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Introduction

Machine and deep learning methods applied to medical images seem to be
a promising way to improve the performance in solving many issues: the
diagnosis of a specific disease, the contouring of organs or lesions, the predic-
tion of the prognosis, they offer the possibility of analyzing many patients’
data in a reproducible way and they can be applied to carry out follow up
and radiomic studies. In particular, the advent of deep learning algorithms
in the field of medical image analyses is leading to a change in supporting
physicians in their role. Many different applications have been explored [89]
successfully. However, developing an algorithm with the aim of applying it in
clinical practice is a complex task which should take into account the context
in which the software is developed and should be used. In the first report
of the World Health Organization (WHO) about the ethics and governance
of Artificial Intelligence (AI) for health published in 2021 [154], it has been
stated that AI may improve health care and medicine all over the world only
if ethics and human rights are a main part of its development. WHO recog-
nizes that ethical guidance based on the shared perspectives of the different
entities that develop, use or oversee such technologies is critical to build trust
in these technologies, to guard against negative or erosive effects and to avoid
the proliferation of contradictory guidelines. Involving ethics in technology
development means to take into account several issues. First, understanding
how scientific method is changing should be at least taken into account and
discussed, when developing a medical software. This is directly connected
to the epistemological change due to the intensive use of deep and machine
learning. According to Kitchin [68] and Hey [52], in fact, epistemology is mov-
ing towards a new paradigm called the ”fourth paradigm” or ”exploration
science”. In this evolution, some fundamental rules of traditional science are
deeply changing and they should be taken into account since they are use-
ful to establish the limits and the possibilities of these new rising methods.
The assumptions that are made during the development of an algorithm are
critical to define the model itself and the boundaries in which it should be
applied. Second, involving ethics means that AI should be built taking care
of sampling population in order to prevent social and technological biases.
Third, most of deep learning algorithms work in a way that is not easy to
explain or interpret. Since a deep learning algorithm is usually made of many
hidden layers, it is not straightforward to understand how it comes to a de-
cision. For this reason, in recent years, the explanation of the functioning of
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an algorithm is a very interesting field of study which goes under the name
of Explainable Artificial Intelligence (XAI) [47]. Furthermore, AI applied to
medical images should also take into account the process of image production
which includes manufacturers, acquisition parameters and also the interac-
tions with physicians. When developing a deep learning based algorithm,
in fact, we should always compare the results with a ground truth that de-
fines the objective we want to reach. The ground truth on medical images
is usually made by medical doctors opinions or by a consensus among them.
However, it always suffers from a certain grade of variability which should
be kept under control [15, 121]. The use of a peculiar imaging modality and
of a specific imaging system may affect the capability of having a reliable
ground truth and aggregate data from different sources is a challenge that
still need to be addressed. In fact, publicly available data sets of medical
images usually contain small data sets that need to be aggregated in order
to obtain a set with a sufficient number of samples to train a deep learning
algorithm [92]. Even if it is possible to collect private image data sets from
hospitals, the process is very time consuming for both the collection and the
labeling. Moreover, the publication of such data sets may not be possible
reducing the chance of reproducing results obtained by other studies. Pub-
lishing the data is not easy because database maintenance is expensive and
the privacy of patients has to be managed rightfully. In this context, the
application of AI to medical images needs a special care since its wrong use
may harm not only people but also health care systems [140]. Developing an
algorithm that takes into account all the issues is a very complex task and the
aim of this work is to discuss it with the support of two deep learning based
algorithms developed on medical images. In Chapter 1, an overview of the
X-ray imaging principles is reported. In particular, the description of X-rays
production and their interaction with matter is included. Since the follow-
ing two use cases are made on mammography and Computed Tomography
(CT), these two specific imaging modalities are deeply described. Moreover,
Chapter 1 includes an overview of how deep learning works and an introduc-
tion to the explainability problem. Understanding how medical images are
produced is important to develop a deep learning algorithm. In Chapter 2, a
wide discussion and description of the technical and ethical issues of medical
algorithm development is discussed. This chapter includes a discussion on
the changing scientific paradigm and on how medical images data are col-
lected, labelled and published. Moreover, a discussion on the meaning of the
work ”validation” is reported along with a brief dissertation on how deep
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learning algorithm may be included in a hospital workflow. Finally, a pro-
cess to assess trustworthiness on medical algorithm, called ”Z-inspection®”
[161] is presented. In the following chapters, the two algorithms I developed
during my PhD are presented. The first one is included in Chapter 3 and
it has been applied on mammography for the classification of breast density
[93] [127]. Breast density is defined as the ratio between fibroglandular tis-
sue and fat tissue as seen on a mammographic exam. It is an interesting
patient feature because it is responsible for the masking effect, which means
it may cover a malignant mass, and radiation dose depends on it. Moreover,
breast density is an inherent risk factor for cancer. Since its classification
is usually assessed by radiologists following qualitative guidelines according
to the BI-RADS Atlas, a Convolutional Neural Network (CNN) has been
developed to solve this task and the grad-CAM algorithm has been used to
explain the CNN. The performances obtained in terms of accuracy, recall
and precision compare well with the literature [91]. Data have been collected
from the Azienda Ospedaliero-Universitaria Pisana (AOUP) and labelled by
one radiologist with experience in reading mammograms and, hence, data
come from a private dataset. This collection made possible to have a suffi-
cient number of exams to train a CNN. During the collection, the sampling
of the population was only based on the date of exams and this led, as a
result, to a very imbalanced data set. Moreover, it contains only images and
class labels, avoiding the possibility of studying important characteristics of
the population, such as the ethnicity. It has been studied [68] that once a
data set has been acquired, it is quite impossible to add entries to better
stratify populations. The ground truth has been made by one radiologist
and it has been studied that the variability in BI-RADS classes assessment
is not negligible. Furthermore, the lack of a public data set that contains
digital mammograms does not allow a fair comparison with other algorithms.
Finally, the explanation was made with the Grad-CAM algorithm that high-
lights the areas of the image used to perform the classification. However,
there not exists a method to quantify systematically whether the algorithm
has been well explained. For this reason, I propose a simple correlation study
between the pixel intensities and the activation map, since it is expected that
the classifier should look at denser regions to perform the classification and
denser region should be more intense in mammograms.

The second algorithm, reported in Chapter 4, has been developed on
Computed Tomography (CT) scans to segment the lung parenchyma, the
COVID-19 lung lesions and it returns as output also the CT Severity Score

8



(CT-SS), which is a classification system based on the percentage of infected
lung [90]. Lung Computed Tomography (CT) is an imaging technique use-
ful to assess the severity of COVID-19 infection in symptomatic patients
and to monitor its evolution over time while the diagnosis is not possible
through CTs because other forms of pneumonia may appear very similar to
the COVID-19 one. Since the system outputs the infected areas on the im-
age, the software can be used to compute radiomic features for the prediction
of clinical variables. The pipeline is made of a cascade of three CNN:

1. The first module is a CNN which infers through regression 6 points of
a bounding box that includes the lungs.

2. The second module is a U-net which takes as input the CT scans
cropped at the bounding box and it is devoted to lung segmentation.

3. The third module is a U-net with the same architecture of the previ-
ous one which segments, instead, the lesions (ground glass opacities,
consolidations and so on).

The software computes the physical volumes of the lesions and the lungs
and their ratio in order to obtain the CT-SS and a simple post-processing
based on watershed transformation is used to separate right and left lung.
The pipeline has been trained on publicly available data sets and some of
them have been collected for other purposes. Moreover, since data have
been released in the NifTI format, whose header contains only spatial and
orientation information, all the acquisition parameters were lost. Thus, they
could not be used during data pre-processing to standardize images. In
addition, no information has been published regarding the type of population
sampled. The limited number of samples forced us to aggregate several data
sets in order to have a sufficient number of images in the training set. Each
data set has been labelled using different guidelines and label noise has an
effect on the performance of the algorithm. As regard the lung segmentation,
lung CTs of patients not affected by COVID-19 have been used because there
not exists a dataset of COVID-19 patients labelled with the lung contours
with the exception of the COVID-19-CT-Seg dataset [98] that has been kept
apart for testing the software. This operation biased our algorithm and its
performance in lung segmentation may not be satisfactory on COVID-19
patients. To overcome this lack, the masks of the lungs that are returned in
output are joined to those of the lesions. However a data set on COVID-19
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that includes lung labels could improve the segmentation performance of the
software. The lesion segmentation algorithm has been trained with all the
available published labelled data which contain mostly mild cases of COVID-
19 pneumonia. As a result, the algorithm systematically underestimates the
injured areas. This work has been then sent to several Italian hospitals and
we are carrying out a study on the agreements between physicians and the
software in order to validate the algorithm.

Throughout the critical analysis of these two algorithms, it is possible to
underline how theoretical issues affect the reliability, the performance and the
fairness in practice and, since they concern many different domains of knowl-
edge, the thesis that it is necessary to involve many expertises including
physicists, physicians, lawyers, sociologists, computer scientists, computer
engineers and so on, is discussed. Taking into account the issues that con-
cern the application of algorithms in clinical practice is a challenging task
which should not be considered only a posteriori. Moreover, it deals also
with how institutions that manage health and research interact among each
other. Designing an experiment that considers as much as possible the issues
presented above is necessary for producing a Data Science which is more
impacting, fair, reliable and with high performance.
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Chapter 1

Applications of deep learning
methods to medical images

The application of deep learning techniques to medical images seems to be a
very promising way to improve diagnosis performance. In order to correctly
use these methods, it is important to understand what a medical image is and
which deep learning methods may be more appropriate than others. For this
reason, in Chapter 1, the physical principle of X-Ray imaging, including X-
Rays production, their interaction with matter and the principles of detecting
them, is firstly presented (Sections 1.1, 1.2 and 1.3). Since the use cases of
this work concern mammography and Computed Tomography, in Sections
1.4 and 1.5 these two imaging modalities are presented. In Section 1.6 and
1.7, Convolutional Neural Networks (CNN), the NN used in the use cases, are
presented along with a brief literature review of their application on medical
images. The specific literature for each use case is presented in later chapters.
Finally, the ”black box” problem is presented in the last section with a review
of explanation methods for CNNs.

1.1 Where does medical imaging come from?

Even if the historical origins of medical physics are traced from the first use
of weighing as a means of monitoring health by Sanctorius in the early seven-
teenth century, the first appearance of the term ”Medical Physics” dates back
to 1778 in Paris. It was intended as the study of physical principles applied
to medicine. Even if the first traces of experimenting physics in medicine
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goes back to ancient Egypt, in the 18th century, this new discipline began its
systematical foundation [31]. Medical imaging is a branch of medical physics
which aims to represent the human body using different physical principles.
Its beginning can be dated back to the X-ray discovery made by Wilhelm
Conrad Röntgen in November 1895 and his finding was the first moment, in
human history, in which looking into a living human body was possible. The
use of X-ray and radiograph was soon replicated in many physics laborato-
ries in Europe and America [128] and it was widely used during the First
World War. Marie Curie, who won the Nobel prize few years earlier for her
research on radiation, drove a truck equipped with a portable X-ray machine
through the French battlefront, allowing not only a more precise diagnosis
of broken bones but also of the effects of gas gangrene [128]. In the very
next years, X-ray radiographs were used also to image the lungs in order to
study and detect tubercolosis. However, the medium and long term effects
of radiation was quantified only few years later, in the late 1940s. Nowa-
days, many imaging modalities are used in hospitals to diagnose, monitor
and screen patients. Each of them exploits a physical principle to repre-
sent the human body. X-ray imaging uses the same principle discovered by
Röntgen and applied by Marie Curie; Magnetic Resonance Imaging (MRI),
which was invented in 1971 by Paul Lauterbur, exploits the possibility to
orient the nuclear spins of human body and to reconstruct a 3D image using
the back-propagation algorithm; ultrasound imaging, instead, is made with
sound waves that are sent to the patient through a transducer and can return
morphology information measuring their echos; nuclear imaging exploits the
metabolic and chemical behaviour of human body to image the functionality
of organ through the use of radiopharmaceutical, which contains radioactive
isotopes. Many applications have been developed in the last 50 years and one
of the most interesting frontier research field is the multimodality imaging,
which searches how to build imaging devices that allows to acquire a body
representation using more than one imaging technique mentioned above.

1.2 Physical principles of X-Ray imaging

In this thesis, two main case studies are presented: the first one is related
to mammography while the second one is related to Computed Tomography
(CT). For this reason, the explanation of this two imaging modalities will
be analyzed more in depth. Both mammography and computed tomography
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are based on the use of X-rays but their applications and their scopes are
different.

1.2.1 X-rays production and detection

X-ray is an electromagnetic radiation whose energy is between 124 eV and
124 keV [26]. In this energy range, which is the diagnostic one, X-rays inter-
act with human tissues in two main ways: the photoelectric effect and the
Compton scattering. There are other kind of interactions that occurs which
are not relevant in this exposition. Every human tissue and organ interacts
differently with X-rays and their differential absorption of X-rays, due to their
atomic composition, is the basis of the image production. The principles used
to produce X-rays are mostly not changed over time but X-rays tube has been
refined to achieve the required performance for imaging. The production of
X-rays is made by the bombardment of a thick target with energetic elec-
trons. When the electrons reach the target materials, collision and scattering
processes happen and, as a result, we have X-ray production. Its spectrum
is essentially due to the bremsstrahlung radiation and to the characteristic
radiation. When an electron goes across matter, it is slowed down. In par-
ticular, when it is enough close to an atomic nucleus, it interacts through
the Coulomb force and changes its trajectory. An electron that changes tra-
jectory emits electromagnetic radiation called bremsstrahlung. The energy
of the emitted radiation is subtracted from the kinetic energy of the inci-
dent electron and the energy of the emitted photon depends on the Coulomb
forces, hence, it depends on the distance between the electron and the nu-
cleus. Classically, an electron colliding with a thin target yields a constant
energy fluence from zero up to the initial kinetic energy of the electron. As
a result, its spectrum is a simple rectangular function. A thick target can be
seen, classically, as a stack of several layers of thin targets. As the electron
is slowed down through target layers, it loses its energy until it reaches the
rest state. The spectrum of such interactions results in a stack of rectangular
functions which can be represented as a triangular function. The classical
theory does not take into account the attenuation processes and, moreover,
quantum mechanics tells that the energy spectrum for an electron crossing
a thin layer is not rectangular. For these reasons, the bremsstrahlung spec-
trum represented as a triangular function is an ideal classical representation
of the process. The other main process that contributes to X-ray spectrum
is the characteristic radiation. A fast electron that collides with a shell elec-
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tron could knock out the shell electron if the kinetic energy of the fast one is
greater than the binding energy of the shell electron. When the shell electron
is knocked out, it leaves a vacancy which is filled with an electron coming
from an outer shell. This transition is accompanied along with X-ray emis-
sion. The energy of the emitted radiation depends on the binding energies of
the involved shells. Binding energy is greater in the most inner shell (K) and
it decreases in outer shell (L,M and so on). Moreover, binding energies are
characteristic and unique for each element and for this reason the emitted ra-
diation is called characteristic radiation. The sum of the radiation produced
in this two processes composes the X-ray spectrum (Figure 1.1).

Figure 1.1: (a) Ideal bremsstrahlung spectrum for a tungsten anode (tube
voltage 90 kV), (b) an actual spectrum at the beam exit port, including
characteristic X rays (anode angle 20°, inherent filtration 1 mm Be) and (c)
the spectrum filtered with an equivalent of 2.5 mm Al. This image has been
taken from [26]

X-rays are not generated in the surface of the material but within it; for
this reason the X-ray beam is also attenuated by the material itself (self-
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absorption), especially at low energies. The energy fluence depends on the
atomic number of the target, on the current and the square of the potential
difference of the X-ray tube. Hence, having higher bremsstrahlung energy
requires the use of target materials with higher atomic number (Z). X-rays
are usually produced with a X-ray tube. A simplified version of a X-ray
tube is made by several elements. First, we have the current supply used to
produce energetic electrons through the thermionic emission on a filament,
which constitutes the cathode of the tube. Then one of the fundamental ele-
ment for the X-ray spectrum production is the target on which the energetic
electrons collide and it is the anode of the tube. The choice of the anode
defines important characteristics of the spectrum and it depends on the ra-
diographic application. Moreover the process of X-ray production does not
have high efficiency and, hence, the anode material should also have good
thermal properties. The optimal choice in common radiology for anode ma-
terial is the tungsten (W, Z=74). In mammography, the choice for anode
materials may be different because mammography is an imaging technique
which inspects a particular soft tissue. For this reason, the energy of the X-
ray spectrum required for it is usually lower than any other diagnostic exam.
In mammography, the X-ray radiation produced by characteristic emission
is higher than the bremsstrahlung one, ensuring good image quality and low
dose delivery. Typical anode materials for mammography are molybdenum
(Mo, Z=42) and rhodium (Rh, Z=45) but it is possible to find mammo-
graphic systems with tungsten anode too. Finally, another fundamental part
in X-ray production is the use of filtration. In fact, lower energy X-rays con-
tribute to dose delivering without any improvement to image formation at
all. For this reason, filters are usually used at the exit of the tube in order to
select the X-rays for the specific imaging task. Another pivotal part of the
imaging is the X-ray detection. X-ray detectors can be divided into three
categories: film based, indirect digital and direct digital detectors. In the
last few years, film detectors have been replaced with digital radiography for
many reasons: digital radiography gives advantages of immediate image pre-
view and availability, deletes the cost of film processing, guarantees a wider
dynamic range and allows to apply special image processing techniques that
enhance overall display quality of the image. Digital radiography is usually
made with flat panel detectors, which can be direct or indirect. In the former
case, the X-rays interact with a scintillator, which converts them into visible
light, and then light is converted into electrons by a system made of amor-
phous silicon photodiodes and read by Thin Film Transistors (TFTs). One
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of the best material for the scintillator is the Thallium activated Caesium
iodide because it has a good quantum efficiency and its crystal structure en-
sures good spatial resolution. In the latter case, the direct detectors are made
of amorphous Selenium which directly converts X-rays into charges that are
subsequently read by TFTs. The amorphous Selenium is the material used
in commercial imaging systems since it has good qualities such has a good
quantum efficiency.

1.3 Matter X-ray interactions

In order to understand how it is possible to create an image with X-rays,
it is important to discuss how this radiation interacts with the matter. In
radiology, the range of X-rays energy goes from about 10 keV to about 150
keV [26]. Since the wavelength of the highest energy usually used in radi-
ology is comparable to the atom radius, the interactions occur between the
electromagnetic radiation and the electrons at atomic scale. Each photon in-
teraction is expressed in terms of cross sections and attenuation coefficients,
as concerns the passage through a medium. The interactions between the
X-ray radiation and matter are the photoelectric effect, the Rayleigh scat-
tering and the Compton scattering. In the photoelectric effect, when the
photons hit an atom, they may cause the emission of an electron if they have
an energy greater than the electrons binding energy. The emitted electron is
called photoelectron and its kinetic energy is equal to:

T = hν − Es (1.1)

where h is the Planck constant, ν is the photon frequency and Es is the elec-
tron binding energy. This happens only if the energy of the incident photon
exceeds the binding energy of the electron in that shell. The probability of
the interaction is difficult to be calculated and it implies the use of quantum
mechanics. However, in the diagnostic energy range, the photoelectric cross
section per atom can be written as:

τ =
Z4

(hν)3
(1.2)

where Z is the atomic number. The left vacancy is then usually filled by
an electron of an higher shell. There are two scattering processes at this
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energy that are Rayleigh, coherent and Compton, incoherent. In Rayleigh
scattering, a photon collides on a bounded electron and there is no energy
transfer between particles involved in the interaction. Rayleigh scattering has
a low probability in the diagnostic range. However, as any scattering process,
it degrades the image quality since the scattered photons may be revealed
on the detector in a wrong position. Compton scattering is the predominant
type of interaction in the lower energy diagnostic range. It is an incoherent
scattering process and, hence, there is transfer of energy between interacting
particles. The photon that hits on a shell electron changes its direction
and energy and provokes the emission of the electron, leaving the atom in
an excited state. The ejected electron loses its kinetic energy through the
ionization of surrounding tissues, contributing to the radiation dose. For
the Compton scattering, the cross-section is proportional to Z

E
where E is

the photon energy. Scattering is a degradation source for medical images
because scattered photons deviate their path and impress the detector in a
false position. The X-Ray attenuation depends on the beam energy: the
photoelectric effect is predominant at low energy in the diagnostic range,
while the Compton effect is predominant in the intermediate energy range.

The interaction processes described above are useful to understand the
physical processes behind the image production. Anyway, also the macro-
scopic effects due to photons crossing matters are important. Linear atten-
uation coefficient is a coefficient which gives information about the primary
photons and material interactions. If we consider a thin slab of material of
thickness dx irradiated normally by a beam of photon, the radiation may be
absorbed, scattered or may pass without interacting. The probability that a
photon interacts with the slab is given by:

Naσdx (1.3)

where Na is the number of interaction centers per unit volume and σ is the
total cross-section per atom. The quantity Naσ is called linear attenuation
coefficient and is usually denoted by µ. If we consider a thick slab of a certain
material and the fluence Φ(x) of non interacting photons, the expected change
in the fluence, dΦ, after the passage through the medium is:

dΦ = −Φµdx (1.4)

The integration of the above equation brings to:

Φ = Φ0e
−µx (1.5)
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This equation describes the attenuation of the photon beam and it is known
as Lambert-Beer law. If we consider a homogeneous material of thickness t
and attenuation coefficient µ1, crossed by a monochromatic radiation , which
contains an insert of thickness x and attenuation coefficient µ2, the difference
in intensity can be written as:

ΔI = I0e
−µ1t(1− e−(µ2−µ1)x) (1.6)

1.4 Mammography

Breast cancer is the most diagnosed women cancer worldwide and the sec-
ond cause of women death for oncological disease [135]. Mammography is
a radiographic procedure optimized for breast examination, performed with
X-rays of appropriate energy and which measures the X-rays attenuation
through breast tissues [26]. Breast cancer signs, that should be represented
and visible on a mammogram, are:

• morphology of the tumor mass, which includes irregular margins or
spiculation (Figure 1.2, left);

• mineral deposits of calcium hydroxyapatite or phosphate, which can be
seen as little grains called microcalcifications (Figure 1.2, right);

• architectural distortion of the normal breast pattern, which can be seen
as straight lines radiating from a central area and retraction or bulging
of a contour (Figure 1.3, left);

• asymmetry in corresponding regions of the left and right breast (Figure
1.3, right).

To better visualize such signs, a mammogram has to show a high contrast
between breast structures and background and contrast is generated by dif-
ferences between attenuation coefficients among different tissues. In Figure
1.4, X-ray attenuation coefficients over energy are shown for the three main
tissues in the breast: adipose tissue, fibroglandular tissue and infiltrating
ductal carcinoma [59].

As energy increases, differences in attenuation between breast tissues de-
crease. Furthermore, as shown in Figure 1.4, the attenuation coefficients
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Figure 1.2: On the left, a hyperdense mass with an irregular shape and a
spiculated margin. It has been proved to be an invasive ductal carcinoma. On
the right, microcalcification clusters which has been proved to be multifocal
DCIS (Ductal Carcinoma In Situ) with areas of invasive carcinoma

Figure 1.3: On the left, an example of an architectural distortion. On the
right, an asymmetrical distortion between left and right breast that has been
proved to be adenocarcinoma.

of fibroglandular tissue and cancer tissue are very similar. This similarity
makes cancer detection not easy. In order to have a sufficient diagnostic
power, mammography needs high spatial resolution, especially to visualize
margins of masses. In fact, the irregularities on the edges of masses are in the
order of magnitude of 50 µm. Furthermore, breast tissue is radiosensitive.
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Figure 1.4: Attenuation coefficient versus X-ray energy. It can be noticed
that the difference between adipose and fibroglandular tissues is remarkable
while the difference in attenuation coefficients between fibroglandular tissue
and cancer tissue is not so significant.

For this reason, in an optimal mammographic examination, in particular in
screening programs, dose delivering should be kept as low as possible, main-
taining a high diagnostic quality of the image. The amount of fibroglandular
tissue, or dense tissue, with respect fat tissue as seen on a mammographic
exam is called breast density. Since the attenuation coefficient of dense tis-
sue is similar to cancer one, the sensitivity of mammography depends on the
breast density. In fact, a malignant mass that is located behind dense tissue
may be not detected during the examination: this effect is called ”masking
effect”. Moreover, breast density is an inherent risk factor in developing the
disease [102]. The assessment of breast density is made by the radiologist
who reads the exam and this measurement suffers from high inter-observer
variability. For this reason, the development of an automated method to
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measure breast density is highly desirable.

X-rays for Mammography

As said above, the X-ray tube is specifically designed for the mammography
task and its combination with filters produces the required energy spectrum
[97]. Mammographic X-ray tubes are made with rotating anodes in order to
have good thermal property of the system. The rotation, in fact, reduces the
accumulation of heat of the anode. The most commonly used materials for
anode are molybdenum (Mo, Z=42), rhodium (Rh, Z=45) and tungsten (W,
Z=74). The choice of these materials is due to their spectra. The spectra are
mainly made of bremsstrahlung radiation and characteristic X-rays specific
to the target materials. Characteristic X-rays are particularly important in
mammography. In fact, characteristic radiation energy is 17.5 and 19.6 keV
for molybdenum and 20.2 and 22.7 keV for rhodium. These energies are the
required ones to produce the right image contrast for discriminating cancer
and normal tissues in mammography. In Figure 1.5, molybdenum spectrum
at 25 kVp and 1 mGy of final air kerma is reported.

The low energy bremsstrahlung X-rays deliver a high dose amount with
little contribution to the diagnostic power of the image. Furthermore, high
energy bremsstrahlung X-rays make subject contrast decrease. For these
reasons, filters are used on X-rays to reduce the low and high bremsstrahlung
photons. In Figure 1.6, molybdenum spectrum with a 30 µm molybdenum
filter is reported.

These filters are often made with the same material of anode, i.e. molyb-
denum and rhodium because they stop undesired X-rays and transmit char-
acteristic X-rays. As showed in Figure 1.6, molybdenum filter attenuates
both X-rays in the low energy range and those above its own K-absorption
edge, while the characteristic X-rays pass through the filter with high effi-
ciency. Since atomic number of rhodium is higher than molybdenum one, its
spectrum is harder. Thus rhodium anodes offer advantages for thicker and
denser breast.

1.4.1 Mammographic systems and standard projections

Full-Field Digital Mammography (FFDM) is the widely accepted methods to
perform screening programs. In digital mammography, X-rays are captured
on a designed digital detector that converts them in an electronic signal. The
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Figure 1.5: Molybdenum spectrum at 25 kVp and 1
mGy of final air kerma obtained with a simulation on
https://health.siemens.com/booneweb/index.html

digital image can be visualized on a high resolution monitor and the physician
can use tools to manipulate it. In this work, all the imaging systems used
are digital. The system is mainly made of the X-ray tube, a compression
plate, a support for the breast, an anti-scattering grid and the detector.
The goal of mammography is to achieve the image quality required for a
given detection task, while keeping the absorbed dose As Low As Reasonably
Achievable (ALARA principle). To achieve this goal, the mammographic unit
is specifically designed for the examination of breast tissues. The patient
can be examined standing or sitting with her breast resting on a support
plate. The X-ray tube and support plate are built on a support which can
rotate in order to achieve different projection angles. The two standard
projections, shown in Figure 1.7, are the craniocaudal and the mediolateral
oblique. A mammographic exam is made, when possible, of the four standard
projections.
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Figure 1.6: Molybdenum spectrum with a 30 µm molybdenum filter obtained
with a simulation on https://health.siemens.com/booneweb/index.html

An anti-scatter grid is placed between the breast support and the image
receptor. It allows to lower scattering effects on images. A compression is
applied to breast using a plastic compression plate. Thanks to compression,
overlapping of structures and motion artifacts are minimized.

1.5 Computed Tomography (CT)

1.5.1 What have the Beatles got to do with CT?

Computer Tomography (CT) is a 3D whole body imaging modality for a wide
range of clinical applications. It has been invented in the early ’70 and it is
commonly believed that the revenues from the selling of the Beatles’ records
allow Electric and Musical Industries (EMI) to develop the CT scanner.
EMI, starting from the end of the Second World War, was a company with
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Figure 1.7: On the left: the cranio-caudal projection which is an up-down
view of the breast. On the right: the mediolateral oblique projection which
is a lateral view of breast. A mammographic exam is made, when possible,
of the four standard projections.

experience in electronics and tried to become a leading computing company
in Britain [100]. In 1955, they acquired the Capitol Records in the United
States and the success of their recordings, including the Beatles one, put
the company in a very strong financial position. In 1963, Allan Cormack, a
South African physicist published on the Journal of Applied Physics [102], a
paper with the theoretical solution of the problem of representing an object
through its line integrals with radiological applications, which would have
been the basis for CT image reconstruction. In 1967 Godfrey Hounsfield,
who was an EMI-CRL researcher at that time, unaware of Cormack’s work,
conceived the idea of a reverse-radar [141] and he thought that one of the most
promising field to apply its invention was the radiology one. In this context,
the first new CT scanner was proposed in 1968 by a team made by the
aforementioned Hounsfield, Stephen Bates (programming), Peter Langstone
(electronics), and Mel King (mechanics). The first version was made of a
translating and rotating gamma-ray source, Americium 95, around bottles
or Perspex jars with a photon counter as detector, placed on the other side.
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It needed 9 days to collect sufficient information of 28,000 measurements and
2.5 h to reconstruct the image. Later in the same year, the gamma-ray source
was removed and replaced with a X-ray tube, reducing the acquisition time
from 9 days to 9 hours. At the end of 1969, the first prototype of the scanner
was built. However the analysis of market and the evolution of the EMI,
the lack of expertise in medical tools and in medical electronics market and
the high cost of such machinery suggests Hounsfield and EMI to ask for the
assistance of the British Department of Health and Social Security (DHSS).
They received a founding equal to 600000 Pounds to develop 4 scanners
and, thanks to this support, the manufacturing of the first scanner by EMI
was presented in 1972. So, considering this founding and the research costs,
including the team salary, it can be claimed that most of the CT development
costs have been paid by the British Government. Complex processes led to
the creation of CT scanner, involving not only the EMI company (and the
Beatles’ success), but also classical academic research and public funding.
Moreover, the connection between the Beatles and CT is usually described
as the gift the group made to medicine, while there is not any evidence that
the group was even involved in the process. Despite the true history, there is
a positive aspect of this misconception: it helped to keep in memory the name
of the company which developed the CT scanner. Hounsfield and Cormack
received the Nobel prize for medicine in 1979.

1.5.2 Principles of CT

CT is used in practical clinic to diagnose, to monitor, to follow-up patients
and also to plan radiotherapy treatments. It measures the X-ray transmission
profile through a patient. The profile is made by using a X-ray tube and a
detector arc made of about 800-900 detection elements. The arc, rotating
around the patient, is able to acquire the X-ray transmission at different
angles. Moreover, the X-ray detector system slides through the patient in
order to acquire different portion of the body. Hence, a CT scanner is able to
acquire a large number of views by rotating and sliding the X-ray detection
system. The acquired views are then used to reconstruct the 3D image. CT
is a digital imaging modality and it assigns to each pixel of the image values
that are associated with the attenuation of the corresponding tissue. The
physical law that drives the attenuation for a monoenergetic radiation is the
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Lambert-Beer law (Equation 1.7):

I(x) = I0e
−µx (1.7)

where I(x) is the intensity of attenuated X-ray, I0 is the initial X-ray intensity,
µ is called attenuation coefficient (m−1) and x is the space crossed by the
X-rays. The Lambert-Beer law does not take into account the fact that X-
ray radiation is not monoenergetic but it produces a spectrum. However, in
CT reconstruction, the average energy of the spectrum is considered and this
simplification may lead to inaccuracies in reconstruction and to hardening
artefacts. As an X-ray beam is sent to a patient, it goes through several
types of tissue. For example, if we want to image the lungs, the X-ray beam
will encounter the skin, the soft tissues of the chest, the bones of the rib cage,
the air in the lungs and so on. If the path crossed by X-ray goes from 0 to a
distance d, the Lambert-Beer law can be written as (Equation 1.8):

I(d) = I0e
−
� d

0
µ(x)dx (1.8)

We can represent a patient as a matrix of different attenuation coefficient as
reported in Figure 1.8.

Figure 1.8: Simple representation of a CT system with a matrix of four
different attenuation coefficients.
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We can hence apply to the system in Figure 1.8 the discretized Lambert-
Beer law as shown in Equation 1.9:

I(d) = I0e
−
�i=4

i=1
µiΔx (1.9)

The attenuation coefficients are then translated in a corresponding ma-
trix, which is the image matrix, in the so-called Hounsfield Units (HU). The
Hounsfield Unit scale is a linear transformation of the attenuation coefficients
relative to attenuation coefficient of water (µwater) at standard pressure and
temperature and it is defined in Equation 1.10:

HUmaterial =
µmaterial − µwater

µwater

· 1000 (1.10)

From the HU definition, it is clear that the values that a single CT voxel
may have is a relative quantity. Moreover, since the attenuation coefficients
depend on the energy of the spectrum, the voxel value depends not only on
the specific imaged material but also on the X-ray tube voltage. In fact,
as a function of the photon energy, different substances show a non linear
behaviour of their linear attenuation coefficients relative to water. This effect
is most present as the bigger is the atomic number of the imaged materials. It
is so more effective, for example, in contrast medium imaging. The minimum
bit depth that should be assigned to a pixel is 12 because it allows to have
a Hounsfield unit range from -1024 to +3073. This range includes all the
possible relevant clinical values. In Table 1.1 the typical values in Hounsfield
Units for different human tissues are reported. Hence, once the CT has been
acquired and reconstructed, a windowing is applied to the image depending
on the part of the body we want to visualize. In Figure 1.9, the effect of
the windowing has been reported for three different windows on an image
reconstructed with a lung filter.

1.5.3 3D Image Reconstruction

The CT image reconstruction is an ill-posed inverse problem because image
model is not invertible and there is not a unique solution. In order to re-
construct a 3D CT scan, several measurements are required. The collected
information is the basis for the process of the reconstruction. The most used
algorithm is the Filtered Back Projection (FBP) and to explain the process
we need to introduce three interrelated domains: the object space, which is
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Table 1.1: In this Table the typical reference values for HU ranges for dif-
ferent tissues or substances are reported. The actual HU units depends on
temperature, tube voltage and composition of the imaged material.

Substance/Tissue HU center (range)
Bone +1000 (+300,+2500)
Liver +60 (+50, +70)
Blood +55 (+50, +60)
Kidneys +30 (+20, +40)
Muscle +25 (+10, +40)
Brain, grey matter +35 (+30, +40)
Brain, white matter +25 (+20, +30)
Water 0
Fat -90 (-100, -80)
Lung -750 (-950, -600)
Air -1000

Figure 1.9: The image is the coronacases002.nii taken from the public dataset
COVID-19-CT-Seg dataset [99]. Left: the CT without any windowing. The
HU range goes from -1023 to 9567. Center: the lung windowing is applied in
a range from -1023 to +150. Right: the same image is reported with a bone
windowing from +300 to +2500.
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made of the linear attenuation coefficients, the Radon Space, which is the
projection space and it is also called sinogram space if it is reported in carte-
sian coordinates, and the Fourier space, which can be computed with a 2D
Fourier transform of the space object. What we want to obtain is the object
space, while the acquisition is in the projection space, i.e. the Radon space.
The necessary steps to pass from the 2D Radon space to the object space
are:

1. a Fourier Transform is applied to raw data in the Radon space, resulting
in many 1D Fourier Transforms;

2. a high pass filter is then applied to the 1D Fourier Transforms;

3. an inverse Fourier Transform is applied to the filtered data;

4. The back projection is computed in order to obtain the image in the
object space.

In Figure 1.10 the process of image reconstruction is shown.
Filtering the 1D Fourier Transforms is necessary in order to avoid artifacts

and it is possible to use different filters, depending on the required quality
characteristics. The filter, also called convolutional kernel, that yields to the
theoretical optimal reconstruction is the Ramachandran–Lakshminarayanan
filter, also called the Ram–Lak or ramp filter. However, it yields also to high
noise level in the reconstructed images and in clinical practice this filter is
usually used for bone reconstruction and it is called sharp filter. Sometimes
it is necessary to use filters which roll off at higher frequencies. The so
called normal filter or Shepp-Logan filter achieves this characteristic and
images results less noisy and with a better low contrast resolution. On the
other hand, it decreases spatial resolution. This filter is usually used for soft
tissues. It is also possible to reconstruct the same acquisition using different
filters in order to have the possibility of analyzing both soft tissues and bones.

Another possibility to reconstruct images is to use Iterative Reconstruc-
tion (IR) and this method is now commonly used in CT. The currently
available IR algorithms are mostly considered proprietary and they are only
partially revealed [41]. In general, the image reconstruction problem can be
posed as:

p = Hf + n (1.11)

where p is the acquisition, i.e. projections, f are the real data (attenuation
coefficients), H is the projection process and n is the noise. The solution of
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Figure 1.10: This image has been take from [26]. It represents the successive
filtered reconstruction made of 1, 2, 4, 8, 16, 32, 64, 256, 512 and 1024
different acquisition angles.

this equation can be find in two main ways: algebraic methods and statistical
methods. The principles of IR is mainly made of 6 steps:

1. the projections are acquired;

2. a first image estimate is generated from the projections;
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3. a X-ray beam is simulated via forward projection in order to have
simulated projection data that are compared to the measured one;

4. in case of discrepancy, the first image estimate is updated according to
the underlying algorithm;

5. the process is repeated until a condition is satisfied;

6. the algorithm converge and we obtain the reconstructed image

Iterative techniques reduce noise and may reduce some specific artifacts,
particularly when few angles are acquired, but they may be affected by other
kinds of artifacts, such as the aliasing patterns and overshoots in areas of
sharp intensity transition. Moreover, IR may affect quantitative measures of
specific problems and may potentially lead at diverging results when com-
pared with FBP.

Finally, hybrid reconstruction algorithms, which combine analytical and
iterative methods, can be used.

To sum up, a CT can be reconstructed using different convolution kernels
or filters and after that a windowing is applied to visualize the image. Both
the reconstruction process and the preparation for visualization have an effect
on the image quality and the observer performance. These effects are due, for
example, to reconstructed slice thickness, reconstruction filters, tube voltage,
tube current or windowing.

1.6 Deep learning and Medical Imaging

In the last few years, deep learning has been applied to solve many problems,
including the ones related to medical imaging. Deep learning consists mainly
in Artificial Neural Networks (ANN) with representation learning. There
exist many architectures such as convolutional neural networks, recurrent
neural networks or multilayers perceptron, suited for different scopes. In this
PhD thesis, Convolutional Neural Networks (CNN) have been used to tackle
different tasks: classification, regression and segmentation.

1.6.1 Convolutional Neural Networks (CNN)

A CNN is a neural network used to analyze structured data which has in its
architecture convolutional layers. In Figure 1.11, Alexnet, the CNN archi-
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Figure 1.11: This is a graphical representation of AlexNet, the convolutional
neural network that won the ImageNet competition in 2012. This image has
been taken from [72]

tecture that won the Imagenet competition in 2012, is shown [72]. If A is a
matrix of M ·N dimension and H is a squared matrix k · k where k is an odd
number, convolution between A and H is:

CAH = A⊗H =
k−1�

p=0

k−1�

q=0

A(i− p, j − q)H(p, q) (1.12)

H is the filter, commonly called kernel, that slides through the entire
images in steps whose size can be chosen and it is called stride. The result
of the convolution between the input image and a kernel is called activation
map. The introduction of convolutions in an ANN is important because it
deals with three ideas that are fundamental for machine learning: sparse
connectivity, parameters sharing and equivariant representation.

When we use 2D or 3D images, because of high dimensionality, it is
impractical to connect neurons to all neurons in the previous layer. As an
example, if we have a 500x500 pixels image, we have 250000 pixels. If we
fully connect all these pixels to a hidden layer of a hundred neurons, we will
have about 25 millions of connections. In deep networks, more than one
hidden layer is usually used. So if we connect neurons to all neurons, we will
have an unmanageable number of parameters. For this reason, we connect
each neuron only to a local region of the input. The extent of this region
is called receptive field and it is a hyperparameter that is equivalent to k
in Equation 1.12. The idea of a receptive field comes from some biological
considerations. In 1968, Hubel and Wiesel [56] studied the response of the

32



striate cortex in monkeys. They found that any small part of the striate
cortex can be activated or suppressed in response to specific visual stimuli.
Parameters sharing means that every parameter is used for more than one
function in the model. Convolution, in fact, is made between the input and
the kernels, which have a smaller size than the input image, at every input
position. This means that rather than learning a separate set of parameters
for every location, we learn only one set. Lastly, since kernels are applied at
every input positions, convolution guarantees translation invariance such that
a specific pattern in an image is recognized despite its location in the image.
These three characteristics allow to reduce the storage requirements for the
model and the runtime. Spatial dimensions are treated in an asymmetric
way: the connections are local in space (along width and height), but always
full along the entire depth of the input volume. This means that if we have
a three channel image (RGB), we can choose the kernel height and width
but the depth of the filters will always be three, in the first layer. A typical
layer of a CNN consists in three steps: first, convolutions are applied to the
input image, then a non-linear function is applied to the convoluted image
and, in the last step, a pooling is usually used to further modify the structure
of the output. Pooling is an operation in which pixel values are aggregated
through an invariant for permutation function such as a maximum or an
average. The output of these layers is a downsampled image. Pooling helps
to make representation invariant to small translations of the input, which
can be a useful property. CNN may be used for different goals. In this PhD
thesis they have been used for regression, classification and segmentation.
The single network architectures are described in Chapters 3 and 4 as well
as the other hyperparameters specific for each task.

Basically, the network structure for regression and classification problem
is quite the same. A CNN for these scopes, in fact, is made by several convo-
lutional, non-linear activation and pooling layers with a flattening function
at the bottom. The flattened data are then sent to one or more fully con-
nected layers that are trained to solve the given task. The last layer is crucial
to define the task we want to solve. In regression problems, it must have a
number of neurons equal to the number of variable we want to infer. As an
example, in chapter 4, a CNN for regression has been used to predict two
points that define a bounding box which should contain the lungs. Since CT
scans are 3D images, we need to infer 6 coordinates for two points. In this
case, the last layer of the CNN has exactly 6 neurons. Moreover, the last
layer of a CNN for regression has a linear activation function because we want

33



to predict numerical values without any transformation. Similarly, the last
layer of a CNN trained for classification has a number of neurons equal to the
number of classes we want to predict. In this case, the activation function
of the last layer should not be linear and it could be a sigmoid or a softmax
depending on the number of classes we want to predict. As regard segmen-
tation, instead, the CNNs have a different architecture with respect to the
previous ones. In a segmentation problem we want to assign to each pixel or
voxel a class in order to obtain a mask of the desired areas. Typically, Fully
Convolutional Neural Networks (FCNN) are suited for segmentation tasks.
The main difference with CNN is that there are not fully connected layers
at the bottom of the network. It is possible to use a standard CNN, such
as a VGG [138] or a ResNet [51], to perform the segmentation but the chain
of convolution and downsampling makes the resulting map in low resolution.
For this reason, there are several different methods that have been developed
to tackle this task. In this study, U-net [123] has been used to perform the
segmentation. U-nets are FCNNs which architecture resembles the shape of
a U: in the left path, also called compression path, there are several strided
convolution blocks while in the right path, also called decompression path,
several deconvolution operations are applied to the images in order to up-
sample them till the input image size. In order to maintain the fine grained
information, skip connections are used to pass the output of each block of
the compression path to the corresponding block of the decompression path.

1.7 Applications to medical images

Artificial Intelligence methods, especially deep learning based ones, are play-
ing an increasing role in biomedical research and they have a potential in
many applications from risk modelling to diagnosis, prognosis and prediction
to response to therapy. In standard Machine Learning (ML) hand-crafted fea-
tures are usually extracted from segmented data; then they are pre-processed,
normalized and selected before the training of a predictive model. This ap-
proach applied to medical images is called Radiomics and it represents the
bridge between medical imaging and personalized medicine [78]. Radiomics
approach has shown a great potential in many fields and one of the most
substantial is the oncological one. It has been applied to improve the un-
derstanding of tumor biology, such as tumor heterogeneity [84] [46], and to
better implement personalized medicine in many ways. Radiomics has been
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applied to improve diagnosis and prognosis: for example, in [50], it has been
shown that such approach applied to low-dose CT for lung cancer screen-
ing may help in assessing cancer risk and in [46] it has been studied that
the tumor shape complexity is a patient survival predictor. Moreover, it has
been found that radiomics helps in predicting treatment response and disease
monitoring and survelliance [87].

Deep Learning (DL) models applied to images instead learn by them-
selves to extract the features to be used for the predictions. However, a huge
amount of labelled data is usually required to train, validate and test DL
models and labelled medical images datasets are scarce and underpopulated.
For this reason, data augmentation and/or transfer learning are typically
used to overcome the data limitations issue. It is also possible to generate
synthetic data with Generative Adversarial Networks (GAN) but the high
resolution that characterizes medical images and their scarcity make it diffi-
cult to create whole images. As an example, in this study [70], a progressive
GAN has been trained to obtain ”high” resolution mammograms but the au-
thors had access to a private dataset of more than 1 million mammograms.
However, it is possible to generate patches of images but this should be used
when it is appropriate. In the last few years, the concept of federated learn-
ing is being discussed: since data exchange has to be compliant to ethical
and legal constraints, the idea is to decentralize the learning process, making
it directly to the data sources, e.g. hospitals. By implementing decentral-
ized data models, it is possible to perform multicentric studies sharing the
models instead of data [19]. It should be noticed that such studies modality
requires a huge effort to standardize data and process them coherently in
every hospital. Moreover, a huge economic investment is required to build
the necessary infrastructure to perform federated learning and such effort
would also deliver a substantial improvement of HPC resources in healthcare
environments. The imaging fields in which deep learning can be applied are
many from neurological field to cancer diagnosis characterization, prognosis
and therapy outcome predictions, pathology, microscopy and radiotherapy.
In [126], a CNN has been trained to distinguish between lesion and non-
lesion on Digital Breast Tomosynthesis (DBT). In [69], a Computer Aided
Diagnosis (CADx) software has been trained to recognize benign cyst and
soft tissue lesions on mammography. FCNN has been used, for example, for
automated multi-organ segmentation which may help to plan radiotherapy
treatments [124]. The specific literature for the two cases developed in this
work is reported in Chapter 3 and 4.

35



1.8 Deep learning and black boxes

Deep Neural Networks (DNN) and machine learning algorithms have the
capacity of reaching high performance in terms of accuracy and have been
applied in a wide range of research fields. However, despite their high perfor-
mance, they may take decisions that are not explainable and, for this reasons,
they are called ”black boxes” [47]. Understanding how a neural network or
a machine learning algorithm, made by many learnable parameters, comes
to a decision is not a trivial task. In order to understand how important
may be to control the automated decision making process it is interesting to
present some proven examples of how and why black boxes can be dangerous.
Lowry et al.[96] studied a computer program used to screen job applicants
for the St. George’s Hospital Medical School in London, which has been
trained without any reference to ethnicity. They found that the software
unfairly discriminates against women and ethnic minorities by inferring this
information from names and places of birth, resulting in a lowered possibility
of being selected. In [45], a review of the state of art of the research on skin
cancer detection has been reported and they affirm that there is a significant
difference in the performances between caucasian and darker skin people,
which leads to misdiagnose cancer in Hispanics and Blacks. In radiology and
medical images analyses, this issue should be taken into account too. In [79],
the effect of gender imbalance in training data set of chest X-ray on Artificial
Intelligence based methods has been studied and they report that training
a DNN with gender imbalanced data sets lead to significant different per-
formances on the underrepresented gender. Moreover, in their case, training
the algorithm using a perfectly balanced data set allows to obtain the best
performance for both genders. The main question that should be tackled
is: is AI able to recognize gender or ethnicity directly from medical images
without any other information and why? In [7], the ability of CNNs to rec-
ognize race has been studied. In order to perform the study, they used large
medical images data sets acquired with different modalities (chest X-ray, CT
scans, mammography) and trained a classifier to classify self-reported race.
Moreover, they tried to understand why and how an AI can recognize the
patient race. They found that race can trivially be inferred from all the
modalities they studied. They also trained a classifier to predict a diagnosis
on chest X-ray to demonstrate that an AI not specifically trained for ethnic-
ity classification is able to predict race. First, the algorithm has been trained
to predict the disease and then they used the penultimate layer of the CNN
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and added softmax layer to measure whether it is possible to identify race
from the features learned to make the diagnosis. Moreover Banerjee at al. [7]
tried to understand why an AI is biased by race, given also that physicians
can not recognize ethnicity from medical images. They studied whether it
depends on body habitus, tissue density (mammograms), disease labels, bone
density, age and sex and whether it depends on some image characteristics
such as image quality, image resolutions, if the information is localized on a
specific anatomic region, finding that it is not easy to mitigate or isolate the
effect due to race. Despite bias effects, it is important to also have in mind
that the diagnosis assessment should be a transparent process that both the
physician and the patient should understand. This issue is strictly connected
to the accountability problem.

1.8.1 Explanation of Convolutional Neural Networks

Methods to explain models can be roughly divided in two branches: the
reverse engineering and the design of explanation [47]. The first one is based
on the explanation of an outcome or a model trained for a specific task
while the second one consists in developing an interpretable predictor model
together with its explanation. The first modality can be addressed in three
ways:

• model explanation: the aim is to understand the overall logic behind a
black box;

• outcome explanation: the scope is to explain the correlation between
input data and outcomes;

• model inspection: it is a modality in the middle of the two previous
one and depends on the specific problem we want to explain.

As regard the second modality, i.e. the transparent box design problem, the
aim is to build a locally or globally interpretable predictor to solve the specific
task. An example of interpretable predictor is the decision tree in which the
explanation is simply the rule chain of the tree. All these approaches to
explanation are task dependent. In the last few years, agnostic approaches
are being developed for explaining the black boxes. In this context, agnostic
means that the this approach aims to explain the black boxes despite the
specific task or model.
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One of the most intuitive way to explain a classifier trained with tabular
data is to understand what are the most important features the classifier uses
to assign a class. However when the classifier is a CNN which learn by itself
the features it is not trivial to interpret even the single feature. Given also
that a CNN is made by several layers in which many kernels learn different
patterns, it is not easy to design an explanation for their decision making.
In [131], it is reported that there are three main levels in which a CNN can
be explained: first layer, intermediate layers and last layer levels. In the
first layer of a CNN, low-level features are usually stored such as orientations
and edges while in the subsequent layer higher level features are learned.
Since the first layer features are computed through a direct inner product
with the input image it is possible to roughly understand what these filters
are looking for just visualizing them. However, there is not a quantitative
method to measure the amount of explained algorithm. Differently from the
first layer, intermediate layers are not so easy to be visualized since they are
the results of products with the previous layer which is not the input im-
age. However, there exist methods to understand CNNs intermediate layers
based on gradient-based, such as grad-CAM, and activation maximization
approach. One of these approaches has been presented by Zeiler and Fer-
gus [159], who studied how to visualize intermediate features by exploring
which image patch activates most the neurons. They propose to visualize
the patches corresponding to the part of the image that causes the maxi-
mum activation and use deconvolution made by Guided Back Propagation
(only positive gradient are backpropagated). The main idea is to obtain a
saliency map, which is a synthetic image, of a specific neuron. Another ap-
proach to intermediate layer explanation is through the extra-features [108].
While the previous approach assumes that each neuron can detect only one
type of feature, in this one it is assumed instead that neurons can be mul-
tifaceted. In order to obtain a neuron’s multiple facets, they use a k-means
algorithm to cluster different images that highly activate the neuron and
then the activation maximization is applied to produce a synthetic image.
Finally, it is possible to study the explanation of a CNN through the last
layer. Considering a CNN-based classifier, the flattened layer at the end of
the convolutional path produces a vector that summarizes the input image.
One approach to explain last layer is to compute the nearest neighbors of
the last hidden layer for different images and to assume that CNN consid-
ers similar the images whose features vectors are nearest. Another way to
visualize the last layer is to use techniques to reduce dimensionality such as
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the Principal Component Analysis (PCA) in order to obtain 2D or 3D data
that can be plotted. However, using linear projections is usually impossible
since it is difficult to represent high dimensional data in such representations.
Agnostic methods to explain the CNNs have been also explored even if their
functioning is not straightforward [35]. For example, Zolna et al. [163] pro-
pose an agnostic approach to find the pixels of an image that if obscured
can confuse an unknown classifier. To produce such images they used an
encoder-decoder approach plus a classifier to produce masked-in, masked-
out and inpainted masked-out image in an architecture which resembles to a
Generative Adversarial Network (GAN) [44].

39



Chapter 2

Inside the Complexity

Nowadays, Data Science is having one of its most expansive moment in the
history of every developed country. Using data driven algorithms to infer,
predict, evaluate and build models appears to be a real revolution in the epis-
temology field and it is changing the rules of the classical scientific method.
Artificial Intelligence-based methods have been and will be applied in many
fields, from social sciences to theoretical physics. One of the most interest-
ing point of this change is to study and understand how scientific method is
evolving and, in particular, which are the possible scenarios for science and
technology. Since this PhD thesis is focused on medical image analysis, the
complexity of using data driven algorithms in this domain is discussed in the
following sections. In Section 2.1 the hypothesis problem is presented along
with a literature review on the different possible scenarios and other issues
such as reproducibility of data driven algorithm. In Section 2.2, the issues
concerning the labeling and hence the ground truth definition in medical im-
age analysis are presented. In Section 2.3, the differences and potentialities
of private and public data are discussed along with a discussion on the most
used medical image formats and on the biggest public database of medical
images, The Cancer Imaging Archive. In Section 2.4 the concepts of sta-
tistical and clinical validation are discussed. Furthermore, the role that AI
systems may have in hospitals and their consequences have been discussed.
Finally, in Section 2.5, the conclusions of all the above presented issues are
discussed. Moreover, Z-inspection project is presented as a possible solution
to the problem of complexity of developing ethical and high performance
algorithms for medicine.
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2.1 Changing the scientific paradigm: are we

back to 1500?

The coming of the Big Data has provoked a revolution not only in the sci-
entific methods but also on the common perception of science and the rela-
tionship with technology. As it lays its foundations on using a big amount of
data in order to build models, the advent of data driven science has brought
to speak about a ”New form of Empiricism” [68] as well as ”The End of the
Theory”. According to this interpretation, epistemology is changing too, as
regard the knowledge production, the processes of research, the information
flows and the nature of categorizing reality. For this reason, the development
of algorithms to support diagnosis or to analyze medical images, requires a
special attention on scientific premises and hypothesis. Designing a compre-
hensive history of the scientific method is a goal which is beyond this work.
However, it is possible to broadly describe some of the scientific paradigms
starting from the definition of paradigm itself and going through some se-
lected papers. In 1962 ”The structure of Scientific Revolutions” [75] was
published by Kuhn, introducing the notion of paradigm in science. Accord-
ing to Kuhn (”The Nature of Normal Science”), a paradigm is an accepted
model or pattern whose fundamental components, for a certain period, re-
main substantially undisputed. In science, it assumes the shape of an object
for further articulations and specifications under new and stricter conditions.
When a new paradigm arises within a disciplinary field, according to Kuhn,
it is very limited in both its scope and precision. It gains a dominant status
when it is more successful than other paradigms. Kuhn means as success of a
paradigm its capability of being able to solve problems considered extremely
important by the relevant scientific community. However, at the start, it
is mostly a ”promise of success discoverable in selected and still incomplete
examples”. Normal science, the sort of scientific activity deployed after the
establishment of a paradigm is, according to Kuhn, the actualization of this
promise and it allows to expand knowledge in many directions. One of the
most important drawback of this approach to describe science is that it may
force nature to fit into the paradigm and it may lead to ignore what does not
fit into it. Even if Kuhn recognizes that normal science usually investigate a
limited area of knowledge, he affirms that those same restrictions were born
from the confidence in a paradigm and they are essential to the development
of the discipline. This way, science is able to do research in a very detailed
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and deep way. Moreover, when a paradigm works, the nature of the objects
of inquiry changes: the paradigm broaden its scope, and it is applied to is-
sues beyond its initial reach. Finally, according to Kuhn, a part of these
achievements prove to be permanent. So, we can summarize the idea of the
paradigm according to Kuhn as an accepted way of interrogating the world
and produce knowledge which is common to a substantial proportion of re-
searcher in a discipline at any one moment in time [68]. A classical critique
to the Kuhnian approach is that, in some academic domains, there is only
a little evidence of this modus operandi. Furthermore, taking into account
just a paradigmatic approach produces too clean and linear stories on how
disciplines evolve, deleting the pluralism of the history of science. However,
the definition of paradigm elaborated by Kuhn has been very influential and
allows for more clarity in the discussion on the epistemology of data science.
In fact, big data and deep learning algorithms introduce a new epistemolog-
ical approach, testing a theory by analysing relevant data and inferring the
theory itself from data. According to Kitchin [68] and Hey et al [52], we
can delineate a very simplified scheme to classify how scientific paradigms
evolved. The first one, called ”Experimental Science”, can be dated back
to the pre-Renaissance and it is based on a pure empiricism based on the
observation of natural phenomena. The second paradigm is the so-called
”Theoretical Science” and it dates back to pre-computer era. It consists in
moving towards a broader generalization through the theoretical modelling.
The third one is referred to as ”Computational Science” and it dates back to
the pre-Big Data era. This paradigm is based on the simulation of complex
phenomena. One example in Physics may be found in the Monte Carlo Meth-
ods which have been invented, in their modern version, by Stanislaw Ulam
while he was working on nuclear weapons projects at the Los Alamos Na-
tional Laboratory. The ”Fourth Paradigm” [52] is the ”exploration science”
which is the paradigm that the intense use of big data and the data mining
techniques are designing nowadays. As written in the transcription of a talk
given by Jim Gray to the NRC-CSTB1 in Mountain View, CA, on January
11, 2007 and reported in [52], Exploration Science, also called e-science, is
mainly based on unifying theories, experiments and simulations using data
taken by instruments or simulations and analyzing them with some software.
For example, in the medical images analysis domain, especially for diagno-
sis, prognosis and follow up studies, data are usually taken by instruments
from hospitals and, with some exceptions, simulations are usually used for
dosimetric studies and evaluation. This way, the information and also the
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knowledge is stored in computers and the scientists analyze databases and
files using data management and statistics. Gray affirms that e-science is
changing the world of science itself, arguing that the techniques and the
technologies are defining a data-intensive science which is a radical extension
of the established scientific method. Kitchin states also that there are others
that look at the Fourth Paradigm as the new era of empiricism, underlining
that the main difference between a pure empiricist approach and other kinds
of approach concerns the places in which Big Data are used, i.e. industry
versus academy. There are many voices and opinions which try to define
the e-science paradigm, its boundaries and its potentials. In 2008, Anderson
[4] in the essay titled ”The End of Theory: The Data Deluge Makes the
Scientific Method Obsolete” states that ”Correlation is enough”, so that, in
the Big Data era, correlation overcomes causation. Prensky [119], similarly
to Anderson, affirms that data mining techniques can extract the complete
set of patterns and effects, producing scientific conclusions without any fur-
ther experiment. In 2013 Steadman [68] comes to affirm that data analysts
should not propose or even ”bother” themselves with hypothesis anymore.
Even if these positions about e-science are typical of industry, its critical
discussion should be taken into account even in the academic research. We
can summarize this way of intending the Fourth Paradigm as:

• Big data can capture an entire domain of knowledge with full resolution
of all the involved processes;

• There is no need of a priori model, theory or hypothesis;

• The application of data mining is agnostic, data can speak for them-
selves, i.e. data are inherently meaningful and truthful;

• Meaning transcends the specific domain such that anyone, with mini-
mum statistic knowledge, can interpret the results.

This way of intending Data Science can be properly called a pure em-
piricist and inductive approach which really mirrors to pre-Renaissance em-
piricism. This approach may be dangerous for several reasons. Data are
always taken and acquired using sampling techniques and data selection,
which always introduce a bias. The interpretation of the models can not
be done without theory. Finally, affirming that everyone is able to interpret
the results without expertise in that specific domain is a reductionist and
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functionalist approach that ignores the socio-political context of the techno-
scientific practice. In the medical images domain, this approach is risky and
raises several issues. First, it poses a scientific problem. Neglecting bias and
data sampling limits lead to the inability to define the boundary conditions
in which algorithms we develop can properly work. For example, we can have
an algorithm which is able to diagnose a certain disease without specifying
on which population it has been trained and tested; on which imaging system
manufacturers the algorithm works or which image acquisition characteristics
it needs in order to function properly and it may be commercialized and used
in health institutes as an universal tool for every-body. Furthermore, as this
PhD thesis wants to demonstrate, the use of algorithms in medical domain
should be supported not only by one specific expertise but by many exper-
tises, sharing language, methods and cooperative approach, mindful that a
such complex task needs many points of view to substantiate the application
of algorithms in clinical practice. Finally, developing a tool or an algorithm
in the medical images domain it is not something which is unrelated to the
social context since it deals with hospitals, physicians availability, financial
support, privacy management and also with how institutions that menage
health, academic research and technology in general interact among them-
selves.

2.1.1 Hypothesis and epistemological claims in health-
care and medical image analysis

The Fourth Paradigm, as pure inductive empiricism brought by the use of
Big Data and also by the rising of the deep learning methodologies, has the
potential to undermine the scientific legitimacy of the machine learning [34].
As an example, Campolo and Crawford [17] uses the Enchantment theory
of Max Weber to describe a broader epistemological diagnosis of modernity.
They affirm that not understanding the motivation that leads a deep learning
based model to a decision could produce the effect of considering that algo-
rithm as something magical. These considerations do not come only from
humanities but also from ”hard” sciences. Stuart J. Russell, a well-known
professor of computer science from Berkeley University, in 2018, spoke about
deep learning and described it as ”a kind of magic” since we cannot under-
stand when and why the deep learning hypothesis is consistent. According
to Campolo and Crawford, the use of terms like ”magic” or ”alchemy” can
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create a hype which is also beyond the epistemological problems and involve
the entire society. However, despite the social hype that this terminology
may generate, it also undermines the scientific process basis. For this rea-
son, it is interesting to discuss the process of knowledge generation, evidence
and causation in particular in the healthcare domain. In [140], a critically
and healthcare centered review of epistemological claims is presented. The
healthcare field is characterized by an institutionalized set of epistemological
principles and generally accepted scientific methodologies [140, 10] which are
challenged by the data science practices. The language used to describe the
applications of algorithm in healthcare can be an interesting way of analyzing
whether there are different ways of using big data in this specific domain.
Stevens et al., studying systematically the editorials on the use of Big Data
practices in healthcare, describes five ideal typical discourses, naming them
using the relations between implicit assumptions about evidence and knowl-
edge and the diverse epistemological positions. The five categories they de-
sign are: the modernist, the instrumentalist, the pragmatist, the scientist and
the critical-interpretative. In the modernist discourse, big data are often not
defined, described as a positive development and their benefits are stressed.
In this type of discourse the use of Big Data is completely recommended,
optimistic and accompanied along with words like ”explosion”, and ”world-
changing possibilities”. They also create a sense of urgency of using this
technology in contrast to a slow, conservative and old-fashioned medicine.
Lastly, there is almost no attention on the possible negative sides of Big
Data, such as privacy issues. This approach is based on an epistemological
model that tend to naturalize the existence of data treating them like other
natural resources. In this frame, data and knowledge seem to be equal as in a
pure empiricist model. The modernist discourse supports a radical change in
medical knowledge, rejecting all the traditional one. In the second discourse,
the instrumentalist one, big data are presented as a set of analytical tools,
such as pattern recognition or machine learning. The tone of these editorials
are mainly positive and they typically discuss how such techniques should be
used, with reference to missing data problem, correlated features and the sep-
aration of training and validation sets. Similar to the modernist discourse,
in this second type, data seem to exist and are viewed as something with
an intrinsic value; on the contrary, in the instrumentalist editorials, the fact
that information can only be extracted from data with different techniques is
emphasized. The epistemological assumptions are that traditional methods
for knowledge generation are outdated and inefficient and that knowledge in-
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creases together with the set of used techniques. Regarding the relationship
with healthcare domain, this approach seems to treat the Big Data tech-
niques as a reliable source for decision making and to envision them as a tool
to solve problems, which is valid to the extent that it helps to make accurate
predictions. The third ideal-type is the pragmatist one and, in this frame, Big
Data are seen as a positive useful managerial instrument for problem-solving
and decision-making in healthcare. The advent of Big Data is a phenomenon
that is and will stay here and people are presumed to have a significant role in
the way they will be used, as opposed to the more technological determinist
way they are implied by the two previous discourses. Pragmatist discourse
editorials are focused on the training, recruitment and introduction of the
data scientist role and on the cultural factors, the new rules and regulations
that need to be made to introduce the data mining techniques in the health-
care practices. As regard the epistemological implications, data, as the two
previous ideal types, are seen as something that exists but they need to be
translated in information and knowledge. The pragmatist approach sees the
new Big Data techniques and the traditional approach as complementary.
Similar to the instrumentalist discourse, the pragmatist one considers data
as a source for decision making next to traditional knowledge production
approaches. However, also in this discourse the epistemological changes due
to the use of Big Data are not exposed. The fourth ideal type is called the
Scientist discourse in which Big Data are considered as a new trend that
concerns data collection, analysis and outcomes in a less rigorous way with
respect to the traditional approach. The editorials speak about the possi-
bility of using them to generate hypothesis and to explore data sets. The
tone of the scientist approach is critical since data can be used to hint the
possible directions for traditional research methods which remain essential to
knowledge production. As regard the epistemological assumptions, it seems
that Big Data can lead to reliable and valid knowledge if and only if they
are selected. In this approach, data are not given as natural or pre-existing
in the world. Another important point of this discourse is that more data is
not equal to better knowledge contrarily to all the other previous ideal types.
Despite this criticism, the epistemological position seems to be similar to the
modernist and instrumentalist one since the positivistic notion that truth
can be found in data is present. However, in the scientist approach, it is
clear that data cannot capture an entire domain of knowledge and hence the
process of hypothesis and theory formulation is still valid. A deep difference
with respect to the previous discourses is that the scientist approach does

46



not claim for a radical change in healthcare since Big Data are not reliable
as knowledge source. The only proper way to produce knowledge is the use
of strict scientific methods. The last ideal type is the critical-interpretative
discourse where Big data are presented as an oversimplified representation
of reality. The critiques made by this approach are both epistemological and
societal: Big Data are dismissed because they are a too simplified and re-
ductionist way for representing the reality and unable to properly capture
and account for the richness of human experience. The critical-interpretative
editorials focus the attention on the importance of letting the results be in-
terpreted by skilled physicians in order to avoid dangerous decision making.
The epistemological assumptions of this approach is based on the needing
of constructing data: data are no longer presented as something given but
as a result of the social and political processes that created them and hence
not only they cannot be complete but they necessarily emphasize some as-
pects while leaving out others. In the critical-interpretative discourse, Big
Data will always generate limited knowledge and should be carefully used
when applied to healthcare since their use may cause harm to people and
healthcare systems. Making a complete essay on hypothesis, its role and use
through the history of science, even limited to the healthcare domain, is a
task beyond this PhD thesis. However, a discourse on the possible scenarios
that may arise in Big Data science, that considers also the hypothesis, is
very interesting to deeply understand some insights of applying data mining
to medical images. In recent years, many practices, from machine learning
to deep learning, have been widely used in the healthcare domain and their
application in the radiological field seems to be very effective [88]. Even if
we do not discuss about epistemological questions when, as scientists, we
develop an algorithm, it does not mean that we are not making assumptions
but that we are doing it implicitly. Questioning how and whether knowl-
edge is produced is instead a pivotal moment to address scientific research
towards knowledge production and a fair use of the data mining techniques
in the healthcare domain. While a simple positivistic, hypothesis-and-theory
free and purely empiricist approach seems to be a way of making the use
of data simpler in the clinical practice, it is a trap. Regarding the field of
medical image analysis and consequently the radiological medical domain,
we know that data are not given, natural or pre-existing. Medical images are
the results of:

1. A traditional scientific process: their production is based on physical
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studies on the interaction between matter and radiation, human body
and radiation, on the physical processes of X-ray, magnetic fields and
ultrasounds production as regards radiology and radioactivity and all
the issues linked to it as regard the nuclear imaging;

2. A technological development history: the image production deals with
the detectors improvements, the materials used for detecting photons,
the electronics which, simplifying, determine for example the spatial
resolution, the contrast and other image quality characteristics. When
we deal with 3D images such as Computed Tomography (CT) scans we
should consider the image reconstruction algorithms which are a mix of
traditional scientific research, especially mathematical one (for exam-
ple Radon transform or Fourier signal analysis) and pure technological
improvements such as the sliding contacts.

3. An industrial process: medical imaging systems are not equally dis-
tributed around the world and their production is highly costly pro-
ducing as a result that there are few vendors that deals with the imag-
ing machinery market. Moreover, as a result of an industrial process,
some parts of the medical images production are protected by patents
which inhibits the complete knowledge on how an image is produced
(See section: 1.5);

4. A function-based process: medical images are made on the basis of
their utility and improved following their possible uses in hospitals.
The choice of using a specific imaging modality depends on the scope
(morphology or functionality and diagnosis, follow up, radiotherapy
planning, ...) and on the part of the body that needs to be imaged.
They are made to be presented to physicians in a way that medical
doctors can interpret and taking into account the specific medical for-
mation process they attended. Moreover, contrarily to natural images,
most of medical imaging modality implies the delivering of a radiation
dose to the patients, making their use a dynamic equilibrium between
costs and risks, in terms of capital and health, and benefits.

For all these reasons, it is unacceptable to consider medical images data
as pre-existing or natural. Moreover, applying Big Data techniques, such as
machine and deep learning, cannot be considered as a free hypothesis science.
Even if the hypothesis is a complex hypothesis and it is very far from the
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pre-Renaissance way of formulating it, we are always assuming that, given
the constructed data and the context, there is a model which may solve the
given task we want to study. This means that we are using data that contain
already the solution. Moreover, since medical images are constructed data,
the use of data mining techniques is not free of theory. This means we should
keep in mind that the choices researchers make are always guided by social
and epistemological assumptions on data, which should be taken into account
within the research framework. Characterizing the data science as compre-
hensive and intrinsically unbiased can be misleading rather than helpful in
shaping scientific as well as public perceptions of the features, opportunities
and dangers associated with data-intensive research [82]. Finally, as will be
discussed in the following, medical images can rarely be considered as Big
Data and hence the application of techniques developed on them should be
even more careful as regard, for example, the generalization goal. What is
at stake is our ability to produce knowledge not only in a traditional scien-
tific way but making it from a critical position, avoiding the accusation of
practising ”magic” or ”alchemy”. It deals with knowing and assuming how
much complex is to create algorithms, especially deep learning one, with the
scope of applying them in hospitals and, by assuming it, proceed towards a
fair, scientific, active and impacting application of data science to medicine.

2.1.2 Beyond Hypothesis: reproducibility

The problem of framing the Fourth Paradigm is bigger than the hypothesis
problem. Deep learning is a set of techniques which includes many types of
neural networks. The term ”deep” [43] means that the learning made by a
neural network is hierarchical and made to extract information from data,
at different levels, organizing it into layers that are usually numerous and
connected to each other. In image analysis, this way of elaborating images
is different from the classical one. While Convolutional Neural Networks
(CNN) act by automatically extracting important features in a hierarchical
order, in the classical image analysis the idea was mainly to focus on some
well-known image characteristics, such as borders, and to define a discrete
mathematical operator able to capture those characteristics. The image fea-
tures were defined a-priori and, once they were extracted, an algorithm could
be trained to perform the decision. This modality for image analysis suffers
from the difficulty of designing the features that should contain the infor-
mation we need. On the other hand, the algorithms that are used to solve
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the task are quite simple to be understood. So, the process of elaborating
a decision is sufficiently clear and many times fully explainable algorithms,
such as Generalized Linear Model (GLM), can be used. The use of deep
learning simplifies consistently the task of designing the features since, for
example in the case of a classifier, we do not need to compute the features
a-priori but only let the algorithm learn them from data. However, the trans-
parency of the decision process is lost and it is not possible to explain why
a deep learning algorithm, especially CNN, makes a certain choice. As writ-
ten in Sec 1.8(Deep learning and black boxes), though there are several and
different methods to try to explain how a deep learning algorithm works,
explanation and interpretation are different tasks. At the state of the art,
we know some methods to explain deep learning algorithms but interpret-
ing them is a more complex task. This is why, sometimes, we refer to this
kind of algorithm as ”black boxes”. This difficulty opens a pivotal question
which deals with epistemology: are these algorithms reproducible and reli-
able? Reproducibility is the possibility of obtaining the same results of other
researchers given the same experiment. Since neural networks training deals
with stochastic computation, it is important to discuss how it is possible to
reproduce an experiment. Moreover, the number of hyperparameters, that
are the non learnable parameters of a Neural Network, is usually very high
and it is quite impossible to describe all of them in a scientific report. Fur-
thermore, the possibility of reproducing an experiment is strictly connected
to data availability. As will be discussed in the following, data may be pri-
vate or public and even if public datasets ensure the possibility to reproduce
an algorithm, their publication implies some drawbacks such as the possible
deletion of important information. Hence, the problem of reproducibility is
another issue that is added to the epistemological problem making it a very
challenging question to be addressed [142].

2.2 What Drives Medical Images algorithms?

When we train a deep learning algorithm for classification, segmentation
or regression, we mainly try to solve a particular optimization problem. It
means that we define a cost function or loss function which has to be mini-
mized. The cost function measures the error with respect to a ”truth” that
the algorithm makes when performing its own task and an optimizer works
to reduce as much as possible this error. Since the loss function needs to
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respond to some mathematical boundaries, in deep learning training another
function to measure the performance of the algorithm is usually used. This
separation between loss function and performance measure makes the deep
learning training different from a standard optimization process. Moreover,
the main task when we optimize a deep learning algorithm is not simply to
find a minimum of the loss function, but also to maximize its generalization
capability. This means that we want the algorithm to be able to work on
data which differ from the training data set. A loss function is usually com-
puted as an average over the training set or over a subset of it (batch) and
it is defined as the expectation taken from the empirical data distribution
of the cost functions computed on the training set. We want to minimize
the expectation of cost function taken from the data generating distribution
and not only from a finite set of data and this quantity is called risk [43].
However, it is often quite impossible to know the underlying data distribu-
tion and hence the risk is computed on the training set, transforming the
problem in an empirical risk minimization problem. Unfortunately, this kind
of problems is prone to overfitting if the loss functions used have unusable
derivatives (zero or not defined everywhere). For this reason, in deep learning
training we usually minimize a quantity which is different from the quantity
we truly want to optimize. So, the question is what is the ground truth on
which the cost function is computed in medical image analysis? What drives
the training of medical images algorithms?

2.2.1 Labeling Medical Data

In Chapters 3 and 4, two use cases with different data and scopes are pre-
sented. In both of them, the learning paradigm is the supervised learning.
This means that the loss function is computed between the predicted value
of the algorithm and the true value and that the task of the optimizer is to
make the gap between them as little as possible. It is important to underline
that the final task is not just to minimize the error between the true and
the predicted value but to let the performance of the algorithm be satisfac-
tory on the test set. However, it is important to discuss how the true value,
also called ground truth, is built in the medical image analysis domain. The
ground truth usually depends on the task we want to solve and its creation is
a pivotal step for algorithm development. There are different ways to label a
data set of medical images. If the task we want to solve is a classification task,
the ground truth consists in assigning a class to each image or patient in the
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data set. A patient image taken at different time points may belong to a dif-
ferent class because human body changes over time. The way the classes are
defined is mainly based on medical protocols. For example, in Chapter 3, the
classification of breast density on mammograms is discussed and the ground
truth is based on the Fifth Atlas of Breast Imaging Reporting And Data Sys-
tem (BI-RADS) [133] which defines four classes through textual descriptions
and image examples. In this case, the ground truth has been decided by a
specialized radiologist who has looked at every image in the data set and
assigned the class to that image. He was not supported by quantification
tools and acted just looking at the four standard mammographic projections
in order to produce his ground truth. Even if this labelling process seems to
be very fast, when a huge amount of labelled data is required, the process is
very time consuming for doctors. Another way for labelling medical images
is to assign to each pixel or each voxel a certain class. This kind of labelling
is suited for solving segmentation problems. For example, in Chapter 4, an
automatic way to quantify the pulmonary damage due to COVID-19 is pre-
sented and the ground truth is made by masks that contours the lung lesions
and the lung itself. A medical image usually contains many pixel and voxel
and this characteristic makes the labelling extremely time consuming. If we
suppose to have a standard lung Computed Tomography (CT) scan with size
512x512x100 the number of elements to be labelled is more than 26 millions!
There are some tools to help physicians in this task but they may introduce
a bias in the labelling. In order to reduce the cost of labelling, the use of
non-expert people has been employed in the field of natural images but [77]
the use of such kind of labelling process leads to highly noise data sets. In
the medical images domain, in which the objects to be identified are usually
small and are difficult to be identified, this process is even harder. Having
the availability of large labeled data sets of medical images is currently a
real challenge even despite the labelling process. Medical images data sets,
in fact, are usually small and their collection is not easy because of privacy
issues and institutional policies.

What is label noise?

When we refer to label noise, we do not refer to image or signal noise. The
widespread of deep learning techniques brought with itself a variety of dif-
ferent forms of imperfections or corruptions on labels. In classical machine
learning classification problems, a data set is typically defined through at-
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tributes or features and class labels. Making a classification means to select
the attributes that better characterize a class. This process is based on two
assumptions [160]:

1. There exists a correlation between attributes and classes. Not every
attribute contributes with the same weight to the classification but
there are some feature that are more important and others less.

2. We assume that there is a weak interaction among attributes. This
assumption is important for many classifier which are trained based on
a conditionally independent or even independent relationship among
features.

Unfortunately, real world data do not always comply with these two as-
sumptions. In fact, given a data set, it may contain attribute with very low
correlation to the class or which strongly interact with other attributes. For
this reason, in classical machine learning, we can identify three categories of
label noise [62]: class-independent, class-dependent and class and features
dependent. There are several techniques to reduce this noise and they are
based on:

• model selection or design. The algorithm is chosen on the basis of its
robustness to noise itself;

• reducing the label noise on the training data. These methods are very
similar to the outliers detection methods;

• methods that train classifier and model the labels at the same time.

As regards deep learning, it usually needs a huger amount of labeled data
which leads to a higher amount of label noise. Label noise is, in this case,
not really easy to be defined. It can be described as the presence of incorrect
labels or ambiguous one and it is unavoidable in many medical image data
sets. The label noise is caused by low attention or limited expertise of the
annotator, by the subjectivity of the thing we want to label or by errors
in computerizing the labeling systems. Many studies have demonstrated
that label noise degrades significantly the performance of a deep learning
algorithm [62]. As an example, a CT scan and its labelling taken from the
COVID-19 Challenge data set is represented in Figure 2.1.

There are several methods used to reduce as much as possible this kind
of noise, such as label cleaning or data re-weighting but they have been
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Figure 2.1: On the left: the original CT scan of patient volume-covid19-A-
0013 ct represented in the HU window [−1000, 300]. On the right: the same
CT scan with the ground truth overlay. In the axial plane: the labelling is
made of a perfect circle and this can be considered a form of label noise. The
presence of the perfect circle is a consequence of the labelling process made
with the support of some tool. In the coronal and sagittal plane: it can be
observed a strong discontinuity along z axis which represents another kind
of label noise.

developed on very large natural images data sets and their use on medical
images should be applied carefully.

2.2.2 Inter observer agreement variability

Another source of noise in the medical images labelling process is the inter
and intra observer variability. Since labelling medical images requires exper-
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tise and it can be a very hard job, an image can be differently annotated
by different radiologists. This kind of noise is always present, despite the
fact that the labelling was made for both classification or segmentation. As
regard the former, when making the labelling, a physician looks at the entire
image or sometimes at more than one image related to a patient and assign
a unique value, the class, to that image. There not always exists a true mea-
surable and/or collectable class to be used as the ground truth in medical
image classification problems. For example, in mammography, the breast
density assessment suffers from the inter observer variability because it is
usually not possible to have the real ratio between dense and fat tissue. The
imaging exam that gives the best measure of them is the Magnetic Resonance
Imaging (MRI) with medium contrast which is usually performed, in Italian
hospitals, as second or third level of examination. This means that a woman
undergoes to MRI only if she had been positive to at least another exam,
which can be a mammogram, a ultrasound scan and/or a biopsy. Since it is
made only on women who have a high probability of having breast cancer,
it is very difficult to find MRI performed on healthy women and hence to
build a balanced dataset. Moreover, building labels by crossing more exams
related to a woman introduces not negligible privacy issues. Also segmen-
tation problems present inter observer variability. In this case, labels are
made by contouring a specific organ or a specific pathology, hence, assigning
to each pixel or voxel a specific class. One possible solution to overcome
the inter observer variability in both segmentation and classification is to
produce the ground truth in a consensus modality, i.e. building the ground
truth using a large number of experts that delineate the annotations. This
way implies the use of massive financial resources and also logistical resources
that are not easy to be obtained in many fields [62]. One interesting example
in literature about label variability is the case of the LDCI-IDRI data set [5].
This data set consists in Lung CT with nodules and it was collected to study
whether it is possible to use CAD for screening lung cancer. The annotation
has been made in two steps by four radiologists: first they annotated the
nodules in a blind modality, i.e. without knowing the answers of other radi-
ologists, and then they labelled again the data set reviewing the annotation
made by the others. The possible annotations were lung nodule bigger than
3 mm, lung nodule littler than 3 mm and no lung nodule. The LDCI-IDRI
data set contains 2996 lung nodules bigger than 3 mm but only 928 (34.8%)
of these lesions received nodule 3 mm marks from all four radiologists. The
problem of variability also opens another issue which concerns whether it
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is possible to obtain a consensus and how is it possible to measure it. The
most used method to measure consensus is the Kappa correlation coefficient
[24] and [15] there are tasks, such as classification or diagnosis, which work
with littler variability, and others, like segmentation, which may reach a very
low agreement. This opens an epistemological and scientific problem. It has
been established that the use of medical protocols may help in reducing the
variability because it standardizes the way an image is read in some specific
domains [63]. Even if guidelines may decrease the inter observer variabil-
ity, it seems to be impossible to completely eliminate it. This issue leads
to two possible interpretations: 1) the guidelines are inaccurate or insuffi-
cient and 2) there is an underlying variability associated to complex clinical
tasks that even guidelines can not delete [15]. Another way to maximize the
consensus is to train and educate physicians to label images [22] [33] [130]
[86]. Discussing the epistemological address of health research is important
to face the problem of variability. We can frame it in the positivist approach
or in the constructivist one. The most recent research adopts a positivistic
approach with the fundamental assumption that there exists a single truth
[15]. In this view, there is the underlying assumption that the gold standard
can be made by the opinion of an expert. However, guidelines and training
have shown the capability to reduce the variability without erasing it at all.
Several studies showed that the reliance on an expert opinion is not reliable
[15] [20] while the lack of a true gold standard make the absolute comparison
difficult [148]. So, we can conclude that variability exists and there is no way
to delete it. Approaching this problem in a constructivist frame means to
assume that there are several ”truths” that depend on inherent biases, ex-
perience or judgments not only among different individuals but also within
the same individual at different time points. Bridge et al. [15] states that
clinicians should embrace the variability in the constructivist approach, sug-
gesting that, instead of deleting it, they should study what are the acceptable
variability amount for the specific clinical task.

For all the reasons discussed above, it is not easy to build models for
diagnosis, prognosis or to assess the follow-up of a patient and doing it in
the right way requires the collaboration of many experts.

56



2.3 Public and Private Data

Deep learning algorithms and machine learning ones obviously need data.
Deep learning in particular needs a huge amount of data which are not easy to
be obtained. Medical images data can come from private or public collections
and accessing to them is one of the biggest challenge of the medical image
analysis domain.

2.3.1 Are Medical Images data sets big?

The term ”big data” etymologically come from the mid-1990s and it was
used to refer to the handling and the analysis of massive datasets. The term
”Big Data” refers not only to data themselves but to a rapidly evolving use
of technologies and practices and there is no agreed academic or industrial
definition of this term [67]. The most common definition makes reference to
the 3V [162] which stands for:

• huge in Volume;

• huge in Velocity, created nearly in real-time;

• diverse in Variety, being structured or unstructured in nature and often
temporally and spatially referenced.

Beyond the 3V definition, in literature, other main characteristics describe
big data:

• exhaustive in the scope, which means that big data capture entire pop-
ulation or system characteristics;

• fine-grained in resolution, which means that big data contain detailed
information;

• relational in nature, which means they contain common fields across
different datasets;

• flexible, which means they can be extended and scalable.

Given these characteristics of big data, it is interesting to question whether
medical image datasets can be considered big. The Cancer Imaging Archive
(TCIA) [23] is taken into account for discussing this issue. TCIA is an Open
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Data Portal made available by The National Cancer Institute (NCI), under
the supervision of the University of Arkansas for Medical Sciences (UAMS),
with the aim of encouraging cross-disciplinary science and increasing trans-
parency and reproducibility in cancer imaging research. It is a project which
publishes medical images data and it is one of the most important source
for academic research. The collections are mainly divided in two categories
(for an accurate description of TCIA access to data see Sharing medical
images: The Cancer Imaging Archive section): access free data and
data which can be accessed only with specific usage policy agreement. It was
born with the aim of supporting research about cancer but, in the very last
months, it published also data related to COVID-19. It contains 147 collec-
tions of several imaging modalities and for several scopes. The most popu-
lated dataset is the National Lung Screening Trial (NLST) which contains
26254 Computed Tomography (CT) scans of lung. This dataset was made
to study the feasibility of a screening program for lung cancer. The second
most populated dataset is the Breast Cancer Screening-DBT which contains
5060 Digital Breast Tomosynthesis (DBT) images for studying whether it is
possible to use DBT as a screening tool. Including these two datasets, 8 pub-
lished datasets contain more than 1 thousand subjects; 51 datasets contain
a number of subjects between 100 and 1000; the other datasets contain less
than 100 subjects. So, medical images data sets can rarely be considered
as big data since their volume is considerably small. However, even if their
creation happens in a nearly real-time, their collection does not because of
privacy issues and also of storing criticalities. They can be considered various
because they are structured data with temporally and, sometimes, spatially,
referenced. As regards the other characteristics, datasets which contain so
little amount of subjects can not be considered as exhaustive at all and they
are not flexible since it is not easy to add new fields or information to already
collected data. However, they may contain fine-grained in resolution infor-
mation and be in relation one to each other, given some boundaries. These
boundaries concern the imaging modality, the imaged subjects, the scopes
of the collection and across the same modality, subject and scope there may
be technical issues, due to, for example, reconstruction algorithms and also
timing issues since some collected data were made with technologies that are
not used anymore. Hence given the above considerations, in particular the
one that refers to the volume, it is very rare that a medical image data can
be considered as pure Big Data. For this reason, the application of big data
practices to this kind of data should be made carefully and considering all
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these issues.

2.3.2 Differences between public and private data

Data may come from public or private collections. Both of these two modal-
ities have weaknesses and strengths which are going to be discussed in the
following. First of all, public data may be effectively public, i.e. accessible to
every one, or they may be accessed through a specific agreement. Private data
are instead data which can not be used or accessed in any case. Data may
not be accessible for many reasons. One of the most problematic is bound to
privacy. In order to better understand the risks of publishing data it is in-
teresting to discuss the most used image formats. This is important because
medical image formats usually contain a header with patient and physician
information. There are mainly two image formats typically used for medi-
cal images and they are the Neuroimaging Informatics Technology Initiative
(NIfTI) [109] and the Digital Imaging and Communications in Medicine (DI-
COM) [29]. NIfTI format was created in the field of neuroimaging and it
is a standard which contains a header with only information about orienta-
tion, voxel size and image visualization. 3D images, for example CT scans or
MRI scans, can be stored in this format which defines uniquely the correct
orientation and the physical volume. The Digital Imaging and Communica-
tions in Medicine (DICOM) standard [29] is the global convention used by
manufacturers to define and store diagnostic imaging data. DICOM images
are encoded as a set of elements; public elements are defined by the DICOM
standard, and private elements are defined on an individual basis by each
manufacturer. A DICOM data element or attribute is made of:

• a tag that identifies the attribute, usually in the format (XXXX,XXXX)
with hexadecimal numbers, and may be divided further into DICOM
Group Number and DICOM Element Number;

• a DICOM Value Representation (VR) that describes the data type and
format of the attribute value.

The fields of the DICOM header contain many information from the pa-
tient ID, which is a number that uniquely identifies the patient, the Patient’s
Birth Name (0010,1005), the Patient’s Age (0010,1010), the Patient’s Size
(0010,1020), the Patient’s Address (0010,1040) or even the Patient’s Mother’s
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Birth Name (0010,1060). Moreover it contains information about the refer-
ring physician name, the date of the exam and so on. All these data are
a problem when we deal with privacy because they may allow a complete
re-identification of subjects. On the other hand the DICOM format contains
also information on the acquisition parameters such as the reconstruction
kernel, the imaging system used, exposure time, X-ray tube current, the field
of view (FOV) size or the reconstructed FOV. These characteristics are less
prone to be problematic as regards privacy and they are very useful for algo-
rithms development. However, in most of published medical images data all
this information is lost. This is mainly due to the fact that it is not so easy
to treat privacy and DICOM standard since the number of tags that may be
contained is very large. Moreover, making studies on humans imply not only
privacy related issues but ethical issues too. For these reasons accessing to
Italian hospital data requires a strict protocol to be carried out. Modality
manufacturers use private elements to encode acquisition parameters that are
not yet defined by the DICOM standard or that they consider proprietary.
Modality manufacturers also define and include private elements that con-
tain Protected Health Information (PHI). These PHI private elements can
be as obvious as the name of a patient and as subtle as an identifier string
that could be tracked back to a patient by someone with access to the de-
partmental image archive. A DICOM conformance statement is a document
published by a manufacturer that contains technical information concerning
data exchange with a specific type of device (e.g. an imaging unit, work-
station, printer, image archive). The conformance statement provides the
mechanism for a manufacturer to publish the set of private elements that are
stored in the DICOM files created by an imaging system. Manufacturers do
not document and publish all of their private elements. For these reasons,
the de-identification process should meet two conflicting requirements: (i)
any PHI must not be included in exported data and (ii) the system must
retain all data that describe the acquisition, such as physical parameters for
individual images, as well as other parameters such as series description. Ac-
quisition parameters change according to the image modality: as an example,
tube voltage and slice thickness are important for a CT, while the magnetic
field strength is essential for MRI. De-identifying a DICOM collection is not
easy and there are several technical challenges to satisfy the requirements
[105]. In summary, they are:

1. DICOM standard elements with well-defined semantics are abused dur-
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ing the collection. In fact, some elements are written by the radiology
technician at the console. Instead of using the field for intended pur-
pose, such as “Image Comment”, the technologist may enter PHI.

2. Vendors use private elements to encode acquisition parameters not yet
documented by the DICOM standard. Furthermore, they may use
private elements to record demographic information.

3. DICOM sequences provide a mechanism to nest data elements at dif-
ferent levels in DICOM objects and PHI may be encoded at these lower
levels.

4. Manufacturers do not document all private elements and private ele-
ments may contain important acquisition parameters.

5. Image providers remove information from the images that identifies the
vendor model and software.

6. The users and managers of the de-identification system may not be able
to discuss the collections of images with the original imaging center.

De-identifying a DICOM image is a challenging task that carries the risk
of leaving in the header PHI or meta-data that makes the re-identification
possible. On the other hand, the NIfTI format has been invented to have not
patient information in the header but it does not allow to store important
technical parameters. It could be interesting to study a new image format
standard suitable for AI and deep learning algorithm which contains all the
technical information while keeping the privacy risk as lower as possible.

Sharing medical images: The Cancer Imaging Archive

The Cancer Imaging Archive (TCIA) [23] is an Open Data Portal to share
medical image data sets. At the NCI, researchers from TCIA collect and
curate clinical and pre-clinical radiology and pathology images, clinical trial
data, annotations and image derived features and other type of clinical re-
search data. The database was born to share data about cancer but in
the last few months it has been used to share COVID-19 data too. It is
organized in different collections and it is possible to query the database se-
lecting the collection name, cancer type, location, species, subjects, image
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type, supporting data, access, status and last update time fields. TCIA con-
tains mostly biomedical images, such as mammograms or histopathological
images, or 3D imaging data such as Magnetic Resonance Imaging (MRI) or
Computed Tomography (CT). Sometimes datasets are accompanied along
with clinical information about patients. There is no literature about the
direct re-identification of individual from images but it can be made with
meta-data written on DICOM header. Despite the re-identification through
meta-data or clinical data, the possibility of identifying a subject from a
public image dataset is strictly connected to the imaging modality used. For
example, it is quite impossible to recognize a subject from a leg radiogra-
phy while re-identification can be achieved from a head MRI image which
can be used to reconstruct the contours of the face. A proposed solution to
this problem is Federated Learning in which data are not moved from their
original acquisition site and are used to train algorithm locally [61].

TCIA data may already be published or released in public domain. In
addition, confidential information may be posted which has not yet been
published or is subject of patent applications yet to be filed. In fact, some
data sets, such as the Curated Breast Imaging Subset of DDSM (CBIS-
DDSM, public domain), were already published and they have been published
on TCIA with updates or different standardization. Other data sets have
been collected and published directly on TCIA. Data has been collected by
researchers and published with the ethic committee agreement.

Data may also be subject to copyright and commercial use may be pro-
tected under United States and foreign copyright laws. Other parties may
retain rights to publish or reproduce these documents. In addition, some data
may be the subject of patent applications or issued patents, and you may
need to seek a license for its commercial use. Most data are freely available
to browse, download, and use for commercial, scientific and educational pur-
poses as outlined in the Creative Commons Attribution 3.0 Unported License
or the Creative Commons Attribution 4.0 International License. In rare cir-
cumstances commercial use may be prohibited using Attribution-Non Com-
mercial 3.0 Unported (CC BY-NC 3.0) or Creative Commons Attribution-
Non Commercial 4.0 International (CC BY-NC 4.0). Furthermore, regis-
tration is often not required to access the data. It may happen that small
subsets of a collection require a user registration as specified in the access
database field. Since TCIA offers a space to publish and share data, it may
happen that it is used by an institution to share data among its members
(such as QIN Quantitative Imaging Network). Despite final uses, any user
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accessing TCIA data sets has to not attempt to identify individual human
participants from whom the data were obtained according to TCIA policy.
Moreover, acknowledging in all oral or written presentations, disclosures or
publication the used dataset is required. Citation guidelines can be found in
the “Citation and Data Usage Policy” attached to each collection.

It is possible to submit data to TCIA repository, certifying that you are
the original source of the submitted data and you are authorized to release
the data by your local Institutional Review Board (IRB) or independent
Ethics Committee. It is needed to certify that the Technology development
office of your institution has been consulted before posting or disclosing con-
fidential information which can be patentable. TCIA does not charge a fee
for sharing data except in rare circumstances where dataset are extremely
large. Applications are reviewed every month by the TCIA advisory group
to assess their utility to user community. They give a strong preference
to fully public data sets and to ones which contain supporting non-image
data, such as patient outcomes, training labels and tumor segmentation. If
approved, data submitter must sign the TCIA UAMS Data Transfer Agree-
ment or the TCIA Non-Commercial Data Submission Agreement, in the case
submitters are not legally permitted to allow commercial use of their data.
However, NCI and UAMS do not warrant or assume any legal liability or
responsibility for accuracy, completeness or usefulness of information in this
archive. In order to ensure that Protected Health Information (PHI) is not
used or disclosed inappropriately, PHI from images are going to be removed
by the submitter and again by tested automatic de-identification processes
by the University of Arkansas for Medical Sciences according to the Health
Insurance Portability and Accountability Act (HIPAA). All data is fully de-
identified in accordance with international standards, US laws and UAMS
IRB protocol requirements. Data is anonymized to the fullest extent pos-
sible and then encrypted prior to the trasmission to UAMS. Incoming data
is stored in a quarantine system and treated as if it contains PHI. Data is
analyzed and completely de-identificated and then moved to a separate pub-
lic repository in order to make it available to the research community. This
process has been reviewed by the UAMS Chief Security Officer. In order to
help data sharing, TCIA provides data de-identification, curation and host-
ing services. TCIA uses a standards-based approach to de-identification of
Digital Imaging and Communications in Medicine (DICOM) international
standard for medical images, following the industry best practices. DICOM
is most commonly used for storing and transmitting medical images enabling
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the integration of medical imaging devices such as scanners, servers, worksta-
tions, printers, network hardware and Picture Archiving and Communication
Systems (PACS) from multiple manufacturers. Mainly this process removes
or replaces with a hash the image metadata fields that can held to an indi-
vidual identification. Patient name, ID, geographic information, dates, exam
identifiers, patient demographics, free text entry fields, vendor private tags
are removed to minimize the possibility of being able to uniquely identify an
individual. Universal IDentifiers (UID), which are used in DICOM, are re-
placed with a hash since it may be possible to identify subjects if the user has
access to the PACS system. Date and Date-Time fields in DICOM header
have been offset based on a random number but the longitudinal relation-
ship between dates is maintained. As example, it is possible to preserve the
information about the amount of time between an exam and its follow up
without knowing the exam date. Patient demographic characteristics, such
as patient’s sex, age and weight, may be useful for research purpose and it
is possible to keep this information. TCIA represents a landmark in this
research field and this thesis has been possible thanks to their work.

2.4 Statistical Validation versus Clinical Val-

idation

Statistical validation is the task of confirming that the outputs of a statisti-
cal model are acceptable with respect to the real-data generation process. In
machine and deep learning there are several ways to statistically validate an
algorithm. The simplest way is to divide the data set into training, valida-
tion and test set. The algorithm is trained using only training data and then
it is evaluated, during training, on the validation set. The introduction of
the validation set allows also the best model selection as the training can be
stopped at the epoch of the best performance on this set. Since the results
are influenced by the samples in the validation set, the algorithm should be
evaluated also on a set of data, test set, that is completely separated with
respect to the training and validation one. This method is simple and it does
not add computational time. However, it may happen that the validation
and the test set contain some specific subset of population. In particular, this
can be considered true when we do not have any further information about
population. In order to overcome this issue, it is possible to perform a k-fold
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cross-validation. In this case the entire data set is divided in k subsets of data
and the model is cyclically tested on one of these groups and trained on all
the remaining data. This method has the advantage to test also the stability
of the algorithm performance and it reduces the possibility of evaluating it
on a biased sample. On the contrary, it increases the computing time and
power so that it is usually a hard method to be used in deep learning valida-
tion. Another way to validate algorithms is the leave-one-out method which
is similar to the cross validation but instead of a group of samples, just one
sample is taken apart during training. While this method reduces random-
ness in sample choices to zero, it increases the computation time depending
on the number of samples in the training set. So, it is recommended only on
small datasets. Once the algorithm has been trained and validated using one
of the above methods, it is interesting to question whether it can be clinically
validated and how. AI technology is expected to be of substantial help in
medicine with innovative solutions. There is a wide range of AI devices for
healthcare; most of them are diagnostic tools, such as CAD, CADx or clini-
cal decision support systems. However, machine learning methods, especially
deep learning ones, are prone to overfitting because of their high dimension-
ality and complexity so that their performances deteriorates when applied to
external data [112]. Moreover, public datasets usually differ from real data
so that it is not easy to translate algorithms into practice. Even if patients
have the same disease, other characteristics such as age, sex, comorbidities
often differ across different hospitals. Moreover, different hospitals usually
have different devices to acquire images and different scanners impress dif-
ferent characteristics on the images. Healthcare equipment advancements
are continuously evolving producing as a result that an algorithm trained
on older images may not work properly on more recent ones. For all these
reasons, a key step to pass from statistical to clinical validation is to per-
form external validation using external data independent from training and
internal validation data sets. It is also important to maintain an internal
test set in order to evaluate the algorithm performance also on internal data.
This may help to understand whether a tested performance on an external
validation data set is reliable or spurious since it is logical to expect that the
algorithm performs better on data of the same type of training data. Unlike
in the fields of medicine and health, in the field of artificial intelligence and
machine learning, the term validation often refers to the fine-tuning stage
of model development, and another term, test, is used instead to mean the
process of verifying model performance. External validation can be carried
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out in two different modalities: diagnostic case-control study and diagnostic
cohort studies. In the first case, samples with and without the disease are
collected separately and, this way, prevalence is artificially designed, unlike
natural prevalence in the real-world settings. This selection bias results in
a different disease spectrum and it affects the algorithm performance. In
the cohort studies, patients are selected based on some predefined criteria
and this allows to select natural spectrum and prevalence data. However,
the choice of eligibility criteria is pivotal to represent prevalence in a good
way. Another issue that deals with the clinical validation is that dividing the
population in subjects who clearly have disease and subjects who clearly do
not have disease (i.e., two opposite extremes in the disease and non disease
spectra) would inflate diagnostic or predictive performance [111]. Robust
clinical verification of the performance of a diagnostic or predictive artificial
intelligence model requires external validation (validation as verification of
a model’s performance) in a clinical cohort that adequately represents the
target patient population, and the use of prospectively collected data is desir-
able. In conclusions, there are many steps to pass from statistical to clinical
validation and the process implies the collaboration among many hospitals
and institutions to achieve a sufficient proof of the algorithm generalization
capability.

2.4.1 Can really physicians improve their performance
with algorithms?

Over the last 10 years, publications on AI in radiology have increased from
100–150 per year to 700–800 per year [115] and the interest in the medicine
field is continuously increasing. AI and deep learning studies mainly focus
their scopes in increasing the accuracy of diagnosis when compared to the
physicians performances. However high accuracy does not necessarily mean
that an AI algorithm improves clinical outcomes. It is, in fact, important to
assess whether its use in clinical practice can be integrated in the hospital
workflow and how much the impact is, not only on the outcomes, but also
on the physicians training. In order to perform this kind of analysis, clinical
trial modality is needed and clinical trial studies are usually time consuming
and expensive. As an example, in [49], the performances of a CNN classifier
for skin cancer have been compared to the dermatologists’ one. They found
that CNN outperforms most readers. In a later letter in which the authors
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characterized better the readers experience and provenance [48], it has been
shown that, even if it is true that the CNN outperforms the dermatologists,
this behaviour significantly depends on the reader experience and on skin
cancer detection specialization. It is pivotal to question which could be the
role of AI in the medical and clinical workflow, especially in the radiology
field which seems to be the most explored field of medicine. It is also in-
teresting to discuss the role of a radiologist in the hospital workflow and
whether they can be replaced by an artificial intelligence or be supported by
it. In [115], a group of radiologists reflects on what it means to let an AI
make a diagnosis and what are the differences between the human evaluation
and the AI one. AI and especially deep learning functioning in radiology
is based on a principle that is very similar to the clinical one: ”the more
images you see, the more examinations you report, the better you get” and
this may be the reason why AI is successfully applied to radiology. Since
the comparison between the radiologist’s and AI performance depends on
the radiologist experience and also on the quality of the developed AI, it
is not straightforward to state whether and when one is better than the
other. When image analysis takes too much time with respect the necessity
of the patient, i.e. a very urgent clinical evaluation is necessary, AI may be
very helpful in a hospital workflow. As an example, in this study [64], the
application of a deep learning-based assistive technology in the Emergency
Department (ED) context has been studied on Chest Radiographs (CRs).
CR interpretation is a difficult task that requires both experience and ex-
pertise because various anatomical structures tend to overlap when captured
on a single two-dimensional image, different diseases may have a similar pre-
sentation and specific diseases may be present with different characteristics.
For these reasons, the CR interpretation suffers from a significant possibility
of misinterpretation (22% according to [30]). ED physicians perform worse
than trained radiologists in reading images. However, radiologists may not
be available, especially during nights and weekend and CR interpretation in
the ED settings is given to ED physicians. For all these reasons, [64] Kim
et al. studied whether an ED physician supported by a deep-learning based
algorithm for CR interpretation performs better than the single ED physi-
cian. They found that ED departments may benefit from the use of AI even
if this experiment needs at least an external validation study. This is an
example that shows clearly how much it is important to know the health-
care domain and practice in order to structure a deep learning experiment.
Despite the improvements deep learning may produce to healthcare, another
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pivotal question concerns the problem of accountability. When an AI is used
to make a decision in clinical practice, it is not trivial to understand who is
responsible for the diagnosis. In this work [107], a radiologist supported by
an AI is depicted as responsible for the diagnosis if they are trained on the
use of AI since they are responsible for the actions of machines. Moreover, it
is necessary to deepen the research field of explainability in order to let the
radiologists understand the AI behaviour. Furthermore, the use of AI may
bias the radiologist decisions. Lastly, the public discussion on the introduc-
tion of AI systems as possible substitutes of the physicians themselves can
be dangerous and produce a paradox effect: since radiologists are going to be
replaced by AI, there will be a lack of motivation for young doctors to pursue
a career in radiology. For all these reasons, building and even bring in the
public debate deep learning models to be applied to radiology is a delicate
task.

2.5 The urgency of a real-time interdisciplinary

approach

In this chapter, the many aspects that deal with the creation of a deep learn-
ing algorithm applied to medicine and, specifically, to imaging have been
discussed. The difficulty of taking into account all these issues is clear and
they relate to many fields of knowledge. In the first section, the changing
scientific paradigm has been discussed as well as the problem of the hypoth-
esis and the reproducibility. How researchers pose their research questions
and which epistemological assumptions they embrace are fundamental to un-
derstand the kind of research they are doing. This process cannot be done
without looking at the social processes that leads to the data collection and
the data generation. In the second section, the process to define a ground
truth on medical images is discussed within potentialities and limitations.
Typically, the ground truth on medical images is made by the physician
opinion or by a consensus among many medical doctors. When made with
the second modality, the ground truth always suffers from the inter-observer
variability that is difficult to be erased. The quality of an algorithm strictly
depends on the quality of the ground truth but having a large number of
physicians is economically expensive and requires a high grade of coordina-
tion and collaboration among research and health institutions. The quality
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of the algorithms depends also on the quality of data that can be private or
public. Public data guarantees the possibility of testing different algorithms
on the same data set but, in order to make them publishable, important
information on, for example, acquisition protocols or scanners, may be lost.
Private data has the advantage to be designed for the specific experiment and
taken following inclusion criteria decided by the collector. When released,
this kind of data can be designed to contain the information on acquisition
that could be useful and meaningful for the analysis. In any case, medical
images data are scarce and they may lack of label quality. This issue is one
of the most limiting in deep learning algorithm development. Finally, when
an algorithm is developed to be used in clinical practice, it has to be vali-
dated not only statistically but also clinically. Validation is a word that can
be misunderstood since it has different meanings in medicine and in com-
puter science field. The validation set is a specific training-dependent set
for algorithm developers and the performances computed on it are not in-
dependent since the algorithm has been chosen on the basis of performance
on the validation set. The test set is instead an independent set of data
which is not used during training and that is taken apart to evaluate the
final performance. However, the test set is not sufficient to claim clinical
advancements since it belongs to the same data set used for the training and
the validation. The algorithm, in fact, needs to be tested also on at least
an independent external data set to evaluate its generalization capability.
The external data should be taken from another medical center and should
contain the information on acquisition and scanners in order to make possi-
ble the analysis of the image characteristics that may confuse the algorithm.
This process can be done in two modalities, case-control and clinical trial
studies, and both of them may suffer from the issues to correctly represent
the population. Once the algorithm has been externally validated, it should
be integrated in the hospital workflow and its performance should be eval-
uated also in this context. It has been established that the capacity of an
algorithm to outperform a physician is strictly connected to the experience
of the physician to solve that specific task. For this reason, there exist sit-
uations in which the application of an algorithm may be really helpful to
both increase performance and save time. In this context, it is interesting
to question who is responsible for the diagnosis when an algorithm is used
to support physicians or directly to diagnose a certain disease. In order to
solve this issue, we need juridical instruments that helps the application of
algorithms in clinical practice. Building responsibility means also to train
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physicians to the use of AI in order to make them mindful of its use and to
produce an informed consent that patients can really understand. All these
issues suggest that the development of an algorithm for clinical applications
need a deep and widespread knowledge in all of the cited fields: medicine,
radiology, healthcare processes, laws, computer science, computer engineer-
ing, physics, social sciences, philosophy and so on. What is at stake is to
develop a high performance and trustworthy Artificial Intelligence.

2.5.1 Z-Inspection® project

The promise of applying AI to medicine is inherently bound to the capacity to
develop and deploy trust in these new instruments. Assessing trustworthy AI
is a difficult task [161], in fact “the real-life ethical impact that a technology
will have on people, their communities and the planet, can only be fully
understood once the product or service is in real-world use” [116]. In this
context, the study of applied ethics plays a central role. For this reason,
the process called ”Z-inspection®” [161] has been designed to assess if an AI
system is trustworthy based on the definition of trustworthy AI given by the
high-level European Commission expert group on AI [53]. The Z-inspection®

project is made of independent researchers who come from all over the world
and its aim is to apply the process to assess ethical, social, technical and legal
risks when implementing an AI. The process is based on the integration of
two well-known approaches: the first one is a holistic approach, which aim is
to capture the whole without considering the single parts while the second is
the analytical approach, which considers instead all the parts of the problem
domain. The Z-inspection® process consists of three main phases:

1. the Set Up phase: in this phase, the pre-conditions for participating in
the process are verified (initial questions, absence of conflict of interest
and so on) and a multidisciplinary team is chosen to have the required
skills and expertise. In order to conduct an independent AI ethical as-
sessment, the absence of conflict of interest both direct and indirect is
required. Finally, the boundaries and the context are defined to delin-
eate an ecosystem. The concept of ecosystem is particularly important
in this framework and it is defined as a set of sectors and parts of so-
ciety, level of social organization, and stakeholders within a political
and economic context [161]. This definition takes in consideration the
following hypothesis: AI is not a single element; AI is not in isolation;
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AI is dependent on the domain where it is deployed; AI is part of one
or more (digital) ecosystems; AI is part of processes, products, services,
etc.; and AI is related to people and data.

2. the Assess phase: this phase begins with the analysis of socio-technical
scenarios. Fixing the usage scenarios is useful to describe the aim of
the system, the actors, their expectations and goals, the technology and
the context. This analysis is carried out by relevant stakeholders, in-
cluding designers (when available), domain, technical, legal and ethics
experts. The analysis of the scenarios consists in the classification of
the AI domain and usage, in the review of domain-specific frameworks,
regulation and laws, in the development of an evidence base by analyz-
ing and verifying the authors’ claims and in making a list of potential
ethical issues and tensions. The output of the analysis described above
is the list of ethical issues that are called flags. The flags are then
described and classified following the dilemmas definitions of Whittle-
stone et al. [153]. When some ethical issues do not fit into one or
more predefined example, it can be described using free text. From
this mapping, a plan of investigation is created: each issue is assigned
to one of the four ethical principles, rooted in fundamental rights, that
are 1) respect for human autonomy, 2) prevention of harm, 3) fairness,
and 4) explicability and to one of the seven requirements established by
the EU High-Level Experts Guidelines for Trustworthy AI [53]. After
the mapping, at the execution stage, the group chooses a strategy to
perform the inspection and defines paths to do in the system evalua-
tion. Then, after the evaluation, the group provides feedbacks that are
used to reassess ethical issues and flags. The Assess phase is repeated
until a consensus is reached.

3. the Resolve phase: at this point a score is given to the system if possible.
The tensions detected at the previous phase are solved when possible.
The ethical issues and flags are prioritized using Whittlestone defini-
tion [153] and then the team of inspectors may give recommendations.
Lastly, the needing of an ethical maintenance over time is assessed.

The Z-inspection® process can be applied before or even after the al-
gorithm development and it helps to understand whether an AI system has
ethical and scientific consistency. So it can be applied on a specific case and
domain and the process has to consider many variables that relates to many
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knowledge domains. In order to perform the assessment, the context and
the actors who will use the system have to be clear. In particular, actors
are not only the developers or the radiologists but also the patients who
should be informed and give consent to the use of AI for their disease treat-
ments. Moreover, the context is something that have to be defined and its
definition is not straightforward. Z-inspection uses the term ”ecosystem” to
define a context which means that stakeholders, institutions, data, analysis
procedures and so on vary along time and space and, even if it can be a
closed system, it is in a dynamical equilibrium among all its part. Defining
a context and the stakeholders for a determined problem is a central part of
the scientific hypothesis creation. Moreover, the reliability of an algorithm
depends on the ecosystem on which it is applied, making its applicability to
other ecosystem a very challenging horizon for the research. Another point
that is interesting to stress is the relationship between algorithm’s ecosystem
and the improvement of clinical outcomes. This issue deals with the defini-
tion of what we intend to improve with the algorithm itself. As described in
Section 2.2, training an algorithm and evaluating its performance is based on
a ground truth which is usually made of physicians’ opinion. This is certainly
a starting crucial point in algorithm development since this modality of truth
assessment suffers from an indelible variability. Despite this difficulty there
exist mathematical instruments to assess the improvement in precision, accu-
racy and recall in, for example, the diagnosis of a certain disease. However,
when the AI system is applied into the hospital workflow, its performance
should be continuously evaluated. The improvements of the figures of merit
due to algorithms may not correspond to an improvement in clinical practice.

During my participation to the project, we analyzed an algorithm, called
BS-Net, for COVID-19 severity assessment trained on Chest X-Ray (CXR)
images [136]. The BS-Net system [136] is an end-to-end AI system able to
estimate the severity of damage in a COVID-19 patient’s lung by assigning
the corresponding Brixia score to a chest CXR image. We tried to answer
the following questions:

1. Is the AI system trustworthy?

2. Is the use of this AI system trustworthy?

3. What does ”trustworthy AI” in time of a global pandemic mean?

Considering the pandemic context and the final use of the algorithm is im-
portant to define the ground truth and the performance goal. In fact, the
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system has been developed to help tired and exhausted radiologists and doc-
tor and hence its performance should be evaluated in this context. First, the
experts have been chosen to start the evaluation of the algorithm and after
that divided into working groups. Then, the socio-technical scenarios have
been defined as well as the actors involved in the algorithm. Subsequently,
the socio-technical scenarios have been evaluated from different points of
view: the medical doctor’s one, the radiologists’, the technical and the le-
gal/lawyers one. As I participated in the technical group, what we found on
this algorithm is, in summary, that:

1. The data could be too small to capture the problem’s variance and the
algorithm needs further external validation to test its generalization
capability. Data are male-biased and patient’s age is skewed towards
older patients. Ethnicity is dominated by Italian demographic and
since further ethnic information was not collected from patients, ethnic
representation could not be verified. In addition, a very limited set of
device manufacturers has been used.

2. As regard the data labelling, they used the Brixia scores defined within
the Brescia Hospital which does not rely on a ”hard” ground truth.
Moreover, the scores describe the pulmonary damage as seen on the
CXRs which is not COVID-19 specific. Finally, the labelling may be
biased from the fact that radiologists came from the same hospital.

3. The explanation of the algorithm could be better performed since they
used a LIME-based procedure which produces high variable explana-
tions.

After the identification of flags, the mapping has been performed and the
final recommendations has been given. They concern the use of a bigger,
diverse, high-quality images curated from multiple institutions and different
geographic areas, the inclusion of patients in the algorithm evaluation, a de-
tailed risk management plan and governance and so on. The Z-inspection
process for this use case presents some limitations. The group which partic-
ipated in the evaluation of BS-Net was made of about 60 people from many
disciplinary fields and from all over the world. Despite the efforts to make
an objective analysis, the evaluation is western-culture based. Keeping in
mind that ethics and legal issues are always bound to a specific culture is a
hypothesis which should always be considered. Moreover, the process had to
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consider many points of view and even if the number of people involved in the
project is quite high, it can not be ensured that every point of view has been
considered. During the evaluation, it has not been investigated whether and
how the AI system actually influenced the radiologists routine and decision-
making and both the mappings and the consolidation of the mappings involve
subjective decision-making components. Assessing practical ethics is a real
challenge that needs many experts and expertises, the capacity of analyzing
the many involved aspects and the ability to communicate across all the cited
disciplinary fields.
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Chapter 3

Breast Density Classification
with Convolutional Neural
Networks: from Performance to
Explanation Insights

3.1 Research problem

Breast cancer is the most frequently diagnosed cancer among women world-
wide and it is the second leading cause of death [134]. It has been evaluated
that one woman in eight is going to develop breast cancer in her life and
early diagnosis is one of the most powerful instruments we have in fighting
the disease [95]. Full Field Digital Mammography (FFDM) is a non-invasive
highly sensitive method for early-stage breast cancer detection and diagno-
sis, and represents the reference imaging technique to explore the breast in a
complete way [26] [144]. One of the major issues in cancer detection is due to
the presence of breast dense tissue. Breast density is defined as the amount
of fibroglandular parenchyma or dense tissue with respect to the fat one as
seen on a mammographic exam [133]. Since x-ray absorption coefficient for
dense and cancerous tissues are similar, a mammogram with a very high per-
centage of fibroglandular tissue is less readable. In order to have a sufficient
sensitivity in denser breasts, a higher radiation dose has to be delivered to the
patient [103]. Moreover, breast density is an intrinsic risk factor in developing
the disease [102] [12] [145]. For these reasons, a density standard has been
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established by the American College of Radiology (ACR) in 2013 [133] and
it is reported on the Breast Imaging Reporting and Data System (BI-RADS)
Atlas. The standard defines four qualitative classes: almost entirely fatty
(A), scattered areas of fibroglandular density (B), heterogeneously dense (C)
and extremely dense (D). Since mammographic density assessment made by
radiologists suffers from a non-negligible intra and inter-observer variabil-
ity [22], some automatic methods have been developed in order to make
the classification reproducible. Many approaches use a two-step classifica-
tion [76] [11] [6] [110]: first, either they extract features from the images or
apply a segmentation method and, afterwards, they train a classifier with
a Support Vector Machine (SVM) or other machine learning methods. In
[146], a fully automated algorithm has been developed: the breast is seg-
mented, density features are extracted and used to train and evaluate SVM
classifiers with an accuracy of 84.47% on the miniMIAS dataset. In [117],
Petroudi et al. conceived a method based on the statistical distribution of ro-
tationally invariant filter responses in a low dimensional space, following the
Third Edition of the BI-RADS standard (1998). In the last few years, deep
learning-based methods have been developed with success in a wide range of
medical image analysis problems [88]. The main advantage of deep learning-
based classifier stands in their capability of analyzing data from different
sources automatically extracting image related features. Since features rep-
resent image properties which cannot be analytically described, they are not
easily intelligible. Moreover, it is not straightforward to explain how such
algorithms perform the classification. The detailed study of deep learning
applications to medical images and their explainability is a challenge that
can help medical physicists on tasks such as the data quality control and
validation [71]. Explaining a deep learning based classifier is crucial in order
to understand whether the classification is correct. In fact, since Convolu-
tional Neural Networks are trained directly on images, it may happen that
they focus their attention on uncorrelated or wrong part of the images [122],
introducing a bias in the classification. Moreover, there exists no standard
to quantify when an algorithm is well explained or not. The lack of huge
public labelled mammographic datasets is a major issue when dealing with
deep machine learning models applied to mammography, because it implies
the impossibility of comparing models using the same data [71]. As an ex-
ample, one of the most used public analogic datasets of mammograms, called
miniMIAS [143], is labeled by three qualitative classes that are Fatty (F),
Fatty-Glandular (G) and Dense-Glandular (D) which are obsolete nowadays.
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In these works [93] [91] [94] [127], a residual Convolutional Neural Network
(CNN) classifier was trained and a widely used explanation method to assess
which are the main factors affecting the classifier performance not only in
terms of accuracy but also in terms of a posteriori explanation, was applied.
Both the figures of merit and the saliency maps produced by the grad-CAM
algorithm have been considered and the goodness of our model has been
measured by computing the Spearman’s rank correlation between the input
images and their saliency maps. This method has never been used on natural
images which are 3-channel images; on the contrary, a mammogram can be
interpreted as a result of a pre-processed signal. The classification perfor-
mances have been studied considering different proportions of density class
labels in the train and test datasets and different pre-processing pipelines.

3.1.1 Mammographic Density Standards

This work was born in the framework of RADIOMA project (”RADiazioni
IOnizzanti in MAmmografia”) [139] whose aim was to develop a personalized
dose index in mammography. The assessment of breast density is important
to develop in the future a personalized dose index since the amount of ra-
diation dose depends on the quantity of dense tissue in the breasts. Medi-
cal research towards the prevention of breast cancer has shown that breast
parenchymal density is a strong indicator of cancer risk. Specifically, the risk
of developing breast cancer is increased only by 5% related to mutations in the
genetic biomarkers BRCA 1 and 2; this risk, on the other hand, is increased
by 30% for breast densities higher than 50% [13] [147]. A higher breast den-
sity is also responsible for a low sensitivity on mammograms because dense
tissue has about the same absorption coefficient of cancer. Defining and
sharing a classification standard is a fundamental starting point to study the
correlation between a high breast density and the risk of having cancer. In
1976, Wolfe [155] empirically defined four classes of density, showing some
classified mammograms and describing few features on them. Beyond con-
troversial efficiency of this first classification method, Wolfe had the merit of
laying the basis to study the effective correlation between breast density and
the increase of risk in developing a cancer. Nowadays the worldwide recog-
nized standard has been established by the American College of Radiology
(ACR) and it is called BI-RADS Atlas (Breast Imaging-Reporting And Data
System) [133]. These classes have been established to standardize mammo-
graphic reports in order to reduce interpretative confusion on mammograms.
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In the previous BI-RADS Edition, published in 2003, the four density classes
were identified with percentage indication as follow:

1. B1: It refers to lower dense breast with fibroglandular tissue less than
25%

2. B2: Class with a percentage of fibroglandular tissue between 25% and
50%

3. B3: Class with a percentage of fibroglandular tissue between 50% and
75%

4. B4: It refers to highest dense breast with fibroglandular tissue more
than 75%

The first difficulty of this density standard is the definition of which
pixel represents fat tissue and which one represents instead fibroglandular
tissue. In fact, the high tissue variability among women and the different
conditions in which mammograms can be performed make threshold meth-
ods not efficient: the pixel value in a woman that is assessed as ”fat” can
mean ”fibroglandular” on another woman. Tissue variability is a problem
not only among different women but also on the same individual over time
and depends on several factors such as Body Mass Index (BMI), age, use of
hormonal therapies, weight and diet. The second main problem is the lack
of reproducibility [39]. Studies on inter-reader agreement with k-statistic
showed a low value of accordance [22]. For these reasons, in the fifth edition
of BI-RADS Atlas [133], percentage indication has been replaced with guide-
line based on text description of mammograms. This standard is widely used
in North America and in Europe and it plays an important role in assessing
the relations between breast density and cancer detectability. At the same
time, automated methods for assessing density classes have been developed
to overcome limitations of area-based evaluations that are subjective and
time-consuming and hence not suited for large epidemiological studies. Fur-
thermore, automated classification software makes the density assessment
really reproducible. Some of these software are already available [2] and
tested. The most known is CumulusV (University of Toronto), which is an
interactive software to segment and to estimate breast density according to
BI-RADS standard. Cumulus is not completely automatic but it is operator-
dependent and this means that it suffers from the variability discussed above.
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Other software for breast density assessment are available such as Volpara
(Volpara Solutions) and Quantra (Hologic, Danbury, Conn) but they do not
classify density in BI-RADS standard. However, these automated software
have the merit of making density measures really reproducible unlike the one
assessed by radiologists. The inherent problem is that we want to measure
the mammographic density, which is a 3D quantity, from mammograms that
are 2D projections. This kind of difficulty may be overcome defining a vol-
umetric density standard using new breast imaging techniques such as MRI
but mammography is still the most used breast imaging system all over the
world.

BIRADS guidelines for breast density assessment

In the fifth edition of BI-RADS Atlas, density assessment is defined as an
overall assessment of the volume of attenuating tissues in the breast. Den-
sity evaluation helps to indicate the relative possibility that a lesion could be
obscured by normal tissue and that the sensitivity of examination thereby
may be compromised by dense breast tissue. Since mammography does not
detect all breast cancers, clinical breast examination is a complementary ele-
ment of screening. The four density categories are named ”A”, ”B”, ”C” and
”D” and they are defined by the visually estimated content of fibroglandular-
density tissue within the breasts. If breasts, on the same individual, are not
apparently belonging to the same density class, the denser one should be
considered in the assessment. The less dense class is ”A” and breasts belong-
ing to this class are almost entirely fatty. In this case, mammography shows
the highest sensibility possible and the probability of masking effect is really
low. In Figure (left) 3.1, a mammogram of an almost entirely fatty breast is
reported. In the second density class ”B”, there are breasts with scattered ar-
eas of fibroglandular density which can not be considered as mammographic
findings. In Figure 3.1 (right), a mammogram classified B is reported.

The category ”C” includes heterogeneously dense breasts. It is common
that some areas of breast are relatively dense while other areas are almost
fat. In these cases, it is useful to describe locations of denser areas in the
medical density report. In fact, in these areas, small uncalcified lesions may
be obscured. Some text examples are reported in BI-RADS Atlas such as
”The dense tissue is located anteriorly in both breasts, and the posterior
portions are mostly fatty” or ”Primarily dense tissue is located in the upper
outer quadrants of both breasts; scattered areas of fibroglandular tissue are
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Figure 3.1: On the left: the CC and MLO projections of a class A breast; the
breasts are almost entirely fatty. On the right: the CC and MLO projections
of a class B breast; there are scattered areas of fibroglandular density. The
images have been taken from the BI-RADS Atlas.

present in the remainder of the breasts”. In Figure 3.2 (left), an example of
a C-classified breast is shown. The denser class is ”D” and includes breasts
with such an extreme density that lowers the sensitivity of mammography.
An example of dense breasts is reported in Figure 3.2 (right).

The historical empirical distribution of density classes of 3,865,070 screen-
ing mammography examinations over 13 years is reported in Figure 3.3.

The fourth edition of BI-RADS, unlike previous editions, indicated quar-
tile ranges of percentage dense tissue (increments of 25% density) for each
of the four density categories, with the expectation that the assignment of
breast density would be distributed more evenly across categories than the
historical distribution of 10% fatty, 40% scattered, 40% heterogeneously, and
10% extremely dense. However, it has since been demonstrated in clinical
practice that there has been essentially no change in this historical distri-
bution across density categories, despite the 2003 guidance provided in the
BI-RADS Atlas.

3.2 Data

Due to the lack of public research databases populated with digital mammo-
grams to use in AI applications devoted to density class identification [143]
[80], I analyzed Full-Field Digital Mammograms (FFDM) collected within the
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Figure 3.2: On the left: the CC and MLO projections of a class C breast;
the breasts are heterogeneously dense, which may obscure small masses. On
the right: the CC and MLO projections of a class D breast; the breasts with
such an extreme density that lowers the sensitivity of mammography. The
images have been taken from the BI-RADS Atlas.

Figure 3.3: The real data distribution reported in the BIRADS Atlas made
on more than 3,800,000 screening examinations made by U.S. Radiologists’
Use of BI-RADS Breast Density Descriptors, 1996-2008
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RADIOMA project and described in [139]. This private repository includes
data from 1662 subjects (6648 images) acquired at the University Hospital
of Pisa (Azienda Ospedaliero-Universitaria Pisana AOUP, Pisa, Italy). In-
formed consent was obtained from all the participants included in the present
study. The team, which included physicists, radiologists and a radiology
Technician, that worked at the data collection, has implemented and ap-
plied the following inclusion criteria to select images from the wider clinical
database available:

• All exam reports were required to be negative. Whenever possible, a
later mammographic exam in medical records has been examined to
verify the current state of health of women.

• Badly exposed X-ray mammograms were not collected.

• Only exams including all the four projections usually acquired in mam-
mography (cranio-caudal –CC– and medio-lateral oblique –MLO– of
left and right breast) were chosen.

The exams were acquired with the GE Senograph DS imaging systems
available at the University Hospital. For each exam, data annotation, which
is the assessment of density class, has been performed by a radiologist with
specific expertise in mammography, who relied also on the medical report
already available within the routine clinical evaluation. The distribution of
the 1662 exams over the 4 density classes is reported in Table 3.1, where the
average age is reported for each class. As expected, both the average and
median age of the cohorts of subjects increase as the breast density increase.

Table 3.1: Dataset population and age distribution (described in terms of
the mean, standard deviation and median values) of the exams over the four
BI-RADS density classes (A,B,C,D).

A B C D
N. of exams 200 473 804 185

Average age (years) 61 57 51 46
Standard Deviation (years) 11 11 9 7

Median (years) 62 55 49 45
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3.3 Methods

Fully understanding a CNN behavior is a non-trivial problem and there are
currently no protocols or guidelines establishing a strict and robust validation
method. Furthermore, most datasets used in published works are not acces-
sible and, hence, comparisons among different methods and algorithms are
hampered. Lastly, two of the most used data sets, miniMIAS [143] and the
CBIS-DDSM [80] contain only digitized analog mammograms. Using differ-
ent datasets in a reproducibility test does not guarantee the achievement of
the same results. For further testing the consistency of AI-based results, it is
advisable to investigate which characteristics of the images, of the acquisition
protocols and of the manipulation pipelines sensibly affect the performances
of deep learning algorithms. Studying the roboustness of algorithms is im-
portant in order to understand the boundaries in which the classifier can be
applied. Since the data set of this study has been collected from a clinical
database, it is crucial to study whether and in which conditions it may be
applied on a screening population. To this purpose, I trained from scratch a
residual CNN to classify breast density in four categories, according to the
Fifth Edition of BI-RADS standard, and systematically evaluated the impact
on the CNN performance of:

• the different proportion of mammograms belonging to the four density
categories in the training and test sets;

• either including or not an image pre-processing step.

The effect of the latter on the model interpretability is also studied and
discussed. Finally, a simple metric to quantify the appropriateness of the
chosen explainability framework is proposed. The choice of a CNN to perform
the classification was due to the change of the BI-RADS classes definition
from the 4th Atlas to the 5th one. In fact, in the last edition, the definition
through the quantification criteria based on the percentage of dense and
fat tissue has been abandoned and the classes were defined through image
examples and textual description. In order to capture this new definition,
the deep learning based methods seem to be the most appropriate.

Data preparation and pre-processing

Mammograms have been extracted from the DICOM files using DICOM-
ToolKit, since they were stored in a jpeg lossless compression format. Then,
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the images have been converted from 12-bit to 8-bit. By visually inspecting
the dataset, I found out that the images acquired have some burnt pixels
which always assume the maximum grayscale value, while most of the signal
is in another part of the histogram. Furthermore, having the dataset been
extracted from a clinical sample instead of a screening one, clips, that are used
after a biopsy, are represented in many images. These clips appear whiter
than the expected maximum breast signal intensity. As the mammograms
could not be normalized to the maximum intensity values, I set a maximum
threshold to 3500 for the pixel value, then the image pixel values have been
linearly scaled between the minimum intensity and the maximum of 3500;
finally the values have been converted to 8 bits and the exams have been
stored in the Portable Network Graphics (PNG) format. All the PNG images
have been inspected one by one in order to eliminate some problematic images
which were not correctly acquired.

Standard image pre-processing step

The GE Senograph mammograms are 1914×2294 pixel images, where the
breast representation often occupies about half of the image width. To limit
the data processing time (i.e. to minimize the number of input nodes of
the CNN and thus the weights to be learned during the training process) I
decided to crop the images according to the minimum bounding box enclosing
the breast view. To this purpose, I attempted to recognize the skin line of the
breast using a marching-square algorithm for 2D images [152][101], available
within the scikit-learn Python package [113]. To properly identify the breast
margin, the starting threshold has been set at the intensity level of 50 while
leaving the other parameters to default values; then images has been cropped
to the minimum bounding box including the margin, as shown in Figure 3.4.

Additional pre-processing step: pectoral muscle removal

As an additional pre-processing step, an algorithm to remove the pectoral
muscle that appears on medio-lateral oblique projections has been designed.
First, all the medio-lateral oblique projections have been oriented in the same
way, i.e. left ones have been flipped horizontally. Then images have been
cropped at the half of height and width in order to obtain a square which
contains the pectoral muscle. A Gaussian filter has been applied to all the
selected regions in order to reduce noise (σ = 1.1 as computed by cv2 for a
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Figure 3.4: Left: original image. Center: the blue line shows the contour
identified by the marching-square algorithm. Right: cropped image according
to the bounding box enclosing the breast view.

kernel size equal to 5x5). For each image, the regions have been binarized
with an adaptive threshold method based on inverted binary thresholding
and Otsu’s binarization and the mask containing the pectoral muscle (white)
and the rest of the breast (black) have been produced. The coordinates of
the points at the edge of the pectoral muscle have been fitted with a linear
function and the values of all the pixels above the edge have been replaced
with the mean gray level of the breast. In Figure 3.5, an example of these
operations is reported .

Figure 3.5: Main steps describing the pectoral muscle segmentation pipeline.

This procedure works for the 80% of the images of our dataset. In Fig-
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ure 3.6, there is an example of a mammogram on which the pectoral muscle
segmentation did not achieve a good result. On problematic images, seg-
mentations have been manually fixed, being the robustness of the pectoral
muscle segmentation algorithm not one of the main objectives of this work.

Figure 3.6: Example of a mammogram on which the pectoral muscle segmen-
tation did not work properly. The algorithm considers the very first points
of the muscle and, as a result, the segmentation does not include the muscle
below.

Data augmentation for CNN training

The last step of the pre-processing of images for the CNN consists in data
augmentation [114]. In fact, although our dataset contains about 6600 im-
ages, this amount may not be sufficient to avoid overfitting and to achieve,
at the same time, good performances in terms of accuracy [132]. I used the
Keras built-in class ImageDataGenerator which applies random transforma-
tions to the input data at runtime. The chosen transformations are:

• random zoom in a range of 0.2;

• width shift in a range of 0.2 of the whole input image;

• height shift in a range of 0.2 of the whole input image;

• random rotations with a range of 10 degrees.

Classifier training

In order to train, fit and evaluate the CNN, Keras -a Python API- with
Tensorflow in backend [21] has been used. I implemented a model based on a
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very deep residual convolutional neural network [51]. The architecture of our
model [93] was made of 41 convolutional layers, organized in residual blocks,
and it had about 2 millions learnable parameters. The input block consists
of a convolutional layer, a batch normalization layer [57], a leakyReLU as
activation function and a 2D-max pooling. The output of this block has
been fed into a series of four blocks, each made of 3 residual modules. In
Figure 3.7, the architecture of one of the four block is shown.

Figure 3.7: One of the four blocks made of 3 residual modules.

The input of each of the four blocks is shared by two branches: in the first,
it passes through several convolutional, batch normalization, activation and
max pooling layers while in the other branch it passes through a convolutional
layer and a batch normalization. The outputs of these two branches are then
added together to constitute the residual block [51]. The sum goes through
a non-linear activation function and the result passes through two identical
modules. The architecture of the left branch of these last modules is the same
as the first one. In the right branch, instead, no operation is performed. At
the exit of the module, the two branches are summed together. At the end
of the network, the output of the last block is fed to a global average pooling
and to a fully-connected layer with softmax as activation function. Data
have been split randomly into training set (80%), validation set (10%) and
test set (10%). To evaluate the performance on the test set, the accuracy,
the recall and the precision has been computed as figures of merit. They are
defined as follows:
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Accuracy =
TP + TN

TP + TN + FP + FN
(3.1)

Precision =
TP

TP + FP
(3.2)

Recall =
TP

TP + FN
(3.3)

where TP is the number of true-positive, TN the number of true-negative, FP
the number of false-positive and FN the number of false-negative detections.
Moreover, the Cohen coefficient has been computed in order to compare our
results with others published in literature. The Cohen coefficient, also called
Cohen’s kappa, is a more robust measure than simple percent agreement
calculation, as it takes into account the possibility of the agreement occurring
by chance. The Cohen’s kappa is defined as follows:

K =
po − pe
1− pe

(3.4)

where po is the observed agreement and pe is the hypothetical probability of
agreement by chance. The CNN has been trained for 100 epochs and the
reported results refer to the epoch with the best validation accuracy. The
best selected model has been evaluated also in terms of Kappa coefficient to
measure the accordance with the physician evaluation. The main hyperpa-
rameters are:

• 41 convolutional layers organized in 12 similar blocks;

• training performed in batches of 4 images;

• Loss function: Categorical Cross-Entropy;

• Optimizer: Stochastic Gradient Descent (SGD);

• Regularization: Batch Normalization;

• Learning rate = 0.1, Decay = 0.1, Patience = 15, Monitor = validation
loss.

In order to consider all the four projections related to a subject, four
CNNs have been separately trained on each projection, on a K80 Nvidia
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GPU. Finally, the classification scores (i.e. the CNN output) have been
averaged separately for right and left breast and, in case of asymmetry, the
higher class has been assigned since breast density is an overall evaluation
of the projections and, in clinical practice, the radiologist assigns the higher
class to subjects with density asymmetry.

Model explanation

I aimed to characterize the models in a transparent modality and wanted to
create an explanation framework for the outcome of a deep CNN to identify
which pixels and salient regions in the image influence the most the final
prediction. This was done through off-line visualization techniques, which
means analysing an already trained model without altering its architecture.
I used the visualizecam utility function, provided by Keras, to generate a
gradient based class activation map that maximizes the outputs of filters
within a specified layer and returns an image indicating the regions of the
input whose changes would most contribute towards maximizing the output.
This function implements a way of visualizing attention over input, which is
known as grad-CAM. The basic idea of class activation mapping technique
is to identify the importance of image regions by projecting back the weights
of the output layer onto the convolutional feature maps. A weighted sum
of the feature maps of the last convolutional layer is computed to obtain
class activation maps. Grad-CAM uses the gradient information flowing into
the last convolutional layer of the CNN to assign importance values to each
neuron for a particular decision of interest. In order to obtain the class-
discriminative localization map Grad-CAM Lc

Grad−CAM ∈ Ru×v of width u
and height v for any class c, I first compute the gradient of the score for
class c, yc (before the softmax), with respect to feature map activations Ak

of a convolutional layer, i.e. ∂yc

∂Ak . These gradients flowing back are global-
average-pooled over the width and height dimensions (indexed by i and j
respectively) to obtain the neuron importance weights αc

k:

αc
k =

1

Z

�

i

�

j

∂yc

∂Ak
ij

. (3.5)

This weight highlights the ‘importance’ of feature map k for a target class
c. Then, a weighted combination of forward activation maps, followed by a
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ReLU results in:
Lc
Grad−CAM = ReLU(

�

k

αc
kA

k). (3.6)

To sum up, the places where the gradient is large allow us to define the region
that has a large impact on the final score decision.

Evaluation of the explanation framework

There is no standard procedure to quantify the quality of the saliency maps.
The grad-CAM algorithm is usually used to visually assess the correctness
of the classification. This means that it is used as an observer-dependent
measure. The heatmaps produced by the grad-CAM highlights the most
important part of the image the classifier looks at when it performs the
classification. Since the breast density classification is an intensity-based
classification, I propose to quantify if the highlighted regions in the heatmap
correspond to the denser regions in the original image through the Spear-
man correlation. In fact, it is possible to directly study the correlation
between the mammograms and the saliency maps in order to quantify at
least whether there is a monotonic dependence between the images and their
explanation. For this reason, I computed the Spearman’s rank correlation
between the pre-processed images, which actually contain the information
strictly related to the breast density provided in input to the CNN, and their
relative saliency maps. Since mammograms are gray-scaled the Spearman’s
rank correlation has been computed between the pixel intensities and the
gray-scaled map intensity values to test whether they are in an increasing
monotonic relationship, as expected. The value for the perfect increasingly
monotonic relationship between two variables is 1.

3.4 Results

3.4.1 Evaluation of the effect of sample composition
on CNN training

The CNN model has been trained with different class distributions in order
to understand whether it is possible to use the maximum available number
of images and how much the probability distribution of classes affects the
results. Three different distributions have been considered: the native one
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of the dataset (A: 12%, B:29%, C:48%, D:11%), which is the distribution of
the classes in the original dataset as collected from the AOUP; the BI-RADS
one (A: 10%, B:40%, C:40%, D:10%), the density class distribution provided
in the BI-RADS Atlas; and a uniform one (A: 25%, B:25%, C:25%, D:25%),
i.e. a distribution including the same proportion of the four density classes.
The CNN was trained and tested on samples with these three different dis-
tributions of class labels. In Tables 3.2 the performance metrics results are
shown.

Table 3.2: Final results of CNN trained on different training set and tested
on different test sets.

AOUP BI-RADS Uniform
Test set Test set Test set

BI-RADS Training set test accuracy (%) 79.1 83.1 73.6
recall (%) 75.2 80.1 73.6

precision (%) 82.6 87.9 79.0
AOUP Training set test accuracy (%) 78.5 79.7 73.6

recall (%) 74.2 77.9 73.6
precision (%) 81.2 83.0 79.4

Uniform Training set test accuracy (%) 72.8 72.9 77.8
recall (%) 78.9 79.9 77.8

precision (%) 69.5 68.8 78.0

From Table 3.2, it can be observed that the best accuracy, precision and
recall in the classification are achieved by training the CNN on the BI-RADS
distribution of samples (A: 10%, B:40%, C:40%, D:10%) and testing it on
the same BI-RADS distribution. Moreover, this distribution is the closest to
the real data distribution. In fact, it is the one reported in the BI-RADS
Atlas made on more than 3,800,000 screening examinations and so it is the
most representative of what we can observe in clinical practice. Moreover,
our dataset includes a small number of mammograms of class D. This means
that we should have a dataset with a very small total size to have a uniform
distribution, and this size is too small to train our deep network. The best
performance is achieved when the classifier is trained on a set of images
with the BI-RADS distributions of classes and tested on a set with the same
distribution. Although maintaining the proportion among classes reported
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in the BI-RADS Atlas, representative of the screening practice, forced us
to use a reduced dataset size, this did not penalize the results. However,
training the network on a dataset with a uniform distribution of the classes,
therefore with an even smaller size, gives worse results. I conclude that the
dataset size does affect the obtained results and the probability distribution
of classes is an influencing factor as well.

3.4.2 Implementation and visual assessment of the grad-
CAM technique

The heatmaps obtained through the grad-CAM technique have been used
to establish if the classifier effectively makes its predictions based on the
presence of dense areas in the mammogram. This fits into the more general
purpose of assessing trust in predictions from our algorithm. The heatmap
evaluation has been done qualitatively, which means by visually estimating
if the highlighted regions in the heatmap correspond to the denser regions
in the original image. The analysis consisted in visualizing and comparing
the maps generated using the input images of the four classes. The maps
have been produced for all the images in the test set and for all the four
projections constituting the mammographic exam. In Figure 3.8 an example
of a comparison of the heatmaps of the four density classes obtained from a
model trained on right cranio-caudal projections is reported.

The activated regions in the maps match reasonably well with the dense
regions in the original mammogram for B, C and D classes. The grad-CAMs
prove that the “attention” of the classifier is focused on the dense region as
expected. An important remark resulting from analyzing all the maps is that
for class A mammograms the active area is almost always at the edge of the
breast. This is reasonable because the A class is the one corresponding to
the lowest density and it seems like the classifier, not recognizing any dense
region, focuses its attention on a different feature, such as the edge.

3.4.3 Evaluation of the impact of pectoral muscle re-
moval

The CNN model has been trained with and without the pectoral muscle. The
images with the pectoral muscle removed have been obtained after applying
the algorithm described in the Methods section. This algorithm was efficient
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Figure 3.8: Comparison of heatmaps of the four density classes A, B, C,
D with one example per class, obtained from a CNN trained on right CC
projections. From left to right, the input image, the grad-CAM, the overlay
of the map on the input image, the overlay of edges of red activated areas in
the map on the input image.

on 80% of the available exams. The 20% of exams on which the segmentation
algorithm failed, i.e. the muscle edge was not correctly identified in at least
one projection, were manually segmented. By grad-CAM visualization, it can
be noticed that, for some MLO projection images, the related maps activate
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at the pectoral muscle visible in these projections. I then trained the CNN
on MLO projections with the muscle removed, to check if in this case the
classifier performance and the heatmaps improve. In terms of performance
metrics, training the model with and without the pectoral muscle gave the
results reported in Table 3.3.

Table 3.3: Performances of the CNN trained with images with (with PM)
and without the pectoral muscle (without PM)

Precision Recall Accuracy
with PM 81.1% 78.1% 79.9%

without PM 83.3% 80.3% 82.0%

Grad-CAMmaps have been generated in the two cases and they have been
compared. In most cases, muscle removal helps in guiding the network to
focus on the right breast area and after segmentation the pixels forming part
of the muscle are no longer highlighted and activated (Figure 3.9). Therefore,
segmentation and removal of pectoral muscle in the image pre-processing
phase help in the performance improvement.

3.4.4 Quantitative evaluation of the explanation frame-
work

From a visual inspection of a number of examples, including those shown in
Figure 3.9, it seems that to predict the breast density category the CNN is
actually “looking” at the appropriate image information, namely the higher-
intensity regions of the mammograms. A possibility could be to quantita-
tively compare the area of the saliency map over a predefined threshold and
a hand-crafted pixel-wise ground truth for dense areas generated by a radi-
ologist. That would be an extremely time-consuming task; thus I discarded
this option and proposed a straightforward method to evaluate whether the
maps and the higher-density breast areas are spatially correlated. Moreover,
for this classification task it is not fair to use pixel wise ground truth since
the class assessment by physicians is made by observing the entire image and
not pixel wise, i.e. breast density assessment is a classification task and not
a segmentation one. To quantify the extent of this hypothesized direct rela-
tionship, I computed the Spearman’s rank correlation coefficient r between
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Figure 3.9: Example of comparison between grad-CAM maps obtained with
the original image (on the left) and with the segmented image (on the right)
for various density classes.

the grey-scale image and the grad-CAM map. The box plots obtained for the
correctly classified mammograms in the test set of the four density categories
are shown in Figure 3.10 separately for the CC and MLO projections.

The Kruskal–Wallis test [74], which is a non-parametric ANOVA test,
has been performed to measure whether there is a significant difference in
the Spearman’s rank correlations among the four classes. I obtained a p-
value less than 0.05 for the tests made on for CC and MLO projections
separately. Hence, I can affirm that there is a significant difference among the
classes. However, the Kruskal–Wallis test does not state if all the groups are
significantly different. For this reason, the Dunn test [32] has been performed
with correction for multiple comparisons, which is the post hoc analysis for
Kruskal–Wallis test. The Dunn test showed a significant difference among
A, B and C classes, while this is not true for the D class (Table 3.4).

From the boxplots, it can be noticed that high median values of r are
generally obtained on mammograms belonging to higher density classes. For
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Figure 3.10: Box plots of the Spearman’s rank correlation coefficients r ob-
tained for the correctly classified mammograms across the four density cat-
egories. The correlation values obtained on the left and right cranio-caudal
(CC L R) and left and right medio-lateral-oblique (MLO L R) projections
are separately shown. (The box plots are centered on the median and the
boxes represent the interquartile range.)

Table 3.4: Top: results of the Dunn test, corrected for multiple comparisons,
computed on CC projections. Bottom: results of the Dunn test, corrected
for multiple comparison, computed on MLO projections.

A B C D
A 1 p = 0.43 p < 0.05 p = 0.12
B p = 0.43 1 p < 0.05 p = 0.16
C p < 0.05 p < 0.05 1 p < 0.05
D p = 0.12 0.16 p < 0.05 1

A B C D
A 1 p < 0.05 p < 0.05 p < 0.05
B p < 0.05 1 p < 0.05 p < 0.05
C p < 0.05 p < 0.05 1 p = 0.20
D p < 0.05 p < 0.05 p = 0.20 1

the C class the correlation values show the highest median value and the
most compact distribution, thus indicating that the CNN classifier is actu-
ally considering the higher density areas as the ones to take into account to
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assign the mammogram to a breast density category. For mammograms of
the D class (i.e., those with higher density) this is not always true. The grad-
CAM is not in general activated consistently with the higher-density areas
of the breast, as depicted in the mammograms. However, the large spread
of the r values for this category hampers drawing generalized conclusions.
For mammograms of the B category, a positive median r value still indicates
a systematic overlap between the higher-intensity areas of the grad-CAM
maps and the mammograms. By contrast, the situation is controversial for
the mammograms belonging to the A category. In that case, the median r
value for CC projection is positive (about 0.25), thus suggesting a system-
atic overlap between the higher-intensity areas of maps and mammograms,
whereas the median r value for MLO projection is negative (about -0.20),
thus indicating an opposite relationship. Namely, as visible in the line cor-
responding to the A example of Figure 3.9, the grad-CAM map activates in
the breast areas complementary to the high-intensity ones. The hypothesized
direct monotonic relationship between the pixel intensity values between the
original pre-processed breast mammograms and the saliency maps is thus
verified in most cases, namely for the higher-density categories (B, C and
D) with median r values above 0.25. For the lower-density A category, the
behavior of the CNN seems instead to be different in the interpretation of CC
and MLO mammograms, exploiting, in the latter case, the complementary
density information.

3.5 Discussion

As regards the comparison with the previous classifier [93] where no pre-
processing was implemented, I obtained better results in terms of the figures
of merit and activation maps. In fact, the CNN reaches an accuracy of 82%.
Moreover, the CNN compares very well with the literature [81] (where an
accuracy of 77% is obtained) with a classifier trained on about 60,000 exams.
Compared to [6, 11], the CNN based classifier achieves better performances
in terms of accuracy (respectively 47% and 71%). As regards the study by
Oliver et al. [110], our classifier works better also in terms of Cohen (Kappa)
coefficient on the four classes problem, since the presented algorithm reaches
a K equal to 0.76 with respect to 0.67. Other studies [40, 104] reach bet-
ter accuracy on the classification of two classes: dense versus non-dense and
BI-RADS 2 versus BI-RADS 3, respectively. It is, hence, not possible to
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compare our results with theirs. In [125], the accuracy on the 4 BI-RADS
classes is equal to 99% which is higher than the accuracy reached in this
work. However, their method is not explained and not explainable. As a
general consideration, the comparison with other different methods is not
performed on the same dataset, making it not completely fair. Since our
breast density classifier was trained on digital mammograms, the method
cannot be applied to MIAS and DDSM which contain analog digitized mam-
mograms. Moreover, analog mammography is not used in hospitals anymore.
This represents one of the issues described in the previous chapter. In fact,
health instruments change as the technology of mammographic systems, in
this case, changes. This issue makes the comparison with other studies harder
and suggests the needing for curated and updated data sets. Moreover, it
is interesting to notice that our classifier has been trained on data coming
from the clinical routine: public data sets are usually made of cleaned data
which rarely represents the real prevalence of radiological findings. On the
other hand, since our data set has been collected from a clinical database it
suffers from the problem of not representing a true screening population.

I found that pre-processing has a crucial impact not only on the accu-
racy, but also on the explainability of the classifier. In fact, the grad-CAM
activation maps showed a good localization capability once the pectoral mus-
cle has been removed from the image. For this reason, I believe that CNN
classifiers should be trained on medical images which comes from hospitals
and screening or clinical routines, paying particular attention not only to
the classification performances but also to obtaining reasonable activation
maps. In fact, in order to make the classifier understandable for physicians
and patients, it should show a good behaviour not only in terms of accuracy,
precision and recall but also in selecting the right part of the image.

As regards the training on different sample compositions, the discussion
on the more appropriate strategy to be used in training ML algorithms in
case of unbalanced data set is highly debated [60]. Both the balanced and the
natural distribution approach can be actually used [151]. Even if training a
classifier on a balanced data set can ensure a better performance evaluation,
real data sets are not balanced at all. I found out that the CNN performs
better on the BI-RADS distribution in terms of accuracy, precision and recall.
This distribution is the closest to the natural one reported on the BI-RADS
Atlas. This result was not unexpected as the native distribution is strongly
unbalanced over the density classes, while the uniform one forces us to use
far fewer images than the other two. I then visualized the saliency maps
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computed on the test set to check whether the classifier is looking at the
dense part of the breast to perform the classification. I found out that for
the medio-lateral oblique projections the saliency maps highlighted more the
regions of the pectoral muscle than the dense parenchyma. For this reason,
the pectoral muscle has been segmented and the classifier retrained . Then, I
compared the saliency maps obtained with and without the muscle and found
out that segmentation helps in identifying the correct dense region as shown
in Figure 3.9. Furthermore, the performance in terms of figures of merit
increases for the classifier trained with the segmentation. Finally, I computed
the Spearman’s rank correlation to assess whether the pre-processed images
and the relative saliency maps are in a direct monotonic relationship. The
Kruskal-Wallis test and the Dunn test, which is its post hoc test, have been
computed. The tests have been performed to confirm the trend highlighted
in the boxplots of Figure 3.10. I found out a correlation for the B, C and
D classes while I obtained a controversial result for the A class. The visual
inspection of saliency maps and Spearman’s rank correlation computed for
different classes show a mutual accordance with our hypothesis. I underline
that it is important to evaluate both visually and quantitatively the maps to
reach an optimal performance. The main drawbacks of our work are the use of
a single mammographic system, a ground truth made by only one radiologist
and the use of a clinical dataset instead of a screening one. Moreover, the
algorithm should be tested also on an external data set.

3.6 Conclusion

In this study, I presented a detailed study of a CNN trained on mammo-
grams in an explainable way. I trained a CNN classifier on a wide set of
clinical mammograms to classify them according to breast density and then
I implemented an explanation algorithm to explore the CNN behavior on dif-
ferent input data. The CNN performance has been evaluated using different
distributions of class labels in the training and test sets, and different pre-
processing steps, taking into account the accuracy, precision and recall figures
of merit, and the saliency maps obtained with the grad-CAM algorithm. This
approach can be extended to other medical images in the attempt to provide
clinicians with reliable and explainable AI-based decision support tools.
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Chapter 4

Fully Automated DL-based
Algorithm for Segmentation of
Lungs and COVID-19 Lesions

4.1 Research problem

More than 340 million of cases of SARS-CoV-2 over the world have been
registered since the beginning of the pandemic; the virus is affecting more
than 200 countries and caused the death of more than 5 million people by
January 2022 [1].

Computed tomography (CT) has a high sensitivity in the identification
of lung lesions, including those related (but not-specific) to COVID-19 pneu-
monia. It has a key role in monitoring the clinical course of patients and
in the evaluation of disease severity. The extent of lung involvement in the
disease has been shown to be predictive of the patients’ need of intensive
care unit support [25, 36]. Thus, the quantification of the extent of abnor-
mal lung tissue with respect to the subject’s whole pulmonary volume is a
fundamental information for the management of the emergency due to the
pandemic. To this purpose, a standardized assessment scheme for the report-
ing of radiological findings in chest CT of subjects suspected of COVID-19
has been defined [120]. It is based on a five-level scale of increasing suspi-
cion of pulmonary involvement. Another scoring system, directly based on
the extent of lung involvement is the CT Severity Score (CT-SS), which has
been demonstrated to be directly correlated with disease severity [158]. The
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estimation of the percentage P of affected lung parenchyma is used to as-
sign a CT-SS score to a chest CT scan: CT-SS=1 for P<5%, CT-SS=2 for
5% ≤ P<25%, CT-SS=3 for 25% ≤ P<50%, CT-SS=4 for 50% ≤ P<75%,
CT-SS=5 for P ≥ 75%.

However, the mere visual assessment of lung CT can hardly provide a
reliable and reproducible estimate of the percentage of lung involvement.
To facilitate this task, an Artificial Intelligence (AI)-based support tool is
highly desirable. The quantification problem that needs to be solved is ac-
tually a segmentation problem. To estimate the percentage of the affected
lung in COVID-19 pneumonia it is necessary to accurately segment both the
subject’s lungs and the COVID-19 related lesions.

The task of lung segmentation has been addressed over the years with
several different techniques, including grey-value thresholding, region grow-
ing, isosurface triangulation, morphological operations, and combinations of
them [9, 28, 42, 27, 16]. However, most traditional approaches fail when
abnormalities introduce changes in the normal lung density [150], especially
in the specific case where abnormalities are adjacent to the pleura surface.
The latter is actually the case of most CT of subjects with COVID-19 le-
sions. Traditional medical image segmentation methods have gradually given
way to data-driven approaches mainly based on Machine Learning (ML) and
Deep Learning (DL) in the specific field of thoracic imaging [149] and in
medical image analysis in general [129]. U-nets [123] are currently outper-
forming other AI-based methods in the image segmentation task in many
research fields. They are also becoming widespread in medical imaging to
identify organs, lesions and other regions of interest across several imaging
modalities [58, 85]. The main drawback of DL approaches to image seg-
mentation is their need of large annotated datasets for training the models.
Collecting data and reliable annotations is particularly difficult and time-
consuming especially for image segmentation tasks, where pixel/voxel-level
ground truth is required. DL-based lung segmentation approaches demon-
strated to be efficient in the accurate identification of lung parenchyma even
in case of compromised lung appearance due to COVID-19 infection [156], or
to Chronic Obstructive Pulmonary Disease (COPD) [55], or to any routine
clinical condition affecting the lungs [54]. The challenging task of lung lobe
segmentation is tackled in the paper by Xie at al. [156], where the transfer
learning of a model trained on thousands of subjects with COPD was applied
on a sample of hundreds of subjects affected by COVID-19 pneumonia. Lobe
segmentation reference was acquired for all subjects, as it is a fundamental
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information for model train, test and evaluation. Such large and annotated
data samples are not publicly available at present.

The task of segmenting the abnormalities of the lung parenchyma re-
lated to COVID-19 infection is a typical segmentation problem that can be
addressed with methods based on DL. CT findings of patients with COVID-
19 infection may include bilateral distribution of ground-glass opacifications
(GGO), consolidations, crazy-paving patterns, reversed halo sign and vas-
cular enlargement [18]. Due to the extremely heterogeneous appearance of
COVID-19 lesions in density, textural pattern, global shape and location
in the lung, an analytical approach is definitely hard to code, whereas it
is preferable to learn directly from examples. The potential of DL-based
segmentation approaches is particularly suited in this case, provided that a
sufficient number of annotated examples are available for model training.

Few fully automated software tools for the segmentation of COVID-19
lung abnormalities and quantification of lung involvement have been recently
proposed [83, 36, 98]. The approach proposed by Lessmann et al. [83] for
lesion segmentation is based on a U-net model trained on semi-automatically
annotated COVID-19 cases. Then, the authors combined the output of this
system with the lung lobe segmentation algorithm reported in Xie et al. [156].
The approach proposed in Fang et al. [36] implements the automated lung
segmentation method provided in the work of Hofmanninger et al. [54], to-
gether with a lesion segmentation strategy based on multiscale feature ex-
traction [37].

The specific problem related to the development of fully automated DL-
based segmentation strategies with limited annotated data samples has been
explicitly tackled by Ma et al. [98]. The authors studied how to train and
evaluate a DL-based system for lung and COVID-19 lesion segmentation on
poorly populated samples of CT scans. They also made the data publicly
available, allowing for a fair comparison with their system.

In this work, a DL-based fully automated system to segment both lungs
and lesions associated with COVID-19 pneumonia, the LungQuant system,
is presented which provides the part of lung volume compromised by the
infection. It is an extension of the study proposed by Ma et al. [98] with a
focus on the investigation and the discussion on the impact of using different
datasets and different labeling styles. Data can be highly variable in terms
of acquisition protocols and machines when they are gathered from different
sources. This poses a serious problem of dependence of the segmentation
performances on the training sample characteristics. Despite advanced data
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harmonisation strategies could mitigate this problem [38], this approach is
not applicable in absence of data acquisition information, as it is in this
study for the available CT data. Nevertheless, DL methods, when trained
with sufficiently large samples of heterogeneous data, can acquire the desired
generalization ability by themselves. In this analysis, I implemented an inter-
sample cross-validation method to train, test and evaluate the generalization
ability of the LungQuant DL-based segmentation pipeline across the different
available datasets. Finally, the effect of using larger datasets to train, validate
and test this kind of algorithm has been quantified too.

This chapter is structured as follows: I list all the publicly accessible data
samples used to develop and validate the LungQuant system; then, the im-
age analysis pipeline is described along with the training and cross-validation
strategies adopted; finally, I show and discuss the quantification performance
either against a voxel-wise ground truth or in terms of the CT severity
scores, according to the information available for each data sample. Finally,
I present the further improvements added in a second version of LungQuant,
LungQuant2, and briefly describe the on-going research on inter-reader vari-
ability of the CTSS, the pseudo-clinical validation of LungQuant2 and the
future work on radiomics that are going to be performed .

4.2 Data

In this study, only public available data sets have been used to train and
evaluate the segmentation pipeline. Five different data sets containing a
variable number of cases and annotations have been used. Most of them
include image annotations, but each annotation has been associated to pa-
tients using different criteria, which are described in the following sections.
In Table 4.1, a summary of available labels for each data set is reported.
The lung segmentation problem has been tackled using a wide representa-
tion of the population and three different data sets: the Plethora, the Lung
CT Segmentation Challenge and a subset of the MosMed data set (detailed
description below). On the other hand, the number of samples that are pub-
licly available for COVID-19 infection segmentation may not be sufficient to
obtain good performances on this task. The currently available data, pro-
vided along with infection annotations, have been labelled following different
guidelines and released in NIfTI format. They do not contain complete ac-
quisition and population information and they have been stored according
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Table 4.1: A summary of the datasets used in this study. The CT Severity
Score (CT-SS) information is not available for all datasets, but it can be
computed for data which has both lung masks and ground-glass opacification
(GGO) masks, and for the MosMed dataset, which provides a similar scale
of severity, as reported in Table 4.2.

Dataset name Lung mask GGO mask CT-SS N. of cases
Plethora [65] Yes No No 402
Lung CT Seg-
mentation Chal-
lenge [157]

Yes No No 60

COVID-19 Chal-
lenge [3]

No Yes No 199

MosMed [106] No No No 1110
MosMed (anno-
tated subsample)

No Yes Inferable 50

MosMed (in-
house annotated
subsample)

Yes No No 91

COVID-19-CT-
Seg [98]

Yes Yes Inferable 10

to different criteria. Some of the choices made during the DICOM to NIfTI
conversion may strongly affect the quality of data. For example, the MosMed
data set as described by Morozov et al. [106] preserves only one slice out of
ten during this conversion. This operation results in a significantly loss of
resolution along z axis with respect to the COVID-19 Challenge data set.
Questioning how much such conversion influences the quantitative analysis
is important to improve not only the performance but also the possibility of
comparing DL algorithm in a fair modality.

4.2.1 The Plethora dataset

The PleThora dataset [65] is a chest CT scan collection with thoracic volume
and pleural effusion segmentations, delineated on 402 CT studies of the Non-
Small Cell Lung Cancer (NSCLC) radiomics dataset, available through the
The Cancer Imaging Archive (TCIA) repository [23]. This dataset has been
made publicly available to facilitate improvements of the automatic segmen-
tation of lung cavities, which is typically the initial step in the development of
automated or semi-automated algorithms for chest CT analysis. In fact, au-
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tomatic lung identification struggles to perform consistently in subjects with
lung diseases. The PleThora lung annotations have been produced with a
U-net based algorithm trained on chest CT of subjects without cancer, man-
ually corrected by a medical student and revised by a radiation oncologist or
a radiologist.

4.2.2 The 2017 Lung CT Segmentation Challenge dataset

The Lung CT Segmentation Challenge (LCTSC) dataset consists of CT scans
of 60 patients, acquired from 3 different institutions and made publicly avail-
able in the context of the 2017 Lung CT Segmentation Challenge [157]. Since
the aim of this challenge was to foster the development of auto-segmentation
methods for organs at risk in radiotherapy, the lung annotations followed the
RTOG 1106 contouring atlas.

4.2.3 The 2020 COVID-19 Lung CT Lesion Segmenta-
tion Challenge dataset

The 2020 COVID-19 Lung CT Lesion Segmentation Challenge dataset (COVID-
19 Challenge) is a public dataset consisting of unenhanced chest CT scans
of 199 patients with positive RT-PCR for SARS-CoV-2 [3]. Each CT is ac-
companied with the ground truth annotations for COVID-19 lesions. Data
has been provided in NIfTI format by The Multi-national NIH Consortium
for CT AI in COVID-19 via the NCI TCIA public website [23]. Annotations
have been made using a COVID-19 lesion segmentation model provided by
NVIDIA, which takes a full CT chest volume and produces pixel-wise seg-
mentations of COVID-19 lesions. These segmentations have been adjusted
manually by a board of certified radiologists, in order to give 3D consis-
tency to lesion masks. The dataset annotation was made possible through
the joint work of Children’s National Hospital, NVIDIA and National Insti-
tutes of Health for the COVID-19-20 Lung CT Lesion Segmentation Grand
Challenge.

The dataset and the annotations have been made available in the context
of a MICCAI-endorsed international challenge which had the aim to compare
AI-based approaches to automated segmentation of COVID-19 lung lesions.
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4.2.4 The MosMed dataset

MosMed [106] is a COVID-19 chest CT dataset collected by the Research
and Practical Clinical Center for Diagnostics and Telemedicine Technologies
of the Moscow Health Care Department. It includes CT studies taken from
1110 patients. Each study is represented by one series of images reconstructed
into soft tissue mediastinal window. MosMed provides 5 labeled categories,
based on the percentage of lung parenchyma affected by COVID-19 lesions.
The 5 categories of lung involvement and their correspondence to the CT-SS
scale are described in Table 4.2. The first category (CT-0) contains cases
with normal lung tissue and no CT-signs of viral pneumonia, whereas the
other categories contain GGO (CT-1 and CT-2) and both GGO and regions
of consolidation in the higher classes (CT-3 and CT-4).

Table 4.2: MosMed severity categories defined on the basis of the percentage
P of lung volume affected by COVID-19 lesions. The correspondence to the
CT-SS scale is reported.

MosMed N. of cases Percentage P of involved Corresponding
CT category lung parenchyma CT-SS

0 254 P = 0 0
1 684 0 < P ≤ 25 1, 2
2 125 25 < P ≤ 50 3
3 45 50 < P ≤ 75 4
4 2 75 < P ≤ 100 5

A small subset of class CT-1 cases (50 patients) had been annotated by
expert radiologists with the support of MedSeg software (2020 Artificial In-
telligence AS). The annotations consist of binary masks in which white vox-
els represent both ground-glass opacifications and consolidations. Both CT
scans and annotations were provided in NIfTI format. During the DICOM-
to-NIfTI conversion process, only one slice out of ten was preserved and, as a
result, MosMed CT scans have a reduced total number of slices with respect
to the other datasets.
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Generation of a set of reference lung segmentation for model train-
ing

As reported in Table 4.1, the available datasets with lung mask annotations,
which were necessary to train the U-net for lung segmentation, are mainly
of subjects affected by lung cancer (Plethora and LCTSC datasets). To
complement this sample with subjects without lesions, and, at the same
time, to expose to U-net to the acquisition characteristics of the MosMed
CT scans, the lung mask annotations for a subset of subjects of the CT-
0 MosMed category has been generated, i.e. subjects without COVID-19
lesions.

An in-house lung segmentation algorithm was developed for this pur-
pose and implemented in matlab (The MathWorks, Inc.). It is based on the
following steps: 1) CT windowing in the [-1000,1000] HU range; 2) rough seg-
mentation of the lungs on a central coronal slice (Otsu binary thresholding
and removal of components connected with the image border) to define the
minimum and maximum axial coordinates of the lung region; 3) 2D rough
segmentation of the lungs on each axial slice (same procedure as the previous
step) to generate a 3D seed mask for the following step; 4) segmentation of
the lung parenchyma by an active contour model (activecontour matlab func-
tion); 5) filling holes (e.g. vessels and airway walls) with 3D morphological
operators (imclose matlab function). Out of the 254 CT scans belonging to
the CT-0 MosMed sample, the 91 CT scan considered here are those on which
the in-house segmentation algorithm provided an accurate segmentation, as
judged by an experienced medical imaging data analyst. This algorithm,
which accurately segments the lung parenchyma in absence of lesions, has
very limited performance on CT scans of subjects with COVID-19 lesions.

4.2.5 The COVID-19-CT-Seg dataset

The COVID-19-CT-Seg dataset is a collection of CT scans taken from the
Coronacases Initiative and Radiopaedia [98]. It contains 20 CT scans tested
positive for COVID-19 infection. This public dataset contains both lung and
infection annotations. The ground truth has been made in three steps: first,
junior radiologists (1-5 years of experience) delineated lungs and infections
annotations, then two radiologists (5-10 years of experience) refined the la-
bels and finally the annotations have been verified and optimized by a senior
radiologist (more than 10 years of experience in chest radiology). The anno-
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tations have been produced with the ITK-SNAP software. Ten CT images
of this dataset were provided in 8-bit depth, therefore, I decided to not use
them.

4.3 Methods

4.3.1 LungQuant: the Deep-Learning based quantifica-
tion analysis pipeline

The analysis pipeline, which is hereafter referred to as the LungQuant sys-
tem, provides in output the lung and COVID-19 infection segmentation
masks, the percentage P of lung volume affected by COVID-19 lesions and
the corresponding CT-SS (CT-SS=1 for P<5%, CT-SS=2 for 5% ≤ P<25%,
CT-SS=3 for 25% ≤ P<50%, CT-SS=4 for 50% ≤ P<75%, CT-SS=5 for P
≥ 75%).

A summary of our image analysis pipeline is reported in Fig. 4.1. The
central analysis module is a U-net for image segmentation [123], which is
implemented in a cascade of two different U-nets: the first network, U-net1,
is trained to segment the lung and the second one, U-net2, is trained to
segment the COVID lesions in the CT scans. In the following sections, the
whole process is described step by step.

U-net

For both lung and COVID-19 lesion segmentation, a fully automated method
inspired by the U-net developed by Ronneberger et al. [123] has been imple-
mented. U-nets are fully-convolutional neural networks for image segmenta-
tion. I implemented a U-net using Keras [21], a Python deep-learning API
that uses Tensorflow as backend. In Figure 4.2 a simplified scheme of our
U-net is reported.

Each block of layers in the compression path (left) is made by 3 convo-
lutional layers, ReLu activation functions and instance normalization layers.
The input of each block is added to the block output in order to implement
a residual connection. In the decompression path (right), one convolutional
layer has been replaced by a de-convolutional layer to upsample the images
to the input size. In the last layer of the U-nets, a softmax is applied to the
final feature map and then the loss is computed.
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Figure 4.1: A summary of the whole analysis pipeline: the input CT scans
are used to train U-net1, which is devoted to lung segmentation; its output
is refined by a morphology-based method. A bounding box containing the
segmented lungs is made and applied to all CT scans for training U-net2,
which is devoted to COVID-19 lesion segmentation. Finally, the output of
U-net2 is the definitive COVID-19 lesion mask, whereas the definitive lung
mask is obtained as the union between the outputs of U-net1 and U-net2.
The ratio between the COVID-19 lesion mask and the lung mask provides
the CT-SS for each patient.

The U-net cascade for lesion quantification and severity score as-
signment

I started by training U-net1, which is devoted to lung segmentation, using the
three datasets containing original CT scans and lung masks (see Table. 4.1).
The input CT scans, whose number of slices is highly variable, are oriented
to canonical direction and resampled to matrices of 200x150x100 voxels to
match the size of the U-net input layer. The output of U-net1 was then
refined using a connected-component labeling strategy, which helps to remove
small regions of the segmented mask not connected with the main objects
identified as the lungs. A bounding box enclosing the morphologically refined
segmented lungs has been built for each CT, adding a conservative padding
of 2.5 cm. The bounding boxes were used to crop the training images for U-
net2, which has the same architecture as U-net1. The cropped images were
resized to a matrix of 200x150x100 voxels to match the size of the U-net
input layer.
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Figure 4.2: U-net scheme: the neural network is made of 6 levels of depth. In
the compression path (left), the input is processed through convolutions, ac-
tivation layers (ReLu) and instance normalization layers, while in the decom-
pression one (right), in addition to those already mentioned, 3D Transpose
Convolution (de-convolution) layers are also introduced.

A windowing has been applied on the grey-level values of the CT scans
to optimize the image contrast for the two segmentation problems. In par-
ticular, I selected the [-1000, 1000] HU window range for the U-net1 and
the [-1000, 300] HU range for U-net2. The first window highlights the con-
trast between the lung parenchyma and the surrounding tissues, whereas the
second one enhances the heterogeneous structure of the lung abnormalities
related to the COVID-19 infection.

To overcome the fact that the amount of data with COVID-19 lesion
annotations is rather limited (see Table. 4.1), and optimize the training phase
of the U-net2, a data augmentation strategy has been implemented, relying
on the most commonly used data augmentation techniques for DL.

The quantification system developed returns the infection mask as the
output of U-net2 and the lung mask as the union between the output of U-net1
and U-net2. This choice has been made a priori by design, as U-net1 has been
trained to segment the lungs relying on the available annotated data, which
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are almost totally of patients not affected by COVID-19 pneumonia. Thus,
U-net1 is expected to be unable to accurately segment the areas affected by
GGO or consolidations; as also these areas are part of the lungs, they should
be instead included in the mask. Training U-net2 to recognize the COVID-
19 lesions on a conservative bounding box containing only the lungs has two
main advantages: it allows to restrict the action volume of the U-net to the
region where the lung parenchyma (either normal or affected by COVID-19
lesions) is supposed to be, thus avoiding false-positive findings outside the
chest; it facilitates the U-net training phase, as the dimensions of the lungs
of different patients are normalized, thus the U-net learning process can be
focused on the textural patterns characterizing the COVID-19 lesions.

Finally, once lung and lesion masks have been identified, the LungQuant
system computes the percentage of lung volume affected by COVID-19 lesions
as the ratio between the total number of voxels of the infection mask and
the total number of voxels of the lung mask. The system also converts these
percentage values into the corresponding CT severity scores.

4.3.2 Training details and evaluation strategy for the
U-nets

Training a deep neural network means defining many variables and elements,
such as the metrics to be used for model training and validation, the data-
splitting strategy between train, validation and test sets, the eventual need
of relying on data augmentation strategies. The latter is pivotal in our imple-
mentation due to the limited amount of annotated data samples of COVID-19
lesions. All these ingredients are detailed below.

Loss functions and evaluation metrics

U-net1 has been trained with the volumetric Dice Similarity Coefficient (vDSC)
as loss function, while U-net2 has been trained using the sum of the vDSC
and a weighted cross-entropy as error function in order to balance the num-
ber of voxels representing lesions and the background. The vDSC is defined
as follows:

vDSCloss = 1− 2 · |Mtrue ∩Mpred|
|Mtrue|+ |Mpred|

(4.1)
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where Mtrue is the true mask, Mpred is the predicted mask and the oper-
ator | · | is the cardinality. The vDSC loss has been computed only on the
foreground (white voxels). This strategy has been used in order to avoid
giving excessive weight to the background (black voxels), since the number
of black and white voxels is quite unbalanced in favor of the former. For
U-net2, a loss function (L) has been used and it consists in the sum of the
vDSC and a weighted cross-entropy (CE), defined as follows:

L = Diceloss + CEweighted (4.2)

CEweighted = w(x)
�

x∈Ω
log(Mtrue(x) ·Mpred(x)) (4.3)

where w(x) is the weight map which takes into account the frequency of
white voxels, x is the current sample and Ω is the training set. Since the
background class is larger than the foreground class on the order 103, the
weight map w(x) has been computed for each ground-truth segmentation to
increase the relevance of the underrepresented class, following the approach
implemented by Phan et al. [118]. The weight map was defined as w(x) =
w0/fj where fj is the average number of voxels of the jth class over the entire
training data set (j = 0, 1) and w0 is the the average between the frequencies
fj.

The segmentation performances for both U-nets have been evaluated with
the vDSC, computed between the true mask volume (Vtrue) and the pre-
dicted mask volume (Vpredict), and with the surface Dice Similarity Coeffi-
cient (sDSC), computed between the true surface (Strue), and the predicted
one defined, (Spredict) [66], as follows;

vDSCmetric =
2 · |Vtrue ∩ Vpredict|
|Vtrue|+ |Vpred|

(4.4)

sDSCmetric =
2 · |Strue ∩ Spredict|
|Strue|+ |Spred|

(4.5)

The surface metric has been introduced because vDSC inflates as the
volume to be segmented is large.

Cross-validation strategy

To train, validate and test the performances of each of the two U-nets, I
divided the available datasets into the training, validation and test sets,
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and the network performance has been evaluated separately and globally on
the datasets. The U-net for lung segmentation, U-net1, has been trained
and evaluated on CT scans coming from three different datasets: Plethora,
MosMed and LCTSC. The U-net for COVID-19 lesion segmentation, U-net2,
has been trained and evaluated on samples made of CT scans coming from
the COVID-19-Challenge dataset and from the MosMed dataset.

The amount of CT scans used for train, validation and test sets for each
U-net is reported in Table 4.3. U-net2 has been trained twice, i.e. on both
60% and 90% of the CT scans of COVID-19-Challenge and Mosmed datasets
to investigate the effect of maximizing training set size on the system’s ability
to properly segment COVID-19 lesions. In the former case, U-net60%2 training
has been evaluated on a validation set made of 20% of cases and tested on
the remaining 20%. As regard the latter, U-net90%2 , the remaining 10% of
CT scans has been used as validation set.

The trained segmentation networks (U-net1 and both U-net60%2 and U-
net90%2 ) have been validated on an external independent validation set con-
sisting of the 10 CT scans of the COVID-19-CT-Seg dataset. The latter is
the only public available dataset that contains both lung and infection mask
annotations.

Table 4.3: Number of CT scans assigned to the train, validation (val) and
test sets used during the training and performance assessment of the U-net1
and the U-net2 networks.

U-net1 train val test
Plethora 319 40 40

MosMed (91 CT-0) 55 18 18
LCTSC 36 12 12

COVID-19-CT-Seg / / 10

U-net60%2 train (60%) val (20%) test
COVID-19 Challenge 119 40 40
MosMed (50 CT-1) 30 10 10
COVID-19-CT-Seg / / 10

U-net90%2 train (90%) val (10%) test
COVID-19 Challenge 179 20 /
MosMed (50 CT-1) 45 5 /
COVID-19-CT-Seg / / 10
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The global quantification pipeline, the LungQuant system, has been set
up by integrating all analysis modules, as reported in Fig. 4.1. In this
work I built and analyzed two LungQuant systems, obtained by integrat-
ing alternately U-net60%2 or U-net90%2 into the analysis pipeline. The systems
have been evaluated in terms of the ability to predict the percentage of
affected lung parenchyma and CT-SS on the fully annotated COVID-19-CT-
Seg dataset, which is completely independent.

Data augmentation

Data augmentation is a strategy to increase the size of the training set by
synthetically generating additional training images through geometric trans-
formations. This technique is particularly important to improve the general-
ization capability of the model, especially in the case of a limited number of
training samples. In this work, data augmentation has been applied during
the data pre-processing phase (after defining the bounding boxes enclosing
the segmented lungs) in order to generate a fixed number of augmented im-
ages for each original sample. I chose an augmentation factor equal to 2
which means that the number of artificially generated images is twice the
number of the original training set. For each image in the training set, two
of the following geometric transformations were randomly chosen:

• Zooming. The CT image and the ground truth masks were zoomed
in the axial plane, using a third-order spline interpolation and the k-
nearest neighbors method, respectively. The zooming factor was ran-
domly chosen among the following values: 1.05, 1.1, 1.15, 1.2.

• Rotation. The CT image and the ground truth mask were rotated in the
axial plane, using a third-order spline interpolation and the k-nearest
neighbors method, respectively. The rotation angle was randomly sam-
pled among the following values: -15°, -10°, -5°, 5°, 10°, 15°.

• Gaussian noise. An array of noise terms randomly drawn from a normal
distribution was added to the original CT image. For each image, the
mean of the Gaussian distribution was randomly sampled in the [-400,
200] HU range and the standard deviation randomly chosen among 3
values: 25, 50, 75 HU.

• Elastic deformation. An elastic distortion was applied to the original
3D CT and mask arrays following the approach of Simard et al. [137].
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This transformation has two parameters: the elasticity coefficient which
has been fixed to 12 and the scaling factor, fixed to 1000.

• Motion blurring. Slice by slice, the CT image has been convolved with
a linear kernel (i.e. ones along the central row and zero elsewhere for
a matrix of size k × k) through the function filter2D, defined in the
OpenCV Python library [14], keeping the output image size the same
as the input image. The filter is applied with a kernel size of 4, 3 and
3 in the anterior-posterior, latero-lateral and cranio-caudal direction,
respectively.

An example of the application of these augmentation techniques to one
CT scan of the dataset is provided in Fig. 4.3.

Figure 4.3: Data augmentation to increase the diversity of dataset: a) Image
without data augmentation; b) Zooming; c) Rotation; d) Gaussian noise; e)
Elastic deformations; f) Motion blurring.

4.4 Results

I report in this section, first, the performance achieved by each of the seg-
mentation networks trained, U-net1 and U-net2, then, the quantification per-

115



formance of the integrated LungQuant system, evaluated on completely in-
dependent test sets. Both U-nets have been trained for 300 epochs on a
NVIDIA V100 GPU using ADAM as optimizer and the training has been
stopped at the epoch with the best evaluation metric on the validation set.

4.4.1 U-net1: Lung segmentation performance

The U-net1 for lung segmentation was trained using three different datasets,
as specified in Table 4.3: the Plethora, a subsample of 91 CT-0 cases of
the MosMed dataset and the 60 CT scans of the LCTSC datasets. For the
MosMed dataset, as reported in Table 4.1, the lung mask annotations were
provided by an in-house developed segmentation software.

The data has been split randomly in training set, validation set and test
set as described in Table 4.3. The learning process has been stopped at the
epoch where the best vDSC metric was obtained on the validation set. Then,
I tested U-net1 on each of the three independent test sets, and reported
in Table 4.4 the performance achieved in terms of vDSC values computed
between the segmented and the reference masks. In order to remove false-
positive regions (i.e. voxels misclassified as lung parts), at first, the connected
components in the lung masks generated by U-net1 has been identified, then,
those components whose number of voxels was below an empirically-fixed
threshold has been excluded. This threshold was set to the 40% of the
foreground mask, and it was reduced to 30% whether the resulting number
of voxels was found to be lower than the 65% of the initial mask provided
by U-net1. Figure 4.4 shows some examples of how this procedure works on
real CT scans.

The lung segmentation performances have been evaluated in three cases:
1) on CT scans and masks resized to the 200x150x100 voxel array size needed
match the U-net input/output layer size; 2) on CT scans and masks in the
original size before undergoing the morphological refinement step; 3) on CT
scans and masks in the original size and after the morphological refinement.
Even if segmentation refinement has a small effect on vDSC, as shown in
Table 4.4, it is a fundamental step to allow the definition of precise bounding
boxes enclosing the lungs, and thus to facilitate the U-net2 learning process.
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Figure 4.4: Morphological refinement of the U-net1 output: a) and c) lung
masks as generated by U-net1; b) and d) refined masks after the connected
component selection.

Table 4.4: Performances achieved by U-net1 in lung segmentation on different
test sets, evaluated in terms of the Dice metric at three successive stages of
the segmentation procedure.

Test set Masks of U-net size Masks before refinement Masks after refinement
(vDSC) (vDSC) (vDSC)

Plethora 0.96 ± 0.02 0.95 ± 0.02 0.95 ± 0.04
MosMed 0.97 ± 0.02 0.97 ± 0.02 0.97 ± 0.02
LCTSC 0.96 ± 0.03 0.95 ± 0.03 0.96 ± 0.01

Coronacases 0.96 ± 0.01 0.95 ± 0.01 0.95 ± 0.01

4.4.2 U-net2: COVID-19 lesion segmentation perfor-
mance

The U-net2 network devoted to COVID-19 lesion segmentation, has been
trained and evaluated separately on the COVID-19-Challenge dataset and on

117



the annotated subset of the MosMed dataset, following the train/validation/test
partitioning reported in Table 4.3.

The segmentation performances achieved on the test sets are reported in
terms of the vDSC metric in Table 4.5. As reported in the table, the perfor-
mances of U-net2 were evaluated also according to a cross-sample validation
scheme.

Table 4.5: Performances achieved by U-net2 in COVID-19 lesion segmenta-
tion, evaluated in terms of the Dice metric. The composition of the train
and test sets is reported in Table 4.3.

U-net Trained on Test set U-net size Original CT size
(vDSC) (vDSC)

COVID-19 Challenge COVID-19 challenge 0.51 ± 0.24 0.51 ± 0.25
COVID-19 Challenge MosMed 0.39 ± 0.19 0.40 ± 0.19

U-net60%2 MosMed MosMed 0.54 ± 0.22 0.55 ± 0.22
MosMed COVID-19 challenge 0.25 ± 0.23 0.25 ± 0.23

COVID-19 challenge COVID-19 challenge 0.49 ± 0.21 0.50 ± 0.21
+ MosMed + MosMed

U-net90%2 COVID-19 Challenge COVID-19 Challenge 0.64 ± 0.23 0.65 ± 0.23
+ MosMed + MosMed

As expected, the U-net2 performances are higher when both the training
set and independent test sets belong to the same data cohort. By contrast,
when a U-net2 is trained on COVID-19-Challenge data and tested on Mosmed
(and the other way around) performances significantly decrease. This effect
is due to the fact that the two datasets have been collected and annotated
with different criteria and from different sources. A better result has been
obtained with the U-net2 trained on the COVID-19 Challenge dataset and
tested on the MosMed test set, since the network has been trained on a larger
data sample and hence it has a higher generalization capability. The best
segmentation performances have been obtained by the U-net2 trained using
the 90% of the available data, U-net90%2 , which reaches a vDSC value of 0.65
± 0.23 on the test set. This result suggests the need to train U-net models
on the largest possible data samples in order to achieve higher segmentation
performance.
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4.4.3 Evaluation of the quantification performance of
the LungQuant system

Evaluation of lung and COVID-19 lesion segmentations

Once the two U-nets have been trained and the whole analysis pipeline has
been integrated into the LungQuant system, it has been tested on a com-
pletely independent set (COVID-19-CT-Seg dataset) of CT scans. The per-
formances of the whole process were quantified both in terms of vDSC and
sDSC with tolerance values of 1, 5 and 10 mm (Table 4.6). A very good over-
lap between the predicted and reference lung masks is observable in terms
of vDSC, whereas the sDSC values are highly dependent on tolerance val-
ues, ranging from moderate to very good agreement measures. Regarding
the lesion masks a moderate overlap is measured between the predicted and
reference lesion masks in terms of vDSC, whereas the sDSC returns measures
extremely dependent on tolerance values, that span from limited to moder-
ately good and ultimately satisfactory performances for tolerance values of
1 mm, 5 mm and 10 mm, respectively. Figure 4.5 allows for a visual compar-
ison between the lung and lesion masks provided by the LungQuant system
integrating U-net90%2 and the reference ones.

Table 4.6: Performances of the LungQuant system on the independent
COVID-19-CT-Seg test dataset. The vDSC and sDSC computed between
the lung and lesion reference masks and those predicted by the LungQuant
(LQ) system are reported.

Lung Segmentation

Metrics vDSC sDSC (1 mm) sDSC (5 mm) sDSC (10 mm)

LQ (U-net60%2 ) 0.96 ± 0.01 0.66 ± 0.09 0.95 ± 0.02 0.98 ± 0.01

LQ (U-net90%2 ) 0.95 ± 0.01 0.65 ± 0.09 0.95 ± 0.02 0.98 ± 0.01

Infection Segmentation

Metrics vDSC sDSC (1 mm) sDSC (5 mm) sDSC (10 mm)

LQ (U-net60%2 ) 0.62 ± 0.09 0.29 ± 0.06 0.75 ± 0.11 0.90 ± 0.09

LQ (U-net90%2 ) 0.66 ± 0.13 0.36 ± 0.13 0.76 ± 0.18 0.87 ± 0.13

Percentage of affected lung volume and CT-SS estimation

The lung and lesion masks provided by the LungQuant system can be fur-
ther processed to derive the physical volumes of each mask and the ratios
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Figure 4.5: On the rows: three axial slices of the first CT scan on the COVID-
19-CT-Seg test dataset (coronacases001.nii) are shown. On the columns:
original images (left); overlays between the predicted and the reference lung
(center) and COVID-19 lesion (right) masks. The reference masks are in
green, while the predicted ones, obtained by the LungQuant system inte-
grating U-net90%2 ,are in blue.

between the lesion and lung volumes. In Fig. 4.6 the relationship between
the percentage of lung involvement as predicted by the LungQuant system
vs. the corresponding values for the reference masks of the fully indepen-
dent test set COVID-19-CT-Seg, has been shown for both the LungQuant
systems with the U-net60%2 and the U-net90%2 . Despite the limited range of
samples to carry out this test, an agreement between the LungQuant system
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output and the reference values is observed for both U-net60%2 and U-net90%2 .
In terms of the Mean Absolute Error (MAE) among the estimated and the
reference percentages of affected lung volume (P), I obtained a MAE equal
to MAE=4.6% for the LungQuant system with U-net60%2 and MAE=4.2% for
the system with U-net90%2 .

Figure 4.6: Estimated percentages P of affected lung volume versus the
ground truth percentages, as obtained by the LungQuant system integrating
U-net60%2 (left) and U-net90%2 (right). The gray areas in the plot backgrounds
guide the eye to recognize the CT-SS values assigned to each value of P (from
left to right: CT-SS=1, CT-SS=2, CT-SS=3).

The accuracy in assigning the correct CT-SS class is reported in Ta-
ble 4.7, together with the number of misclassified cases, for the 10 cases of
the COVID-19-CT-Seg dataset. The best accuracy achieved by LungQuant
is of 90% with U-net90%2 . In all cases, the system misclassifies the examples
by 1 class at most.

Table 4.7: Classification performances of the whole system in predicting CT
Severity Score on MosMed and COVID-19-CT-Seg datasets. The number of
misclassified cases is reported.

U-net Dataset Accuracy Misclassified Misclassified
by 1 class by 2 classes

U-net60%2 COVID-19-CT-Seg 6/10 4/10 0

U-net90%2 COVID-19-CT-Seg 9/10 1/10 0
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4.5 Further improvements: LungQuant2.0

As discussed above, the LungQuant system has been trained and evaluated
on publicly available data. Public data, as discussed in Chapter 2, have
the main disadvantage of not containing acquisition information that can
be helpful to define the boundaries conditions in which the algorithm can
properly work. Once the first version of LungQuant was fixed, it has been
sent to different hospitals in order to be run on their cases. I noticed that the
algorithm failed to segment lung and infections on cases that have a different
Field of View (FOV) with respect to the FOV of the public data. CT scans
could be, in fact, presented and stored with a reconstructed FOV that can
significantly differ from the real FOV. Moreover, most clinicians that gave
feedback on the system were interested in studying the left and right lungs
separately. For this reason, a second version of the software, LungQuant2.0,
has been implemented to overcome the following issues:

1. Field of View standardization;

2. Left and right lung separation;

3. Find solutions to linearize the system response with respect to the
disease severity.

4.5.1 FOV standardization: BB-Net

Our goal for the second version of the algorithm has been to standardize the
FOV of CT scans. In fact, it may happen that the CT scan is reconstructed
with a smaller FOV than the acquisition one in order to obtain an enlarged
image. For this reason, a third CNN for regression has been introduced on
top of LungQuant. This CNN extracts six coordinates belonging to two
points (x,y,z) from a CT image, which define the bounding box (BB) around
the lungs, and it is referred to as BB-net in the following. This bounding box
is then used to crop the CT image to the lung volume. The representation
of the new pipeline is reported in Figure 4.7.

The network model chosen for selecting the lung bounding box (BB-net)
is based on the AlexNet [73]. As shown in Figure 4.8, the model is made
up of a series of convolution, max pooling, flattening and dense layers. The
final layer of BB-net is a vector with shape 6 which represents the (x,y,z)
coordinates of the two points that define the bounding box enclosing the
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Figure 4.7: A sketch of the LungQuant2.0 analysis pipeline: the input CT
scans are processed by the BB-net, which identifies a bounding box enclosing
the lungs to be used to crop the images to be provided in input to U-net1,
which is devoted to lung segmentation; its output is refined by a morphology-
based method; a bounding box enclosing the segmented lungs is identified
and used to crop the original CT scan to be then processed by U-net2, which
is devoted to COVID-19 lesion segmentation. The LungQuant2.0 provides
as output: the COVID-19 lesion mask (directly provided by U-net2), the
lung mask (which is obtained as the logical union between the outputs of
U-net1 and U-net2), and the ratio between the COVID-19 lesion and the
lung volumes, which provides the percentage of affected lung volume and the
CT-SS for each patient.

lungs. The training was performed through a regression and the loss function
was the Mean Square Error (MSE). The input image has been windowed in
the HU range [-1000, 1000], and then linearly scaled to the [0,1] range. Then,
it has been resampled to 100× 100× 100 voxels.

BB-net was trained on the data shown in Table 4.1 for which lung masks
were available to derive reference bounding boxes for model training. Since
the data set is small, not all the available inputs are well represented. In
particular, there is an unbalance in the different image FOVs. Most of the
publicly available CT scans have large FOVs and a very limited amount
of CT scans showed a FOV more focused over the lung volume. For this
reason data augmentation was implemented by reducing the FOV, rotating
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Figure 4.8: Graphical representation of the BB-net, image obtained with
Net2Vis software [8]

and displacing the center of the images.
Once the hyperparameters have been optimized through a grid search,

the BB-Net has been trained on 80% of the available data (i.e. Plethora,
Lung CT Segmentation Challenge, COVID-19 Challenge and MosMed) and
its augmentation, while leaving 10% as validation data and 10% as test data.
The latter 20% of data was composed only by the original data, i.e. without
augmentation. The weights which provided the lowest loss value on the
validation set were saved and stored.

BB-net performance

Figure 4.9 shows the training of the BB-net with the optimized hyper-
parameters. The graph shows the loss (MSE) as a function of the training
epoch computed on the training set and the validation set. The minimum
value of the validation loss, which is equal to 1.110−6, highlighted in the
graph by the vertical dotted gray line, is reached at epoch 758. The weights
at this epoch are saved and used to predict the bounding box around the lung
shown in Figure 4.10. The red square inside the image shows the predicted
bounding box, which nearly perfectly overlaps the true bounding box (yellow
square), obtained from the reference lung masks of the annotated CT scans.
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Figure 4.9: BB-net learning curves on the training sample. The blue line is
the loss value, computed with the mean square error on the training sample.
The yellow line is the loss value calculated on the validation sample. The
gray vertical dotted line shows the epoch where the weights of the model
were saved.

Results of the LungQuant2.0 pipeline on the COVID-19-CT-Seg
benchmark dataset

The segmentation performance of the two U-nets has been evaluated sepa-
rately. For both U-net1, which is devoted to lung segmentation, and U-net2,
which is used to segment the lesions, the volumetric Dice Similarity Coef-
ficient (vDSC) and the surface Dice Similarity Coefficient (sDSC) at 5 mm
of tolerance have been computed on the independent test set COVID-19-
CT-Seg. The results are in Table 4.8. Figure 4.11 shows the segmentation
outputs computed on a test case (coronacases008.nii). Even if the effect on
the metrics is negligible, the effect of the introduction of the DNN which
infers the bounding boxes containing the lungs is clear looking at the masks
applied to images with a different FOV. Figure 4.12 shows the lung segmen-
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Figure 4.10: BB-net: a predicted bounding box example (red rectangle),
compared to the true bounding box (yellow rectangle).

tation of the first and the last version of LungQuant as an example. Datasets
which include labelled images with different FOV was not available and hence
it was not possible to compute the vDSC and the sDSC to compare the two
versions. However from visual assessment of the two outputs I can conclude
that the introduction of the bounding box before the lung segmentation has
a positive effect.

Table 4.8: Performances of lung segmentation and COVID-19 affected vol-
ume made by U-net1 and U-net2 respectively. The metrics are the vDSC and
sDSC computed with 5 mm of tolerance.

U-net vDSC sDSC

U-net1 0.96 ± 0.01 0.95 ± 0.02
U-net2 0.64 ± 0.14 0.77 ± 0.15

The volumes of the lungs and of the COVID-19 lesions and their ratio have
been computed to obtain the CT-SS on the independent test set COVID-19-
CT-Seg.

4.5.2 Left and right separation

The algortihm used to separate the left and right lung is based on a watershed
transformation. Once the system computes the lung segmentation, the mask
is firstly resized at half of its initial size. This was necessary to reduce the
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Figure 4.11: LungQuant2.0 system: axial slices of case coronacases008.nii
from COVID-19-CT-Seg test dataset. On the columns: original images (left),
predicted lung (center) and COVID-19 lesion masks (right).

computing time of the following procedure. Then, the euclidean distance
transform is applied to the resized lung mask as well as a gaussian filter to
reduce noise. Using the peak local max function of scikit-image, the local
maxima has been computed on the euclidean distance and hence applied the
watershed segmentation. Figure 4.13 shows an example of the output of this

127



Figure 4.12: Visual assessment of the lung segmentations made with
LungQuant1.0 and LungQuant2.0. On the left: the original image (case
study1064.nii from MosMed dataset). On the center: lung segmenta-
tion made by LungQuant 1.0. On the right: lung segmentation made by
LungQuant 2.0

procedure computed on a case (coronacases005.nii) of the COVID-19-CT-
Seg.

4.5.3 Linearization of the response

As a last improvement, since LungQuant underestimates the most severe
cases, I tried to find a strategy to make the response of the system more
linear. This defect was mainly due to the unbalanced data used to train the
infection segmentation. In fact, public datasets contain mostly mild cases
of COVID-19 pulmonary infection. Moreover, it is not straightforward to
imagine a data augmentation which try to augment only severe cases. For
this reason, a different loss function has been defined to train the U-Net2
again. The vDSC used to train the previous version in fact is a volumetric
metric which inflates when the volumes to be segmented are large. For this
reason, the new loss function is less focused on the volumes and more focused
on the surface. Moreover, the sDSC, which takes into account the surfaces,
is computed in a not efficient way as regards the computing time. For this

128



Figure 4.13: On the left: original CT scan of coronacases005.nii.gz with a
windowing in [-1000,1000] HU range. On the right: effect of the watershed
segmentation to contour left and right lungs separately.

reason, a new term has been added to the loss function and it is defined as
follows:

L =
�

x∈Ω
Fpred · (Btrue − Ftrue) (4.6)

where Fpred and Ftrue are the predicted and the reference foreground masks
respectively and Btrue is the reference background mask. The U-Net2 de-
voted to lesion segmentation has been trained for 150 epochs and the train-
ing has been stopped at the best validation vDSC. The performance of the
new LungQuant has been evaluated on the external independent data set
COVID-19-CT-Seg. The results are reported in Figure 4.14 and in Table 4.9
in terms of vDSC and sDSC at 5 mm of tolerance. The MAE for this new
system has been computed and it is equal to MAE= 2%. The linearization
effect is also clear looking at the right part of Figure 4.14.

The LungQuant2.0, the last version of the system developed, is currently
under a pseudo-clinical evaluation. We, in fact, started a collaboration with
about 12 radiologists coming from 5 different hospitals in Italy and used 120
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Table 4.9: Performances achieved by LungQuant2 in both lung and infection
segmentation on the external independent COVID-19-CT-Seg test dataset.

Lung Lung Infection Infection
(vDSC) (sDSC 5 mm) (vDSC) (sDSC 5 mm)

LungQuant1 0.95 ± 0.01 0.95 ± 0.02 0.66 ± 0.13 0.76 ± 0.18
LungQuant2 0.96 ± 0.01 0.97 ± 0.01 0.69 ± 0.08 0.83 ±0.07

Figure 4.14: In this figure, the estimated percentage of affected lung over
the reference one is reported. The Mean Absolute Error obtained with
LungQuant2.0 is equal to 2%.

public available cases of COVID-19 patient to study both the inter-reader
agreement variability of the CTSS and the accordance with our system. This
is a pseudo-clinical validation because the used public cases available at the
time of this study come from the TCIA ”CT Images in COVID-19” collection
that has been released without labelling.
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4.6 Discussion

In this work [90] a DL-based fully automated analysis pipeline for chest CT
scans, the LungQuant system, which is able to segment the lungs and the
regions of the lung parenchyma affected by COVID-19 infections, has been
presented. The system quantifies the percentage of lung tissue affected by
COVID-19 lesions and provides the CT-Severity Score for each exam. The
LungQuant system was developed using only publicly available data to train
and test two different U-nets devoted to lung and lesion segmentation, respec-
tively. The whole U-net cascade reaches good performances in terms of both
vDSC and sDSC for the lung segmentation, and satisfactory performance for
COVID-19 infection segmentation.

As regard the lung segmentation task, LungQuant performances com-
pare well with those obtained by Ma et al. [98]. Regarding the COVID-19
lesion segmentation, LungQuant reaches a vDSC equal to 0.69±0.08 on the
independent test set and this result compares well with other fully auto-
mated systems, such as the one proposed by Ma et al. [98] which used the
MosMed annotated subsample as independent test set, obtaining a Dice equal
to 0.59±0.21. The LungQuant has been evaluated also in terms of sDSC for
different values of tolerance. The results obtained at a tolerance of 5 mm,
equal to 0.76± 0.18, is satisfactory for our purpose, given the heterogeneity
of the labelling process. Regarding the correct assignment of the CT-SS, the
LungQuant system showed an accuracy of 90% on the completely indepen-
dent test set COVID-19-CT-Seg. Despite this result is encouraging, it was
obtained on a rather small independent test set, thus, a broader validation on
larger data sample with more heterogeneous composition in terms of disease
severity is required.

Training deep learning methods requires a huge amount of labeled data
[92]. This problem has been tackled in this work harvesting all accessible,
to the best of our knowledge, public datasets. Larger data collections allow
training U-nets with a high number of learnable parameters, maintaining
their generalization capabilities. In particular, the lung segmentation task
has been made feasible thanks to the use of lung CT datasets collected for
purposes different from the study of COVID-19 pneumonia. Training a seg-
mentation system on these samples had the effect that when the trained
network is used to process the CT scan of a patient with COVID-19 lesions,
especially in case ground glass opacities and consolidation are very severe,
the lung segmentation is not accurate anymore. In order to overcome this
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problem, the proposed LungQuant system returns a lung mask which is the
logical union between the output mask of the U-net1 and the infection mask
generated by the U-net2. The lung segmentation module integrated in the
LungQuant system can actually be improved once lung masks annotation
are available for a sample of subjects with COVID-19 lesions. Additionally,
balancing training examples according to the severity of radiological findings
may also facilitate the learning process of the U-net1 for segmenting the lung.

A similar problem occurs for the segmentation of ground glass opacities
and consolidations. The available data, in fact, are very unbalanced with
respect to the severity of COVID-19 disease and, hence, the accuracy in seg-
menting the most severe case is worse. The U-net2 has been trained on very
few cases belonging to severe classes, thus it performs better on less severe
cases. Training ML systems on balanced datasets is a crucial point to ob-
tain homogeneous performance that are independent from the severity of the
disease. The current lack of a large dataset, fully representative of the under-
lying population, i.e. collected by paying attention to adequately represent
all categories of disease severity, limits the possibility to carry out accurate
training of AI-based models. Moreover, public available data sets used in
this study do not contain demographic or acquisition information. This limit
implies that I do not know how some population characteristics may influ-
ence the algorithm and hence its application in a hospital workflow should be
strictly monitored in order to avoid gender or racial biases. Finally, the lack
of acquisition information makes the harmonisation impossible whereas it is
well known that it could help to improve both performances and generaliza-
tion. An additional problem that deals with data, encountered in harvesting
COVID-19 data for this analysis, was the difference between the two data
sample in the guidelines followed during the collection of images and their
annotation. As reported in Table 4.5, the performances of a U-net trained
on one specific dataset may decrease significantly when the network is tested
on the other dataset. This problem can be overcome by gathering together
many images acquired and labelled in different ways, as shown in the last
row of Table 4.5. However, in our case, merging the COVID-19-Challenge
dataset and the MosMed dataset led to very unbalanced training data and
the proposed system underestimates the extension of the infection regions.
The possibility to access to more populated and fully annotated data sam-
ples is fundamental to push the performance of DL-based image processing
models. Despite this issue, I tried to solve it defining a loss function which
mitigate the underestimation effect and obtained good results in terms of
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MAE with respect the previous version. However, this improvement should
be definitely tested on a larger data set since the COVID-19-CT-Seg contains
only 10 cases and just one case with a CTSS equal to 3.

As a final consideration, this segmentation and quantification work opens
the way to lesion characterization studies. The segmentation of lungs and
lesions related to COVID-19 pneumonia is a prerequisite to the extraction
of radiomic features that can help to distinguish COVID-19 infection from
other non-COVID related pneumonia, and to develop predictive models of
patients’ outcome. In this direction, the work by Fang et al. [36] developed
an AI-based method to predict a severity score, which showed the remarkable
performance of AUC = 0.813 in predicting the subjects’ intensive care unit
admission. To evaluate the capability of our LungQuant system to enable
the development of predictive models of disease progression and patients’
outcome, the availability of a fully annotated database with phenotypic and
clinical information of patients is required.
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Conclusions and Discussion

In this PhD thesis, I faced the problem of developing deep-learning based
algorithm applied to medical images. In Chapter 1, an overview of the prin-
ciple of X-Ray imaging has been presented as well as an introduction to
deep convolutional neural networks and their explainability. In Chapter 2,
I inserted a discussion which goes even beyond the simple algorithm devel-
opment. It deals with the meaning of making data science with opaque and
non transparent algorithms, especially if they are meant to be applied in
clinical practice. As any multidisciplinary science, I support the thesis that
we should know the domains that are involved in algorithm development
such as medicine, jurisprudence, physics, computer science, philosophy, his-
tory and social sciences in general. Even if an experiment that takes into
account so many expertise is very expensive and requires huge organization
capability, it is fundamental to build a fair and reliable instrument to support
physicians. Applied sciences always move on a thin border between making
science, intended as the increase of knowledge and research processes, and
making a product, to be sold and then used into a hospital. This peculiarity
comes before the advent of the fourth paradigm of science and this offers to
us a very interesting moment for thinking about how science and especially
applied science is changing. Using the Kuhnian definition of paradigm, the
fourth paradigm is changing the classic scientific method since it infers a
model by the data. The way we intend the data is important to frame the
kind of science we are doing: in a pure empiricist approach data are true
and natural, while in a constructivist approach data are constructed and the
grade of truth they represent depends on how they have been collected. As
regards medical images, building a dataset is a challenging task. In fact, data
need to be labelled and medical labeling requires time, precision and, usually,
tools to support the physician labeling. The ground truth on images usually
can not be compared to an objective measure that establishes its goodness
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and so it relies on radiologist opinions. Unfortunately, this kind of labeling
suffers from inter observer variability such that it is not easy to obtain a good
ground truth even if the labeling has been made in a consensus modality, i.e.
with agreement among many doctors. Furthermore, the data availability is
limited: datasets of medical images are usually small and they may be not
accessible. In public collections, instead, important acquisition information
may be lost due to privacy issues. The access to datasets is important not
only to train algorithms but also to test different algorithms on the same
dataset. In this context, the application of AI to medical images needs a
special care since its wrong use may harm not only people but also health
care systems [140]. Developing an algorithm that takes into account all the
issues is a very complex task. However all these problems need to be ad-
dressed if algorithms we develop are going to be used in hospitals on people.
It is possible to evaluate all these issues also a-posteriori and, in Chapter 2,
I presented a process called Z-Inspection to assess trustworthiness of algo-
rithm following the EU guidelines on ethics. The process is made of three
different phases and its aim is to examine a medical algorithm from many
points of view. The issues described in Chapter 2 are then discussed also in
the two use cases of Chapters 3 and 4. The first one is a classifier for breast
density on mammograms. Breast density is an important feature for three
reasons: 1) it is responsible for masking effect, i.e. dense tissue may cover a
malignant mass, 2) dense tissue is radiosensitive and 3) higher breast density
is associated with a higher risk of developing cancer. The most used stan-
dard for breast density classification is the BI-RADS and it is made of four
qualitative classes that are defined through example and text descriptions.
For this reason, I used a Convolutional Neural Network to perform the clas-
sification. Since CNNs are able to extract significant features by themselves,
the way they take a decision is opaque and for this reason I also presented a
way to qualitatively and quantitatively measure the goodness of explanation
through class activation maps. The qualitative explanation is based on the
visual assessment of the activation maps to verify that the part of the image
that the CNN uses to predict a correct class correspond to the dense tis-
sue. As regards the quantitative explanation, it was not possible to obtain a
segmentation of the dense tissues to be directly compared to most activated
areas of the maps because it is too time consuming and also because breast
density is not defined as a pixel-wise measure. However, breast density is
surely correlated to the pixel intensity so that I propose as a quantitative
measure for the explanation a simple computation based on the Spearman

135



correlation coefficient. The expectation is that correlation increases as the
density class increases. The performance obtained with this classifier com-
pares well with the literature and the accuracy, precision and recall of the
classifier are respectively 82%, 83.3% and 80.3%. The trend of the Spearman
correlation ranks over the classes generally shows an increase for higher den-
sity classes. However, this is not generally true for the most dense class. This
behaviour can be explained with the unbalanced dataset used which anyway
represents the empirical distribution of breast density classes measured on
more than 3,8 millions women of a screening population. In Chapter 4, a
deep learning based algorithm for the quantification of lung damage due to
COVID-19 infection on CT has been presented. The algorithm consists in
three CNNs in a cascade modality: the first one is devoted to the identifi-
cation of a bounding box that encloses the lungs, the second one is trained
to segment the lungs and the last one to segment the infection inside the
lungs. To train these CNNs, only publicly available data have been used in
order to let the performance be reproducible. However, there are not public
datasets that contain CT scans of COVID-19 patients with lungs reference
masks and this issue lowers the performance of lung segmentation. Despite
the problem of having an adequate dataset to be used for training, the sys-
tem, which is called LungQuant reaches very good performances in terms of
volumetric and surface Dice Similarity Coefficient. This algorithm which is
able to segment the COVID-19 lesions can be used to extract radiomic fea-
tures in order to predict patient prognosis. Working on these two use cases
allow me to know and understand deeper all the issues described in Chapter
2 even if it could not obviously be possible to address all of them. They, for
example, have been trained using different kinds of data, public and private,
on different imaging modalities and for different scopes. This thesis is, at the
best of my knowledge, the first attempt to organize and discuss the issues
linked to medical algorithm development in literature. The difficulty of doing
this kind of work is that it deals with many arguments and many technical
languages. 1 This requires huge financial funds and organization skills. One

1During my PhD, I participated in many meetings with physicians, physicists and
computer scientists; I had the possibility to speak with lawyers, historians and sociologists;
I had also the chance to have conversations with patients. All these experiences, combined
with my scientific study on AI applied to medical images, are the reason why I decided
to insert a chapter that contains what I really learned during my PhD experience. And
what I really learned is that we need many points of view, many expertises and many
experiences to develop an algorithm which could properly be used in a hospital.

136



of the pivotal problem is the access to data so that I want to conclude my
thesis with a call for research and health institutions. While we are moving
inside these problems trying to get the sufficient number of images and data
by discussing with a specific hospital or a single physician, I think it would
be important a collective project or organization such that researchers be-
longing to public research institutes or universities, could access to a huge
amount of anonymized and diverse medical data in order to build a fairer
way to develop medical algorithms. This requires an ethical treatment of
patients privacy and financial investments for shared servers and their main-
tenance. In an increasingly digital world and medicine, the access to medical
data for researchers to build and validate models, algorithms and software is
a necessary but not sufficient way to preserve our health systems which are
very precious for having a healthy society.
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rajitra, Sebastian Wirkert, and Klaus H. Maier-Hein. nnU-Net:
Self-adapting framework for u-net-based medical image segmentation.
arXiv, 2018.

145



[59] P C Johns and M J Yaffe. X-ray characterisation of normal and neo-
plastic breast tissues. Physics in Medicine and Biology, 32(6):675–695,
may 1987.

[60] Justin M. Johnson and Taghi M. Khoshgoftaar. Survey on deep learn-
ing with class imbalance. Journal of Big Data, 6(1), 2019.

[61] Georgios A. Kaissis, Marcus R. Makowski, Daniel Rückert, and Rick-
mer F. Braren. Secure, privacy-preserving and federated machine learn-
ing in medical imaging. Nature Machine Intelligence, 2(6):305–311,
2020.

[62] Davood Karimi, Haoran Dou, Simon K. Warfield, and Ali Gholipour.
Deep learning with noisy labels: Exploring techniques and remedies in
medical image analysis. Medical Image Analysis, 65:101759, 2020.

[63] Eric L.H. Khoo, Karlissa Schick, Ashley W. Plank, Michael Poulsen,
Winnie W.G. Wong, Mark Middleton, and Jarad M. Martin. Prostate
contouring variation: Can it be fixed? International Journal of Radi-
ation Oncology Biology Physics, 82(5):1923–1929, 2012.

[64] Ji Hoon Kim, Sang Gil Han, Ara Cho, Hye Jung Shin, and Song-
Ee Baek. Effect of deep learning-based assistive technology use on
chest radiograph interpretation by emergency department physicians:
a prospective interventional simulation-based study. BMC Medical In-
formatics and Decision Making, 21(1):1–9, 2021.

[65] Kendall J. Kiser, Sara Ahmed, Sonja Stieb, Abdallah S.R. Mohamed,
Hesham Elhalawani, Peter Y.S. Park, Nathan S. Doyle, Brandon J.
Wang, Arko Barman, Zhao Li, W. Jim Zheng, Clifton D. Fuller, and
Luca Giancardo. PleThora: Pleural effusion and thoracic cavity seg-
mentations in diseased lungs for benchmarking chest CT processing
pipelines. Medical Physics, 47(11):5941–5952, 2020.

[66] Kendall J. Kiser, Arko Barman, Sonja Stieb, Clifton D. Fuller, and
Luca Giancardo. Novel Autosegmentation Spatial Similarity Metrics
Capture the Time Required to Correct Segmentations Better Than Tra-
ditional Metrics in a Thoracic Cavity Segmentation Workflow. Journal
of Digital Imaging, 34(3):541–553, 2021.

146



[67] R. Kitchin. The Data Revolution: Big Data, Open Data, Data Infras-
tructures and Their Consequences. SAGE Publications, 2014.

[68] Rob Kitchin. Big Data, new epistemologies and paradigm shifts. Big
Data and Society, 1(1):1–12, 2014.

[69] Thijs Kooi, Bram van Ginneken, Nico Karssemeijer, and Ard den
Heeten. Discriminating solitary cysts from soft tissue lesions in mam-
mography using a pretrained deep convolutional neural network. Med-
ical physics, 44(3):1017–1027, 2017.

[70] Dimitrios Korkinof, Tobias Rijken, Michael O’Neill, Joseph Yearsley,
Hugh Harvey, and Ben Glocker. High-Resolution Mammogram Synthe-
sis using Progressive Generative Adversarial Networks. (2017), 2018.

[71] Mika Kortesniemi, Virginia Tsapaki, Annalisa Trianni, Paolo Russo,
Ad Maas, Hans-Erik Källman, Marco Brambilla, and John Dami-
lakis. The European Federation of Organisations for Medical Physics
(EFOMP)White Paper: Big data and deep learning in medical imaging
and in relation to medical physics profession. Physica Medica, 56:90–93,
2018.

[72] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet
classification with deep convolutional neural networks. In F. Pereira,
C. J. C. Burges, L. Bottou, and K. Q. Weinberger, editors, Advances in
Neural Information Processing Systems, volume 25. Curran Associates,
Inc., 2012.

[73] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet
classification with deep convolutional neural networks. Advances in
neural information processing systems, 25:1097–1105, 2012.

[74] William H Kruskal and W Allen Wallis. Use of Ranks in One-Criterion
Variance Analysis. Journal of the American Statistical Association,
47(260):583–621, dec 1952.

[75] Thomas S Kuhn. The structure of Scientific Revolution, volume I,II.

[76] Indrajeet Kumar, Bhadauria H.S., Jitendra Virmani, and Shruti
Thakur. A classification framework for prediction of breast density

147



using an ensemble of neural network classifiers. Biocybernetics and
Biomedical Engineering, 37(1):217–228, 2017.

[77] Alina Kuznetsova, Hassan Rom, Neil Alldrin, Jasper Uijlings, Ivan
Krasin, Jordi Pont-Tuset, Shahab Kamali, Stefan Popov, Matteo Mal-
loci, Alexander Kolesnikov, Tom Duerig, and Vittorio Ferrari. The
Open Images Dataset V4: Unified Image Classification, Object Detec-
tion, and Visual Relationship Detection at Scale. International Journal
of Computer Vision, 128(7):1956–1981, 2020.

[78] Philippe Lambin, Ralph T.H. Leijenaar, Timo M. Deist, Jurgen Peer-
lings, Evelyn E.C. De Jong, Janita Van Timmeren, Sebastian San-
duleanu, Ruben T.H.M. Larue, Aniek J.G. Even, Arthur Jochems,
Yvonka Van Wijk, Henry Woodruff, Johan Van Soest, Tim Lustberg,
Erik Roelofs, Wouter Van Elmpt, Andre Dekker, Felix M. Mottaghy,
Joachim E. Wildberger, and Sean Walsh. Radiomics: The bridge be-
tween medical imaging and personalized medicine. Nature Reviews
Clinical Oncology, 14(12):749–762, 2017.

[79] Agostina J. Larrazabal, Nicolás Nieto, Victoria Peterson, Diego H.
Milone, and Enzo Ferrante. Gender imbalance in medical imaging
datasets produces biased classifiers for computer-aided diagnosis. Pro-
ceedings of the National Academy of Sciences of the United States of
America, 117(23):12592–12594, 2020.

[80] Rebecca Sawyer Lee, Francisco Gimenez, Assaf Hoogi, Kanae Kawai
Miyake, Mia Gorovoy, and Daniel L Rubin. A curated mammography
data set for use in computer-aided detection and diagnosis research.
Scientific Data, 4(1):170177, 2017.

[81] Constance D Lehman, Adam Yala, Tal Schuster, Brian Dontchos, Man-
isha Bahl, Kyle Swanson, and Regina Barzilay. Mammographic Breast
Density Assessment Using Deep Learning: Clinical Implementation.
Radiology, 290(1):52–58, 2019.

[82] S. Leonelli. What difference does quantity make? On the epistemology
of Big Data in biology. Big Data and Society, 1(1):1–11, 2014.

[83] Nikolas Lessmann, Clara I. Sánchez, Ludo Beenen, Luuk H. Boulogne,
Monique Brink, Erdi Calli, Jean Paul Charbonnier, Ton Dofferhoff,

148



Wouter M. van Everdingen, Paul K. Gerke, Bram Geurts, Hester A.
Gietema, Miriam Groeneveld, Louis van Harten, Nils Hendrix, Ward
Hendrix, Henkjan J. Huisman, Ivana Išgum, Colin Jacobs, Ruben
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