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Abstract. We exhibit examples of compact three-dimensional CR manifolds of positive Webster class,
Rossi spheres, for which the pseudo-hermitian mass as defined in [CMY17] is negative, and for which the

infimum of the CR-Sobolev quotient is not attained. To our knowledge, this is the first geometric context

on smooth closed manifolds where this phenomenon arises, in striking contrast to the Riemannian case.

1. Introduction

The Yamabe problem consists in deforming conformally the metric of a manifold of dimension n ≥ 3
so that its scalar curvature becomes a constant. Apart from being a natural conformal extension of the
Uniformization Problem in two dimensions, the question was introduced in [Yam60] for trying to attack
Poincaré’s conjecture. Yamabe metrics have also been applied to other contexts, such as the study of
degeneration of conformal structures. For example, in [TV05] it is shown that the set of Yamabe Bach-flat
metrics on a four-manifold is compact up to orbifold degeneration.

If one wishes to have Sg̃ constant, the following elliptic problem must be solved

(Y ) −4(n− 1)

n− 2
∆gu+ Sgu = S u

n+2
n−2 on M ; S ∈ R.

Notice that the exponent on the right-hand side of the equation is critical with respect to the Sobolev
embeddings. In [Yam60] an attempt was made to solve (Y ) by lowering the exponent by a small amount,
but the possible weak convergence to zero of solutions was not excluded. Another way to attack (Y ) was
to view S as a Lagrange multiplier, considering the Sobolev quotient

(1) Q(M,g)(u) :=

´
M

(
cn|∇gu|2 + Sgu

2
)
dVg(´

M
|u|2∗dVg

) 2
2∗

=

´
M
Sg̃dVg̃

(V olg̃(M))
2

2∗
,

where cn = 4(n−1)
(n−2) and 2∗ = 2n

n−2 . If one could realise the minimum of Q(M,g)(u) over all non-zero u’s of

class W 1,2(M, g), this would give rise to a solution of (Y ): notice that it is sufficient to consider functions
in W 1,2(M, g) that are non-negative, therefore by regularity theory one would obtain a positive smooth
solution. Defining then

Y (M, g) := inf
u∈W 1,2(M,g),u 6≡0

Q(M,g)(u),

it can be proved that this quantity is independent of the conformal representative of g, and will therefore
be denoted from now on by Y (M, [g]). Depending on the sign of the latter quantity, (M, [g]) is said to
be of negative, null or of positive Yamabe class.
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It was proved in [Tru68] that there exists a dimensional constant εn > 0 such that Y (M, [g]) is attained
(and hence (Y ) is solvable) provided Y (M, [g]) ≤ εn. The result applies in particular to all manifolds
with conformal classes of metrics of negative or null Yamabe class.

Consider the (normalized) Sobolev quotient in Rn

(2) Sn := inf
u∈C∞c (Rn),u6≡0

´
Rn cn|∇u|

2dx(´
Rn |u|2

∗dx
) 2

2∗
.

Using the stereographic projection from Sn to Rn it can be proved that the above quantity coincides
with the Yamabe quotient of the round sphere, i.e. for all n ≥ 3 one has Sn = Y (Sn, [gSn ]). It was shown
in [Aub76] that one always has Y (M, [g]) ≤ Sn, and that (Y ) is solvable provided the strict inequality
holds. It was also shown in [Aub76] that Y (M, [g]) < Sn provided n ≥ 6 and M is not locally conformally
flat, i.e. when the Weyl tensor of (M, g) is not identically zero. It was proved then in [Sch84] that
Y (M, [g]) < Sn in all complementary cases (provided (M, g) is not conformally equivalent to the round
sphere), i.e. when (M, g) has dimension less or equal to 5 or when it is locally conformally flat. While
the argument in [Aub76] was based on a local energy expansion, the one in [Sch84] relied on the Positive
Mass Theorem in general relativity, see [SY79b], [SY81], [SY79a], [SY17], which is in turn related to the
expansion of the Green’s function of the conformal Laplacian Lg near its pole, where

Lgu := −4(n− 1)

n− 2
∆gu+ Sgu.

In both [Aub76] and [Sch84] the strict inequality was proved by evaluating the Yamabe-Sobolev quotient
on (suitable perturbations of) highly concentrated extremals of (2) (classified in [Aub76], [Tal76]), suitably
glued to (M, g). Such extremals, parametrized using the Möbius group of Sn, can be chosen arbitrarily
peaked near any point: these decay faster at infinity in higher dimensions and therefore the correction
to the quotient due to the geometry of M is more localized in space for n large. In any case, we always

have Y (M, [g]) < Sn provided (M, g)
conf.

6' (Sn, gSn).

We consider in this paper compact three dimensional pseudo-hermitian manifolds (M,J, θ): these are
CR manifolds, i.e. endowed with a contact structure ξ and a CR structure J : ξ → ξ such that J2 = −1.
We assume (M,J) to be strictly pseudo-convex, namely that it is globally defined a contact form θ which
annihilates ξ and for which θ ∧ dθ is always non-zero (see [BFG83]). We define the Reeb vector field as
the unique T for which θ(T ) ≡ 1 and Ty dθ = 0. Given J as above, we can define locally a vector field
Z1 such that

(3) JZ1 = iZ1; JZ1 = −iZ1 where Z1 = (Z1).

We also let (θ, θ1, θ1) be the dual triple to (T,Z1, Z1), so that

dθ = ih11θ
1 ∧ θ1 for some h11 > 0 (possibly replacing θ by − θ).

In the following we will always assume that h11 ≡ 1.
The connection 1-form ω1

1 and the torsion A1
1

are uniquely determined by the structure equations

(4)

{
dθ1 = θ1 ∧ ω1

1 +A1
1
θ ∧ θ1;

ω1
1 + ω1

1
= 0.

The Tanaka-Webster curvature (or Webster curvature) Rθ (or, simply, R) is then defined by the formula

dω1
1 = Rθ θ

1 ∧ θ1 (mod θ).

A model with positive curvature is the standard sphere (S3, JS3 , θ̂), with S3 ⊆ C2 = {(z1, z2)}, and

(5) θ̂ =
1

2
i(∂̄ − ∂)(|z1|2 + |z2|2) =

1

2
i

2∑
k=1

(zkdzk̄ − zk̄dzk); Z1 = ZS
3

1 = z2 ∂

∂z1
− z1 ∂

∂z2
.

Similarly to what happens with the classical stereographic projection, the CR three-sphere is CR equiv-
alent to the Heisenberg group H1 = {(z, t), z ∈ C, t ∈ R}, see e.g. [CMY17].



3

The Tanaka-Webster curvature enjoys conformal properties similar to the scalar curvature on Riemann-
ian manifolds. More precisely, scaling the contact form θ by a positive function, one has the following
law for the transformation of the Webster curvature

(6) Lbu := −4∆bu+Rθ u = Rθ̃ u
3; θ̃ = u2θ.

Here Rθ̃ is the Tanaka-Webster curvature corresponding to the pseudo-hermitian structure (J, θ̃). ∆b

stands for the operator defined as follows

∆bf = f, 1
1 +f, 1

1
= f,11 + f,11,

where we have used h11 = h11 = 1 to raise or lower the indices, and where we set

(7) f1 = f,1 := Z1f ; f,11 = Z1Z1f − ω1
1(Z1)Z1f ; f,0 = Tf.

The CR-invariant sub-Laplacian transforms covariantly as follows

L̂b(ϕ) = u−
Q+2
Q−2Lb(uϕ); θ̂ = u2θ,

where Q = 4 is the homogeneous dimension of the manifold. By (6), finding θ̃ with constant Webster
curvature corresponds to solving the following analogous problem to (Y )

(W ) Lbu = Ru
Q+2
Q−2 on M ; R ∈ R, u > 0.

In [JL87] the counterpart of the result in [Aub76] was obtained, i.e. if the infimum of the CR-Sobolev
quotient satisfies

(8) Y(M,J) := inf
θ̂

´
M
Rθ̂ θ̂ ∧ dθ̂(´

M
θ̂ ∧ dθ̂

) 1
2

= inf
u∈C∞(M),u>0

´
M

(4|∇bu|2 +Rθu
2) θ ∧ dθ(´

M
u4θ ∧ dθ

) 1
2

< Y(S3, JS3),

then it is attained and a solution of (W ) exists (indeed, this holds true in any dimension). The same
authors verified this condition when the dimension is greater or equal to five and (M,J) is not spherical,
see [JL89] and [JL88].

However, in the CR setting new phenomena appear, related to the fact that most three-dimensional
structures are non-embeddable, differently from the higher-dimensional case, see [BdM75], [BE90]. In
[CMY17] some results in the above directions were proved, assuming some global conditions related to
the embeddability of the abstract CR structure.

More precisely, a notion of pseudo-hermitian mass was defined for three-dimensional asymptotically-
Heisenberg manifolds (we refer to the latter paper for precise definitions and details) by setting

m(J, θ) := i

˛
∞
ω1

1 ∧ θ := lim
Λ→+∞

i

˛
SΛ

ω1
1 ∧ θ,

where SΛ = {ρ = Λ}, ρ4 = |z|4 + t2 (with (z, t) coordinates on the Heisenberg group), and where ω1
1

stands for the connection form of the structure. The above definition was introduced considering an
analogue of the Einstein-Hilbert action.

As it happens in the Riemannian case, this mass is related to the expansion of the Green’s function
of the conformal sub-Laplacian Lb on a compact manifold M . When Y(M,J) > 0 the latter operator is
invertible, so for any p ∈M there exists a Green’s function Gp verifying distributionally

(−4∆b +R)Gp = 64π δp,

where δp in the right-hand side stands for the Dirac delta w.r.t. the volume measure θ ∧ dθ. In CR
normal coordinates (z, t) (introduced in [JL89] and discussed in Section 2) Gp writes as

(9) Gp = 2ρ−2 +A+O(ρ),

for some A ∈ R and where ρ4(z, t) is as above. For the latter expansion, we refer to Proposition 5.2 in
[CMY17] (here we use an extra factor 4π in the definition of Gp), and to Subsection 2.1 for our notation
O(ρ). Given (M,J, θ) compact and p ∈M , consider a blow-up of contact form as follows

(10) N = (M \ {p}, J,G2
pθ).
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As it is shown in [CMY17], via an inversion of coordinates, the manifold N turns out to have asymptot-
ically the geometry of the Heisenberg group, and its pseudo-hermitian mass satisfies

(11) m = 12πA

(see Lemma 2.5 there, and recall the difference of 4π in our current notation), where A is as above.
Using crucially a result in [HY15], in the same paper it was also proved that the pseudo-hermitian mass
is non-negative (and zero only when (M,J, θ) is CR equivalent to S3), provided that the CR Paneitz
operator P on (M,J) is non-negative definite. The latter operator is

(12) Pϕ := 4(ϕ1̄
1̄
1 + iA11ϕ

1)1,

it has a relation to the log-term coefficient in the Szegö kernel expansion, and it is pseudo-hermitian-

covariant, namely Pθ̂ϕ = e4fPθϕ for the conformal change θ = e2f θ̂ ([Hir93]). By a result in [CCY12],

manifolds for which P is non-negative and R > 0 can be embedded into some CN (see also [CCY16]).
The assumption on the positivity of the Paneitz operator is not technical, as in [CMY17] some coun-

terexamples for the positivity of the pseudo-hermitian mass were also given for structures (arbitrarily)
close to the spherical one, and hence with positive Webster curvature. In a recent preprint [Tak], the
positivity of the Paneitz operator is shown to hold for embeddable (M,J).

In this paper we are concerned with Rossi spheres: these are a one-parameter-family of CR structures

on the 3-sphere of the form S3
s := (S3, J(s), θ̂), where θ̂ is as in (5), and where J(s) is characterized by

(13) J(s)Z1(s) = iZ1(s); Z1(s) = Z1 +
s√

1 + s2
Z1̄, Z1̄(s) = Z1̄ +

s√
1 + s2

Z1.

Rossi spheres are interesting because they are simple examples of CR structures on the three-sphere that
cannot be embedded in CN . In [Bur79] it was shown that all the holomorphic functions on such structures
are even functions if s 6= 0. On the other hand, there are explicit embeddings in C3 of the quotient of
the Rossi spheres by the antipodal map, see [CS01]. By the above discussion, it follows that the Paneitz
operator cannot be non-negative here. In addition, this family of CR structures are homogeneous and if
we take the standard contact form, it is pseudo-Einstein, i.e. R,1 − iA11,1̄ = 0, see [CY13] as well as our
notation for covariant derivatives in Section 2.1.

Our first main result in this paper is the following theorem.

Theorem 1.1. For |s| small, s 6= 0, the pseudo-hermitian mass of the Rossi spheres S3
s is negative. More

precisely, one has the expansion

ms = −18πs2 + o(s2) for s ' 0.

Remark 1.2. (a) We can generalize the construction of Rossi spheres in Theorem 1.1 as follows. Ac-
cording to Proposition 3.3 in [Fal92], there exist deformations of the standard CR structure on S3/Γ
(Γ = Z2 for the case of Rossi spheres), whose universal covers are not embeddable. These CR structures
(i.e., universal covers) are likely to have negative mass.

(b) We can embed S3
s/Z2 into C3 (see, for instance, [CS01]). So according to [Tak], the CR Paneitz

operator P on S3
s/Z2 is non-negative definite. On the other hand, P on S3

s cannot be non-negative definite
by Theorem 1.1 and the positive mass theorem in [CMY17] for |s| small, s 6= 0 so that the Webster
curvature of S3

s is positive. Thus for |s| small, s 6= 0, S3
s/Z2 provides an example of CR manifold having

non-negative definite P while its covering space S3
s does not have non-negative definite P , answering a

question raised by Ngaiming Mok in a conference held in Hong Kong, 2014.

We saw before (in both low-dimensional Riemannian and CR cases) that positivity of the mass implies
attainment of the Sobolev quotient. We also strengthen the relation between mass and quotient by means
of the following result, which is in striking contrast with the Riemannian case.

Theorem 1.3. For |s| small, s 6= 0, the infimum of the CR-Sobolev quotient of S3
s coincides with

Y(S3, JS3) and is not attained.
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Remark 1.4. (a) The phenomenon in Theorem 1.3 is typical of some critical problems in a PDE context,
like the Yamabe equation on Euclidean domains with Dirichlet boundary conditions or the case of some
general elliptic operators on manifolds. However, to our knowledge this is the first time this is displayed
in a purely geometric smooth context.

(b) We recall that in [Gam01] and [GY01] the CR-Yamabe problem was solved for every three di-
mensional CR manifolds, but there solutions were found via variational arguments and they are not of
minimal type. Theorem 1.3 shows that the use of such methods is in some cases somehow necessary.

Determining or estimating the mass of a manifold is in general a hard problem, since this is deeply
related to the Green’s function of the conformal (sub-)Laplacian, which is a global object. The mass
also appears as its zero-th order coefficient after a proper choice of conformal representative and local
coordinates. After recalling some preliminary facts in Section 2 on CR normal coordinates (introduced
in [JL89] and suited for the above expansion) and on Rossi spheres, we specialize in Section 3 to the
latter manifolds. For doing this we need first to derive a suitable conformal factor satisfying a list of
conditions, and then express pseudo-hermitian coordinates depending on s. By the special expression of
the Green’s function in these coordinates, we are able to determine it quite precisely near the north pole,
up to the constant term A appearing in (9). However, as we remarked before, also some global features
of the Green’s function have to be understood.

For doing this, by a Taylor expansion in s worked-out at the beginning of Section 4 it is possible to
characterize formally the Green’s function for the conformal sub-Laplacian on Rossi spheres up to an
order O(s3). One problem with this expansion is that it generates singular terms, with a particularly
bad behavior near the pole, if expressed with respect to the standard complex coordinates of C2, where
S3 embeds. Also in this case non local terms appear, which we are able to evaluate at the pole via some
integral formula.

Via a careful analysis of all terms of order 1, s and s2, we verify then in the second part of the section
that the global singular expansion on S3 matches with the one done in CR normal coordinates up to an
order O(s3). This allows us to prove Theorem 1.1.

In Section 5, arguing by contradiction, we analyse the possible behaviours of minimizers for the CR
Sobolev quotient. Due to a non-degeneracy result from [MU02], the analysis of minimizers can be reduced
to a finite-dimensional one, and we show that the CR-Sobolev quotient of all candidate minimizers
is strictly above the spherical one, i.e. Y(S3, JS3). With negative mass, this is expected for highly
concentrated profiles, reversing the expansion in [Sch84]: however such a property has to be obtained
in all cases, i.e. even for non-concentrated profiles, in order to guarantee that the infimum of the CR-
Sobolev quotient is not attained. In Proposition 5.5 this is proved for s small in a fixed compact set
of the CR maps of S3. This is done starting with the expansion of the quotient on Rossi spheres over
the extremals of the quotient on the standard S3, adding to them a correction term that improves their
accuracy as approximate critical points for s non zero. One needs then to analyze the quotient in a
regime with loss of compactness, which is particularly delicate due to the following reason. It is known
from [Sch84] that the mass of a (given) manifold plays a role in the expansion for Sobolev quotients of
highly concentrated functions. In our case this must be done uniformly in s, and the problem could be
that the principal term coming from the mass could become negligible as s → 0. To solve this issue we
exploit a symmetry s → −s for Rossi spheres, discussed in Section 2, which implies that all variational
expansions are indeed even in s and hence the mass, which vanishes with s, gives still a dominant sign to
the asymptotic expansion of the CR-Sobolev quotient. Two appendices are devoted to the estimates of
the latter quantity in two different scaling regimes. To make the above arguments rigorous, we employ
a finite-dimensional reduction of the problem, via a fixed point argument, which allows to solve for the
CR-Yamabe equation on Rossi spheres up to a Lagrange multiplier. We obtain in this way a manifold
of approximate solutions containing by construction all possible minimizers: our expansion shown then
that on this manifold the CR-Sobolev quotient is strictly higher than Y(S3, JS3), yielding our result.
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University (Academia Sinica in Taiwan, resp.) for the kind hospitality. J.-H.C. is supported by the
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2. Background material

In this section we recall some useful facts about CR manifolds and the properties of CR normal
coordinates, constructed in [JL89]. We then describe some general features of Rossi spheres.

2.1. Preliminary facts on CR manifolds. Let us begin by recalling the following commutation rela-
tions on tensors, see Lemma 2.3 in [Lee88] (we also refer to this paper for our tensorial notation)

(14)

 c,11−c,11 = ic,0 +kcR;
c,01−c,10 = c,1A11 − kcA11,1 ;
c,01−c,10 = c,1A11 + kcA11,1 .

Here c is a tensor with 1 or 1̄ as sub-indices, k is the number of 1-sub-indices of c minus the number
of 1-sub-indices of c and where, we recall, we are assuming that h11 = 1 (so A1̄1̄ = A1

1̄ and A11 is the
complex conjugate of A1̄1̄).

In the system of coordinates we will describe below, for (z, t) ∈ H1 near zero we will set

(15) ρ4 = |z|4 + t2.

For k ∈ Z we denote by Õ(ρk) a function f(z, z, t) for which |f | ≤ Cρk for some C > 0; we use instead

the symbol Õ′(ρk) for a function f(z, z, t) such that

|f | ≤ Cρk, |∂zf | ≤ Cρk−1 |∂zρ| , |∂zf | ≤ Cρk−1 |∂zρ| , |∂tf | ≤ Cρk−1 |∂tρ| .

One can define similarly the symbols Õ′′(ρk), Õ′′′(ρk), etc. We will use O(ρk) for a function which is of

the form Õ(j)(ρk) for every integer j, or for j large enough for our purposes.
Large positive constants are always denoted by C, and the value of C is allowed to vary from one

formula to another and also within the same line. When we want to stress the dependence of the
constants on some parameter (or parameters), we add subscripts to C, as Cδ, etc.. Also constants with
this kind of subscripts are allowed to vary.

Let us recall the notions of pseudo-hermitian geometry from [Web78] and [Lee86]. We would need the
following result in [JL89] on page 313, Proposition 2.5. For a differential form η, let us denote by η(m)

the part of its Taylor series that is homogeneous of degree m in terms of parabolic dilations (see [JL89]
for more details).

Proposition 2.1. Let Z̃1 be a special frame dual to θ̃1 (with h̃11 = 2) and let θ1 =
√

2θ̃1 be a unitary

coframe (h11 = 1). Then in pseudo-hermitian normal coordinates (z, t) with respect to Z̃1, θ̃1, we have

(a) θ(2) =
◦
θ; θ(3) = 0; θ(m) = 1

m

√
2
(
izθ1 − izθ1

)
(m)

, m ≥ 4;

(b) θ1
(1) =

√
2dz; θ1

(2) = 0; θ1
(m) = 1

m

(√
2zω1

1 + 2tA11θ
1 −
√

2zA11θ
)

(m)
, m ≥ 3

(c) (ω1
1)(1) = 0; (ω1

1)(m) = 1
m

(√
2R(zθ1 − zθ1) +A11,1(

√
2zθ − 2tθ1)−A11,1(

√
2zθ − 2tθ1)

)
(m)

,

m ≥ 2, where
◦
θ = dt+ izdz − izdz.

Definition 2.2. Given a three dimensional pseudo-hermitian manifold (M, θ) we define a real symmetric
tensor Q as

Q = Qjkθ
j ⊗ θk, j, k ∈

{
0, 1, 1

}
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with θ0 := θ, whose components with respect to any admissible coframe are given by

Q11 = Q11 = 3iA11; Q11 = Q11 = h11R;

Q01 = Q10 = Q01 = Q10 = 4A 1
11, + iR,1; Q00 = 16ImA 11

11, − 2∆bR.

We have then the following result, see page 315 in [JL89], Theorem 3.1.

Proposition 2.3. Suppose M is a strictly pseudo-convex pseudo-hermitian manifold of dimension three,
and let q ∈ M . Then for any integer N ≥ 2 there exists a choice of contact form θ such that all
symmetrized covariant derivatives of Q with total order less or equal than N vanish at q, that is

(16) Q〈jk,l〉 = 0 at q if O(jkl) ≤ N.

By CR normal coordinates of order N we mean the pseudo-hermitian normal coordinates with θ chosen
as in Proposition 2.3. We recall ([JL89]) that for a multi index l = (l1, . . . , ls) we count its order as

O(l) = O(l1) + · · ·+ O(ls),

where O(1) = O(1) = 1 and where O(0) = 2. The symmetrized covariant derivatives are defined by

Q〈l〉 =
1

s!

∑
σ∈Ss

Qσl; σl =
(
lσ(1), . . . , lσ(s)

)
.

In [CMY17], Proposition A.5, the following result was proved.

Proposition 2.4. In CR normal coordinates of order N = 4, we have a contact form θ such that

θ =
(
1 +O(ρ4)

) ◦
θ +O(ρ5)dz +O(ρ5)dz; θ1 =

(
1 +O(ρ4)

)√
2dz +O(ρ4)dz +O(ρ3)

◦
θ;

ω1
1 = O(ρ3)dz +O(ρ3)dz +O(ρ2)

◦
θ;

Z1 =
(
1 +O(ρ4)

) ◦
Z1 +O(ρ4)

◦
Z1 +O(ρ5)

∂

∂t
; T =

(
1 +O(ρ4)

) ∂
∂t

+O(ρ3)
◦
Z1 +O(ρ3)

◦
Z1,

where we recall

(17)
◦
θ = dt+ izdz − izdz;

◦
Z1 =

1√
2

(
∂

∂z
+ iz

∂

∂t

)
; ρ4 = t2 + |z|4.

2.2. Rossi spheres. We recall here some properties of Rossi spheres, introduced in [Ros65] as a non-
embeddable example of CR manifold (see also [Bur79]). These are families of CR structures on S3,
containing the standard one, obtained in the following way.

Considering the complex vector field Z1 as in (5) and its conjugate Z1̄, one defines the CR structure
J(s) by setting J(s)Z1(s) = iZ1(s), where

Z1(s) = Z1 +
s√

1 + s2
Z1̄, Z1̄(s) = Z1̄ +

s√
1 + s2

Z1.

Corresponding to these vector fields, we have the dual forms

θ1
(s) = (1 + s2)θ1 − s

√
1 + s2θ1̄, θ1̄

(s) = (1 + s2)θ1̄ − s
√

1 + s2θ1,

where θ1 = z2dz1 − z1dz2. Compute

(18) iθ1
(s) ∧ θ

1̄
(s) = (1 + s2)iθ1 ∧ θ1̄ = (1 + s2)dθ̂,

where dθ̂ = iθ1 ∧ θ1̄, i.e., h11̄ = 1. Hence, from (18) we get

h
(s)

11̄
=

1

1 + s2
and h11̄

(s) := (h
(s)

11̄
)−1 = 1 + s2.

By taking

θ̃1
(s) =

1√
2(1 + s2)

θ1
(s),
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we have h̃
(s)

11̄
= 2. The Webster curvature R of (J, θ̂) is identically equal to 2. Then we should take ω1

1 =

−2iθ̂ in the structure equation (4), such that dω1
1 = 2θ1 ∧ θ1̄. We can then determine, from the structure

equation for (J(s), θ̂), that

ω1
1(s) = −2i(1 + 2s2)θ̂, h11̄

(s)A1̄1̄(s) = 4is
√

1 + s2, R(s) = 2(1 + 2s2).

Dual to θ1 = z2dz1 − z1dz2, we have

(19) Z1 = ZS
3

1 = z2̄ ∂

∂z1
− z1̄ ∂

∂z2
.

The sub-Laplacian associated to (J(s), θ̂) reads

(20) 4(s)
b = h11̄

(s)(Z1(s)Z1̄(s) + Z1̄(s)Z1(s)) = (1 + 2s2)4(0)
b + 2s

√
1 + s2(Z2

1 + Z2
1̄ ).

It follows that, at s = 0, the first-and second-order derivatives of 4(s)
b w.r.t. s are given by

(21) −∆̇b = 2Z1Z1 + conj.; −∆̈b = −4∆b.

Moreover since Rs = 2(1 + 2s2) it follows that, still at s = 0

(22) Ṙ = 0; R̈ = 8.

We next analyze a symmetry property of Rossi spheres, that will imply in particular the symmetry of
the mass in s. Consider the diffeomorphism ι : S3 → S3 defined by

(23) ι(z1, z2) = (iz1, z2),

which fixes the point (0,1). A direct computation shows that ι∗Z
S3

1 = iZS
3

1 and hence ι∗Z
S3

1̄ = (−i)ZS3

1̄ .
By (18), we compute

ι∗Z1(s) = ι∗Z1 +
s√

1 + s2
ι∗Z1̄ = iZ1 +

s√
1 + s2

(−i)Z1̄ = iZ1(−s).(24)

It follows that

(ι∗J(−s))Z1(s) = ι−1
∗ J(−s)(ι∗Z1(s)) = ι−1

∗ J(−s)(iZ1(−s)) (by (24)) = ι−1
∗ (−Z1(−s))

= (−1)(−i)Z1(s) (by the inverse of (24)) = iZ1(s) = J(s)Z1(s).

Hence we have shown

(25) J(s) = ι∗J(−s).

Let v(s) denote the conformal factor in θ̌(s) = e2v(s) θ̂, yielding CR normal coordinates with respect to
J(s). It then follows that

v(s) = ι∗v(−s), θ̌(s) = ι∗θ̌(−s),

and hence Ǧs = ι∗Ǧ−s by observing

(26) ι∗θ̂ = θ̂.

Write

Ǧs = 2ρ−2
s +As +O(ρs)

in s-CR normal coordinates near (0, 1). Then ρs = ι∗ρ−s = ρ−s ◦ ι and

As = ι∗A−s = A−s ◦ ι = A−s

near the point (0, 1). So, we have obtained

m(J(s), θ(s)) = 12πAs = 12πA−s = m(J(−s), θ(−s)),

where θ(s) = Ǧ2
(s)θ̌(s). This property (and other related ones) will be crucial in the last section of the

paper.
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3. CR normal coordinates on Rossi spheres

In this section we will find the main-order terms of CR normal coordinates on Rossi spheres. We first
determine the principal term in the required conformal factor, then discuss pseudo-hermitian coordinates
and finally CR normal coordinates. This will allow us to express with a good precision the Green’s
function of the conformal sub-Laplacian near its pole.

3.1. Conformal factor in normalized contact form on Rossi spheres. Fix p = (0, 1) ∈ S3 ⊆ C2

and consider a contact form θ̌′(s) = e2v(s) θ̂′, where θ̂′ = 2θ̂ = i(∂̄ − ∂)(|z1|2 + |z2|2) yielding CR normal

coordinates (see Proposition 2.3) with respect to J(s) for N = 4. We are going to solve an equation for
v(s) as in Lemma 3.11 of Jerison-Lee’s paper ([JL89]). Write

(27) v(s) = v2 + v3 + ...,

where v2 ∈ R2 ⊂ P2, v3 ∈ P3. Recall that, in the notation of [JL89], Pm denotes the vector space of
polynomials in (z, t) that are homogeneous of degree m in terms of parabolic dilations (for which t has
homogeneity 2), and Rm ⊆ Pm denotes the subspace of polynomials independent of t.

First, write v2 ∈ R2 as v2 = az2 + bzz̄ + cz̄2 ((z, t) being pseudo-hermitian normal coordinates for θ̂′

at p) satisfying

(28) L2v2 = −z2Q11 − z̄2Q1̄1̄ − zz̄Q11̄ − z̄zQ1̄1; L2 = −2|z|2(∂z∂z̄ + ∂z̄∂z)− 12,

where Q11 = 3iAJL11(s) = Q1̄1̄ and Q11̄ = RJL11̄(s) = Q1̄1 are w.r.t. the Jerison-Lee coframe θ1
JL =

θ1
(s)/
√

1 + s2 with hJL11̄(s) = 2 w.r.t. θ̂′ by the formulas for Qjk on page 315 in [JL89] and (18). We
compute

(29) Q̃11 = 3iA11(s) =
12s√
1 + s2

= Q̃1̄1̄, ; Q̃11̄ = R11̄(s) = h
(s)

11̄
R(s) = 2

1 + 2s2

1 + s2
,

with respect to the co-frame θ1
(s). A direct computation shows that

L2v2 = −12az2 − 12cz̄2 − 16b|z|2,

where Q11 = 12a, Q1̄1̄ = 12c, Q11̄ = Q1̄1 = 8b and

(30) a = c = s
√

1 + s2, b =
1

4
(1 + 2s2).

For v3, we observe that all Qjk,l’s for j, k, l being 1 or 1̄ vanish since the space derivatives of the constant
R0 is zero. On the other hand, Q0k and Qk0 for k = 1 or 1̄ also vanish since they involve space derivatives
by formulas on page 315 in [JL89]. Altogether, the right hand side of the equation in Lemma 3.11 in
[JL89] for m = 3 equals zero, so we have

L3v3 = 0.

By Lemma 3.9 in [JL89], we learn that L3 is invertible on P3. It follows that

(31) v3 = 0.

Therefore, from (30) and (31) we get the following result.

Lemma 3.1. In pseudo-hermitian coordinates, the conformal factor expands in homogeneous powers as

(32) v(s) = s
√

1 + s2(z2 + z̄2) +
1

4
(1 + 2s2)|z|2 + v4 + ....
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3.2. Pseudo-hermitian normal coordinates on Rossi spheres. Recall that on Rossi spheres we
have

θ1
(s) = (1 + s2)θ1 − s

√
1 + s2θ1; ω1

1(s) = −i(1 + 2s2)2θ̂,

and that pseudo-hermitian coordinates near (0, 1) are defined by the equation

(33) ∇σ̇σ̇ = 2 c T̂ ′; σ(0) = (0, 1),

where T̂ ′ is the unique vector field such that θ̂′(T̂ ′) = 1 and dθ̂′(T̂ ′, ·) = 0. Recall also that

θ̂′ = i

2∑
i=1

(
zidzi − zidzi

)
; T̂ ′ = −Im

(
z1 ∂

∂z1
+ z2 ∂

∂z2

)
=

1

2
i

2∑
i=1

(
zi

∂

∂zi
− zi ∂

∂zi

)
.

Setting

σ̇ = αZJL1(s) + βZJL
1(s)

+ γT̂ ′,

(33) becomes

2cT̂ ′ = ∇σ̇σ̇ =
(
α̇+ αω1

1(s)(σ̇)
)
ZJL1(s) +

(
β̇ + βω1

1(s)
(σ̇)
)
ZJL

1(s)
+ γ̇T̂ ′

=
(
α̇− iα(1 + 2s2)γ

)
ZJL1(s) +

(
β̇ + iβ(1 + 2s2)γ

)
ZJL

1(s)
+ γ̇T̂ ′.(34)

If τ parametrizes the curve σ, the above formulas imply that

γ = 2cτ ;
α̇

α
= i(1 + 2s2)γ;

β̇

β
= −i(1 + 2s2)γ,

which in turn yields

α(t) = α(0)eic(1+2s2)τ2

; β(t) = β(0)e−ic(1+2s2)τ2

.

Therefore we obtained

σ̇ = α(0)eic(1+2s2)τ2

ZJL1(s) + β(0)e−ic(1+2s2)τ2

ZJL
1(s)

+ 2cτ T̂ .

Recall also that Z1(s) = Z1(0) + s√
1+s2

Z1(0). Hence we need to solve for

ż1(τ) = dz1(σ̇(τ)) = α(0)eic(1+2s2)τ2

dz1(ZJL1(s)) + β(0)e−ic(1+2s2)τ2

dz1(ZJL
1(s)

) + 2cτdz1(T̂ ′)

=
√

1 + s2

(
α(0)eiδτ

2

z2(τ) + β(0)e−iδτ
2 s√

1 + s2
z2(τ)

)
+ cτiz1(τ),

where δ = c(1 + 2s2). Similarly, we obtain

ż2(τ) =
√

1 + s2

(
−α(0)eiδτ

2

z1(τ)− β(0)e−iδτ
2 s√

1 + s2
z1(τ)

)
+ cτiz2(τ).

Once we will solve for this system, the pseudo-hermitian coordinates will be given by the map

(35) (z, z, t) = (α(0)τ, β(0)τ, cτ2) 7−→ (0, 1) +

ˆ t

0

σ̇(η)dη.

Setting for simplicity

A0 = α(0); B0 = β(0)
s√

1 + s2
; C0 = 2c;

F0(τ) :=
√

1 + s2(A0e
iδτ2

+B0e
−iδτ2

) = f0(τ) + ig0(τ),

we have then the system of ODEs

ż1(τ) = F0(τ)z2(τ) + iC0τz1(τ); ż2(τ) = −F0(τ)z1(τ) + iC0τz2(τ),

which in real form becomes
ẋ1(τ) = f0(τ)x2(τ) + g0(τ)y2(τ)− C0τy1(τ);

ẏ1(τ) = g0(τ)x2(τ)− f0(τ)y2(τ) + C0τx1(τ);

ẋ2(τ) = −f0(τ)x1(τ)− g0(τ)y1(τ)− C0τy2(τ);

ẏ2(τ) = f0(τ)y1(τ)− g0(τ)x1(τ) + C0τx2(τ).
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We rewrite this system as

Ẋ(τ) = A(τ)X(τ),

where

A(τ) =


0 −C0τ f0(τ) g0(τ)
C0τ 0 g0(τ) −f0(τ)
−f0(τ) −g0(τ) 0 −C0τ
−g0(τ) f0(τ) C0τ 0

 .

We can Taylor-expand the solution to an arbitrary order in τ . Differentiating the above ODE we obtain

Ẍ(τ) = Ȧ(τ)X(τ) + A(τ)2X(τ);
...
X(τ) = Ä(τ)X(τ) + (A(τ)Ȧ(τ) + 2Ȧ(τ)A(τ))X(τ) + A(τ)3X(τ).

We have that

A(0) =
√

1 + s2


0 0 ReA0 + ReB0 ImA0 + ImB0

0 0 ImA0 + ImB0 −ReA0 − ReB0

−ReA0 − ReB0 −ImA0 − ImB0 0 0
−ImA0 − ImB0 ReA0 + ReB0 0 0



Ȧ(0) =


0 −C0 0 0
C0 0 0 0
0 0 0 −C0

0 0 C0 0

 ;

Ä(0) =


0 0 2d(ImB0 − ImA0) −2d(ReB0 − ReA0)
0 0 −2d(ReB0 − ReA0) 2d(ImA0 − ImB0)

2d(ImA0 − ImB0) 2d(ReB0 − ReA0) 0 0
2d(ReB0 − ReA0) 2d(ImB0 − ImA0) 0 0

 .

where d = δ
√

1 + s2. In conclusion, looking at the first three terms in the Taylor expansion of X(τ) near
(0, 1) we find that

X(τ) =


τ̃(ReA0 + ReB0)
τ̃(ImA0 + ImB0)

1− 1
2 τ̃

2
(
(ImA0 + ImB0)2 + (ReA0 + ReB0)2

)
C0τ̃

2

2
1

2(1+s2)

+ o(τ2); τ̃ =
√

1 + s2 τ.

Recalling (35), we then obtain the following result.

Lemma 3.2. Pseudo-hermitian normal coordinates near (0, 1) on Rossi spheres w.r.t. θ̂′ = 2θ̂ are given
by the following map

(z, z, t) 7−→

 √
(1 + s2)

(
z + s√

1+s2
z
)

1− 1
2 (1 + s2)

∣∣∣z + s√
1+s2

z
∣∣∣2 + i t2

+ o(ρ2).

Inverting in the first component, we have in particular that

(36) z =
1√

1 + s2
(1 + s2)

(
z1 −

s√
1 + s2

z1

)
+ o(ρ2).

3.3. CR normal coordinates. Recalling (27), Lemma 3.1 and using (36), we get

v2 =
1

4

(
3(z2

1 + z2
1)s
√
s2 + 1

(
2s2 + 1

)
− |z1|2

(
12s4 + 12s2 − 1

))
= A1(z2

1 + z2
1) +B1|z1|2,

where

(37) A1 =
1

8
2
(
s2 + 1

)1/2
3s
(
2s2 + 1

)
; B1 = −1

8
2
(
12s4 + 12s2 − 1

)
.

Recall that also

θ̂1
(0) = z2dz1 − z1dz2; θ̂′ = i

2∑
i=1

(
zidzi − zidzi

)
,
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and that
θ̂1

(s) = (1 + s2)θ̂1
(0) − s

√
1 + s2 θ̂1

(0).

Conformally changing the contact form and recalling Appendix 1.1.1 in [CMY17], we have that θ̂1
(s)

transforms as

(38) θ̂1
(s) 7−→ ev(θ̂1

(s) + 2iv1θ̂′),

where (dθ̂′ = 2iθ̂1
(0) ∧ θ̂

1
(0))

v1 = h′11
(s)Ẑ1(s)v =

(1 + s2)

2
Ẑ1(s)v.

By computing explicitly, it turns out that

(v2)1 =

((
s2 + 1

)
2

z2s(2A1z1 +B1z1)√
s2 + 1

+

(
s2 + 1

)
2

z2(2A1z1 +B1z1)

)
,

which can be written as

(39) (v2)1 = A2z1z2 +B2z1z2 + C2z1z2 +D2z1z2,

with
(40)

A2 =
1

2

(
s2 + 1

)
B1, B2 = sA1

√
s2 + 1, C2 = A1

(
s2 + 1

)
, D2 =

1

2
sB1

√
s2 + 1.

Up to higher order terms, we have that

(v2)1 = (A2 +B2)z1 + (C2 +D2)z1.

Taylor expanding (38), up to higher-order terms θ̂1
(s) transforms into

θ̂1
(s) +

[
v2θ̂

1
(s) + 2i(v2)1θ̂′

]
.

We now multiply by a complex unit factor eiψ, and impose a closeness condition on eiψ multiplied by
the latter form, up to higher-order terms, since by Proposition 2.4 it should be approximately a constant
multiple of dz̃CR, up to h.o.t.. We then find

0 = d
{
eiψ
(
θ̂1

(s) +
[
v2θ̂

1
(s) + 2i(v2)1θ̂′

])}
= eiψ

{
idψ ∧ θ̂1

(s) + i dψ ∧
[
v2θ̂

1
(s) + 2i(v2)1θ̂′

]}
(41)

+ eiψ
{
dθ̂1

(s) + dv2 ∧ θ̂1
(s) + v2dθ̂

1
(s) + 2id((v2)1) ∧ θ̂′ + 2i(v2)1dθ̂′

}
+ h.o.t..

We also have
dθ̂1

(s) = 2(1 + s2)dz2 ∧ dz1 − 2s
√

1 + s2dz2 ∧ dz1.

We expand dψ and θ̂1
(s) in homogeneous powers of the (z, t) coordinates (w.r.t. parabolic scaling,

including differentials) as follows

dψ = (dψ)0 + (dψ)1 + (dψ)2 + · · · .
Taylor-expanding the above system up to order one we obtain the relations

(42)

{
(dψ)0 ∧ θ̂1

(s) = 0;

i(dψ)1 ∧ θ̂1
(s) + dθ̂1

(s) + (dv2) ∧ θ̂1
(s) + 2i(v2)1dθ̂′ + 2i(d(v2)1) ∧ θ̂′ = 0.

The first component is easy to solve setting (dψ)0 = µ θ̂1
(s) for some µ ∈ R.

For the second component, recall that we have

ω̂1
1(s) = −i(1 + 2s2)θ̂′; Â1

1(s)
= 2is

√
1 + s2.

It then follows

dθ̂1
(s) = θ̂1

(s) ∧ ω̂
1
1(s) + Â1

1(s)
θ̂′ ∧ θ̂1

(s) = −i(1 + 2s2)θ̂1
(s) ∧ θ̂

′ + 2is
√

1 + s2 θ̂′ ∧ θ̂1
(s).
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Moreover we have

dθ̂′ = 2ih11(s)θ̂
1
(s) ∧ θ̂

1
(s) =

2i

1 + s2
θ̂1

(s) ∧ θ̂
1
(s),

and that (up to θ̂′)

d(v2)1 = Ẑ1(s)(v2)1θ̂1
(s) + Ẑ1(s)(v2)1θ̂1

(s).

By the above expression of (v2)1 and (39), this becomes

d(v2)1 =
[
(s2 + 1/2)B1(|z2|2 − |z1|2) +B2z̄

2
2 − C2z̄

2
1 + s

√
1 + s2A1z

2
2 − s2A1z

2
1

]
θ̂1

(s)

+
[
s
√

1 + s2B1(|z2|2 − |z1|2)−B2z
2
1 + s2A1z̄

2
2 − s

√
1 + s2A1z̄

2
1 + C2z

2
2

]
θ̂1̄

(s) mod θ̂′.

We next write

(dψ)1 = (A3z1 +B3z1)θ̂1
(s) + (A3z1 +B3z1)θ̂1

(s) + C3θ̂
′; A3 = −A3, B3 = −B3.

The θ̂1
(s) ∧ θ̂

1
(s)-component of the second equation in (42) is given by

i
(
A3z1 +B3z1

)
+

6

1 + s2
(v2)1 = 0.

This determines A3 and B3 by

iA3 +
6

1 + s2
(C2 +D2) = 0; iB3 +

6

1 + s2
(A2 +B2) = 0,

giving

(43) A3 = −3

8

2is√
1 + s2

(7 + 6s2); B3 = −3

8
2i(1− 6s2).

Next, the θ̂′ ∧ θ̂1
(s) component gives

iC3 + i(1 + 2s2) + T̂ v2 − 2iẐ1(s)(v2)1 = 0.

Finally, the θ̂′ ∧ θ̂1
s-component of the second equation in (42) is given by

2is
√

1 + s2 − 2iẐ1(s)(v2)1 = 0.

This is true because, as one can check

Ẑ1(s)(v2)1 = (C2 +D2) +
s√

1 + s2
(A2 +B2); Ẑ1(s)(v2)1 = (A2 +B2) +

s√
1 + s2

(C2 +D2).

By a direct computation it follows that

Ẑ1(s)(v2)1 = s
(
s2 + 1

)1/2
; Ẑ1(s)(v2)1 =

1

8

(
2s2 + 1

)
.

These also imply

C3 = −3

4
(1 + 2s2) = −3

2
s2 − 3

4
.

Let us now try to integrate for the phase ψ. There holds

θ̂1
(s) = (1 + s2)dz1 − s

√
1 + s2dz1 + h.o.t.; θ̂′ = i [(z1dz1 − z1dz1) + (dz2 − dz2)] + h.o.t..

In this way, we have that (dψ)1 becomes[
(A3z1 +B3z1)(1 + s2) + (A3z1 +B3z1)s

√
1 + s2 − iC3z1

]
dz1 + conj.− iC3(dz2 − dz2)

=
{[

(1 + s2)A3 + s
√

1 + s2B3

]
z1 +

[
(1 + s2)B3 + s

√
1 + s2A3 − iC3

]
z1

}
dz1 + conj.

− iC3(dz2 − dz2).

Since (1 + s2)B3 + s
√

1 + s2A3 − iC3 = 0, we get

(dψ)1 = A4z1dz1 +B4dz2 + conj.,
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with

(44) A4 = −6is
√

1 + s2; B4 = −iC3 =
3

4
i(1 + 2s2).

Integrating, we find

(ψ)2 =
1

2
A4z

2
1 +B4z2 + conj..

Taylor-expanding, we then get

(45) dz′CR = θ̂1
(s)(1 + v2 + i(ψ)2) + 2i(v2)1θ̂′ + h.o.t..

Writing the homogeneous 0-th and 2nd order terms in (z, t) of the right hand side, we obtain

[1 +A1(z2
1 + z̄2

1) +
1

2
iA4(z2

1 − z̄2
1) +B1|z1|2 + iB4(z2 − z̄2)]

{(1 + s2)z2dz1 − s
√

1 + s2z̄2dz̄1 − (1 + s2)z1dz2 + s
√

1 + s2z̄1dz̄2}
−2[(A2 +B2)z1 + (C2 +D2)z̄1][z1dz̄1 − z̄1dz1 + dz̄2 − dz2].

Further expanding this, gives

(1 + s2)z2dz1 − s
√

1 + s2z̄2dz̄1 − (1 + s2)z1dz2 + s
√

1 + s2z̄1dz̄2

+[A1(z2
1 + z̄2

1) +
1

2
iA4(z2

1 − z̄2
1) +B1|z1|2 + iB4(z2 − z̄2)](46)

[(1 + s2)dz1 − s
√

1 + s2dz̄1]− 2[(A2 +B2)z1 + (C2 +D2)z̄1] [z1dz̄1 − z̄1dz1 + dz̄2 − dz2].

We next set
w = z2 − z̄2,

and rewrite the terms involving z2 as

z2 = 1 +
1

2
w − 1

2
|z1|2; z̄2 = 1− 1

2
w − 1

2
|z1|2;

dz2 =
1

2
dw − 1

2
(z̄1dz1 + z1dz̄1); dz̄2 = −1

2
dw − 1

2
(z̄1dz1 + z1dz̄1).(47)

Here Lemma 3.2 has been used. Write (46) as

C6(z2dz1 − z1dz2) +D6(z̄2dz̄1 − z̄1dz̄2)(48)

+[A1(z2
1 + z̄2

1) +
1

2
iA4(z2

1 − z̄2
1) +B1|z1|2 + iB4w][C8dz1 +D8dz̄1]

−2[(A2 +B2)z1 + (C2 +D2)z̄1][z1dz̄1 − z̄1dz1 − dw],

where

(49) C6 = C8 = 1 + s2; D6 = D8 = −s
√

1 + s2.

We now substitute C6(z2dz1 − z1dz2) + D6(z̄2dz̄1 − z̄1dz̄2) = C6[(1 + 1
2w)dz1 + 1

2z
2
1dz̄1 − 1

2z1dw] +

D6[(1− 1
2w)dz̄1 + 1

2 z̄
2
1dz1 + 1

2 z̄1dw] into (48) and collect terms involving w as follows:

(iB4C8 +
1

2
C6)wdz1 + [2(A2 +B2)− 1

2
C6]z1dw(50)

+(iB4D8 −
1

2
D6)wdz̄1 + [2(C2 +D2) +

1

2
D6]z̄1dw.

A direct computation shows that

(51) iB4C8 +
1

2
C6 = 2(A2 +B2)− 1

2
C6 = (1 + s2)(−3

2
s2 − 1

4
).

Similarly, we have

(52) iB4D8 −
1

2
D6 = 2(C2 +D2) +

1

2
D6 = s

√
1 + s(

3

2
s2 +

5

4
).

In view of (51) and (52) we can write (50) as

(53) d[(1 + s2)(−3

2
s2 − 1

4
)z1w + s

√
1 + s(

3

2
s2 +

5

4
)z̄1w].
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On the other hand, we can write terms only involving z1 and z̄1 in (48) as

(54) (K11z
2
1 +K1̄1̄z̄

2
1 +K11̄|z1|2)dz1 + (N11z

2
1 +N1̄1̄z̄

2
1 +N11̄|z1|2)dz̄1,

where

K11 = (A1 +
1

2
iA4)C8; K1̄1̄ =

1

2
D6 + (A1 −

1

2
iA4)C8 + 2(C2 +D2);

K11̄ = B1C8 + 2(A2 +B2); N11 =
1

2
C6 + (A1 +

1

2
iA4)D8 − 2(A2 +B2);

N1̄1̄ = (A1 −
1

2
iA4)D8; N11̄ = B1D8 − 2(C2 +D2).

Observe that

(55) K1̄1̄ =
1

2
N11̄ = s

√
1 + s2(

3

2
s4 +

3

4
s2 − 1), N11 =

1

2
K11̄ = (1 + s2)(−3

2
s4 − 9

4
s2 +

1

4
),

and

(56) K11 = s(1 + s2)3/2(
3

2
s2 +

15

4
), N1̄1̄ = −s2(1 + s2)(

3

2
s2 − 9

4
).

In view of (55) and (56), we can express (54) as

(57) d{1

3
K11z

3
1 +

1

3
N1̄1̄z̄

3
1 +K1̄1̄z̄

2
1z1 +N11z

2
1 z̄1}.

Altogether, from (53) and (57) we obtain z̃CR (see (45)) as follows:

z̃CR = (1 + s2)z1 − s
√

1 + s2z̄1 + (1 + s2)(−3

2
s2 − 1

4
)z1w + s

√
1 + s2(

3

2
s2 +

5

4
)z̄1w

+s(1 + s2)3/2(
1

2
s2 +

5

4
)z3

1 − s2(1 + s2)(
1

2
s2 − 3

4
)z̄3

1 + s
√

1 + s2(
3

2
s4 +

3

4
s2 − 1)z̄2

1z1(58)

+(1 + s2)(−3

2
s4 − 9

4
s2 +

1

4
)z2

1 z̄1 + h.o.t..

The CR normal coordinate z′CR w.r.t. Jerison-Lee’s frame reads

z′CR =
z̃CR√
1 + s2

.

We want next to determine the t-component of CR normal coordinates. Recall the definition of θ̂ and
(47): after some cancellations one can check that

θ̂′ = i

{
z1dz1 − z1dz1 − dw +

1

2
|z1|2dw −

1

2
w(z1dz1 + z1dz1)

}
.

We now need to consider the conformal change of contact form

θ̌′ = e2v θ̂′ = (1 + 2v2 + · · · )θ̂′.

Recalling that v2 = A1(z2
1 + z2

1) +B1|z1|2 we obtain that

θ̌′ =
(
1 + 2A1(z2

1 + z2
1) + 2B1|z1|2

)
i

{(
z1 −

1

2
wz1

)
dz1 −

(
z1 +

1

2
wz1

)
dz1 −

(
1− 1

2
|z1|2

)
dw

}
+h.o.t..

From straightforward computations one finds

θ̌′ = i

(
z1 + 2A1(z2

1 + z2
1)z1 + 2B1|z1|2z1 −

1

2
wz1

)
dz1

− i

(
z1 + 2A1(z2

1 + z2
1)z1 + 2B1|z1|2z1 +

1

2
wz1

)
dz1

− i

(
1 + 2A1(z2

1 + z2
1) + 2B1|z1|2 −

1

2
|z1|2

)
dw + h.o.t..
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Therefore, from (58) we deduce

dz̃CR = (1 + s2)dz1 − s
√

1 + s2dz1 + (1 + s2)

(
−3

2
s2 − 1

4

)
(wdz1 + z1dw)

+ s
√

1 + s2

(
3

2
s2 +

5

4

)
(wdz1 + z1dw)

+ K11z
2
1dz1 +N11z

2
1dz1 +K11(2z1z1dz1 + z2

1dz1) +N11(2z1z1dz1 + z2
1dz1) + h.o.t..

One can then expand θ̌′ + iz̄′CRdz
′
CR − iz′CRdz̄′CR to find that

(59) t′CR = −iw(1 + 1/2|z1|2) + is|z1|2(z2
1 − z̄2

1) + is2(z̄4
1 − z4

1) + h.o.t..

We can summarize the above discussion into the following result.

Proposition 3.3. The CR normal coordinates on Rossi spheres w.r.t. θ̌′ = e2v θ̂′ are given by the
formulas z′CR = z̃CR√

1+s2
, with z̃CR as in (58) and t′CR as in (59).

We next collect some useful formulas derived from the latter proposition. Taylor-expanding z′CR one finds

|z′CR|2 = |z1|2
(

1 +
1

2
|z1|2

)
− s

(
z2

1 + z̄2
1 + w(z2

1 − z̄2
1)
)

+
1

2
s2
(
4|z1|2 − 4|z1|4 − z4

1 − z̄4
1

)
+ h.o.t.,

while taking its square we obtain

|z′CR|4 = |z1|4
(
1 + |z1|2

)
− s|z1|2

(
(z2

1 + z̄2
1)(2 + |z1|2) + 2w(z2

1 − z̄2
1)
)

+ s2
(
(z4

1 + z̄4
1)(1− |z1|2) + 2|z1|4(3− |z1|2) + 2w(z4

1 − z̄4
1)
)

+ h.o.t..(60)

The square of t′CR is given by

(t′CR)2 = −w2(1 + |z1|2) + 2sw|z1|2(z2
1 − z̄2

1) + 2s2w(z̄4
1 − z4

1) + h.o.t..

Summing the latter formula and (60) we obtain that, up to higher-order terms

(ρ′CR)4 = (1 + |z1|2)(|z1|4 − w2)− s|z1|2(z2
1 + z̄2

1)(2 + |z1|2)

+ s2
[
(z4

1 + z̄4
1)(1− |z1|2) + 2|z1|4(3− |z1|2)

]
.

It is also useful to expand the quantity ev2(ρ′CR)−2, related to the conformal covariance for the Green’s
function, which up to higher-order terms is given by

ev2(ρ′CR)−2 =
|z1|2 + 4

4
√

(|z1|2 + 1) (|z1|4 − w2)
+ s

(
z2

1 + z̄2
1

) (
12|z1|4 + 8|z1|2 − 6w2

)
8 ((|z1|2 + 1) (|z1|4 − w2))

3/2
(61)

+ s2

[
(z4

1 + z̄4
1)(20|z1|6 + 8|z1|4 + 4w2 − 5|z1|2w2)− 4|z1|10 + 58|z1|6w2 + 24|z1|4w2 − 24|z1|2w4

8 ((|z1|2 + 1) (|z1|4 − w2))
5/2

]
.

Note that w.r.t. the contact from θ̂ = 1
2 θ̂
′ the CR normal coordinates and the Heisenberg distance would

be (zCR, tCR) =
(
z′CR√

2
,
t′CR

2

)
and ρCR =

ρ′CR√
2

respectively.

4. Proof of Theorem 1.1

In this section we determine the Green’s function for the conformal sub-Laplacian on Rossi spheres,
up to an error of order s3. This allows to estimate the mass of Rossi spheres, which turns out to be
negative for s 6= 0 small. This is done by deriving a formal expansion in s of the Green’s function Gs
globally away from the pole with respect to the standard coordinates (z1, z2) of S3 and comparing this
with the expression for Gs in CR-normal coordinates.
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4.1. Formal expansion of the Green’s function in powers of s. Let Ls denote the conformal sub-
Laplacian for the J(s)-structure on S3. For s = 0, the fundamental solution of L0G0 = 64πδp with pole
at p = (0, 1) is given by

(62) G0 = 2((1− z2)(1− z2))−
1
2 .

We next solve formally, up to an error O(s3), LsGs = 0 away from p in power series of s in the form

(63) Gs = G0 + sG1 +
1

2
s2(G2 + αG0 − G3) + o(s2),

where G1,G2 are suitable explicit singular functions near p, α ∈ R and G3 is a Hölder continuous function
near p for which we would need to determine only G3(p). We chose to expand the second-order term
including separately αG0: this will be useful later in order to fix the distributional component of the
solution at the pole p. In principle this should be done also for the first-order term, but by our choice of
G1 this further correction will not be necessary.

For the above expansion, the following formulas will be used

Z1Z1z
a
1 (1− z2)b(1− z̄2)c = za−2

1 (1− z2)b−2(1− z̄2)c
(
b(|z2|2 − 1)(2az̄2(z2 − 1)− |z2|2 + 1)(64)

+ (a− 1)az̄2
2(z2 − 1)2 + b2(|z2|2 − 1)2

)
;

(65) Z1̄Z1̄z
a
1 (1− z2)b(1− z̄2)c = (c− 1)cza+2

1 (1− z2)b(1− z̄2)c−2;

Z1̄Z1z
a
1 (1− z2)b(1− z̄2)c(66)

= za1 (1− z2)b−1
(
−(1− z̄2)c−1

)
(a(z2 − 1)((c+ 1)z̄2 − 1) + b(c(|z2|2 − 1) + (z̄2 − 1)z2));

(67) Z1Z1̄z
a
1 (1− z2)b(1− z̄2)c = −cza1 (1− z2)b−1(1− z̄2)c−1((a+ 1)z̄2(z2 − 1) + b(|z2|2 − 1)),

with similar ones for z̄a1 (1− z2)b(1− z̄2)c, passing to conjugates.
To find the first-order correction G1, we differentiate the relation LsGs = 0 with respect to s, evaluating

it for s = 0. Using (21) and (22), this yields

L0G1 = −L̇G0 = 8Z1Z1G0 + 8Z1Z1G0 on S3 \ {p},

where L̇ = d
ds |s=0Ls. The right-hand side is given by

12
(
(z̄2 − 1)2z̄2

1 + z2
1(z2 − 1)2

)
((z̄2 − 1)(z2 − 1))5/2

.

By formulas (64)-(67), the first-order correction G1 to Gs can be chosen as

(68) G1 =
1

2
(z2

1 + z2
1)

[
1

1− z2
+

1

1− z2
+ 2

]
1

((1− z2)(1− z2))
1
2

.

We pass next to the second order expansion for Gs: we will find it up to a smooth function that can
be determined at p, which is enough for our purposes. Differentiating the relation LsGs = 0 twice with
respect to s and evaluating at s = 0 we obtain (with analogous notation to above for the s-derivatives)

L0G̈ = −2L̇Ġ− L̈G0.

Recalling from (21), (22) that L̈ = 4L0, we have

L0(G̈+ 4G0) = −2L̇Ġ = 16Z1Z1G1 + 16Z1Z1G1.

It is possible to show by direct computation, again from (64)-(67), that 16Z1Z1G1 + 16Z1Z1G1 equals

−1

((1− z2)(1− z2))
7
2

[
z4

1

(
30(z2 − 1)3 + 6(z2 − 1)2(z2 − 1)− 12(z2 − 1)3(z2 − 1)

)
+ z4

1

(
30(z2 − 1)3 + 6(z2 − 1)2(z2 − 1)− 12(z2 − 1)3(z2 − 1)

)
+ 30(z2 − 1)5 + 30(z2 − 1)5 + 18(z2 − 1)4(z2 − 1) + 18(z2 − 1)4(z2 − 1)(69)

+ 6(z2 − 1)5(z2 − 1)2 + 6(z2 − 1)5(z2 − 1)2 − 18(z2 − 1)4(z2 − 1)3 − 18(z2 − 1)3(z2 − 1)4

− 12(z2 − 1)3(z2 − 1)5 − 12(z2 − 1)3(z2 − 1)5
]
,
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where we grouped the terms by homogeneity in z2 − 1 and z̄2 − 1.
We can invert L0 explicitly for the terms with factors z4

1 and z4
1. The solution is given by

G2,1 :=
(z4

1 + z4
1) g2,1

((1− z2)(1− z2))
5
2

,

where

g2,1 :=
3

8
(z2 − 1)2 +

3

8
(z2 − 1)2 +

1

4
(z2 − 1)(z2 − 1) +

3

2
(z2 − 1)2(z2 − 1)2

− 3

4
(z2 − 1)2(z2 − 1)− 3

4
(z2 − 1)(z2 − 1)2.

For the other terms, we can only find an explicit approximate solution. We set

g2,2 = (z2 − 1)4 + (z̄2 − 1)4 − 4

3
(z2 − 1)4(z̄2 − 1)− 4

3
(z̄2 − 1)4(z2 − 1)

+ 4(z̄2 − 1)3(z2 − 1)2 + 4(z2 − 1)3(z̄2 − 1)2

+
11

3
(z2 − 1)4(z̄2 − 1)2 +

11

3
(z̄2 − 1)4(z2 − 1)2 + 6(z2 − 1)3(z̄2 − 1)3,

and

G2,2 :=
3

4

g2,2

((1− z2)(1− z2))
5
2

.

Defining

(70) G2 = G2,1 + G2,2,

still by (64)-(67) one finds that

(71) L0 G2 − 16Z1Z1G1 − 16Z1Z1G1 = −12
(z2 − 1)2 + (z̄2 − 1)2 − 3(z2 − 1)(z̄2 − 1)

((1− z2)(1− z2))
1
2

=: Ξ(z2, z̄2),

with the right-hand side now bounded on S3.
It will be now sufficient to add a more regular correction (which is Hölder continuous by standard

regularity theory) to solve the equation for G2 pointwise, away from p. From (71), setting G3 = L−1
0 Ξ(z, w)

we then find that

L0(G2 − G3)− 16Z1Z1G1 − 16Z1Z1G1 = 0 on S3 \ {p},
which corresponds to (63) up to the term s2 αG0, which will be determined later. To obtain G3(p), we
use the Green’s representation formula, convoluting Ξ(z2, z̄2) with G0:

G3(p) =
1

64π2

ˆ
S3

−24
(z2 − 1)2 + (z̄2 − 1)2 − 3(z2 − 1)(z̄2 − 1)

((1− z2)(1− z2))
θ̂ ∧ dθ̂.

The Taylor expansion of the integrand in z2, z2 is(
24− 24z̄5

2 − 24z̄4
2 − 24z̄3

2 − 24z̄2
2

)
+
(
24z̄5

2 + 24z̄4
2 + 24z̄3

2 + 24z̄2
2 + 48z̄2

)
z2

+(24z̄2 − 24)z2
2 + (24z̄2 − 24)z3

2 + (24z̄2 − 24)z4
2 + (24z̄2 − 24)z5

2 + · · · .
Integrated, this gives ˆ

S3

(24 + 48|z2|2) θ̂ ∧ dθ̂ = 48 2π2 + 96π2 = 192π2,

which implies that

(72) G3(p) = 3.

In conclusion, we found that
G̈ = G2 − G3 + αG0,

i.e. (63), where α is a real number to be determined later. We proved therefore the following result.

Proposition 4.1. For every compact set K in S3 \ {p}, p = (0, 1), there exists a constant CK > 0 such
that the function Gs := G0 + sG1 + 1

2s
2(G2 + αG0 − G3) in (63) satisfies

|LsGs| ≤ CKs3 on K.
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4.2. Rigorous estimates. We prove next that the function Gs in Proposition 4.1 well matches with the
expression of the Green’s function of Ls in CR normal coordinates. Recall from the end of Section 3 that
ρ2

CR = 1
2 (ρ′CR)2: then from (61) we obtain that

4ev2ρ−2
CR =

|z1|2 + 4√
(|z1|2 + 1) (|z1|4 − w2)

+ s

(
z2

1 + z̄2
1

) (
12|z1|4 + 8|z1|2 − 6w2

)
2 ((|z1|2 + 1) (|z1|4 − w2))

3/2
(73)

+ s2

[
(z4

1 + z̄4
1)(20|z1|6 + 8|z1|4 + 4w2 − 5|z1|2w2)− 4|z1|10 + 58|z1|6w2 + 24|z1|4w2 − 24|z1|2w4

2 ((|z1|2 + 1) (|z1|4 − w2))
5/2

]
+ O(s3ρ−2),

where w = z2− z̄2. Given the covariance property of the Green’s function (G(θ̃) = euG(θ) if θ̃ = e2uθ), we

aim to compare this expression to the function Gs in Proposition 4.1 on a suitable small annulus centered
around p. We do it term by term for the Taylor series in s, and for this purpose the following formulas
will be useful. Since z2 − z̄2 is purely imaginary, we can write

|z1|4 + |z2 − z̄2|2 = |z1|4 − (z2 − z̄2)2 =
(
|z1|2 + (z2 − z̄2)

) (
|z1|2 − (z2 − z̄2)

)
.

As |z1|2 + |z2|2 = 1, we get

(74) |z1|4 − w2 = |z1|4 + |z2 − z̄2|2 = (1 + z2)(1 + z̄2)(1− z2)(1− z̄2).

Setting v = z2 + z̄2 − 2 (which is real), we have that z2 = 1 + v
2 + w

2 , which implies

|z2|2 = 1 + v +
v2

4
− w2

4
+ o(ρ4).

Squaring this relation, we obtain

(75) |z1|4 = v2 +
v3

2
− vw2

2
+ o(ρ6).

We also have that |z2|2 = 1 + v up to an error O(ρ4), so v2 = |z1|4 + o(ρ4). These imply that

(76) |z2|2 + 1− (z2 + z̄2) =
1

4
|z1|4 −

1

4
w2 + o(ρ4) =

1

4
|z1|4 +

1

4
|w|2 + o(ρ4).

Furthermore, there holds

(77) 1 + z2 + z̄2 + |z2|2 ' 3 + v + |z2|2 ' 2 + 2|z2|2 = 4− 2|z1|2 + o(ρ2).

Recalling our notation from Section 2, we have then the following result.

Lemma 4.2. For α = − 3
4 , the following estimate holds

(78) 4ev2ρ−2
CR =

(
G0 + sG1 +

1

2
s2(G2 + αG0)

)
+ o(s2)O′′(ρ−2) + oρ(1),

where oρ(1)→ 0 as ρ→ 0.

Proof. We analyse separately different orders in s for the left-hand side and the first term in the
right-hand side of (78).

Zero-th order in s. Recalling that G0 = 2 ((1− z2)(1− z̄2))
− 1

2 , we need to compare the two quantities

(79)
|z1|2 + 4√

(|z1|2 + 1) (|z1|4 − w2)
and

2

((1− z2)(1− z̄2))
1
2

.

Taylor-expanding the terms involving |z1|2 in the left-hand side we are left with comparing

4
(
1− 1

4 |z1|2
)√

(|z1|4 − w2)
and

2

((1− z2)(1− z̄2))
1
2

.
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Using (74) and multiplying by ((1− z2)(1− z̄2))
1
2 , we are left with the comparison of

4
(
1− 1

4 |z1|2
)

((1 + z2)(1 + z̄2))
1
2

and 2.

From (77) we are left with comparing

4
(
1− 1

4 |z1|2
)

(4− 2|z1|2)
1
2

and 2,

which holds true up to an error of order O(ρ4). Therefore the two quantities in (79) coincide up to an
error of order O(ρ2).

First order in s. Recalling (68), we have that

G1 =
1

4
(z2

1 + z̄2
1)

[
4− 3z2 − 3z̄2 + 2|z2|2

(1− z2)(1− z̄2)

]
G0.

Considering the first-order term in s of (73), we need to compare the two quantities(
z2

1 + z̄2
1

) (
12|z1|4 + 8|z1|2 − 6w2

)
2 ((|z1|2 + 1) (|z1|4 − w2))

3/2
and

1

4
(z2

1 + z̄2
1)

[
4− 3z2 − 3z̄2 + 2|z2|2

(1− z2)(1− z̄2)

]
G0.

Using the expression of G0, dividing by
(
z2

1 + z̄2
1

)
and multiplying by 2 we need to compare(

12|z1|4 + 8|z1|2 − 6w2
)

((|z1|2 + 1) (|z1|4 − w2))
3/2

and

[
4− 3z2 − 3z̄2 + 2|z2|2

((1− z2)(1− z̄2))
3
2

]
.

Using (74), this is equivalent to the comparison of(
12|z1|4 + 8|z1|2 − 6w2

)
((|z1|2 + 1)(1 + z2)(1 + z̄2))

3/2
and 4− 3z2 − 3z̄2 + 2|z2|2.

Using (77) and Taylor-expanding the left-hand side we arrive to comparing

(1− 3/4|z1|2)
(
12|z1|4 + 8|z1|2 − 6w2

)
8

and 4− 3z2 − 3z̄2 + 2|z2|2.

Using instead (76) we transform the right-hand side, arriving to the comparison of

(1− 3/4|z1|2)
(
12|z1|4 + 8|z1|2 − 6w2

)
8

and |z1|2 +
3

4
|z1|4 −

3

4
w2,

which is again true up to an error of order O(ρ6). Therefore, we get matching of the first-order terms in
s in both sides of (78) up to an error O(ρ2).

Second order in s. Recalling again (73) and the fact that G2 comes with a factor 1
2 , let us first compare

(z4
1 + z̄4

1)(20|z1|6 + 8|z1|4 + 4w2 − 5|z1|2w2)

2 ((|z1|2 + 1) (|z1|4 − w2))
5/2

and
1

2
G2,1 :=

1

2

(z4
1 + z4

1) g2,1

((1− z2)(1− z2))
5
2

,

where, up to order O(ρ8)

g2,1 :=
3

8
(z2 − 1)2 +

3

8
(z2 − 1)2 +

1

4
(z2 − 1)(z2 − 1)− 3

4
(z2 − 1)2(z2 − 1)− 3

4
(z2 − 1)(z2 − 1)2.

Factoring out (z4
1 + z̄4

1) and using (74), we need to compare

(20|z1|6 + 8|z1|4 + 4w2 − 5|z1|2w2)

2 ((|z1|2 + 1)(1 + z2)(1 + z2))
5/2

and
1

2
g2,1.

Using then (77) and Taylor-expanding the denominator in the first term in |z1|2, we arrive to comparing(
1− 5

4
|z1|2

)
(20|z1|6 + 8|z1|4 + 4w2 − 5|z1|2w2)

64
and

1

2
g2,1.
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Expanding g2,1 and using (75) we come to the comparison of(
1− 5

4
|z1|2

)
(20|z1|6 + 8|z1|4 + 4w2 − 5|z1|2w2)

64
and

1

2

1

16

(
−3v3 + 4v2 + 3vw2 + 2w2

)
,

which is correct, up to an error of order O(ρ12).
We need next to compare[

−4|z1|10 + 58|z1|6w2 + 24|z1|4w2 − 24|z1|2w4

2 ((|z1|2 + 1) (|z1|4 − w2))
5/2

]
and

1

2

3

4

g2,2

((1− z2)(1− z2))
5
2

,

where, up to higher order terms

g2,2 = (z2 − 1)4 + (z̄2 − 1)4 − 4

3
(z2 − 1)4(z̄2 − 1)− 4

3
(z̄2 − 1)4(z2 − 1)

+ 4(z̄2 − 1)3(z2 − 1)2 + 4(z2 − 1)3(z̄2 − 1)2.

Using again (74), we then need to compare[
−4|z1|10 + 58|z1|6w2 + 24|z1|4w2 − 24|z1|2w4

2 ((|z1|2 + 1)(1 + z2)(1 + z2))
5/2

]
and

3

8
g2,2.

As before, we are then comparing(
1− 5

4
|z1|2

)
−4|z1|10 + 58|z1|6w2 + 24|z1|4w2 − 24|z1|2w4

64
and

3

8
g2,2.

In fact, we can add to G2 any multiple of G0. In the latter formula, we can then replace g2,2 with g̃2,2,
where

g̃2,2 = g2,2 − 2(z2 − 1)2(z̄2 − 1)2.

It turns out that
3

8
g̃2,2 =

1

16
v
(
v4 − 4v2w2 + 6vw2 + 3w4

)
.

Using (75) and the previous formula to expand |z1|2 as |z1|2 = −v− 1
4v

2 + 1
4w

2, the left-hand side in the
above formula becomes

v5/16 + (3v2w2)/8− (v3w2)/4 + (3vw4)/16 +O(ρ12),

so it coincides with the right-hand side, i.e. with 3
8 g̃2,2 up to error terms of order O(ρ12). Therefore, also

the second-order terms in s of both sides of (78) coincide up to an error of order O(ρ−2).
It is standard to check that the above matching also holds up to computing first- and second-order

derivatives, which then implies the conclusion.

Proof of Theorem 1.1. Consider a small annulus of the form

Ar := {r ≤ ρ ≤ 2r} ,
and a smooth cut-off function χr satisfying

χr = 1 on {ρ ≤ r};
χr = 0 on {ρ ≥ 2r};
|∇bχr| ≤ C

r ; |∇2
bχr|+ |∇Tχr| ≤ C

r2 .

If v is the conformal factor as in Proposition 2.3 then, with obvious notation, the Green’s function
conformally transforms as Gθ = e−vGθ̂. Consider then the function

G̃s = χr

(
2ρ−2

CR −
1

2
G3(p)s2

)
+ (1− χr)e−vGθ̂.

From the conformal covariance of Ls, Proposition 4.1 and Lemma 4.2 it follows that, applying the
conformal sub-Laplacian with respect to the contact form θ:

|LvsG̃s| ≤ Cr o(s2) pointwise on S3.
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It then follows from standard regularity theory that the Green’s function Gθ of the conformal sub-
Laplacian satisfies ‖Gθ − G̃s‖L∞(S3) = o(s2). Sending s to zero and recalling that G3(p) = 3, we deduce

(80) A = −3

2
s2 + o(s2).

Therefore, given that m = 12πA (see (72) and (11)), we obtain the conclusion.

5. Proof of Theorem 1.3

In this section we prove Theorem 1.3 by an implicit function argument and some asymptotic expansions,
which crucially use also Theorem 1.1.

We start by analysing the relation of the CR Sobolev quotient on Rossi spheres with the minimizers
on standard spheres found in [JL88]. Recall that in [JL87] it was proved that for any three-dimensional
CR manifold one has Y(M,J) ≤ Y(S3, JS3), which in particular implies

(81) Y(S3, J(s)) ≤ Y(S3, JS3 = J(0)).

In [JL88] it was proven that Y(S3, JS3) is precisely attained by the following functions, up to composing
(z1, z2) with elements of SU(2)

(82) ϕλ = λ

( (
|z1|2 + |z2 + 1|2

)2 − (z2 − z2)2

(λ2|z1|2 + |z2 + 1|2)
2 − λ4(z2 − z2)2

) 1
2

; λ > 0.

Recalling that θ̂ ∧ dθ̂ is a volume form double w.r.t. the Euclidean one, the ϕλ’s satisfy the following
normalization condition

(83)

ˆ
S3

ϕ4
λ θ̂ ∧ dθ̂ = 4π2 for all λ > 0.

On the standard S3, see [FS74], the Folland-Stein space S1,2(S3) is defined as the completion of the
(complex-valued) C∞ functions on S3 with respect to the norm

‖u‖S1,2 :=

(ˆ
S3

(u,1u,1 + u,1u,1) θ̂ ∧ dθ̂
) 1

2

+

(ˆ
S3

|u|2θ̂ ∧ dθ̂
) 1

2

.

Notice that, for |s| small, this defines an equivalent norm on Rossi spheres too: from now on, this will be
assumed understood.

We show next that, if a minimizer for the CR-Sobolev quotient on Rossi spheres exists for |s| small, it
must be close in S1,2(S3) to some function ϕλ as in (82). We have indeed the following result.

Lemma 5.1. Fix s ∈ R, |s| small. Assume us > 0 attains inf Q(s) = Y(S3, J(s)). Then, if us is

normalized so that
´
S3 u

4
s θ̂ ∧ dθ̂ = 4π2, up to a homogeneous action on S3 there exists λ > 0 such that

‖us − ϕλ‖S1,2(S3) = os(1),

where os(1)→ 0 as s→ 0.

Proof. It is sufficient to notice that, if Z1(s) is as in (13), then for all smooth u’s one hasˆ
S3

(Z1(s)uZ1(s)u+ Z1(s)uZ1(s)u) θ̂ ∧ dθ̂ = (1 + os(1))

ˆ
S3

(Z1uZ1u+ Z1uZ1u) θ̂ ∧ dθ̂.

Since we are assuming us to be normalized in L4(S3) as in the statement, its S1,2(S3)-norm is uniformly
bounded from above, and thereforeˆ

S3

(Z1us Z1us + Z1us Z1us) θ̂ ∧ dθ̂ =

ˆ
S3

(Z1(s)us Z1(s)us + Z1(s)us Z1(s)us) θ̂ ∧ dθ̂ + os(1).

This relation implies that us is nearly a minimizer also for the Sobolev-type quotient in (85) on the
standard CR-sphere (S3, JS3 = J(0)). By Ekeland’s Variational Principle (see e.g. Chapter I in [Str08]),

us is close in S1,2(S3) to a minimizing Palais-Smale sequence for such quotient. Palais-Smale sequences
for problems involving critical Sobolev embeddings can be characterized by a well-known decomposition
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due to Struwe. For the subelliptic case, this feature is analyzed e.g. in Theorem 2.1 of [Cit95] for
domains of the Heisenberg group and functions vanishing at the boundary (the same arguments apply in
the present case using dilations in normal coordinates as those introduced in [JL87]), or for CR manifolds
in Proposition 8 of the later paper [GY01]. The minimality condition implies that us can only develop a
single bubble profile, which is precisely our conclusion.

5.1. Finite-dimensional reduction. Let ϕλ be as in (82), and define the following family of functions

(84) M = {ϕλ(U(·)) : | λ > 0, U ∈ SU(2)} .

Even though SU(2) is a three-dimensional Lie group, since ϕλ is invariant by a complex rotation in z1,
the result of these compositions is also a set of three dimensions. We previously saw that the functions
in M are global minimizers of the CR-Sobolev quotient Q(s) on the standard S3 when s = 0, where

(85) Q(s)(u) =

´
S3 uLsu θ̂ ∧ dθ̂(´
S3 u4θ̂ ∧ dθ̂

) 1
2

.

In [MU02], Lemma 5, it was proved that the linearization of the Yamabe equation (with s = 0) at M is
minimally degenerate, in the sense that its kernel coincides with the tangent space to M.

As a consequence, one has that the CR-Sobolev quotient on the standard sphere is non-degenerate
in the sense of Bott on M. Thanks to this fact and to Lemma 5.1, for s small we can characterize
with particular precision all the solutions of the CR-Yamabe equation lying in a fixed neighborhood (in
S1,2) of the manifold M, and in particular the (hypothetical) minimal ones. We first show that the
CR-Yamabe equation is always solvable, in a fixed neighborhood of M, up to a Lagrange multiplier: see
[AM06] for a general reference on this method.

Proposition 5.2. For ϕλ as in (82) there exists a unique wλ ∈ S1,2(S3), depending smoothly on λ, such
that ‖wλ‖S1,2(S3) ≤ C s and which satisfies

(86)

ˆ
S3

ϕ2
λ

∂ϕλ
∂λ

wλ θ̂ ∧ dθ̂ = 0; Ls(ϕλ + wλ)− 2(ϕλ + wλ)3 = ` ϕ2
λ

∂ϕλ
∂λ

for some ` ∈ R. Moreover, there exists δ > 0 with the following property: if there exists a critical point of
Q(s) in a δ-neighborhood of M (in S1,2 norm), then it must be of the form ϕλ+wλ up to a homogeneous

action on S3 and up to a scalar multiple, with wλ as above.

Proof. For λ > 1, ϕλ has a global maximum at (z1, z2) = (0, 1). Locally near these functions, all
other extremals can be obtained composing on the right with elements of SU(2). When also λ varies,
the extremals can be described locally near the ϕλ’s by

ΣΛ,γ =
{
ϕa,λ(z1, z2) := ϕλ(Ua(z1, z2)) : a ∈ (−γ, γ)3, λ ∈ [1/2, 2Λ]

}
⊆M,

where

(87) Ua(z1, z2) =

(
exp

(
−i a3 a1 + i a2

−a1 + i a2 i a3

))(
z1

z2

)
, a = (a1, a2, a3).

Consider next the CR-Yamabe equation on the standard sphere

L0u = 2u3 on S3.

It was proved in [MU02] (see Lemma 5 there) that solutions of the linearized equation at ϕλ

L0v = 6ϕ2
λv on S3

are of the form

v = l0
∂ϕa,λ

∂λ
+

3∑
i=1

li
∂ϕa,λ

∂ai
,

where li ∈ R and where the latter derivatives are evaluated at a = 0.
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Define W̃ = W̃λ to be the space of functions w̃ satisfying the four constraints

(88)

ˆ
S3

ϕ2
a,λ

∂ϕa,λ

∂λ
w̃ θ̂ ∧ dθ̂ = 0;

ˆ
S3

ϕ2
a,λ

∂ϕa,λ

∂ai
w̃ θ̂ ∧ dθ̂ = 0; i = 1, 2, 3,

where, again, the derivatives are evaluated at a = 0.
It follows from the classification result in [MU02] and Fredholm’s theory that the operator

A
W̃

: w̃ 7→ P
W̃

[
Lsw̃ − 6ϕ2

λw̃
]
,

where P
W̃

denotes the projection onto W̃ , is invertible from W̃ in itself, endowed with the S1,2(S3)-norm.

Setting Sa,λ(w̃) := Ls(ϕλ+w̃)−2(ϕa,λ+w̃)3, equation (86) has a relation to the condition P
W̃
Sa,λ(w̃) =

0, are we will explain below. Since A
W̃

is invertible (with the norm of the inverse uniformly bounded),
we have that

P
W̃
Sa,λ(w̃) = 0 ⇐⇒ w̃ = Ta,λ(w̃),

where

Ta,λ(w̃) = −(A
W̃

)−1
{
Sa,λ(0)− 2

[
(ϕa,λ + w̃)3 − ϕ3

a,λ − 3ϕ2
a,λw̃

]}
.

From the smoothness in s of the J(s) structures it follows that ‖Ta,λ(0)‖ = O(s), where here and below
‖ · ‖ = ‖ · ‖S1,2(S3). Moreover, it is quite standard that for s and δ small

‖Ta,λ(w̃1)− Ta,λ(w̃2)‖ = o(1)‖w̃1 − w̃2‖, ‖w̃1‖, ‖w̃2‖ ≤ δ.

It follows that for s small Ta,λ is a contraction in a normed ball of radius C s for C > 0 large and fixed,
so in such a ball there exists a unique fixed point wλ of Ta,λ.

In this way we found a (unique) solution to the problem

Ls(ϕλ + wλ)− 2(ϕλ + wλ)3 = ` ϕ2
λ

∂ϕλ
∂λ

+

3∑
i=1

`iϕ
2
λ

∂ϕa,λ

∂ai
|a=0

for some Lagrange multipliers `, `i. However the last three vanish by Palais’ criticality principle. In fact,
let us recall that, being (S3, J(s)) a homogeneous space, Q(s) is invariant under the maps Ua as in (87).
Therefore, with obvious notation, we have with the same Lagrange multipliers that

Ls(ϕλ,a + wλ,a)− 2(ϕλ,a + wλ,a)3 = ` ϕ2
λ,a

∂ϕλ,a
∂λ

+

3∑
i=1

`iϕ
2
λ,a

∂ϕa,λ

∂ai
,

for a in a neighborhood of zero. Differentiating with respect to ai and then scalar-multiplying by
∂ϕa,λ

∂aj

one obtains an invertible system for (`i)i, yielding that `i = 0 for i = 1, 2, 3, as desired.
Let now u be a critical point of Q(s) in a δ-neighborhood ofM for s small. Then it satisfies Lsu = µu3

for some Lagrange multiplier µ. Since u is close to the family of ϕλ’s, satisfying L0ϕλ = 2ϕ3
λ, the multiplier

µ must be δ-close to 2.
Defining ũ = µ−

1
2u, this is still close of order δ to M, and it satisfies Lsũ = 2ũ3, i.e. the second

equation in (86) with ` = 0. By uniqueness of the fixed point, we must then have ũ = ϕλ + wλ, up to a
homogeneous action on S3. This concludes the proof.

Remark 5.3. In Proposition 5.2 it is possible to replace the ϕλ’s with other approximate solutions to
the CR-Yamabe equation on Rossi spheres. With a better approximate solution, for example, one would
then require a correction as in (86) of smaller norm, yielding a more precise expansion for the quotient
Q(s). This observation will be crucially used in the next two sections.
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5.2. Expansion of the CR Sobolev quotient. Recalling the latter statement in Proposition 5.2, we
analyze the CR Sobolev quotient on functions of the form ϕλ+wλ, showing that it is strictly higher than
the standard spherical one. We first show that the latter expansion is always even in s.

Lemma 5.4. Let s > 0 be small, and let w
(s)
λ and w

(−s)
λ denote the counterparts of wλ in Proposition

5.2 for s and −s respectively. Then one has that

Q(s)(ϕλ + w
(s)
λ ) = Q(−s)(ϕλ + w

(−s)
λ ).

Proof. Let ι : S3 → S3 be the diffeomorphism given in (23). We notice that ϕλ is invariant under ι
and that, due to (24), (25) and (26), for any u ∈ S1,2(S3) one has

Q(s)(ι
∗u) = Q(−s)(u).

From this covariance property and the uniqueness in Proposition 5.2 it follows that w
(s)
λ = ι∗w

(−s)
λ , and

therefore we get

Q(s)(ϕλ + w
(s)
λ ) = Q(s)(ι

∗(ϕλ + w
(−s)
λ )) = Q(−s)(ϕλ + w

(−s)
λ ),

which is the desired conclusion.

We analyse next two situations. The first is when the parameter λ in the previous lemma tends to
infinity or to zero, and the second when log λ remains bounded. In the latter case we will show that the
CR Sobolev quotient would be strictly higher than Y(S3, JS3), which would give a contradiction to (81).
On the other hand, we can also rule out the former case using the estimates on the Green’s function in
Section 4, and in particular the negativity of the mass of (S3, J(s)) for s small and non zero. The proofs
of the next two results, beginning from the latter case, are given in the next two appendices.

Proposition 5.5. Let Λ > 1 be a fixed number. Then there exist CΛ > 0 such that, for λ ∈ [1/Λ,Λ] and
for s small one has Q(s)(ϕλ + wλ) = 4π + s2Aλ + Bλ,s, where

Aλ =
16πλ2(3 + 12λ2 + 2λ4 + 12λ6 + 3λ8)

(1 + λ2)6
,

and where |Bλ,s| ≤ CΛs
3.

Notice that the minimizers in [JL88] stay unchanged when we compose with the antipodal map on
S3 and replace λ by 1

λ : this symmetry implies that Aλ = A 1
λ

. Therefore, in the next proposition it is

sufficient to consider large values of λ.

Proposition 5.6. The following expansion holds true, uniformly in s (small)

Q(s)(ϕλ + wλ) = 4π − 8

3

ms

λ2
+O(

s2

λ3
) = 4π + 48π

s2

λ2
(1 + os(1)) +O(

s2

λ3
),

for λ large.

Remark 5.7. The above function λ 7→ Aλ is positive and strictly decreasing for λ > 1, see the picture
below. Notice that the matching of the first-order correction terms for λ large in the above two propositions:
the expansions are indeed obtained with two completely different approaches. However, while the mass
does not appear in the expansions of Section 6, it is somehow hidden in the fact that there we are using
standard coordinates on S3, and not CR normal coordinates.

We can finally prove our second main result.

Proof of Theorem 1.3. Assume by contradiction that u is a minimizer of the CR-Sobolev quotient
Q(s) for s 6= 0 small. By Lemma 5.1, u must then lie in a δ-neighborhood of the manifold M defined in
(84). From the second part of Proposition 5.2 we have also that u = ϕλ+wλ up to a homogeneous action
on S3, where wλ is as in the first part of the Proposition. The conclusion then follows from Proposition
5.5 and Proposition 5.6, which cover all ranges of λ for s small enough.
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6. Appendix A: proof of Proposition 5.5

We consider the Cayley map from S3 into H1 given by

(89) F(z1, z2) =

(
z1

1 + z2
,Re

(
i
1− z2

1 + z2

))
,

with inverse

F−1(z, t) =

(
2iz

t+ i (1 + |z|2)
,
−t+ i(1− |z|2)

t+ i(1 + |z|2)

)
.

Using F , we can derive explicit expressions for the CR maps on S3. Letting dλ denote the natural dilation
in the Heisenberg group

dλ(z, t) = (λ z, λ2 t); λ > 0,

consider the map Φλ : S3 → S3 defined by

Φλ(p) =
(
F−1 ◦ dλ ◦ F

)
(p).

By explicit computations one finds that the inverse is given by

(90) Φ−1
λ (z1, z2) =

(
2λ(z2 + 1)z1

λ2|z2 + 1|2 + z2 + |z1|2 − z2
,
λ2|z2 + 1|2 − z2 − |z1|2 + z2

λ2|z2 + 1|2 + z2 + |z1|2 − z2

)
.

For later purposes the following formula will be useful

(91) ϕλ(Φ−1
λ (z1, z2))−3 =

1

2
λ−1

(
|1 + z2|2

(λ2|1 + z2|2 + |z1|2)
2 − (z2 − z2)2

) 1
2

.

Notice also that ϕλ=1 ≡ 1 on S3.

6.1. Approximate solutions. We construct next, on every compact interval in the range of λ, approx-
imate solutions to the CR-Yamabe equation with s 6= 0 up an order O(s2), improving the accuracy of
the ϕλ’s (approximate up to order O(s)) for s 6= 0.

Lemma 6.1. Let Λ > 1 be a fixed number. Then there exist CΛ > 0 and regular functions ŵλ, depending
smoothly on λ such that for λ ∈ [1/Λ,Λ] and for s small one has

Ls(ϕλ + sŵλ)− 2(ϕλ + sŵλ)3 = fλ,

with ‖fλ‖L∞(S3) ≤ CΛs
2.

Proof. Recall that the extremals of the CR-Sobolev inequality (up to a homogeneous CR-action of
S3) have the expression in (82), namely

ϕλ = λ

( (
|z1|2 + |z2 + 1|2

)2 − (z2 − z2)2

(λ2|z1|2 + |z2 + 1|2)
2 − λ4(z2 − z2)2

) 1
2

= 2λ

(
|1 + z2|2

(λ2|z1|2 + |z2 + 1|2)
2 − λ4(z2 − z2)2

) 1
2

,
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and for all λ > 0 they satisfy the equation

(92) L0ϕλ = −4∆bϕλ + 2ϕλ = 2ϕ3
λ on S3.

Our goal is to find a correction sŵλ such that ϕλ + sŵλ satisfies the CR-Yamabe equation on (S3, J(s))

up to an order s2. Recalling (21) and (22), it is sufficient to solve for

−4∆bŵλ + 2ŵλ − 6ϕ2
λŵλ = Gλ := 8Z1Z1ϕλ + conj..

From a straightforward computation one has that

Gλ(z1, z2) =
192λ(λ2 − 1)2|1 + z2|8Re

[
z2

1

(
1 + z2 + λ2(z2 − 1)

)2]
[
(λ2|z1|2 + |z2 + 1|2)

2 − λ4(z2 − z2)2
] 5

2
[
(|z1|2 + |z2 + 1|2)

2 − (z2 − z2)2
] 3

2

=
3

4
λ−4

(λ2 − 1)2Re
[
z2

1

(
1 + z2 + λ2(z2 − 1)

)2]
[
(λ2|z1|2 + |z2 + 1|2)

2 − λ4(z2 − z2)2
] 5

2

ϕλ(z1, z2)5.

It is useful to evaluate this expression after composing with the inverse CR map defined in (90): by direct
computation, using also (90), one finds that

Gλ(Φ−1
λ (z1, z2)) =

3

4
λ−3(λ2 − 1)2

(
|1 + z2|2

(λ2|1 + z2|2 + |z1|2)
2 − (z2 − z2)2

) 3
2

×
[
z2

1

(
1− z2 + λ2(1 + z2)

)4
+ z2

1

(
1− z2 + λ2(1 + z2)

)4]
.(93)

Let us recall the covariance of the conformal sub-Laplacian Lθ: for a conformal contact form θ̃ = u
4

Q−2 θ
one has

Lθ̃ϕ = u−
Q+2
Q−2Lθ(u ·).

Let Lϕλ be the linearized CR-Yamabe operator at ϕλ on (S3, J(0)), i.e.

(94) Lϕλv = −4∆bv + 2v − 6ϕ2
λv,

and let wλ denote the pull-back of ŵλ via Φλ, namely

(95) wλ(z) = ϕ−1
λ (Φ−1

λ (z)) ŵλ(Φ−1
λ (z)).

Then the covariance of Lθ implies that

(96) (Lϕ1≡1wλ)(x) = ϕλ(Φ−1
λ (x))−3(Lϕλŵλ)(Φ−1

λ (x)).

It follows from this formula and (93) that the pull-back wλ satisfies the following equation on S3, which
has constant coefficients on the left-hand side

(97) −4∆bwλ − 4wλ = 12(λ2 − 1)2Re
(1− z2 + λ2(1 + z2))z2

1

(1− z2 + λ2(1 + z2))3
.

The latter equation can be solved explicitly in wλ via Fourier decomposition: in fact, the right-hand side
in (97) is given by

12
(λ2 − 1)2

(λ2 + 1)2
Re

z2
1(1− Γz2)

(1− Γz2)3
; with Γ =

1− λ2

1 + λ2
.

Since we have the expansion

1

(1− Γz2)3
= 1 + 3Γz2 + 6Γ2z2

2 + 10Γ3z3
2 + 15Γ4z4

2 + · · · ,

we obtain that

12
(λ2 − 1)2

(λ2 + 1)2
Re

z2
1(1− Γz2)

(1− Γz2)3
= 12

(λ2 − 1)2

(λ2 + 1)2
Re
{
z2

1

[
1 + 3Γz2 + 6Γ2z2

2 + 10Γ3z3
2 + 15Γ4z4

2 + · · ·

− Γz2

(
1 + 3Γz2 + 6Γ2z2

2 + 10Γ3z3
2 + 15Γ4z4

2 + · · ·
)]}

.(98)
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While the set of functions of the right–hand side in the first line are spherical harmonics, i.e. satisfying

(99) −∆b(z
2
1z
k
2 ) = (k + 2)z2

1z
k
2 ,

the functions on the second line of the right-hand side are not. However, they can be easily modified in
order to satisfy an eigenvalue equation. More precisely, one has that (see [JL89])

(100) −∆b

(
zk2

(
z2z2 −

k + 1

k + 4

))
= (10 + 3k)

(
zk2

(
z2z2 −

k + 1

k + 4

))
.

Hence we rewrite the right-hand side in (97) in the following way

12
(λ2 − 1)2

(λ2 + 1)2
Re

z2
1(1− Γz2)

(1− Γz2)3

= 12
(λ2 − 1)2

(λ2 + 1)2
Re
{
z2

1

[
1 + 3Γz2 + 6Γ2z2

2 + 10Γ3z3
2 + 15Γ4z4

2 + · · ·

− Γz2 − 3Γ2

(
z2z2 −

1

4

)
− 6Γ3z2

(
z2z2 −

2

5

)
− 10Γ4z2

2

(
z2z2 −

3

6

)
+ · · ·

− 3Γ2 1

4
− 6Γ3z2

2

5
− 10Γ4z2

2

3

6
− · · ·

]}
.

The latter expression can in turn be rewritten as

12Γ2Re

{
z2

1

[ ∞∑
k=0

(k + 1)(k + 2)

2
(Γz2)k

(
1− Γ2 k + 3

k + 4

)

− Γ2
∞∑

k=−1

(k + 2)(k + 3)

2
(Γz2)k

(
z2z2 −

k + 1

k + 4

)]}
.(101)

Recall that by (97), to obtain wλ, we need to invert the operator −4∆b − 4 on the latter expression,
so we have to divide the coefficients of the spherical harmonics respectively by (using (99) and (100))
4(k + 2)− 4 = 4(k + 1) and by 4(3k + 10)− 4 = 12(k + 3). We then find
(102)

wλ =
3

2
Γ2Re

{
z2

1

[ ∞∑
k=0

(k + 2)(Γz2)k
(

1− Γ2 k + 3

k + 4

)
− 1

3
Γ2

∞∑
k=−1

(k + 2)(Γz2)k
(
z2z2 −

k + 1

k + 4

)]}
,

with Γ = 1−λ2

1+λ2 . Notice that since |Γ| < 1 all the above series are absolutely converging on S3. Finally,

the correction ŵλ to ϕλ for the CR-Yamabe equation can be obtained from (95).

6.2. Second order expansion of the CR Sobolev quotient. We want next to analyse the order s2

in the expansion of the CR Sobolev quotient.

Lemma 6.2. If Q(s) is as in (85), then we have that

Q(s)(ϕλ + sŵλ) = 4π +
16πλ2(3 + 12λ2 + 2λ4 + 12λ6 + 3λ8)

(1 + λ2)6
s2 + Bλ,s,

with |Bλ,s| ≤ CΛs
3.

Proof. Recall that, at s = 0, from (22) one has d
dsRs = 0 and d2

ds2Rs = 8. We use the choice of contact
form

θ̂ =
1

2
i

2∑
i=1

(zidzi − zidzi) ; θ̂ ∧ dθ̂ = 2 dσEucl.

From the expression of −∆̈b (in (21)) and of R̈ we have that the second derivative Q̈(ϕλ) of Q(s)(ϕλ) at
s = 0 is given by

Q̈(ϕλ) =

ˆ
S3

ϕλ

(
−4∆̈bϕλ + R̈ϕλ

)
θ̂ ∧ dθ̂ =

ˆ
S3

ϕλ (−16∆bϕλ + 8ϕλ) θ̂ ∧ dθ̂.
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Using (92), this also becomes

(103) Q̈(ϕλ) = 8

ˆ
S3

ϕ4
λ θ̂ ∧ dθ̂ = 32π2,

since the integral is independent of λ and since ϕλ=1 ≡ 1.

Our next goal is to expand to second order in s the quantity Q(s)(ϕλ + s ŵλ). We claim that

Q(s)(ϕλ + s ŵλ) = 4π +
s2

2π

(
1

2
Q̈(ϕλ)−

ˆ
S3

ŵλLϕλŵλ θ̂ ∧ dθ̂
)

+ o(s2)

= 4π +
s2

2π

(
1

2
Q̈(ϕλ)−

ˆ
S3

wλLϕ1
wλ θ̂ ∧ dθ̂

)
+ o(s2).(104)

Here, wλ is given in (102) (see also (95)) and Lϕλ is given in (94). The latter equality follows from the
covariance property (96). To check this claim, we want to expand Q(s)(ϕλ + s ŵλ), which we write as

´
S3(ϕλ + sŵλ)

(
L0 + sL̇+ 1

2s
2L̈
)

(ϕλ + sŵλ)θ̂ ∧ dθ̂(´
S3(ϕλ + sŵλ)4θ̂ ∧ dθ̂

) 1
2

.

Expanding in s we find that this quantity is equal to

Q(s)(ϕλ + sŵλ)

=

´
S3

[
ϕλL0ϕλ + s

(
ϕλL̇ϕλ + 2ŵλL0ϕλ

)
+ s2

(
1
2ϕλL̈ϕλ + 2ŵλL̇ϕλ + ŵλL0ŵλ

)]
θ̂ ∧ dθ̂(´

S3(ϕ4
λ + 4sϕ3

λŵλ + 6s2ϕ2
λŵ

2
λ) θ̂ ∧ dθ̂

) 1
2

+ o(s2).

The first-order term in s vanishes, as one can see using the Euler equation for ϕλ, so we will just consider
the second-order term. Since wλ only consists of spherical harmonics of positive order, see (102), using
(95) it also turns out that ˆ

S3

ϕ3
λŵλθ̂ ∧ dθ̂ =

ˆ
S3

wλθ̂ ∧ dθ̂ = 0,

so there is no contribution to the expansion of the denominator from the first-order term (in s) in the
denominator.

Since
´
S3 ϕλL0ϕλ θ̂∧dθ̂ = 8π2 and

´
S3 ϕ

4
λ θ̂∧dθ̂ = 4π2, we can collect these numbers in the numerator

and denominator respectively to get that

Q(s)(ϕλ + sŵλ) =
8π2

(4π2)1/2

1 + s2

8π2

´
S3( 1

2ϕλL̈ϕλ + 2ŵλL̇ϕλ + ŵλL0ŵλ) θ̂ ∧ dθ̂(
1 + s2

4π2

´
S3 6ϕ2

λŵ
2
λ θ̂ ∧ dθ̂

) 1
2

+ o(s2).

Taylor-expanding one finds

Q(s)(ϕλ + sŵλ)

=
8π2

(4π2)1/2

[
1 +

s2

8π2

(ˆ
S3

(
1

2
ϕλL̈ϕλ + 2ŵλL̇ϕλ + ŵλL0ŵλ) θ̂ ∧ dθ̂ −

ˆ
S3

6ϕ2
λŵ

2
λ θ̂ ∧ dθ̂

)]
+ o(s2).

We now use the fact that ŵλ satisfies

Lϕλŵλ := L0ŵλ − 6ϕ2
λŵλ = −L̇ϕλ

to deduce that

Q(s)(ϕλ + sŵλ) =
8π2

(4π2)1/2

[
1 +

s2

8π2

(ˆ
S3

(
1

2
ϕλL̈ϕλ − ŵλLϕλŵλ) θ̂ ∧ dθ̂

)]
+ o(s2)

=
8π2

(4π2)1/2

[
1 +

s2

8π2

(ˆ
S3

(
1

2
ϕλL̈ϕλ −wλLϕ1wλ) θ̂ ∧ dθ̂

)]
+ o(s2).(105)
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We next compute the latter integral. To explicitly integrate spherical harmonics, we need the following
explicit formula (see Proposition 5.3 in [JL89])

(106)

ˆ
S3

|z1|4|z2|2kθ̂ ∧ dθ̂ =
8π2

(k + 1)(k + 2)(k + 3)
.

Both wλ and Lϕ1
wλ consist of two types of spherical harmonics, orthogonal to each-other. For the first

series, taking real parts, we need to compute integrals of the form (notice that only products of conjugate
terms contribute)

1

4

ˆ
S3

(
z2

1z
k
2 + z2

1z
k
2

)2
θ̂ ∧ dθ̂ =

4π2

(k + 1)(k + 2)(k + 3)
.

For the second series, still taking real parts, we need to compute instead

1

4

ˆ
S3

[
z2

1z
k
2

(
z2z2 −

k + 1

k + 4

)
+ z2

1z
k
2

(
z2z2 −

k + 1

k + 4

)]2

θ̂ ∧ dθ̂

=
1

2

ˆ
S3

|z1|4|z2|2k
(
|z2|4 − 2|z2|2

k + 1

k + 4
+

(
k + 1

k + 4

)2
)
θ̂ ∧ dθ̂.

Using (106), the expression becomes

12π2

(k + 2)(k + 3)(k + 4)2(k + 5)
.

Therefore, from (101) and (102) we obtain

−
ˆ
S3

wλLϕ1
wλ θ̂ ∧ dθ̂ = −24

3

2
Γ4

{ ∞∑
k=0

(k + 1)(k + 2)2

2

(
1− Γ2 k + 3

k + 4

)2

Γ2k 2π2

(k + 1)(k + 2)(k + 3)

+

∞∑
k=−1

Γ4

6
(k + 2)2(k + 3)Γ2k 6π2

(k + 2)(k + 3)(k + 4)2(k + 5)

}
.

After some simplification, this gives

−
ˆ
S3

wλLϕ1
wλ θ̂ ∧ dθ̂ = −36Γ4π2

{ ∞∑
k=0

k + 2

k + 3

(
1− Γ2 k + 3

k + 4

)2

Γ2k +

∞∑
k=−1

Γ4 Γ2k(k + 2)

(k + 4)2(k + 5)

}
.

Notice that the last series starts from k = −1, so after relabelling we get

−
ˆ
S3

wλLϕ1
wλ θ̂ ∧ dθ̂ = −36Γ4π2

{ ∞∑
k=0

k + 2

k + 3

(
1− Γ2 k + 3

k + 4

)2

Γ2k +

∞∑
k=0

Γ2 Γ2k(k + 1)

(k + 3)2(k + 4)

}
.

After some manipulation, the series reduces to a finite one, and we find

−
ˆ
S3

wλLϕ1wλ θ̂ ∧ dθ̂ = 8π2Γ4
(
Γ2 − 3

)
.

Collecting this formula and (105), from (103) and (104) we obtain the second order expansion

Q(s)(ϕλ + s ŵλ) = 4π +
s2

2π

(
1

2
Q̈(ϕλ)−

ˆ
S3

wλLϕ1
wλ θ̂ ∧ dθ̂

)
+ o(s2)

= 4π + 4πs2
(
Γ6 − 3Γ4 + 2

)
+ o(s2), Γ =

1− λ2

1 + λ2
.(107)

This concludes the proof.

We display next the graph of the function 4π
(
Γ6 − 3Γ4 + 2

)
in Γ. This shows that the second-order

correction of the Sobolev quotient is always positive in λ, and tends to zero as λ→∞.
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6.3. Conclusion. We can use the observation in Remark 5.3, to work out the contraction argument in
Proposition 5.2 starting from ϕλ + sŵλ instead of from ϕλ only. Given the improved accuracy in Lemma
6.1, the contraction can be performed in a ball of radius O(s2) in S1,2(S3), yielding a corresponding
correction w̌λ of that order. By Lemma 6.1 and the smoothness of Q(s), we then have that

Q(s)(ϕλ + sŵλ + w̌λ) = Q(s)(ϕλ + sŵλ) + dQ(s)(ϕλ + sŵλ)[w̌λ] +O(‖w̌λ‖2) = Q(s)(ϕλ + sŵλ) +O(s4).

By uniqueness in the fixed point of the contraction, it must be ϕλ+sŵλ+w̌λ = ϕλ+wλ, so the conclusion
follows from Lemma 6.2.

7. Appendix B: proof of Proposition 5.6

The goal of this section is to expand Q(s) on the functions ϕλ + wλ given by Proposition 5.2 for
large values of λ. Since the estimates of the previous section deteriorate for λ in this range, we choose
approximate solutions in terms of CR normal coordinates, better suited for highly-concentrated profiles.

Recall from the results in Section 5 of [CMY17] that, given p ∈ M , the Green’s function of the
conformal sub-Laplacian satisfies, in CR normal coordinates

Gp = 2 ρ−2 +A+O(ρ).(108)

7.1. Approximate solutions. For p ∈ S3, fix a small number r > 0 and define in CR normal coordinates
a function F such that {

F (z, t) = |z|2 for ρ ≤ r;
F ≡ 0 for ρ ≥ 2r.

In this way, F can be extended via cut-offs to all of S3 as the zero function away from p, so F can be
written as

(109) F (z, t) = |z|2 +O(ρ5).

For λ > 0 large, let us consider a test function in CR normal coordinates as follows

(110) ϕ̆λ =
λ(

1 + λ2F + λ4G̃
) 1

2

,

where G̃ = G−2
p .

Lemma 7.1. In CR normal coordinates one has the expansion

Lbϕ̆λ = ϕ̆3
λ

(
2 +O(ρ3) + λ−2O(ρ2)

)
+ ϕ̆5

λ

[
−3

2
|z|2ρ2(4 + λ2|z|2)A+O(ρ5) +O(λ2ρ7)

]
.
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Proof. By direct computation we have that

ϕ̆λ,1 = −1

2

λ3(
1 + λ2F (z) + λ4G̃

) 3
2

[
F,1 + λ2G̃,1

]
= −1

2
ϕ̆3
λ

[
F,1 + λ2G̃,1

]
,

and similarly for its conjugate. As a consequence, we have that

ϕ̆λ,11̄ = −1

2
ϕ̆3
λ

[
F,11̄ + λ2G̃,11̄

]
+

3

4
ϕ̆5
λ

∣∣∣F,1 + λ2G̃,1

∣∣∣2 ,
which implies

∆bϕ̆λ = −1

2
ϕ̆3
λ

[
∆bF + λ2∆bG̃

]
+

3

2
ϕ̆5
λ

∣∣∣F,1 + λ2G̃,1

∣∣∣2 .
By direct computation one finds (with G = Gp)

∆bG̃ = −2G−3∆bG+ 12G−4G,1G,1̄.

We then deduce

Lbϕ̆λ = 2 ϕ̆3
λ

[
∆bF + λ2(12G−4G,1G,1̄ − 2G−3∆bG)

]
− 6 ϕ̆5

λ

∣∣∣F,1 + λ2G̃,1

∣∣∣2 +R ϕ̆λ.

We can next write
R ϕ̆λ = R ϕ̆3

λ

(
λ−2 + F + λ2G−3G

)
.

Since G satisfies LbG = 0, we get some cancellation and find that

Lbϕ̆λ = ϕ̆3
λ

(
2∆bF + λ−2R+RF

)
+ 6 ϕ̆5

λ

[
4G−4G,1G,1̄

(
1 + λ2F (z) + λ4G̃

)
−
∣∣∣F,1 + λ2G̃,1

∣∣∣2] .
Using some further cancellation we then obtain

Lbϕ̆λ = ϕ̆3
λ

(
2∆bF + λ−2R+RF

)
+ 6 ϕ̆5

λ

[
4G−4G,1G,1̄

(
1 + λ2F (z)

)
− F,1F,1̄ − λ2(F,1G̃,1̄ + G̃,1F,1̄)

]
.

From Proposition A.5 in [CMY17] (where a different but analogous notation is used) one has that, in CR
normal coordinates

Z1 = (1 +O(ρ4))
◦
Z1 +O(ρ4)

◦
Z 1̄ +O(ρ5)

∂

∂t
;

ω1
1 = O(ρ3)dz +O(ρ3)dz̄ +O(ρ2)

◦
θ,

see (17). By direct computation, one then has

G,1 = − i
√

2z̄

(t+ i|z|2)ρ2
+O(1); F,1 =

z̄√
2

+O(ρ4);

G̃,1 =
2
√

2z̄(|z|2 + it)

(Aρ2 + 2)
3 +O(ρ6); ∆bF = 1 +O(ρ3).

Using these expressions in the above formula for Lbϕ̆λ one finally finds

Lbϕ̆λ = ϕ̆3
λ

(
2 + λ−2O(ρ2) +O(ρ3)

)
+ 6 ϕ̆5

λ

[
−1

4
|z|2ρ2(4 + λ2|z|2)A+O(ρ5) +O(λ2ρ7)

]
,

which is the desired result.

If the contact form θ involved in the definition of CR normal coordinates writes as θ = e2v θ̂, setting

(111) ϕ̄λ = e−vϕ̆λ,

by the covariance property of the conformal sub-Laplacian one has that

(112) ϕ̆4
λ θ ∧ dθ = ϕ̄4

λ θ̂ ∧ dθ̂; ϕ̆λL
(θ)
b ϕ̆λ θ ∧ dθ = ϕ̄λLsϕ̄λ θ̂ ∧ dθ̂, Ls = L

(θ̂)
b .

These imply the invariance

Q(s)(ϕ̄λ) =

´
S3 ϕ̄λLsϕ̄λ θ̂ ∧ dθ̂(´
S3 ϕ̄

4
λθ̂ ∧ dθ̂

) 1
2

=

´
S3 ϕ̆λL

(θ)
b ϕ̆λ θ ∧ dθ(´

S3 ϕ̆4
λθ ∧ dθ

) 1
2

.
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We then get the following consequence of Lemma 7.1, concerning the differential of Q(s) at ϕ̄λ.

Corollary 7.2. There exists a constant C > 0 such that for all s small and λ large one has the inequality
|dQ(s)(ϕ̄λ)[v]| ≤ C

λ2 ‖v‖S1,2 for every v ∈ S1,2(S3).

Proof. By direct computation, for v ∈ S1,2(S3), one has

(113) dQ(s)(ϕ̄λ)[v] =
2(´

S3 ϕ̄4
λ θ̂ ∧ dθ̂

) 3
2

ˆ
S3

[(ˆ
S3

ϕ̄4
λ θ̂ ∧ dθ̂

)
Lsϕ̄λ −

(ˆ
S3

ϕ̄λLsϕ̄λθ̂ ∧ dθ̂
)
ϕ̄3
λ

]
v θ̂∧dθ̂.

From (112) and Lemma 7.1 it follows that
ˆ
S3

ϕ̄λLsϕ̄λθ̂ ∧ dθ̂ = 2

ˆ
S3

ϕ̆4
λ θ ∧ dθ +

ˆ
S3

[
ϕ̆4
λ(O(ρ3) + λ2O(ρ2)) + ϕ̆6

λ(O(ρ4) + λ2O(ρ6))
]
θ ∧ dθ.

Using a change of variable it is possible then to showˆ
S3

ϕ̆4
λ θ ∧ dθ = −

ˆ
S3

ϕ̆λL
θ
b ϕ̆λθ ∧ dθ +O(λ−2).

Therefore, inserting the latter estimate and the result of Lemma 7.1 into (113) we find that

|dQ(s)(ϕ̄λ)[v]| ≤
ˆ
S3

ϕ̆3
λ

[
O(ρ2) +O(λ−2) + ϕ̆5

λ

(
O(ρ4) + λ2O(ρ6)

)]
|v| θ ∧ dθ.

Applying Hölder’s inequality we get that

|dQ(s)(ϕ̄λ)[v]|

≤

[
O(λ−2) +

(ˆ
S3

ϕ̆4
λO(ρ

8
3 )

) 3
4

+

(ˆ
S3

ϕ̆
20/3
λ O(ρ

16
3 )

) 3
4

+ λ2

(ˆ
S3

ϕ̆
20/3
λ O(ρ8)

) 3
4

]
‖v‖S1,2 ,

where all integrals are computed w.r.t. the volume form θ ∧ dθ. By the expression of ϕ̆λ, all terms are
integrable and of order λ−2, which concludes the proof.

7.2. Expansion of the CR Sobolev quotient. We expand next the CR Sobolev quotient Q(s) on the
approximate solutions ϕ̄λ in (111), obtaining the following result.

Lemma 7.3. Let ϕ̆λ be defined in (110). Then for λ large one has the expansion

Q(s)(ϕ̄λ) = 4π + 48π
s2

λ2
(1 + os(1)) +O

(
1

λ3

)
.

Proof. We use (112), Lemma 7.1 and integrate: expanding the numerator in Q(s) we find that
ˆ
S3

ϕ̆λL
(θ)
b ϕ̆λθ ∧ dθ = 2

ˆ
S3

ϕ̆4
λθ ∧ dθ −

3

2
A

ˆ
H1

|z|2(4 + λ2|z|2)ρ2 ◦ϕ
6

λ

◦
θ ∧ d

◦
θ

+

ˆ
S3

ϕ4(O(λ2ρ2) +O(ρ3))θ ∧ dθ +

ˆ
S3

ϕ6(O(ρ5) +O(λ2ρ7))θ ∧ dθ,

where
◦
ϕλ =

λ(
1 + λ2|z|2 + 1

4λ
4(|z|4 + t2)

) 1
2

; (z, t) ∈ H1.

For the first term, which also appears in the above expression, we Taylor-expand G̃ as

G̃ =

(
2 +Aρ2

ρ2

)−2

=
1

4
ρ4(1−Aρ2) +O(ρ8).
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Therefore, ϕ̆λ expands as

ϕ̆λ =
λ(

1 + λ2(|z|2 +O(ρ5)) + 1
4λ

4[ρ4(1−Aρ2) +O(ρ8)]
) 1

2

=

(
1 +

1

8

Aρ6λ4

1 + λ2|z|2 + 1
4λ

4ρ4
+O

(
ρ12λ8

(1 + λ4ρ4)2

))
◦
ϕλ

=
◦
ϕλ +

1

8
Aρ6λ2 ◦ϕ

3

λ +O

(
ρ12λ8

(1 + λ4ρ4)2

)
◦
ϕλ.

Taylor-expanding the integral of the fourth power of ϕ̆λ and using a change of variable we get thatˆ
S3

ϕ̆4
λθ ∧ dθ =

ˆ
H1

◦
ϕ

4

λ

◦
θ ∧ d

◦
θ +

1

2
Aλ2

ˆ
H1

ρ6 ◦ϕ
6

λ

◦
θ ∧ d

◦
θ +O(1/λ3).

Hence, using the fact that
´
H1

◦
ϕ

4

λ

◦
θ ∧ d

◦
θ is independent of λ, Q(s)(ϕ̄λ) becomes

2

(´
H1

◦
ϕ

4√
2

◦
θ ∧ d

◦
θ + 1

2Aλ
2
´
H1 ρ

6 ◦ϕ
6

λ

◦
θ ∧ d

◦
θ

)
− 3A

2

´
H1 |z|2ρ2(4 + λ2|z|2)

◦
ϕ

6

1

◦
θ ∧ d

◦
θ(´

H1

◦
ϕ

4√
2

◦
θ ∧ d

◦
θ + 1

2Aλ
2
´
H1 ρ6 ◦ϕ

6

λ

◦
θ ∧ d

◦
θ

) 1
2

+O(1/λ3).

We can expand the denominator in the latter expression as(ˆ
H1

◦
ϕ

4√
2

◦
θ ∧ d

◦
θ +

1

2
Aλ2

ˆ
H1

ρ6 ◦ϕ
6

λ

◦
θ ∧ d

◦
θ

)− 1
2

=

(ˆ
H1

◦
ϕ

4√
2

◦
θ ∧ d

◦
θ

)− 1
2

1 +
1
2Aλ

2
´
H1 ρ

6 ◦ϕ
6

λ

◦
θ ∧ d

◦
θ

´
H1

◦
ϕ

4

1

◦
θ ∧ d

◦
θ

◦
θ ∧ d

◦
θ

−
1
2

=

(ˆ
H1

◦
ϕ

4√
2

◦
θ ∧ d

◦
θ

)− 1
2

1− 1

4
Aλ2

´
H1 ρ

6 ◦ϕ
6

λ

◦
θ ∧ d

◦
θ

´
H1

◦
ϕ

4

1

◦
θ ∧ d

◦
θ

+O(1/λ3),

which gives

Q(s)(ϕ̄λ)

=

(ˆ
H1

◦
ϕ

4√
2

◦
θ ∧ d

◦
θ

)− 1
2
[
2

ˆ
H1

◦
ϕ

4√
2

◦
θ ∧ d

◦
θ +

1

2
Aλ2

ˆ
H1

ρ6 ◦ϕ
6

λ

◦
θ ∧ d

◦
θ − 3

2
A

ˆ
H1

|z|2ρ2(4 + λ2|z|2)
◦
ϕ

6

1

◦
θ ∧ d

◦
θ

]
+ O

(
1

λ3

)
,

equivalent to

Q(s)(ϕ̄λ) =

(ˆ
H1

◦
ϕ

4√
2

◦
θ ∧ d

◦
θ

)− 1
2
[
2

ˆ
H1

◦
ϕ

4√
2

◦
θ ∧ d

◦
θ − 1

2
A

ˆ
H1

(
3|z|2(4 + λ2|z|2)− λ2ρ4

)
ρ2 ◦ϕ

6

λ

◦
θ ∧ d

◦
θ

]
+ O

(
1

λ3

)
.(114)

The computation on page 177 in [JL87] (where θ1 in their notation equals 2θ̂) shows that
◦
ϕ

4√
2 is the

scaling factor for the volume of the Cayley map. Recalling that θ̂ ∧ dθ̂ is twice the (induced) Euclidean
volume on S3, this implies

(115)

ˆ
H1

◦
ϕ

4√
2

◦
θ ∧ d

◦
θ =

ˆ
S3

θ̂ ∧ dθ̂ = 4π2.
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We now make the following change of variables λz 7→
√

2z′, λ2t 7→ 2t′, and notice that

◦
ϕλ(z, t) =

λ√
2

√
2

((1 + |z′|2)2 + (t′)2)
1
2

=
λ√
2

◦
ϕ√2(z′, t′).

In this way we haveˆ
H1

(
3|z|2(4 + λ2|z|2)− λ2ρ4

)
ρ2 ◦ϕ

6

λ

◦
θ ∧ d

◦
θ(z, t) =

4

λ2

ˆ
H1

(
3|z′|2(2 + |z′|2)− (ρ′)4

)
(ρ′)2 ◦ϕ

6√
2

◦
θ ∧ d

◦
θ(z′, t′).

As one can check by direct computations, the primitive w.r.t. t of the integrand is

−
3
(
|z′|6 + 8|z′|4 + 19|z′|2 + 8

)
|z′|6 log

(
t2(|z′|4+4|z′|2+2)−2t(|z′|2+1)

√
2|z′|2+1

√
t2+|z′|4+(|z′|2+1)

2|z′|4

|z′|4(t2+(|z′|2+1)2)

)
2 (|z′|2 + 1)

5
(2|z′|2 + 1)

3/2

−
t
√
t2 + |z′|4

(
t2
(
3|z′|8 + 4|z′|6 − 17|z′|4 − 4|z′|2 + 2

)
+
(
|z′|3 + |z′|

)2 (
3|z′|6 − 8|z′|4 − 55|z′|2 − 24

))
(|z′|2 + 1)

4
(2|z′|2 + 1)

(
t2 + (|z′|2 + 1)

2
)2 .

As a consequence, we deduce thatˆ
R

(
3|z′|2(2 + |z′|2)− (ρ′)4

)
(ρ′)2 ◦ϕ

6√
2 dt

=

−3
(
|z′|6 + 8|z′|4 + 19|z′|2 + 8

)
|z′|6 log

(
|z′|4−2

(√
2|z′|2+1−2

)
|z′|2−2

√
2|z′|2+1+2

|z′|4+2
(√

2|z′|2+1+2
)
|z′|2+2

(√
2|z′|2+1+1

))
2 (|z′|2 + 1)

5
(2|z′|2 + 1)

3/2

−
4
(
|z′|2 + 1

)√
2|z′|2 + 1

(
3|z′|8 + 4|z′|6 − 17|z′|4 − 4|z′|2 + 2

)
2 (|z′|2 + 1)

5
(2|z′|2 + 1)

3/2
.

Multiplying this quantity by 2π|z′|, its primitive w.r.t. |z′| is

−
π

(
3
(
|z′|2 + 2

)
|z′|8 log

(
|z′|4−2

(√
2|z′|2+1−2

)
|z′|2−2

√
2|z′|2+1+2

|z′|4+2
(√

2|z′|2+1+2
)
|z′|2+2

(√
2|z′|2+1+1

))+ 4
√

2|z′|2 + 1
(
|z′|6 + 6|z′|4 + 6|z′|2 + 1

))
2 (|z′|2 + 1)

4
√

2|z′|2 + 1
,

whose difference between the values |z′| → +∞ and |z′| = 0 is 8π. Therefore, recalling that the volume

form
◦
θ ∧ d

◦
θ is four times the Euclidean one, we obtain thatˆ

H1

(
3|z|2(4 + λ2|z|2)− λ2ρ4

)
ρ2 ◦ϕ

6

λ

◦
θ ∧ d

◦
θ = 32π.

Recalling (115) and the fact that A = − 3
2s

2(1 + os(1)), from (80) and (114) we deduce that

Q(s)(ϕ̆λ) = 4π − 32πA

λ2
s2(1 + os(1)) +O

(
1

λ3

)
= 4π +

48π

λ2
s2(1 + os(1)) +O

(
1

λ3

)
.

This concludes the proof.

7.3. Conclusion. We can use the observation in Remark 5.3, to perform the contraction argument in
Proposition 5.2 starting from ϕ̆λ instead of from ϕλ only. Given the improved accuracy in Lemma 5.5, the
contraction can be performed in a ball of radius O( 1

λ2 ) in S1,2(S3), yielding a corresponding correction
w̆λ of that order. By Lemma 5.5 and the smoothness of Q(s), we then have similarly to Subsection 6.3

Q(s)(ϕ̆λ + w̆λ) = Q(s)(ϕ̆λ) +O(‖w̆λ‖2) = Q(s)(ϕ̆λ) +O

(
1

λ4

)
.

By uniqueness of the fixed point, it must be ϕ̆λ + w̆λ = ϕλ + wλ, so from Lemma 7.3 we get that

(116) Q(s)(ϕλ + wλ) = 4π + 48π
s2

λ2
(1 + os(1)) +O

(
1

λ3

)
.
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Notice that

Q(0)(ϕλ + wλ) = Q(0)(ϕλ) ≡ 4π,

and therefore the term O( 1
λ3 ) appearing in (116) is identically zero for s = 0, even and smooth in s. It

therefore must be of the form O
(
s2

λ3

)
. Hence the statement of the proposition holds true.
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