7 ). In keeping with
he phenomenological spirit of this paper, we take a simple approach
o these terms that abstracts away assumptions about the sources (to
he extent that this is possible). The busy reader may skip ahead to
ig. 2 , which shows the effects of cross-terms. 
To forge ahead analytically, we first assume that each of the two

hases in our toy IGM also have different densities, each uniform.
e indicate the average density of bubble material as 〈 δ〉 i , with the

ensity in the bulk IGM 〈 δ〉 n , enforced by continuity such that 

 δ〉 n = −〈 δ〉 i Q 

1 − Q 

. (33) 

he only unknown here is 〈 δ〉 i . One could treat it as a free parameter,
r parametrize it flexibly as a function of redshift and/or bubble
ize. We discuss this possibility further in Section 2.4.2 , where we
ntroduce a simple model for 〈 δ〉 i . 

Now, because we are assuming that neutral and ionized patches
re of uniform (but redshift-dependent) densities, we can use a halo-
odel-like argument to write down the two-point terms involving b

nd δ. F or e xample, 〈 b δ ′ 〉 will be the sum of two terms: one in which
he primed point is neutral, and one in which it is ionized, in each
ase weighted by the density of the rele v ant medium: 

 bδ′ 〉 = 〈 δ〉 i P bb + 〈 δ〉 n P bn , (34) 

here we have used the previous notation to indicate the probability
hat two points are in bubbles, P bb , and a new term P bn to indicate
he probability that only one point is in a bubble. We can write the
atter as 

 bn = (1 − P 1 ) exp 

[
−

∫ 
d R b n b ( R b ) ( V ( R b ) − V o ( r, R b ) ) 

]

×
{

1 − exp 

[
−

∫ 
d R b n b ( R b ) ( V ( R b ) − V o ( r, R b ) ) 

]}
. (35) 

n words, the abo v e equation computes the probability that a single
ource can ionize one point but not the other (term in curly brackets),
imes the probability that the other point is not ionized by a different
ource that leaves the first point untouched (first exponential term),
imes the probability that a single source does not reside in the o v erlap
olume and engulf both points (leading 1 − P 1 factor). 

From equation ( 34 ), it is clear that if the density of ionized material
s order unity ( 〈 δ〉 i ∼ 1), the cross-term 〈 b δ ′ 〉 will be comparable to
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he auto term 〈 bb 
′ 〉 , so long as Q � 1 and P bn � P bb . The first

ondition is plausible, and we will find that indeed 〈 δ〉 i ≈ 1 when Q
 0.2. The second condition is less clear; certainly, on small scales,

he P bn term should be suppressed significantly by the 1 − P 1 factor,
ince two points are increasingly likely to be in the same bubble on
rogressi vely smaller scales. Ho we ver, on large scales, P bn → Q (1

Q ), which means P bn ≥ P bb when Q ≤ 0.5. 
This is a curious feature of this model: for 〈 b δ ′ 〉 � 〈 bb 

′ 〉 , it
s possible that ξ 21 becomes ne gativ e. Just comparing 2-pt terms,
 b δ

′ 〉 = 2 〈 bb 
′ 〉 , this will occur when 

P bn 

P bb 

< 2 

(
2 〈 δ〉 i − 1 

〈 δ〉 i 

)(
1 − Q 

Q 

)
. (36) 

urthermore, if 〈 δ〉 i < 0.5, the RHS of equation ( 36 ) becomes
e gativ e, a condition that cannot be satisfied since P bn and P bb are
oth positive. 
Such strong contributions from cross-terms involving ionization 

nd density are not expected from more physically moti v ated models,
ut it is not surprising that they can become significant in our
rame work gi ven the assumption of sharp, spherical bubbles and 
 perfect two-zone IGM. Ho we ver, in detail, the amplitude and sign
f ξ 21 depend not only on the 2-pt contrib utions, b ut also on higher
rder terms, which we discuss next. 

.4.1 3- and 4-pt contributions to the power spectrum 

he two most obvious ways to proceed with the remaining terms
n equation ( 7 ) are to (i) neglect them, or (ii) fully embrace the
inary framework and write down these terms following the logic 
pplied to the 〈 b δ ′ 〉 term abo v e. Though higher order terms are
ikely to be smaller than the two-point terms, at least on scales k
 1 h Mpc −1 , the y are not ne gligible in general (e.g. Lidz et al.

007 ; Georgiev et al. 2021 ). Both options have some undesirable
roperties. 
F or e xample, option (i) must artificially set 〈 b δ〉 = 0 in order

o ensure that fluctuations vanish on large scales, despite the fact 
hat correlations between bubbles and density imply that 〈 b δ〉 �= 0.
o we ver, the three and four-point terms 〈 b δδ ′ 〉 and 〈 bb 

′ 
δδ

′ 〉 cannot
e set to zero, otherwise 21-cm fluctuations will not vanish as Q → 1
s they must. This is apparent from equation ( 7 ) – the leading factor
f the matter fluctuations, 〈 δδ ′ 〉 , will persist regardless of Q , and so
on-zero contributions from other terms involving the fluctuation δδ

′ 

re required in order for 21-cm fluctuations to vanish as Q → 1.
ore on this momentarily. 
Regarding option (ii), the binary field model predicts: 

 b b ′ δ〉 = 〈 δ〉 i P bb (37) 

 bδδ′ 〉 = 〈 δ〉 2 i P bb + 〈 δ〉 i 〈 δ〉 n P bn (38) 

 b b ′ δδ′ 〉 = 〈 δ〉 2 i P bb . (39) 

 few observations about these terms: 

(i) The only additional k -dependent suppression of 21-cm power 
eyond that caused by the two-point term 〈 b δ ′ 〉 comes from the
 b δδ

′ 〉 term abo v e, which has a single leading factor of α = −1 (see
quation 7 ), in contrast to the 〈 bb 

′ 
δ〉 and four-point terms which are

oth positive. 
(ii) If we want to reduce the contribution from these higher order 

erms by, e.g. setting 39 to zero, we can only do so if we also set
 b δ〉 = 0. Otherwise, fluctuations will not vanish on large scales (see
ast two terms of equation 7 ). Ho we ver, this on its own will violate
he requirement that fluctuations vanish as Q → 1 (see abo v e). 
(iii) On large scales, the leading factor of P bb means that the
ontribution of higher order terms will grow as reionization proceeds 
 P bb → Q 

2 ). 
(iv) The power spectrum of a binary density field that traces the

ubble field will exhibit a sharp feature on the typical bubble scale
nd no structure on smaller scales, at odds with the well-understood
hape of the matter power spectrum. 

Given these challenges, we employ a third option, which ensures 
hat 21-cm fluctuations vanish on large scales and as Q → 1. From
quation ( 7 ), it is clear that the latter condition requires 

− 2 α〈 bδδ′ 〉 − α2 〈 bb ′ δδ′ 〉 → 〈 δδ′ 〉 (40) 

s Q → 1. We take 

 bδδ′ 〉 = Q 〈 δδ′ 〉 (41) 

 b b ′ δδ′ 〉 = 〈 b b ′ 〉〈 δδ′ 〉 + 〈 bδ′ 〉 2 + 〈 bδ〉 2 . (42) 

he second expression invokes Wick’s theorem, common in the 
iterature despite expectations that the 21-cm field is non-Gaussian, 
hile the first is the simplest treatment that reco v ers the desired

imiting behaviour. Together, these terms can be thought of as a
orrection factor applied to the matter fluctuations in equation ( 7 ),
 δδ

′ 〉 → (1 − Q ) 2 〈 δδ ′ 〉 . 
Finally, we set 〈 bb 

′ 
δ = 0 to satisfy the requirement that ξ 21 → 0

n large scales. 

.4.2 Model for the density of bubble material 

ritical to the simple cross-term treatment described abo v e is
nowledge of the density of bubble material, 〈 δ〉 i . To determine this
ubble density, we make an argument similar to abundance matching 
n galaxy formation models: we assume that if a fraction Q of the
GM is in bubbles, then that volume is also the densest fraction Q of
he IGM. Then, our task is to determine the density threshold abo v e
hich Q per cent of the IGM resides. 
To do this, we first define the variance of fluctuations at redshift z 

 v er a region of radius R to be 

2 
R = 

∫ 
d 3 k 

(2 π ) 3 
P ( k , z) | W R ( k ) 

2 | , (43) 

here P ( k , z) is the matter power spectrum at z, and W R ( k ) is a
indow function encoding the shape of the region. We assume a

pherical top-hat, which has the form 

 R ( k ) = 

3 

( k R ) 3 
[ sin ( k R ) − ( k R ) cos ( k R ) ] . (44) 

We further assume that the PDF of the density field, P( δR ), is
ognormal (Coles & Jones 1991 ; Bi & Davidsen 1997 ). Then, if a
raction Q of the volume of the universe is ionized, we can associate
hat with a minimum density δmin 

R through ∫ ∞ 

δmin 
R 

dδR P( δR ) = 

1 

2 
erfc 

(
δmin 
R √ 

2 σR 

)
= Q, (45) 

r equi v alently 

min 
R ( Q ) = 

√ 

2 σR erfc −1 (2 Q ) . (46) 

ow it is easy to compute the density of ionized material 

 δ〉 i = 

∫ ∞ 

δmin 
R 

dδR P( δR ) δR = exp [ −( δmin 
R ) 2 / 

(
2 σ 2 

R 

)
] 

σR √ 

2 π
. (47) 
MNRAS 514, 2010–2030 (2022) 
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he only free parameter of this model is the smoothing scale R
mployed to compute the variance in the density field, which we will
ereafter refer to as R sm 

. There are only a few natural length-scales
n our model thus far, all of which are related to the characteristic
ubble size. We will e xplore sev eral possibilities in Section 3 , and
ompare to the mean density of ionized gas and ionization – density
ross spectrum from 21 cm FAST models for guidance. 

Note that in this section, we ef fecti vely have made a physical
rgument about the nature of reionization, namely, that it occurs
inside out.’ Though this choice departs from our effort to a v oid
xplicit astrophysical assumptions, it is appropriate for comparisons
o 21 cm FAST , and could be generalized in the future (see e.g.
agano & Liu 2020 , for one approach). Fortunately, scenarios with a
trong degree of anticorrelation between ionization and density fields
enerate stronger 21-cm fluctuations than the alternative, and should
hus be easier to rule out as upper limits become more stringent
Pagano & Liu 2020 , 2021 ). 

.5 Redshift space distortions 

e now add the effect of peculiar velocities (see e.g. Kaiser 1987 ;
arkana & Loeb 2005a ). These give rise to redshift-space distortions

RSDs), which to linear order we can write as 

T b = T 0 ( z)(1 + αb)(1 + δ − δv )(1 + δϕ ) , (48) 

here δv is the line-of-sight velocity-gradient anisotropy. This last
uantity is given (again to linear order and during the epoch of
nterest) by δv = −μ2 δ in Fourier space, where μ = k || / k , so we
ave 

T b = T 0 ( z)(1 + αb)[1 + (1 + μ2 + βϕ ) δ] . (49) 

e ignore non-linear RSDs (e.g. Mao et al. 2012 ; Jensen et al. 2013 )
see Greig & Mesinger ( 2018 ) for the implementation in 21 cm FAST .
e also neglect the light cone effect (see e.g. Datta et al. 2012 ; La

lante et al. 2014 ; Chapman & Santos 2019 , for detailed treatments).
his is a conserv ati ve approach gi ven that these effects boost the
ower spectrum, and so will drive lower limits on the IGM spin
emperature upward once included. 

In traditional galaxy surv e ys one can measure different modes
� 
 , and thus probe the μ dependence of the RSDs. In 21-cm
tudies, ho we ver, the situation is different. Foregrounds impose
n observational cutoff, as small wavenumbers along the line of
ight are inaccessible for cosmology (e.g. Datta, Bowman & Carilli
010 ; Morales et al. 2012 ; Parsons et al. 2012 ; Vedantham, Udaya
hankar & Subrahmanyan 2012 ; Th yag arajan et al. 2013 ; Liu,
arsons & Trott 2014 ). This ‘foreground wedge’ in fact occupies

he majority of the Fourier plane, so in practice the modes observed
t an y fix ed spherical k are chiefly along the line of sight, with μ ≈
. 4 We will therefore often simply fix μ = 1. Alternatively, when
omparing to 21 cm FAST simulations we will manually set μ = 0.6,
hich reco v ers 〈 (1 + μ2 ) 2 〉 = 1.87, the (linear) spherically averaged
alue of RSDs. Note that the use of a single average value of μ
s likely to be o v erly simplistic due to the non-linear relationship
etween density and ionization (Pober 2015 ). We defer a more
etailed treatment to future work. 
Upon including RSDs, we take δ → δ − δv , resulting in the

ollowing modifications to cross-terms: 

 bδ′ 〉 → 〈 bδ′ 〉 − 〈 bδ′ 
v 〉 (50) 
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 For HERA μ � 0.97, with values closer to one indicative of increasingly 
ggressive wedge cuts. 
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 bδδ′ 〉 → 〈 bδδ′ 〉 − 〈 bδδ′ 
v 〉 − 〈 bδ′ δv 〉 + 〈 bδv δ

′ 
v 〉 (51) 

 b b ′ δδ′ 〉 → 〈 b b ′ δδ′ 〉 − 〈 b b ′ δδ′ 
v 〉 − 〈 b b ′ δ′ δv 〉 + 〈 b b ′ δv δ

′ 
v 〉 , (52) 

here we have shown for completeness the 3- and 4-pt terms, despite
eglecting them in what follows. 

.6 Density fluctuations 

inally, 〈 δδ ′ 〉 is equi v alent to the matter correlation function, ξ δδ –
e compute the linear matter power spectrum using CAMB (Lewis,
hallinor & Lasenby 2000 ) and Fourier transform to obtain ξ δδ , i.e. 

 δδ( k ) = 

1 

(2 π ) 3 

∫ 
4 πR 

2 sin ( k R ) 

k R 

ξδδ( R )d R (53) 

hich is the same operation used to convert ξ 21 to the 21-cm power
pectrum in equation ( 10 ). The highly-oscillatory nature of these
ntegrals pose a challenge – we include options for Clenshaw–Curtis
ntegration (as in, e.g. Diemer 2018 ) and FFTLog algorithms (Talman
978 ; Hamilton 2000 ), which are implemented in SCIPY and MCFIT , 5 

espectively. The MCFIT approach is generally faster by ∼2–3x, and
o is the default in MICRO21CM . 

.7 Putting it all together 

n Fig. 2 , we assemble a representative 21-cm power spectrum term
y term. In the left-hand panel, we start in a z = 8 IGM with
niform temperature T S = 1.8 K, and only matter fluctuations (dotted
lack). In reality, gas density and kinetic temperature are coupled
ue to adiabatic cooling – the blue dashed curve accounts for this
orrelation, which suppresses power on all scales since denser regions
re also warmer than less dense regions (see Section 2.2 ). These first
wo cases ignore redshift-space distortions (see Section 2.5 ). The
otted–dashed c yan curv e av erages the power spectrum o v er all μ,
roviding a boost in power that nearly cancels out the suppression
aused by the ϕ correction. Finally, we note that many current
 xperiments almost e xclusiv ely probe line of sight modes, with μ

1, which we show in the solid magenta curve (also see fig. 3
n The HERA Collaboration 2021a ). The ratio of each case to the
atter-only case is shown in the bottom left panel. 
Next, in the right-hand panel of Fig. 2 , we start from the dotted–

ashed cyan curve of the left-hand panel and add ionized bubbles with
 lognormal size distribution (see Section 2.3 ). We further assume
n ionized fraction Q = 0.4, and a typical bubble size of R b = 5
Mpc, which are reasonable choices for z ∼ 8. If reionization were
patially homogeneous, the power would be suppressed by a factor
f (1 − Q ) 2 at all k , which we show in the opaque cyan curve.
o we ver, a model with discrete bubbles boosts power around the
ubble scale, as seen in the orange-dotted curve, which adds the
onization autocorrelation term only (see equation 7 ). Finally, the
ed curve adds the cross-terms involving both ionization and density
ollowing the procedure of Sections 2.4 and 2.4.1 . In the bottom row,
e once again show the ratio between each power spectrum in the

op panel with the matter-fluctuations-only case (dotted black). 
Given that many current experiments probe large k � 0.2 h Mpc −1 

cales, largely at frequencies ν � 100 MHz (e.g. Barry et al. 2019 ;
ertens et al. 2020 ; The HERA Collaboration 2021b ) where the

ulk of reionization is expected to occur (e.g. Bouwens et al. 2015 ;
ason, Trenti & Treu 2015 ; Robertson et al. 2015 ; Gorce et al. 2018 ;
 https:// github.com/eelregit/ mcfit

https://github.com/eelregit/mcfit
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Table 1. Summary of 21 cm FAST models. We use two reionization models: 
slow [corresponding to the EOS21 parameters of Mu ̃ noz et al. ( 2021b )] and 
fast (which have the same PopII parameters but a nonzero turno v er mass 
M turn , and thus no PopIII stars). For each of those two models we vary the 
X-ray heating efficiency parameter L X as indicated in this table. For the entire 
set of galaxy parameters, and how they fit all current EoR data, see Mu ̃ noz 
et al. ( 2021b ). 

ID Model name M turn log 10 ( L X /SFR) 

1a Slow/no heat n/a 37.5 
1b Slow/cold n/a 38.5 
1c Slow/warm n/a 39.5 
1d Slow/hot (EOS21) n/a 40.5 
2a Fast/no heat 10 9 M � 37.5 
2b Fast/cold 10 9 M � 38.5 
2c Fast/warm 10 9 M � 39.5 
2d Fast/hot 10 9 M � 40.5 
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6 Note that this is itself a potential source of uncertainty in our comparison, 
since the ionization field is not binary in 21CMFAST . 

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/514/2/2010/6595978 by Scuola N
orm

ale Superiore. Biblioteca user on 03 D
ecem

ber 2022
inkelstein et al. 2019 ), in Fig. 3 we show predictions for the large
cale k = 0.2 h Mpc −1 power o v er all of ( Q , T S ) space. From left
o right we increase the typical bubble size from 3 to 5 and 5 to 10
Mpc, and colour code by 
 

2 ( k = 0.2) from 1 to 10 4 mK 

2 (blue to
ed colours). The cross-hatched region in the bottom of each panel 
ndicates temperatures below 1.8 K, which is the expected minimum 

emperature of an adiabatically cooled z = 8 IGM, making it clear
hat 10 4 mK 

2 signals (red) require a super-cooled IGM. 
F ocusing ne xt on the 10 3 mK 

2 range (orange), which is comparable 
o recent limits, we see that viable scenarios generally require 
 S � 3 − 10 K. If bubbles are small (left-hand panel), sub-adiabatic

emperatures may be required, but for larger bubbles, R p = 5 or
0 cMpc (centre, right columns), 10 3 mK 

2 fluctuations are possible 
ithout sub-adiabatic temperatures provided that reionization is not 

ust beginning or just ending. Ionization fluctuations are maximized 
ear the reionization midpoint, in which case, such fluctuations can 
e achieved if the IGM temperature is log 10 ( T S /K) � 0.5, i.e. if T S 

 3 K, consistent with the interpretation of HERA’s recent 10 3 mK 

2 

imits The HERA Collaboration ( 2021a ). 
In general, as the strength of ionization fluctuations grow, 21-cm 

uctuations will also grow stronger if the temperature is held fixed. 
s ionization fluctuations decline in the latter half of reionization, 
olding the power constant demands that the spin temperature deviate 
ore strongly from T R . There are two exceptions to this behaviour. At

arly times, if bubbles are small (left column), the assumed positive 
orrelation between ionization and density results in a decline in the 
o wer as Q gro ws (at fixed T S ). Second, if the spatial scale of interest
s much larger than the typical bubble size, k � R 

−1 
p , the amplitude

f fluctuations on that scale depend very little on the ionized fraction.
Fig. 3 provides a means of rough, by-eye inference. Provided our 

henomenological model is reasonably accurate, one can simply 
read off’ the Q , T S , and R values that are consistent with new
ower spectrum upper limits. Though we have some indication 
lready that the phenomenological model performs well compared 
o more sophisticated calculations, e.g. the association of 10 3 mK 

2 

uctuations at k = 0.2 h Mpc −1 with T S � 3 K (see abo v e; also The
ERA Collaboration 2021a ), in the next section, we provide a much
ore detailed comparison to 21 cm FAST calculations. 

 C O M PA R I S O N  TO  21 C M  FAS T M O D E L S  

aving outlined the various components of our phenomenological 
odel, we now compare its predictions to two illustrative models 

enerated with 21 cm FAST (Mesinger & Furlanetto 2007 ; Mesinger
t al. 2011 ; Murray et al. 2020 ). Our goal is to assess the accuracy
f the model relative to more sophisticated calculations, test vari- 
us modeling choices, and set expectations for interpreting fits to 
1 cm FAST mocks in Section 4 . 
We will compare to two benchmark 21 cm FAST models. The first,
odel #1, has the same set of parameters as the AllGalaxies

imulations of Mu ̃ noz et al. ( 2021b ), and thus includes atomic-
ooling galaxies forming Pop II stars (following Park et al. 2019 )
s well as molecular-cooling haloes forming Pop III (following 
in et al. 2020 ), with joint feedback from Lyman–Werner photons 

Haiman, Rees & Loeb 1997 ; Machacek, Bryan & Abel 2001 ; Visbal
t al. 2014 ) and streaming v elocities (Tseliakho vich & Hirata 2010 ;
isbal et al. 2012 ; Mu ̃ noz 2019a ). The second model, on the other
and, imposes a cutoff for star formation at M turn = 10 9 M �, so
aloes below that mass do not form stars. As a consequence, there
re no Pop III stars in that model, and the evolution of the 21-
m signal is faster. The rest of galaxy properties are the same
etween the two models, with star formation parameters calibrated 
o high- z luminosity functions (from Finkelstein et al. 2015 ) and
-ray spectra representative of X-ray binaries hardened by neutral 

olumns expected of low-mass galaxies at high- z (Das et al. 2017 ).
he parameter values for each 21 cm FAST model are summarized in
able 1 . 
The only parameter we will vary is the X-ray luminosity of the

rst galaxies, as it strongly affects the values of T S during the epoch
f interest. We will start with the fiducial choice of log 10 ( L X /SFR) =
0.5, which is ∼10x higher than that generated by high-mass X-
ay binaries in nearby star-forming galaxies (Mineo, Gilfanov & 

unyaev 2012 ), as expected of low-metallicity environments at high 
edshift (e.g. Fragos et al. 2013 ; Brorby et al. 2016 ). We explore this
arameter in order-of-magnitude steps down to 37.5, so as to co v er
 broad range of possibilities. 

We show the mean ionization histories (top) and ionization power 
pectra (bottom) for both our models in Fig. 4 . Reionization occurs
ore gradually in model #1 than in model #2, so we dub them

slo w’ and ‘fast,’ respecti v ely, though the y are both ‘late reionization’
cenarios, with neutral fractions of ∼20 per cent at z ∼ 6, in
ccordance with recent constraints (Becker et al. 2015 ; Keating et al.
020 ; Bosman et al. 2021 ; Qin et al. 2021 ). We will examine all four
ossibilities for the spin temperature evolution in Section 4.3 but for
ow focus only on the ionization field. In Fig. 5 , we compare the
onization power spectrum computed by our model to those from 

1 cm FAST at the same mean ionized fraction, 1 − x H I , or equi v alent
olume filling fraction, Q in the phenomenological model. 6 At a 
eries of ionized fractions spanning from 20 to 80 per cent, we
ho w po wer spectra drawn from 21 cm FAST model 1 (points), and
 best-fitting representation using the phenomenological model. The 
arameters of a lognormal BSD ( R and σ ; solid lines) and power-law-
ith-exponential-cut-off model ( R and γ ; dashed lines) are calibrated 

o match the 21 cm FAST power spectra at 0.1 ≤ k /( h Mpc −1 ) ≤ 0.8.
verall, the shape of the ionization power spectrum can be well-
odelled using either BSD parametrization. We exclude points at 
 > 0.8 h Mpc −1 from the fit, as discrete sampling effects start to
ecome apparent at smaller scales and so would artificially bias the
alibration. 

In Fig. 6 , we show the best-fitting BSD parameters as a function
f Q for both 21 cm FAST scenarios (left and right columns). For both
SD models, the power spectra are consistent with rapidly growing 
MNRAS 514, 2010–2030 (2022) 
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M

Figure 4. Example 21 cm FAST models used for comparison throughout. 
Mean ionization histories (top) and ionization power spectra (bottom) at 
four different mean ionized fractions, Q . Both models are ‘late reionization’ 
scenarios, differing largely in the duration of reionization, with the ‘slow’ 
model (black), the transition from 20 to 80 per cent ionization takes 
z � 

4, while in the ‘fast’ scenario (blue), reionization begins later and the 20 
to 80 per cent duration is 
z � 2. The ‘fast’ scenario generates stronger 
fluctuations at fixed ionized fraction, as the sources of reionization are more 
biased. 
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ubble sizes (top row). For the lognormal BSD, the dispersion σ
radually increases from σ � 1.25 to 2.25 (second row). The power-
a w-times-e xponential BSD varies less with Q ; generally γ lies
etween γ ∼ −3.75 and γ ∼ −3.25. 

With calibrated R ( Q ) and σ ( Q ) values in hand, we now compare
he phenomenological model’s prediction for the density of bubble
as to the results extracted from 21 cm FAST boxes. As discussed
n Section 2.4.2 , the key choice in the phenomenological model is
he scale on which to smooth the density field when computing its
ariance, which sets the fraction of the volume abo v e a giv en density
ontour. Here, we explore three options, which assume a smoothing
cale equal to the scale of (i) the peak of the volume-weighted,
ogarithmic BSD, V d n /dlog R , (ii) the peak of the volume-weighted,
inear BSD, V d n /d R , and (iii) the radius at which the joint probability
f ionization, 〈 bb 

′ 〉 is no longer equi v alent to the one-bubble term.
he final option requires choosing a threshold, e.g. the scale at which
 1 = X 〈 bb 

′ 〉 , with X a free parameter. It is not obvious how to
hoose this critical threshold, or if it is more or less meaningful than
ptions (i) or (ii) – it merely serves as another approach to employ
n comparisons with 21 cm FAST . We show cases for a threshold of
.97 ± 0.025, which result in densities that generally lie between the
redictions of options (i) and (ii) described abo v e. 
In Fig. 7 , we show the bubble density predictions for the lognormal

SD model compared to 21 cm FAST . While each approach results in
NRAS 514, 2010–2030 (2022) 
he correct behaviour qualitativ ely, none pro vide an accurate match
t all Q or in both reionization scenarios. In general, the density
f ionized gas evolves much more rapidly in the phenomenological
odel than in 21 cm FAST models suggest at early times, Q � 0.3.
hile model #2 is well-matched by smoothing scale option (ii)

escribed abo v e (dashed curv es; bottom panel), at least at Q � 0.2,
he same approach does not provide as good a match for model
1 (dashed curv e; top panel). F or a suitably chosen threshold, a
moothing scale linked to the decline of the one-bubble term does
esult in slightly more gradual evolution (dotted curves). Though the
olid curves do not provide as good of a match in general, we adopt
hem in all that follows for reasons we discuss further momentarily. 

In Fig. 8 , we mo v e on to the phenomenological model’s predictions
or the cross spectrum between the ionization and density fields.
ine-style conventions are the same as in Fig. 7 . As in the case of the

onization power spectrum, the phenomenological model provides a
ery reasonable prediction for the shape of k 3 P x δ as a function of
 . Ho we ver, there are systematic offsets from the 21 cm FAST models
hat vary as a function of R sm 

. Interestingly, the best matches occur
hen R sm 

is tied to the peak in V d n /d R (dashed) or the decline of the
ne-bubble term (dotted). 
Though setting R sm 

to the scale where V d n /dlog R peaks is not the
bvious choice based on Figs 7 and 8 , it is the only option that keeps
he 21-cm power spectrum positive (see Section 2.4 ). Because our
wo-zone IGM model o v erestimates the strength of the fluctuations
n the ionization field, as well as cross-terms involving ionization
nd density, under estimating the density of ionized gas acts as a
ountermeasure that keeps the amplitude of fluctuations in check.

hile this is far from an ideal solution, for our purposes it may
ot matter, as long as our predictions for the 21-cm fluctuations are
easonably accurate. 

Having compared predictions for each component of our model
o the statistics of the ionization field and its relation to the density
eld, we now do one last comparison to the 21-cm power spectrum.
ith R and σ calibrated to 21 cm FAST models at a series of Q values,
e can perform a one-dimensional fit to the 21-cm power spectrum
roduced by 21 cm FAST varying T S alone, and see if the T S found in
ur fits agrees well with the mean T S drawn from 21 cm FAST . Because
 S in the phenomenological model refers to the mean temperature of

he bulk IGM only i.e. neglecting ionized regions), we average over
ll voxels with x H I ≥ 0 . 95 in the 21 cm FAST boxes (as in, e.g. The
ERA Collaboration 2021a ). 
The results of this test are shown in Figs 9 and 10 , for slow and

ast reionization scenarios, respectively. In each case, the model in
he first row has minimal heating from astrophysical sources, while
ubsequent rows have increasingly efficient heating. Dashed lines
n the first four columns show 21-cm power spectra obtained using
he phenomenological model when assuming the true underlying
alue for T S . Solid lines instead show power spectra obtained if T S 

s allowed to vary freely in a 1D fit. The final column shows the
emperature evolution, again including the true evolution (points and
ashed line) and that reco v ered in the 1D fit to the power spectrum
solid lines). 

There is much to unpack from Figs 9 and 10 . Generally speaking,
he phenomenological model performs best in the early stages of
eionization, Q � 0.6 (first three columns), and begins to struggle
ater in reionization, particularly when the spin temperature is large.
his result is not unexpected; the sharp spherical bubbles in our
odel will result in stronger ionization fluctuations at fixed Q

ompared to 21 cm FAST , meaning we should expect to underestimate
he contrast, 1 − T γ / T S . Indeed, this is generally what we find in
igs 9 and 10 . The shape of our power spectra is a reasonably good

art/stac1479_f4.eps
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Figure 5. Comparison of phenomenological model (lines) to 21 cm FAST ionization power spectra (points) for the ‘slow’ reionization scenario. From left to 
right, we compare at fixed mean ionized fraction from Q � 0.2 to Q � 0.8, as indicated in the upper left corner of each panel, assuming that Q = 1 − x H I . We 
fit the 21 cm FAST points to calibrate R and σ (or γ ) for a fair comparison. Dashed lines correspond to the power-la w-times-e xponential BSD, while solid lines 
correspond to the lognormal BSD. 

Figure 6. Evolution of BSD parameters inferred from fits to example 
21 cm FAST ionization power spectra. The typical bubble size evolution is 
well-captured by a power-law dependence on Q (top) for both ‘slow’ and 
‘fast’ scenarios (left and right columns, respectively), while σ exhibits a 
gradual rise and eventual plateau (middle row). The power-law slope γ is 
relatively constant for both reionization scenarios (bottom row). 
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Figure 7. Mean density of ionized gas in 21 cm FAST (points) and phenomeno- 
logical models (lines) versus ionized fraction for the ‘slow’ (top) and ‘fast’ 
EoR scenarios (bottom). We show predictions for several different smoothing 
scales (see Section 2.4.2 ), which sets the variance in the density field and 
thus density contour containing Q per cent of the volume, as indicated in the 
legend in the top panel. We have assumed the lognormal BSD, with R ( z) and 
σ ( z) calibrations shown in Figs 5 and 6 . Black points are repeated in both 
panels for ease of comparison. 
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atch, becoming flatter near the midpoint of reionization. Similarly, 
he shape of our thermal histories are in good agreement with the
1 cm FAST models, though exhibit small biases, as described above. 
There are cases in which the 21-cm power on large scales 

eparts from the phenomenological model’s prediction even at early 
imes. We have verified that this excess power on large scales k �
.1 h Mpc −1 and early times Q � 0.2 (see bottom two panels in the
rst column) is not due to the presence of temperature fluctuations 
MNRAS 514, 2010–2030 (2022) 
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M

Figure 8. Cross spectrum between ionization and density in 21 cm FAST (points) and phenomenological models (lines) for models 1 (top) and 2 (bottom). As 
in Fig. 7 , we show predictions for se veral dif ferent smoothing scales (see Section 2.4.2 ), which sets the variance in the density field and thus density contour 
containing Q per cent of the volume. We have assumed the lognormal BSD, with R ( z) and σ ( z) calibrations shown in Figs 5 and 6 . 
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y running an additional 21 cm FAST simulation in which we set
 S = ∞ everywhere by hand. This large-scale power is likely
ue to the additional ionization from X-ray sources, which our
henomenological approach is not equipped to model. As we will
ee in Section 4.3 , uncertainties on these k modes are large, and so
nlikely to contribute significantly to biasing our fits. 
Finally, notice that in some cases, T S values just abo v e and just

elow T γ are both valid, because the power spectrum is proportional
o (1 − T γ / T S ) 2 (neglecting adiabatic corrections). When this is
he case, we show two solid lines, one for each T S solution. In
eality, this de generac y will be broken by fitting data at multiple
edshifts simultaneously, unless the true temperature evolution of
he IGM is very gradual, and hovers near T S ≈ T γ . Ho we ver, the
henomenological model is never driven to T S � T γ – as seen in
he bottom rows of Figs 9 and 10 . Though the spin temperature
aturates early in 21 cm FAST in each case, the reco v ered T S by
he phenomenological model nev er e xceeds ∼ few times T γ . This
ehaviour is not unexpected. First, we are less and less sensitive
o the spin temperature as T S grows much larger than T γ , and so
hould expect constraints to be poor. And second, given that our
odel o v erestimates the strength of ionization fluctuations at fixed
 due to the idealized assumption of sharp, spherical bubbles, we
ill then underestimate the contrast, 1 − T γ / T S when fitting to a
i ven 21-cm po wer. As we will see in the next section, uncertainties
n the inferred spin temperature history inflat dramatically in these
e gime, pro viding an indicator that a measurement lies in a region of
arameter space captured poorly by our model in its current form. 
In this section, we showed that the phenomenological model

rovides a reasonably accurate match to predictions from 21 cm FAST

imulations. There are differences, as e xpected, but the y are largely
ystematic, with biases at the level of ∼20–40 per cent in the
NRAS 514, 2010–2030 (2022) 
mplitude of the ionization power spectrum and ionization–density
ross spectrum. These biases will of course affect our ability to
eco v er the mean spin temperature and ionized fraction in fits to
ock data sets generated with 21 cm FAST , since these parameters

ct largely as normalization factors in the phenomenological model,
hereas R and σ (or γ ) carry more shape information. We will assess

his possibility in the next section. 

 R E C OV E RY  O F  I G M  PROPERTIES  F RO M  

1 - C M  M O C K  POWER  SPECTRA  

e now determine the extent to which the mean properties of the
GM and parameters describing the size distribution of bubbles can
e reco v ered from observations using phenomenological models.
e explore two different scenarios. First, we fit a mock signal

enerated with the phenomenological model itself (Section 4.1 ),
nd explore the power spectrum’s sensitivity to the BSD in more
etail in Section 4.2 . Then, in Section 4.3 , we fit mocks generated
ith 21 cm FAST . We use EMCEE (F oreman-Macke y et al. 2013 )

version 2.2.1), an implementation of the af fine-inv ariant sampler
f Goodman & Weare ( 2010 ), to perform all Markov Chain Monte
arlo (MCMC) fits to mock observations. 

.1 Fits to phenomenological model mocks 

e begin with a simple exercise to make sure that the parameters
f the phenomenological model can be reco v ered under idealized
ircumstances. The input model adopted for this calculation assumes
 = 0.4, T S = 3 K, R b = 5 cMpc, and σ b = 1 (i.e. a lognormal
SD). We compute error-bars appropriate for HERA using 21CM-
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Figure 9. 21-cm power spectrum from 21 cm FAST (points) and phenomenological models (lines) for the ‘slow’ reionization scenario, including several models 
with increasingly efficient heating (top to bottom). The first four columns show 21-cm power spectra at Q = 0.2, 0.4, 0.6, and 0.8, while the final column 
shows the redshift evolution of T S . In each panel, we freeze Q = 1 − x H I , and take R and σ to their calibration values (derived from the ionization power 
spectrum alone; see Figs 5 and 6 ). We then fit the 21-cm power spectrum with a single free parameter, T S . The results of this fit are shown as solid lines, while 
dashed lines adopt the true T S from 21 cm FAST . Note that because T S is obtained at each snapshot independently, it can be double-valued (final column), since 

 

2 
21 ∝ (1 − T R /T S ) 2 . Such behaviour does not occur when jointly fitting measurements at different redshifts with a parametric form for T S ( z) (see Section 4.3 ). 

Figure 10. Same as Fig. 9 , but for the ‘fast’ reionization scenario. The first four columns show 21-cm power spectra at Q = 0.1, 0.2, 0.4, and 0.6, while the 
final column shows the redshift evolution of T S . The efficiency of X-ray production increases from top to bottom. 
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Figure 11. Parameter constraints obtained via fits to a mock phenomenological signal with T S = 3 K, Q = 0.4, R = 5, and σ = 1 at z = 8 using both BSD 

parametrizations. Left : Posterior distributions when mock signal is fit with the same BSD as that used to generate the mock (lognormal). Right : Results when 
we assume a power-la w-times-e xponential BSD in the fit. Solid and dashed curves indicate 68 and 95 per cent confidence re gions, respectiv ely, while the input 
values are denoted by crosses in the interior panels and vertical dotted lines for the 1D posteriors. Only the spin temperature is constrained well in each case 
(first column), though the 2D relationship between T S and R can also be reliably constrained. 
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ENSE 7 (Pober et al. 2013 , 2014 ) under the assumption of ‘moderate’
oregrounds, and set a superhorizon buffer of a = 0.05 h Mpc −1 . We
ake a system temperature 

 sys = 100 K + 120 K × ( ν/ 150GHz) −2 . 55 , (54) 

ollowing DeBoer et al. ( 2017 ), and assume 1 yr (1080 h) of
bservation time. We bin linearly in wavenumbers (with 
 k =
.1 h Mpc −1 ), and frequency (with a bandwidth 
ν = 8 MHz), from
 ≈ 6–24. This results in a signal-to-noise ratio SNR ∼ 200 for the
OS21 model (1d in Table 1 ). 
The noise on the 21-cm power spectrum has a cosmic-variance

omponent that depends on the fiducial signal that we study.
ather than re-running 21cmSense for each different model in
ur array, we have separated the thermal σ th and cosmic-variance
CV contributions to the error, which can be added to find the full
rror as (Mu ̃ noz et al. 2021a ) 

full = σth + σCV , (55) 

here σ th is a standard output of 21cmSense , and 

CV = a 21 
 

2 
21 (56) 

s given by the k - and z-dependent coefficients a 21 , which we find for
ur chosen bins. This relationship simply states that the total noise
full grows linearly with the size of the fiducial signal, due to cosmic
ariance. 8 

In Fig. 11 , we show the result of this simple forecast. In the left
riangle plot, we show the reco v ery of the lognormal BSD model
arameters, and in the right-hand panel, we show the results of a
t that uses a power-la w-times-e xponential BSD, though the input
ock remains that generated with a lognormal BSD. In the first case,
NRAS 514, 2010–2030 (2022) 

 https:// github.com/j pober/ 21cmSense 
 As a point of comparison, the variance of the CMB temperature power 
pectrum C � scales as σ 2 ( C � ) ∝ ( C � + N � ) 2 Kamionko wski, Koso wsky & 

tebbins ( 1997 ), scaling the same way as our result here. 

 

a  

a  

d  

s  

o  
he true input values are reco v ered well, though generally with large
ncertainties. F or e xample, Q can only be constrained to 0.04 � Q
 0.91 at 2 σ confidence. The typical bubble size is constrained to
 . 5 � R/ cMpc � 12 . 8 (1 σ ), with no real constraints on σ . The mean
pin temperature of the IGM, ho we ver, is constrained well, to T S �
 ± 1 K. The constraint on the spin temperature largely holds even
f fitting with the ‘wrong’ BSD, as shown in the right-hand panel of
ig. 11 . The ionized fraction Q is similarly only weakly constrained,
hile the typical bubble size is biased to slightly larger sizes, R �
 cMpc . In principle, one could perform model selection and select
he best-fitting parametrization with the Bayesian evidence, though
e defer such an analysis to future work. 
The weakness of a single-epoch fit is not unexpected. Our model

as four parameters, and is being used to fit a curve that only mildly
eparts from a pure power law. We chose an input mock with a
old enough spin temperature that only solutions with T S � T γ are
iable, which significantly helps to constrain T S . The results are
argely consistent for each BSD, in that T S is the best constrained
arameter, with the others only weakly constrained. We take a deeper
ook at the power spectrum’s sensitivity to the BSD next. 

.2 Sensitivity of PS to BSD 

n Section 4.1 , we emphasized potential constraints on Q and T S ,
nd discussed the BSD only as a nuisance and its potentially odd
ehaviour in the absence of physical priors. Ho we ver, gi ven that our
henomenological model takes BSDs as input for power-spectrum
redictions, a complementary approach would be to examine the
xtent to which power spectrum measurements can place constraints
n BSDs. 
Consider a BSD that is given by our fiducial lognormal form plus

n arbitrary perturbation in each ln ( R b ) bin. Such a model possesses
 large number of free parameters – one perturbation amplitude per
iscrete ln ( R b ) bin – and thus the expectation is that a single power
pectrum will not likely be able to place meaningful constraints
n ev ery de gree of freedom of the BSD. Given this limitation, we
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https://github.com/jpober/21cmSense


Phenomenological 21-cm models 2025 

i
s  

o
q
i

F

w  

t
t  

d  

f
o  

a  

p
s
t  

f
o  

f
c
a
r  

i
t  

a  

i  

w

t  

U  

a
w  

a
a  

p
f  

a
d
b  

d  

o
r

4

W  

m  

s
i
a  

o  

a  

o  

t
fl  

m
p
a
t

Figure 12. Principal components modes of accessible modes to power- 
spectrum constraints on the bubble size distribution (BSD). Top : Inverse 
square root of the eigenvalue spectrum of the principal components, which 
provides a sense for the measurability of each principal component. Next 
three : First six principal components of the BSD, representing the most mea- 
surable perturbations on a fiducial lognormal bubble BSD (solid black). Note 
that in contrast to Fig. 1 , here we plot d n b /d R b rather than Q 

−1 V b d n b / d log R b . 
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nstead perform a principal component analysis to quantify a few 

hapes in the BSD that can be easily probed using power spectrum
bservations. As our starting point, we compute a Fisher matrix to 
uantify the information content on each perturbation amplitude that 
s contained in the power spectrum. This is given by 

 αβ = 

∑ 

i 

1 

σ 2 
full ,i 

∂
 

2 ( k i ) 

∂ηα

∂
 

2 ( k i ) 

∂ηβ

, (57) 

here σ full, i is the error bar on a measurement of the i th bin of
he power spectrum (as described in Section 4.1 ) and ηα denotes 
he value of d n b /d R b in the αth ln ( R b ) bin. It is understood that the
eri v ati ves are to be e v aluated at a set of fiducial values for any
ree parameters in the model. Performing an eigen decomposition 
f this Fisher matrix provides a set of eigenvectors that serves
s a series of orthonormal basis templates for the BSD. Fig. 12
rovides some example eigenvectors and eigenvalues. The top panel 
hows the inverse square root of the eigenvalues, which quantify 
he error in a potential inference of the amplitude of each template
rom a power spectrum measurement. The templates are therefore 
rdered in the sense that they represent a set of modes ordered
rom most precisely measurable to least precisely measurable. The 
orresponding eigenvectors are shown in the bottom three panels, 
long with the fiducial BSD. Note that in this section, we plot d n b /d R b 

ather than Q 

−1 V b d n b /dlog R b , since it is the former that is an input
n the MICRO21CM package. Since the eigenvectors are normalized, 
he errors in the top panel can be directly compared to the typical
mplitude of d n b /d R b . The dotted horizontal line in the top panel
ndicates the peak value of the BSD, providing a rough sense for
hat modes might be measurable. 
Several trends are immediately apparent. First, we note that all 

he eigenvectors are relatively localized to the high end of the BSD.
nsurprisingly, the scales o v er which these template modes hav e

ppreciable amplitude is in rough correspondence to the scales that 
e probe using the power spectrum. Secondly, we see that the modes

re essentially tapered Fourier-like modes. Each mode measures finer 
nd finer details of the upper end of the BSD. Ho we ver, from the top
anel we see that only the first few are likely to be measurable –
ar fewer than the 1000 bins in ln ( R b ) that were perturbable in our
nalysis. We thus conclude that while the power spectrum certainly 
oes have some sensitivity to the BSD, the information that can 
e extracted about it may be limited. Of course, these results do
epend on the fiducial BSD used in the analysis, and we find from
ur experimentation that although our qualitative trends seem fairly 
obust, the details can vary substantially. 

.3 Fits to 21 cm FAST mocks 

e now test the phenomenological model’s ability to reco v er the
ean IGM properties of mocks generated with 21 cm FAST . While

eminumerical models are known to produce 21-cm power spectra 
n reasonably good agreement with radiative transfer simulations, 
t least in the saturated limit (Zahn et al. 2011 ; Hutter 2018 ), to
ur knowledge, there has yet to be an attempt to compare analytical
nd seminumerical models of reionization or to reco v er the inputs
f one model from the outputs of another. Once again, we expect
he phenomenological model to struggle most when temperature 
uctuations or partial ionization are important in the input 21 cm FAST

ocks, and/or late in reionization when the BSD is an increasingly 
oor descriptor of the ionization field. We plan to experiment with 
 non-uniform temperature field in the future, as there is evidence 
hat semi-analytical and seminumerical techniques agree fairly well 
efore reionization (see Schneider et al. 2021 ). Ho we ver, for no w
e proceed with our model as-is, in order to establish a baseline for
otential development in the future. 
As in Sections 4.1 and 4.2 , we use uncertainties generated with

1CMSENSE for HERA with moderate foregrounds, which provides a 
ducial benchmark for the state of 21-cm observations o v er the ne xt
ew years, and explore all eight 21 cm FAST models introduced thus
ar (in Section 3 and Fig. 4 ): four different X-ray heating scenarios
or each reionization scenario. We fit all redshift snapshots between 
 � z � 10, including only modes in the range 0.1 ≤ k /[ h Mpc −1 ] 

1. 
One could in principle let R , σ , Q , and T S vary independently at

very redshift of a multi-epoch fit, though this will of course result
MNRAS 514, 2010–2030 (2022) 
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Figure 13. Reco v ery of mean ionization (top) and spin temperature (bottom) histories from 21 cm FAST mocks, for each ‘slow’ reionization model. Lines show 

true evolution extracted from 21 cm FAST directly, while recoveries are shown with error-bars, the full extent of which indicate the 95 per cent confidence region, 
and the boxes the 68 per cent confidence interval. Linestyles in the bottom row indicate the spin temperature av eraged o v er vox els abo v e different neutral fraction 
thresholds, as indicated in the legend. There are clear biases in both quantities, though the thermal histories are constrained well enough to associate each mock 
with the correct level of X-ray heating (see Section 4.3 ). 
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n a very high dimensional model. In addition, single-epoch fits only
oosely constrain the ionized fraction (see Fig. 11 ), since they lack
ven simple priors, e.g. that Q increase from high redshift to low.
oti v ated by Fig. 6 , we employ simple functions for the evolution

f each parameter in subsequent MCMC fits. For R , we employ a
ower law in Q , which we found performed more efficiently than
 power law in z. We further parametrize Q and T S as power laws
n redshift and assume σ is a constant, which results in a total of 7
ree parameters. This allows us to compare to 21 cm FAST models o v er
 range of redshifts, and fit to multi-epoch mock data sets without
ramatically increasing the dimensionality of the fit. 
In the future, large databases of seminumeric models (e.g. Prel-

govic et al., in preparation), could be used to map out a prior
olume in ( R , σ , Q ) space in order to avoid unphysical regions and
o reduce uncertainties on Q and T S . Here, ho we ver, we assume
road, uninformative priors on each parameter. We take: 

(i) Q ∈ [0, 1] and dlog Q /dlog z = [ −20, 0]. 
(ii) log 10 T S / K ∈ [ −1 , 3] and dlog T S /dlog z ∈ [ − 20, 5]. 
(iii) R( Q = 0 . 5) / cMpc ∈ [0 . 5 , 50] and dlog R /dlog Q ∈ [0, 5]. 
(iv) σ ∈ [0.25, 2.5]. 

We also enforce Q ≥ 0.99 at z = 5.3, a conserv ati ve end-of-
eionization prior consistent with the latest interpretation of Ly α
orest constraints (Becker et al. 2015 ; Keating et al. 2020 ; Bosman
t al. 2021 ). 

Before we show the results of these fits, we note that each
eionization scenario spans a different range in ionized fraction over
he same interval in redshift used for fitting. For example, the IGM
NRAS 514, 2010–2030 (2022) 
n the ‘slow’ reionization model is already � 30 per cent ionized by z
10, the highest redshift used in the fit, while the ‘fast’ reionization

cenario has Q � 0.1 at z � 10 (see Fig. 4 ). As a result, we may see
ifferent outcomes in the fits given that our model fares poorly at the
ery end of reionization, and there are ef fecti vely more data points
ate in reionization for the ‘slow’ scenario. 

In Figs 13 and 14 , we show our reco v ery of the mean ionization
istory (top) and spin temperature history (bottom), for ‘slow’ and
fast’ reionization models, respectively. In each plot, we show results
or increasingly efficient X-ray heating going from left to right. 

Starting first with the ‘slow’ models, two things are clear imme-
iately at a glance: (i) the reco v ered ionization histories have large
ncertainties and are generally biased low, and (ii) the reco v ered
hermal histories, while also slightly biased, are correct in order of
 X / SFR , and so are good enough to identify the appropriate heating

cenario. Ho we ver, for the most efficient X-ray heating scenario
model 1d; right-most columns), uncertainties on T S grow much
arger, as we are increasingly insensitive to T S once it becomes large.
his is in some sense a good thing, i.e. huge errors on T S but not on
 may alone indicate T S � T γ . 
The ‘fast’ reionization scenario in Fig. 14 shows the same general

rends in its reco v ery of the thermal history. Ho we ver, here, the early
tages of reionization are reco v ered much more accurately, while it
s the later stages that suffer from more of a bias. This is at least in
art caused by our decision to fit both models o v er the range 6 � z �
0. For the ‘fast’ models, the full rise in 21-cm power from Q � 0 to
 � 0.5 lies within the fitted range, but the latter half of reionization
oes not. Because the mock contains the part of reionization that the

art/stac1479_f13.eps
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Figure 14. Reco v ery of mean ionization (top) and spin temperature (bottom) histories from 21 cm FAST mocks, for each ‘fast’ reionization model. Lines show 

true evolution extracted from 21 cm FAST directly, while recoveries are shown with error-bars, the full extent of which indicate the 95 per cent confidence region, 
and the boxes the 68 per cent confidence interval. Linestyles in the bottom row indicate the spin temperature av eraged o v er vox els abo v e different neutral fraction 
thresholds, as indicated in the legend. Though some biases are visible in both quantities, the early history of reionization is better constrained than that of the 
‘slow’ scenario (Fig. 13 ), likely because the first half of reionization lies in the fit range, 6 � z � 10. Once again, the thermal histories are biased, but are 
constrained well enough to associate each mock with the correct level of X-ray heating (see Section 4.3 ). 
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odel predicts best, a more reliable fit is obtained. In contrast, the
slow’ scenario co v ers the middle ∼50 per cent of reionization, so
he fit cannot leverage the model’s accuracy at Q � 0.3. 

There are other factors at play, aside from the fitted redshift range,
hat could explain the biases in Figs 13 and 14 . For example, as
iscussed previously, because our model o v erestimates ionization 
uctuations we should expect to underestimate the contrast. This 

s clearly the case in the scenarios with minimal X-ray heating –
he reco v ered T S is higher than the true T S once reionization gets
nderway. In the final scenario, with very efficient X-ray heating, the 
xact temperature is constrained very poorly (last column). Ho we ver, 
nce the temperature is T S � T γ , the 21-cm background is of course
ncreasingly insensitive to T S . The bias in our recovery is in part
aused once again by our o v erestimation of ionization fluctuations, 
xcept now, in the emission regime, T S must be reduced to preserve
arge-scale 21-cm power as Q rises. 

The other likely source of error is our neglect of temperature 
uctuations and partial ionization. While our models a and d are 
early equi v alent to cases with identically zero heating and full
aturation, respectively, the intermediate cases b and c likely have 
esidual temperature fluctuations to some extent during reionization. 
imilarly, cases c and d are most likely to have partial ionization
aused by strong X-ray backgrounds. These factors could be causing 
he change in the reco v ered ionization histories as a function of
 X / SFR . We do not attempt to quantify the magnitude of these
ffects here, but a closer look may be warranted in future studies. 

For completeness, we show example recovered 21-cm power 
pectra in Fig. 15 . Now, the four different ‘slow’ reionization 
cenarios are shown from top to bottom, in order of increasing X-ray
eating, at nine different mean ionized fractions from left to right.
n most cases, the power spectrum is reco v ered v ery well, indicating
hat our 7-parameter model is sufficiently flexible to capture both the
ime evolution and shape of the 21-cm power spectrum. 

 DI SCUSSI ON  A N D  C O N C L U S I O N S  

n this work, we have introduced a simple, phenomenological model 
or the 21-cm power spectrum during reionization that abstracts away 
ssumptions about galaxy formation and instead works directly in 
erms of the bubble size distribution, mean ionized fraction, Q , and
ean spin temperature, T S . The goal was to build intuition for the

esults of more sophisticated models like 21 cm FAST , and determine if
fficient, IGM-focused models like ours may be sufficiently accurate 
or inference in the next few years, as upper limits from, e.g. MWA,
ERA, and LOFAR continue to impro v e. To our knowledge, this is

he first attempt to reco v er the IGM properties from 21-cm power
pectra generated with 21 cm FAST using a completely different model
though see Zhou & La Plante 2021 , for a similarly moti v ated analysis
n the 21-cm imaging context). 

We find that a binary ionization field, with a size distribution of
ubbles given by simple lognormal and power-la w-times-e xponential 
unctions, gives rise to 21-cm power spectra in qualitative agreement 
ith those generated by seminumeric models (see Figs 1 and 2 ). We
rovide a grid of model predictions for the large-scale 21-cm power
pectrum at z = 8 in Fig. 3 , which show that ‘cold reionization’
odels, with T S � 1.8 K (the limit corresponding to pure adiabatic

ooling), can be disfa v oured by upper limits at the ∼ 10 3 mK 

2 level.
MNRAS 514, 2010–2030 (2022) 
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Figure 15. Reco v ered 21-cm power spectra from fits to ‘slow’ reionization 21 cm FAST mocks. From top to bottom, we show models with increasing L X / SFR , 
in order of increasing global ionized fraction from left to right. Shaded regions show 68 per cent confidence reconstructions, while solid lines indicate the 
maximum likelihood model. 
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Indeed, the recent The HERA Collaboration et al. ( 2021b ) upper
imits ((30 . 76 mK ) 2 at z ∼ 7.9 and k = 0.192 h Mpc −1 ) imply
pin temperatures in excess of the adiabatic limit, as found in
our independent analyses, including an analytical bias model, our
henomenological model, and two semi-numerical models (The
ERA Collaboration 2021a ). Our model predicts that an order-of-
agnitude impro v ement, resulting in upper limits of ∼ 10 2 mK 

2 at
 � 8, would dri ve lo wer limits on the spin temperature securely
o T S � 10 K. This is an important milestone, as T S ∼ 10 K
s expected in models anchored to galaxy luminosity functions
Mirocha, Furlanetto & Sun 2017 ; Park et al. 2019 ), if one assumes
here is no evolution in the efficiency of X-ray production (see also
g. 7–8 in The HERA Collaboration 2021a ). As a result, ∼ 100 mK 

2 

imits would substantiate expectations of redshift evolution in the
 X –SFR relation due to declining metallicities in galaxies at high
edshift (Fragos et al. 2013 ; Brorby et al. 2016 ). 

We also performed several forecasts, first a single-epoch fit to a
ock 21-cm power spectrum generated with the phenomenological
odel (Section 4.1 ), followed by a multi-epoch fit to mocks generated
ith 21 cm FAST (Section 4.3 ). 
When fitting mock signals generated with the phenomenological
odel, we do reco v er the input model parameters, though uncer-

ainties are generally large (see Fig. 11 ). Simultaneously fitting data
t multiple redshifts is thus vital to obtaining tight constraints on
odel parameters, e.g. the mean ionized fraction. The IGM spin

emperature, T S , is an exception here, at least for strong signals.
he detailed shape of the BSD is likely beyond the reach of current
xperiments, though, encouragingly, the power spectrum is sensitive
o the typical bubble size and the distribution of sizes just abo v e the
eak (see Section 4.2 ). 

We also fit a total of eight 21 cm FAST mocks: a ‘slow’ and
fast’ reionization scenario with four different X-ray heating sce-
arios for each. Because our model overestimates the ionization
uctuations (see Figs 5 –6 ), we generally underestimate the con-

rast , 1 − T γ / T S . As a result, for cold reionization scenarios, the
henomenological model yields slightly higher temperatures than
NRAS 514, 2010–2030 (2022) 
re assumed by the input mock, and if heating drives T S � T γ ,
e instead obtain T S values that are biased low. In detail, the

eco v ered ionization and thermal histories are underwhelming in
ome parts of parameter space (Figs 13 and 14 ). Ho we ver, one
an reliably place reco v ered thermal histories into broad categories
no heat and low/medium/high heat), a triumph for such a simple,
henomenological approach. 
Finally, we note that our model adopts several key simplifying

ssumptions, impro v ements to which may bring our approach into
loser agreement with semi-numeric models. For example, we
ssume: 

(i) Bubbles are fully ionized, perfectly spherical, and have per-
ectly sharp edges, which results in an o v erestimate of fluctuations
n the ionization field (see Section 3 and Figs 5 –6 ). 

(ii) The degree of bubble overlap is estimated (see Section 2.3.1 )
ut we do not attempt to correct for o v erlap effects. 

(iii) The density field is assumed to mirror the ionization field,
hich allows a simple approach to computing cross-terms (see
ections 2.4 –2.4.1 ) and the mean density of ionized regions (see
ection 2.4.2 and Fig. 7 ), but results in biases (see Fig. 8 ). 
(iv) Though we focus entirely on ionized bubbles, one can instead

reat bubbles of a fixed temperature with the same formalism by
hanging the parameter α (see Section 2 ). Ho we ver, we do not allow
oth kinds of fluctuations to operate simultaneously in this work, and
n some cases our ability to reco v er IGM properties from 21 cm FAST

odels may suffer as a result. 

With a run-time of less than a second per redshift, we can afford
mpro v ements to the model, even if they come with a non-trivial
enalty in computational efficiency. The assumptions listed abo v e
ay thus be prime targets for improving the model, in an attempt to

educe biases in IGM constraints derived from our phenomenological
pproach, and perhaps even tighten constraints over a broader
ange of parameter space (e.g. the T S � T γ regime). We defer an
xploration of potential improvements to future work, and in the
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eantime welcome additions and/or impro v ements to the code at 
ttps:// github.com/mirochaj/ micro21cm . 
Software : NUMPY (Van Der Walt, Colbert & Varoquaux 2011 ), 

CIPY (Virtanen et al. 2020 ), MATPLOTLIB (Hunter 2007 ), EMCEE

F oreman-Macke y et al. 2013 ), CAMB (Lewis et al. 2000 ). 
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