
Graphs with absorption: numerical methods for the absorption
inverse and the computation of centrality measures

Michele Benzia, Paraskevi Fikab, Marilena Mitroulic

aEmory University, Department of Mathematics and Computer Science, Atlanta, GA 30322, USA. E–mail :
mbenzi@emory.edu

bUniversity of Athens, Department of Mathematics, Panepistimiopolis, 15784 Athens, Greece. E–mail :
pfika@math.uoa.gr

cUniversity of Athens, Department of Mathematics, Panepistimiopolis, 15784 Athens, Greece. E–mail :
mmitroul@math.uoa.gr

Abstract

The absorption inverse, studied in [K. A. Jacobsen and J. H. Tien, Linear Algebra Appl., 537
(2018), 118–147], is a generalized inverse specifically introduced for the analysis of graphs with
absorption. In this paper we consider numerical methods for the efficient computation of the
absorption inverse and related quantities. Both direct and iterative methods are developed. We
also consider different centrality measures for graphs with absorption, as well as fast updat-
ing/downdating techniques. Numerical experiments show that computations on graphs with up
to 36 million edges can be performed quickly on a standard laptop.

Keywords: Laplacian matrix, group inverse, absorption inverse, centrality measure, matrix
factorizations, Krylov subspace methods, preconditioning

1. Introduction

Let G = (V, E,w) be a weighted graph, directed or undirected, and let A ∈ Rn×n be the
associated adjacency matrix whose non-zero entries ai j correspond to the weight of the edge
from node j to node i. Then, the graph Laplacian matrix L ∈ Rn×n is given by L = W − A,
where the matrix W ∈ Rn×n is diagonal with each entry wii given by the sum of outgoing weights
from the node i, i.e., wii =

∑n
j=1 a ji (weighted outdegree). It is well known that rank(L) ≤ n − 1

and that equality holds if and only if the graph is strongly connected. If the graph is reducible,
the adjacency matrix A (and hence L) can be permuted to block triangular form (block diagonal
if the graph is undirected) with irreducible diagonal blocks, one for each strongly connected
component of the graph; the considerations and algorithms in this paper can then be applied to
each diagonal block separately. Therefore, unless otherwise specified, we will always assume
that G is strongly connected.

We caution the reader that the convention “ai j , 0 if there is an edge from node j to node
i” differs from that adopted in most papers and books on graph theory. Here we adopt this
convention in order to be consistent with the notation used by the authors of [13], on whose work
this paper builds. The convention implies that for any graph, L has zero column sums.
Preprint submitted to Elsevier March 25, 2019

Following [13], we consider graphs with absorption, i.e., we suppose that each node of the
graph represents a transient state in a Markov process, and that each transient state comes with
a transition rate di > 0 to an absorbing state (labeled n + 1). Such graphs arise naturally in
many applications, for example in the modeling of disease spreading in community networks
[22]. Let d = [d1, . . . , dn]T be the vector of absorption rates. The resulting graph with absorption
is denoted by (G,d). Let now L be the Laplacian matrix associated with G. The authors of [13]
introduced a generalized inverse of L that captures much valuable information about transient
random walks on the graph by combining the known node absorption rates di with the structural
properties of the underlying graph G encoded in the Laplacian matrix L. The definition and basic
properties of the absorption inverse are given in Section 2. Among other things, the absorption
inverse can be used to define a notion of distance, as well as a centrality measure for ranking
the nodes in an absorption graph. Furthermore, the absorption inverse can be used for graph
partitioning purposes. The authors of [13] left open the issue of devising efficient computational
approaches for computing the absorption inverse or quantities associated with it, such as the
centrality vector. In this paper we address the efficient computation of these quantities, as well
as other computational aspects, including the problem of how to perform cheap updates of the
quantities of interest when the underlying absorption graph undergoes a modification (such as the
addition/deletion of an edge). In addition, we propose alternative centrality measures based on
the absorption inverse, which give more weight to the graph topology (compared to the measure
proposed in [13]) while still taking into account the absorption rates associated with the graph
nodes.

The remainder of the paper is organized as follows. In Section 2 we provide some basic defi-
nitions and facts about the absorption inverse. Section 3 is devoted to a discussion of centrality
measures based on the absorption inverse. The core of the paper, Section 4, is devoted to a
description of direct and iterative methods for the accurate and efficient computation of the ab-
sorption inverse and related quantities. The updating/downdating problem and techniques for
estimating individual entries of the absorption inverse are studied in Sections 5 and 6, respec-
tively. Numerical experiments illustrating the performance of the various algorithms on both
undirected and directed graphs with absorption are presented in Section 7. Finally, Section 8
contains some conclusive remarks.

Throughout the paper, the superscript T denotes the transpose and ei stands for the ith column
of the identity matrix of dimension n, denoted In. We denote by 1 and 0 the column vectors of
length n of all ones and of all zeros, respectively. The m × n matrix with all zeros is denoted by
0m,n.

2. Preliminaries and background

Recall that a matrix X− is said to be a {1, 2}-inverse of a matrix X if it satisfies the first two of
the Penrose conditions, namely

XX−X = X, X−XX− = X− , (1)

see [6]. We also recall that a matrix that satisfies the first (but not necessarily the second) condi-
tion in (1) is called a {1}-inverse of the matrix X.

2

The absorption inverse of L with respect to d, denoted as Ld, is a {1, 2}-inverse X of L which
satisfies the following conditions:

XLy = y, for y ∈ N1,0,
Xy = 0, for y ∈ R1,0,

where
N1,0 = {x ∈ Rn : Dx ∈ Range(L)},
R1,0 = {Dx : x ∈ Ker(L)},

and D is the diagonal matrix whose entries are the absorption rates d1, d2, . . . , dn. We write X =

Ld. Various representations and properties of Ld can be found in [13]. For later use, we list here
three basic results from [13].

Proposition 1. [13, Theorem 2] Let (G,d) be a strongly connected graph with positive absorp-
tion vector d. Then Ld exists and is unique.

Proposition 2. [13, Theorem 3] Under the same assumptions of Proposition 1, the following
identity holds:

Ld = (In − VD)Y(In − DV), (2)

where Y is any {1}-inverse of the Laplacian matrix L, V = v1T /d̃, v is a positive vector in Ker(L)
with

∑n
i=1 vi = 1, and d̃ = dT v.

We emphasize that Ld, being unique, does not depend on the choice of the {1}-inverse Y (there
are infinitely many such generalized inverses of L). We also note that the Perron–Frobenius
theorem guarantees the existence of a unique positive vector v ∈ Ker(L) with

∑n
i=1 vi = 1.

Proposition 3. [13, Proposition 2] Under the same assumptions of Proposition 1, the following
identity holds:

Ld = D−1(LD−1)# , (3)

where (LD−1)# is the group inverse of LD−1.

We recall that the group generalized inverse of a square matrix A of index one is the unique
matrix A# such that AA#A = A, A#AA# = A# and AA# = A#A. See [6] for further details.

Below we prove two simple additional facts about the absorption inverse.

Remark 1. It is a simple consequence of the definition that the absorption inverse Ld is unaf-
fected under scaling of the absorption rates. This implies that in a graph with absorption, a
node is characterized by its absorption rate relative to that of the others; i.e., only ratios di/d j

(with j , i) are meaningful, not the actual values di and d j. Therefore, a graph of type (G, 1) is
equivalent to a “standard” graph, in the sense that only the connectivity properties of the nodes
matter, and not their relation to the absorbing state of the underlying Markov process. In the
following, we will refer to this case as the “equal absorption” case. Note that for such a graph
we have Ld = L# by Proposition 3. Thus, as observed in [13], the absorption inverse can be
regarded as a generalization of the group inverse to the case of graphs with absorption.

Proposition 4. The matrices LLd and LdL are similar under the diagonal transformation D.
3

Proof We give two proofs of this fact.
(1). From Theorem 1 and Lemma 1 in [13] we have that LdL = In − VD and LLd = In − DV ,
hence LLd = DLdLD−1 since LLdD = (In − DV)D = D − DVD = D(In − VD) = DLdL.
(2). By Proposition 3 we have that Ld = D−1(LD−1)#. Then using the third property of the
group inverse and the equality (LD−1)# = DLd, we have that the relation (LD−1)#(LD−1) =

(LD−1)(LD−1)# implies DLd(LD−1) = (LD−1)DLd, i.e., DLdLD−1 = LLd.

In the next section we discuss the use of the absorption inverse to define node centrality mea-
sures for graphs with absorption.

3. Graph centrality measures

One of the fundamental problems in the study of real-world networks is the identification of the
most important nodes in the network [7, 19]. Since the notion of importance is clearly context-
dependent, it is not surprising that many different notions of centrality have been proposed in
the literature. A centrality measure specifically designed for graphs with absorption has been
proposed in [13]. We recall that a (possibly weighted) directed graph is said to be balanced if
for every node i in the graph, the indegree equals the outdegree:

∑n
j=1 ai j =

∑n
j=1 a ji. Note that in

this case 1T L = 01,n and L1 = 0n,1. For a balanced, strongly connected graph with absorption the
authors of [13] propose to rank the nodes using the entries of the vector Ld1; that is, the centrality
score of the ith node is given by the ith row sum of the absorption inverse Ld. The reason for this
specific notion of centrality is grounded in the probabilistic interpretation of the entries of Ld and
is related to the behavior of the absorbing random walk associated to (G,d). Roughly speaking, a
node which is “near” the absorbing state of the random walk has low centrality, since the system
being considered is likely to spend little time in such a state. Conversely, a high centrality node
will be “far” from the absorbing state and therefore the system is likely to spend a relatively large
fraction of time in the corresponding state. We refer to [13] for a more precise discussion.

As noted by the authors of [13], the entries of Ld1 can be negative, which is contrast with
virtually all other known centrality measures. This, however, is only a minor drawback: in
fact, the resulting ranking of the nodes is still meaningful, with the node with the lowest (i.e.,
leftmost) centrality score being ranked at the bottom, the second lowest just above it, and so
on. The authors of [13] argue that the centrality measure Ld1 takes into account both the graph
structure and the absorption rates. However, when the absorption rates are all equal it holds that
Ld1 = 0. To see this, note that for D = In we have Ld = (In − V)Y(In − V) and for a balanced
graph

(In − V)1 = 1 − V1 = 1 −
v1T

1T v
1 = 1 − 1 = 0,

since v =
1
n

1. Therefore, when the absorption rates are all equal, this measure is unable to
distinguish between the nodes in the graph. For example (as noted by the authors), all nodes
in any star graph are given the same centrality score. Hence, in the special case when all the
absorption rates become equal, the centrality measure based on Ld1 does not reduce to any known
centrality measure for “standard” graphs, since all such measures would rank the hub of the star
graph as the most central node, with all the other nodes being tied for a (distant) second place.
By continuity, if the absorption rates are all different but close to one another, the centrality
scores will also be close and the centrality measure will have difficulties differentiating between

4

nodes, regardless of the graph topology. This suggests that the proposed centrality measure gives
relatively little weight to the graph topology, with the absorption rates being far more important
for the ranking of the nodes.

In [13], the authors left open the possibility of defining alternative centrality measures for
graphs with absorption. In this section we introduce some modifications to the measure proposed
in [13] that aim at giving more weight to the topology of the graph, so that in the limit of equal
absorption rates the centrality measure is still able to discriminate between nodes for most types
of graph. We also consider centrality measures that are able to take into account the dual role each
node plays in a directed graph, namely, that of a “broadcaster” (or “hub”) and that of “receiver”
(or “authority”). While in a balanced graph this distinction is less crucial (and disappears in the
special case of undirected graphs), here we would like to drop the assumption of balancedness
and therefore it becomes important to be able to account for both roles.

As a motivating example, consider a directed graph representing a communication or infor-
mation network. Suppose that in this graph there is an absorbing node, labeled n + 1. This is
also called a “dangling” node or “sink”: information can reach this node, but the node cannot
communicate it to any other node. Nodes 1 through n are assigned prescribed absorption rates.
It is clear that in such a graph, topology plays an important role, and any centrality measure must
properly account for the role each node plays in the robustness and efficiency of information flow
on the network. This requires centrality indices that strike a balance between the distance from
the absorbing state and the structural properties of the graph G.

Our first proposal is to replace Ld1 with the vector LdW1 = Ldw, where w = diag(W). This
variant is similar to other centrality measures, such as the use of a “personalization vector” in
Google’s PageRank algorithm [16] or the well-known Katz index [15], which can be written (for
a weighted undirected graph) in the form (In − αA)−1A1 = (I − αA)−1w, with 0 < α < 1/‖A‖2.

As we shall see, this centrality measure is able to discriminate between nodes except for very
special situations such as when the graph is balanced and the diagonal matrix W is proportional
to the absorption matrix D, i.e., W = µD for some µ > 0. In this case we have

LdW1 = µLdD1 = 0. (4)

Equation (4) follows from
LdD1 = (In − VD)Y(In − DV)D1

and the fact that
(In − DV)D1 = (D − DVD)1 = D1 − D1 = 0.

Indeed, we have

VD1 =
v1T d
dT v

=
(1/n)1T d1
(1/n)dT 1

= 1,

due to the already observed fact that v = (1/n)1 for a balanced graph.
The case of W = µD is highly unlikely to occur in practice. For instance, it can happen in the

following cases:

1. All absorptions are equal and the weight matrix W is proportional to the identity, for exam-
ple in a cycle graph Cn;

2. In a star graph S n−1, when the absorption rates are all equal except from the central node
that has absorption rate equal to n − 1 times the others’ rate.

5

Obviously, the measure LdW1 gives the same node ranking as Ld1 when the weighted outdegrees
of the nodes are all equal, i.e., when W = µIn, such as in the case of the (unweighted) cycle graph
Cn.

An alternative centrality measure can be obtained from the diagonal entries of the matrix LdW.
As argued in [13, page 137], the entry Ld

i j of Ld gives an indication of the time spent in vertex i
in a transient random walk starting at vertex j.1 Since a transient random walk that starts at an
important (highly central) node is likely to return often to that node, it is reasonable to take Ld

ii as
a measure of the centrality of node i in (G,d). We point out here the resemblance of this measure
with subgraph centrality [8], which consists of taking the diagonal entries of some function of
the adjacency matrix, such as the matrix exponential or the resolvent; this corresponds to taking
weighted sums of the number of walks on the graphs that visit node i, with longer walks being
given a smaller weight.

An advantage of this index is that for a strongly connected graph, it is guaranteed to be positive
(see [13, Corollary 4]). However, it suffers from the same potential drawback of the row sums
of Ld, namely, it tends to discount the role of node connectivity within the underlying weighted
graph. Similar to our previous variant, we propose instead to take the diagonal entries of LdW
as the centralities of the corresponding nodes. This simply amounts to multiplying the diagonal
entries of Ld by the weighted outdegrees of the corresponding nodes. Clearly, the resulting
centrality measure is strictly positive. Also, it is able to discriminate between nodes in certain
situations where LdW1 cannot. A disadvantage of this measure is that for very large graphs it is
generally much much more expensive to compute than that based on LdW1.

In the case of unbalanced graphs, we consider as centrality measure the quantity LdWs1, where
Ws = Wo + Wi, Wo is the diagonal matrix with the weighted outdegrees (its ith diagonal entry
being given by

∑n
j=1 a ji), and Wi is the diagonal matrix with the weighted indegrees (its ith

diagonal entry being equal to
∑n

j=1 ai j). Note that this yields an overall centrality ranking of the
nodes, but it does not differentiate between the two roles (broadcaster and receiver) a node plays
in a directed graph. Therefore we also consider the measures LdWo1 and LdWi1 for ranking hubs
and authorities, respectively. Along the same lines as in the balanced case, if the matrix D is
proportional to the identity and the same holds for any of the matrices Ws, Wo and Wi, then the
corresponding centrality measures are uninformative.

Example 1

Let us first consider the (unweighted, undirected) star graph S 6, with six peripheral nodes and
the 7th node as the center node. This graph was also used in the numerical examples in [13]. In
Table 1 we report the centrality scores of each node using the LdW1 and Ld1 centrality measures,
for two different sets of absorption rates (see Fig. 1). In the last column of the table, the measure
LdW1 is tested for the case of all equal absorptions (D = In). We recall that in this case Ld1 = 0,
therefore the measure proposed in [13] is unable to differentiate the center node from all the
other nodes (thus we do not include it in the tables). While this is justifiable in terms of the
fact that each node in S 6 represents a transient state with equal absorption rate to the absorbing
state (in the underlying absorbing random walk), it may be desirable to also take into account

1Strictly speaking, this interpretation is valid provided that absorption is slow relative to transitions between vertices,
i.e., ‖D‖ � ‖L‖. However, Proposition ?? implies that we can always rescale the entries of D without affecting the entries
of Ld , therefore we can always assume this assumption to be satisfied.

6

the obviously prominent role the center node plays in the topology of S 6. Put differently, the
measure LdW1 can be regarded as using a somewhat different metric (as compared to Ld1) when
measuring node distances from the absorbing state.

7 2

16

5

4 3

0.1

0.1

1

2

0.1

0.1

0.1
7 2

16

5

4 3

0.1

0.2

0.2

0.1

0.1

0.1

0.1

Figure 1: The star graph S 6 with absorptions rates d = [1, 2, 0.1, . . . , 0.1]T (left) and d = [0.2, 0.1, . . . , 0.1, 0.2]T (right).

Case 1 Case 2 Case 3
Node LdW1 Ld1 diag(LdW) LdW1 Ld1 LdW1

1 1.54e0 9.09e-1 8.40e-1 -1.11e0 -5.56e-1 -1.02e-1
2 -1.89e0 -1.09e0 2.69e-1 2.22e-1 2.22e-1 -1.02e-1
3 4.62e0 2.71e0 1.35e0 2.22e-1 2.22e-1 -1.02e-1
4 4.62e0 2.71e0 1.35e0 2.22e-1 2.22e-1 -1.02e-1
5 4.62e0 2.71e0 1.35e0 2.22e-1 2.22e-1 -1.02e-1
6 4.62e0 2.71e0 1.35e0 2.22e-1 2.22e-1 -1.02e-1
7 3.97e0 1.91e0 2.47e0 5.56e-1 0 6.12e-1

Table 1: Centrality scores of the star graph with absorption rates d = [1, 2, 0.1, . . . , 0.1]T (Case 1), d =

[0.2, 0.1, . . . , 0.1, 0.2]T (Case 2) and d = 1 (Case 3).

From Table 1 we can see that in the first case, where the center node has the same absorption
rate (= 0.1) as the peripheral nodes 3, 4, 5, 6 while nodes 1 and 2 have absorption rates 1 and
2, respectively, the LdW1 measure ranks the center node as the second most important, behind
the nodes 3, 4, 5, 6 (all given equal rank); the nodes 1 and 2 are ranked as the least important
ones. Likewise, the Ld1 measure ranks the nodes 3, 4, 5, 6 as the most important, followed by
the center node; again, nodes 1 and 2 are ranked as the least important nodes. In contrast, using
the diagonal entries of LdW results in the center node being ranked as the most important one,
followed by nodes 3, 4, 5, 6 (all given equal rank), with nodes 1 and 2 again being ranked as
the least important. It is also worth noting that for star graphs with more than 30 nodes, the
center node becomes the most central node also according to LdW1, when the absorption rates
are again d = [1, 2, 0.1, . . . , 0.1]T . This shows that incorporating the weighted degree matrix W
in the centrality measure results in the connectivity of the graph playing a larger role than with

7

Ld1.
In the second case, where the center node has the same absorption rate as node 1 (equal to 0.2)

and all the other peripheral nodes have absorption rates equal to 0.1, the measure LdW1 ranks
the node 7 as the most important, whereas the measure Ld1 ranks the peripheral nodes 2 − 6 as
the most important (all with the same score), followed by the center node and finally by node 1.
The same ranking is also obtained using the diagonal entries of LdW (not shown); however, as in
case 1, when the number of nodes n + 1 is large enough, the center node in S n becomes the most
important.

We observe that when using LdW1 to rank nodes in a n-node star graph in which the absorption
rates are equal for all nodes except for the center node, this remains the most important one as
long as its absorption rate is less than n − 1 times that of the others, whereas it becomes the least
important one when its absorption rate is greater than n − 1 times the others’ rate. As already
mentioned, the measure is unable to discriminate among nodes when the absorption rate of the
center node is exactly n − 1 times that of the other nodes.

Finally, in the last column of Table 1 we see that the centrality scores obtained using LdW1
are the expected ones in case of all equal absorptions.

Example 2

Let us consider a path graph and a cycle graph with 8 nodes, again with all weights equal to
1. In Table 2 we present the centrality scores of their nodes using the LdW1 and Ld1 centrality
measures. In the cycle graph, for the absorption rates d = 1, it holds W = 2D and thus LdW1 = 0.
Therefore, the measure diag(LdW) is used instead.

1
2

3
4

5
6

7
8

26

1

3

7

5

4

8

Figure 2: The 8-node path graph (left) and the 8- node cycle graph (right).

In Table 2 we notice that in the case of all equal absorptions, the measure LdW1 ranks the
nodes 4 and 5 as the most important in the path graph. In the case of the cycle graph, the
measure diag(LdW) gives the same centrality scores for all nodes. This is as expected. In case
that all nodes have the same absorption rate equal to 1, except for node 3 that has absorption rate
2, we observe the following. In case of the path graph, the LdW1 measure ranks the node 6 as the

8

Path Cycle
Case 1 Case 2 Case 1 Case 2

Node LdW1 LdW1 Ld1 diag(LdW) LdW1 Ld1
1 -8.75e-1 -1.63e0 -4.07e-1 1.31e0 2.96e-1 1.48e-1
2 -1.25e-1 -1.07e0 -5.19e-1 1.31e0 -2.59e-1 -1.30e-1
3 3.75e-1 -9.63e-1 -7.41e-1 1.31e0 -1.04e0 -5.19e-1
4 6.25e-1 2.59e-1 -1.85e-1 1.31e0 -2.59e-1 -1.30e-1
5 6.25e-1 1.04e0 2.59e-1 1.31e0 2.96e-1 1.48e-1
6 3.75e-1 1.37e0 5.93e-1 1.31e0 6.30e-1 3.15e-1
7 -1.25e-1 1.26e0 8.15e-1 1.31e0 7.41e-1 3.70e-1
8 -8.75e-1 7.04e-1 9.26e-1 1.31e0 6.30e-1 3.15e-1

Table 2: Centrality scores of the path graph and the cycle graph with absorption rates d = 1 (Case 1) and d =

[1, 1, 2, 1, . . . , 1]T (Case 2).

most important, whereas the Ld1 measure ranks the node 8 as the most important. This happens
because this measure takes into account the distance from the highly absorbing node. Changing
the absorption rate of node 3 to any value > 1 (even for 1.000001 or smaller) the measure Ld1
still gives the node 8 as the most important, whereas, the measure LdW1 is being “adjusted”.
For instance, testing the measure LdW1 by setting d = [1, 1, 3, 1, . . . , 1]T , the node 7 becomes
the most important and for d3 > 7 the node 8 becomes the most important. Actually, for any
n-nodes path graph, when the absorption rates are all equal except for one node, say node i, one
of the two peripheral nodes becomes the most “significant” when the absorption rate of node i is
greater than n − 1 times the others’ rate. In case of di = n − 1, then the nodes 1 and 2 have the
same centrality scores, as well as nodes n and n− 1. In case of the cycle graph, the two measures
have the same behaviour, ranking node 7 as the most important, since the two measures give
proportional centrality scores, because W = 2In.

Example 3

Let us consider the (unweighted) graph depicted in Figure 3 (left). In Table 3 we present the
centrality scores of its nodes using the LdW1 and Ld1 centrality measures. In Case 1 we consider
absorption rates d = 1, whereas in Cases 2, 3 and 4 we consider di = 1, i = 1, . . . , 7, i , 4, and
d4 > 1.

The ranking of the nodes that the centrality scores of Table 3 yield, is also depicted in Figure
4. We notice that in the case of all equal absorptions, the measure LdW1 ranks the node 4 as
the most important, as expected. In case that all nodes have the same absorption rate equal to 1,
except for node 4 that has larger absorption rate, we observe that the Ld1 measure, taking into
account the distance from the highly absorbing node, ranks the nodes 1, 3, 5, and 7 as the most
important, whereas the measure based on LdW1 is more “flexible”, being adjusted depending on
how large is the absorption rate of node 4.

Let us consider the unbalanced, unweighted graph depicted in Figure 3 (right). In Tables 4,
5, 6 and 7 we present the centrality scores of its nodes using the LdWs1, LdWo1, LdWi1 and Ld1
centrality measures. In Case 1 we consider absorption rates d = 1, whereas in Cases 2 and 3 we
consider di = 1, i = 1, . . . , 8, i , 4, d4 > 1, in Cases 4 and 5, di = 1, i = 1, . . . , 8, i , 5, d5 > 1,
and in Cases 6 and 7, di = 1, i = 1, . . . , 7, d8 > 1. It should be mentioned that the centrality

9

2 4 6

1

3 7

5

2 4 5

1

3 7

6

8

Figure 3: A 7-node balanced graph (left) and a 8-node unbalanced graph (right).

Case 1 Case 2 Case 3 Case 4
Node LdW1 LdW1 Ld1 LdW1 Ld1 LdW1 Ld1

1 -3.27e-1 -3.12e-1 1.27e-2 -1.25e-1 1.56e-1 1.48e-1 3.46e-1
2 3.88e-1 3.78e-1 -1.39e-3 3.75e-1 3.12e-2 4.81e-1 1.23e-1
3 -3.27e-1 -3.12e-1 1.27e-2 -1.25e-1 1.56e-1 1.48e-1 3.46e-1
4 5.31e-1 4.48e-1 -4.36e-2 -1.25e-1 -3.44e-1 -5.19e-1 -5.43e-1
5 -3.27e-1 -3.12e-1 1.27e-2 -1.25e-1 1.56e-1 1.48e-1 3.46e-1
6 3.88e-1 3.78e-1 -1.39e-3 3.75e-1 3.12e-2 4.81e-1 1.23e-1
7 -3.27e-1 -3.12e-1 1.27e-2 -1.25e-1 1.56e-1 1.48e-1 3.46e-1

Table 3: Centrality scores of the graph of Figure 3 (left) with absorption rates d = 1 (Case 1), di = 1, i = 1, . . . , 8, i , 4
and d4 = 1.1 (Case 2), d4 = 2 (Case 3) and d4 = 3 (Case 4).

1 2 3 4 5 6 7
absorption rate d

4

-1.5

-1

-0.5

0

0.5

1

1.5

ce
nt

ra
lit

y
sc

or
es

nodes 1,3,5,7
nodes 2,6
node 4

1 2 3 4 5 6 7
absorption rate d

4

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

ce
nt

ra
lit

y
sc

or
es

nodes 1,3,5,7
nodes 2,6
node 4

Figure 4: The centrality scores LdW1 (left) and Ld1 (right) as the absorption rate of node 4 increases.

measure given by the row sums of Ld was proposed in [13] only for the case of balanced graphs.
Here we include it only as a reference point and we do not make any claims as to its suitability
for unbalanced graphs.

10

Case 1
Node LdWs1 LdWo1 LdWi1 Ld1

1 -2.34e0 -1.20e0 -1.14e0 -4.31e-1
2 -6.09e-1 -3.38e-1 -2.71e-1 -3.64e-1
3 -2.34e0 -1.20e0 -1.14e0 -4.31e-1
4 5.91e-1 2.62e-1 3.29e-1 -1.64e-1
5 1.52e0 7.29e-1 7.96e-1 1.02e-1
6 3.87e-1 -1.07e-1 4.93e-1 2.53e-1
7 1.33e0 8.98e-1 4.31e-1 2.84e-1
8 1.46e0 9.64e-1 4.98e-1 7.51e-1

Table 4: Centrality scores of the graph of Figure 3 (right) with absorption rates d = 1 (Case 1).

Case 2 Case 3
Node LdWs1 LdWo1 LdWi1 Ld1 LdWs1 LdWo1 LdWi1 Ld1

1 -2.22e0 -1.14e0 -1.08e0 -3.75e-1 -2.02e0 -1.04e0 -9.83e-1 -3.01e-1
2 -7.19e-1 -3.91e-1 -3.28e-1 -3.75e-1 -7.30e-1 -3.94e-1 -3.36e-1 -3.60e-1
3 -2.22e0 -1.14e0 -1.08e0 -3.75e-1 -2.02e0 -1.04e0 -9.83e-1 -3.01e-1
4 -2.19e-1 -1.41e-1 -7.81e-2 -3.75e-1 -8.48e-1 -4.53e-1 -3.94e-1 -5.36e-1
5 1.53e0 7.34e-1 7.97e-1 1.25e-1 1.62e0 7.82e-1 8.41e-1 1.70e-1
6 9.22e-1 1.64e-1 7.58e-1 4.38e-1 1.52e0 4.67e-1 1.06e0 6.37e-1
7 1.39e0 9.30e-1 4.61e-1 3.13e-1 1.49e0 9.79e-1 5.09e-1 3.49e-1
8 1.64e0 1.05e0 5.86e-1 8.13e-1 1.84e0 1.16e0 6.85e-1 8.79e-1

Table 5: Centrality scores of the graph of Figure 3 (right) with absorption rates di = 1, i = 1, . . . , 8, i , 4 and d4 = 1.5
(Case 2), d4 = 2 (Case 3).

Case 4 Case 5
Node LdWs1 LdWo1 LdWi1 Ld1 LdWs1 LdWo1 LdWi1 Ld1

1 -1.45e0 -7.58e-1 -6.95e-1 -1.56e-1 -5.71e-1 -3.15e-1 -2.56e-1 1.14e-1
2 4.69e-2 -7.81e-3 5.47e-2 -1.56e-1 7.23e-1 3.32e-1 3.91e-1 5.54e-2
3 -1.45e0 -7.58e-1 -6.95e-1 -1.56e-1 -5.71e-1 -3.15e-1 -2.56e-1 1.14e-1
4 5.47e-1 2.42e-1 3.05e-1 -1.56e-1 6.06e-1 2.73e-1 3.32e-1 -1.21e-1
5 5.47e-1 2.42e-1 3.05e-1 -1.56e-1 -2.18e-1 -1.38e-1 -7.96e-2 -3.56e-1
6 -5.55e-1 -5.74e-1 1.95e-2 1.56e-2 -1.24e0 -9.13e-1 -3.25e-1 -1.52e-1
7 8.98e-1 6.84e-1 2.15e-1 1.72e-1 5.67e-1 5.19e-1 4.84e-2 8.65e-2
8 1.15e0 8.09e-1 3.40e-1 6.72e-1 9.20e-1 6.96e-1 2.25e-1 6.16e-1

Table 6: Centrality scores of the graph of Figure 3 (right) with absorption rates di = 1, i = 1, . . . , 8, i , 5 and d5 = 1.5
(Case 4), d5 = 2 (Case 5).

In Table 3 we notice that in the case of all equal absorptions, the LdWs1 ranking is
11

Case 6 Case 7
Node LdWs1 LdWo1 LdWi1 Ld1 LdWs1 LdWo1 LdWi1 Ld1

1 -1.66e0 -8.77e-1 -7.80e-1 -2.57e-1 -9.06e-1 -5.16e-1 -3.91e-1 -6.25e-2
2 -4.47e-2 -7.08e-2 2.60e-2 -2.25e-1 5.94e-1 2.34e-1 3.59e-1 -6.25e-2
3 -1.66e0 -8.77e-1 -7.80e-1 -2.57e-1 -9.06e-1 -5.16e-1 -3.91e-1 -6.25e-2
4 7.94e-1 3.49e-1 4.45e-1 -1.28e-1 1.09e0 4.84e-1 6.09e-1 -6.25e-2
5 1.25e0 5.74e-1 6.71e-1 1.04e-3 1.09e0 4.84e-1 6.09e-1 -6.25e-2
6 -6.64e-1 -6.55e-1 -9.37e-3 -7.91e-2 -1.48e0 -1.09e0 -3.98e-1 -3.44e-1
7 1.22e0 8.36e-1 3.84e-1 2.42e-1 1.17e0 8.05e-1 3.67e-1 2.19e-1
8 5.10e-1 4.81e-1 2.91e-2 4.68e-1 -3.28e-1 5.47e-2 -3.83e-1 2.19e-1

Table 7: Centrality scores of the graph of Figure 3 (right) with absorption rates di = 1, i = 1, . . . , 7 and d8 = 1.5 (Case
6), d8 = 2 (Case 7).

5, 8, 7, 4, 6, 2, 1 and 3, whereas for the case of indegrees (LdWi1), the ranking is 5, 8, 6, 7, 4, 2, 1
and 3 and for the case of outdegrees (LdWo1), the ranking is 8, 7, 5, 4, 6, 2, 1 and 3.

Setting di = 1, i = 1, . . . , 8, i , 4 and d4 = 2 (Table 5), the LdWs1 ranking is 8, 5, 6, 7, 2, 4, 3, 1,
the LdWi1 ranking is 6, 5, 8, 7, 2, 4, 3, 1, and the LdWo1 ranking is 8, 7, 5, 6, 2, 4, 3, 1.

Considering di = 1, i = 1, . . . , 8, i , 5 and d5 = 2 (Table 6), the LdWs1 ranking is
8, 2, 4, 7, 5, 1 and 3, 6,whereas the LdWi1 ranking is 2, 4, 8, 7, 5, 1 and 3, 6, and the LdWo1 ranking
is 8, 7, 2, 4, 5, 1 and 3, 6.

If we set di = 1, i = 1, . . . , 8, i , 8 and d8 = 2 (Table 7), the LdWs1 and the LdWo1 ranking is
7, 4 and 5, 2, 8, 1 and 3, 6, whereas for the case of the LdWi1, the ranking is 4 and 5, 7, 2, 8, 1 and
3, 6.

From this example one can see again that the new centrality measures, while taking absorption
into account, are also able to give connectivity more weight when determining node importance.

4. Numerical methods for the computation of the absorption inverse

From the above discussion we see how desirable is the efficient computation of the matrix Ld

and of the action of Ld on a vector b, Ldb. In the sequel, we present a direct approach for the
computation of Ld.

4.1. A direct method for the matrix Ld

Let L be a given n × n Laplacian matrix. We recall that L is a singular M-matrix [4]. We
also recall (see [4]) that the LU factorization of an irreducible M-matrix, singular or nonsingular,
always exists. Moreover, it follows from results in [10] that no pivoting is necessary when com-
puting the LU factorization of irreducible graph Laplacian matrices, since Gaussian elimination
is stable for such matrices. Therefore, the following factorization always exists:

L = LDU,
12

where L and U are unit lower and upper triangular matrices, respectively, and D is a diagonal
matrix of the form D = diag(δ1, δ2, . . . , δn−1, 0), with δi > 0 for 1 ≤ i ≤ n − 1. For undirected
graphs, L = LT and U = LT . We further note that any symmetric permutation PLPT (with P a
permutation matrix) enjoys the same properties as L.

Let us furthermore recall the following interesting property that holds for the matrix L [2].
Recall that L is irreducible since we assume that G is strongly connected.

Lemma 1. Let L be a n × n Laplacian matrix. The matrix

L− = U−1D−L−1, (5)

whereD− = diag(δ−1
1 , δ−1

2 , . . . , δ−1
n−1, 0), is a {1-2} generalized inverse of L.

Lemma 2. Suppose the Laplacian matrix L is partitioned as

L =

[
Ln−1 u
wT ln,n

]
,

where Ln−1 is (n − 1) × (n − 1). Then,

L− =

[
L−1

n−1 0n−1,1
01,n−1 0

]
.

Proof A straightforward calculation.

Remark 2. The positive matrix L−1
n−1 is called the bottleneck matrix of L based at vertex n in [13,

p. 129]. Note that L− coincides with matrix M in [13, eqn. (20)].

Formula (2) [13, Theorem 3] forms the basis for a method to compute the matrix Ld. By con-
sidering as Y in (2) the generalized inverse L− of formula (5) we have the following expression:

Ld = (In − VD)U−1D−L−1(In − DV)

which leads to Algorithm 1 below. In nearly all cases of practical interest, the Laplacian ma-
trix L is sparse. Exploiting sparsity is crucial for the efficient implementation of the proposed
algorithms. When computing the triangular factorization L = LDU, a fill-reducing ordering
must be used. Hence, the matrix L is first permuted symmetrically and then factored. If P is
the permutation matrix corresponding to the chosen ordering, then we compute the factorization
PLPT = LDU. In case of a nonhomogeneous system Lx = c,we solve the system PLPT y = Pc,
then let x = PT y. We have the following result.

Proposition 5. The absorption inverse of the permuted Laplacian matrix is the permutation of
the absorption inverse Ld that corresponds to the initial Laplacian matrix L, i.e. (PLPT)d =

PLdPT , where P is the related permutation matrix.

Proof Let D̂ = PDPT and V̂ = PV . Note that PLdPT = P(In − VD)L−(In − DV)PT and
that (PLPT)d = (In − V̂ D̂)PL−PT (In − D̂V̂) since PL−PT is a {1-2} inverse of PLPT , because
PL−PT PLPT PL−PT = PL−LL−PT = PL−PT and PLPT PL−PT PLPT = PLL−LPT = PLPT .

13

Additionally, D̂ has as diagonal entries the absorption rates that correspond to the permuted ma-
trix PLPT . Also, for v ∈ Ker(L) then Pv ∈ Ker(PLPT) since PLPT Pv = PLv = 0. There-
fore, V̂ = Pv1T /dT v = Pv1T PT /dT v, since 1T PT = 1T and thus V̂ = PVPT . Hence, we
have (PLPT)d = (In − PVPT PDPT)PL−PT (In − PDPT PVPT) = (PPT − PVDPT)PL−PT (PPT −

PDVPT) = P(PT − VDPT)PL−PT (P − PDV)PT = P(In − VD)L−(In − DV)PT = PLdPT .

In the sequel, the steps of the algorithm for computing the matrix Ld are presented.

Algorithm 1: Direct Algorithm for Ld

Input: L ∈ Rn×n a Laplacian matrix, d ∈ Rn a vector of absorption rates
Output: Ld

Obtain the triangular factorization L = LDU

Find the normalized vector v ∈ Ker(L)
Compute the matrices

L− = U−1D−L−1

Y1 = VDL−, Y2 = L−DV and Y3 = Y1DV
Return Ld = L− − Y1 − Y2 + Y3

In the implementation of Algorithm 1 we make use of the colamd and symamd functions in
Matlab, for directed and undirected graphs respectively, as permutations. Also, in the compu-
tations of matrices Y1 and Y2 we make use of forward and backward substitution with L and
U.

Remark 3. If the graph is balanced, then the normalized vector v = (1/n)1 ∈ Ker(L) since
L1 = 0. Therefore, d̃ = dT v is the mean value of the absorption rates and the matrix V has all
its entries equal to 1/

∑n
i=1 di.

Remark 4. In case of unbalanced graphs, when looking for a nonzero solution to Lv = 0, we
factor L (or, in practice, a symmetric permutation PLPT of it) as L = LDU and solve the
equivalent system DUv = 0. Since the last equation of this system is the identity 0 = 0, this is
actually an underdetermined system of n − 1 linear equations in n unknowns. Fixing the value
of vn = 1 yields the equivalent upper triangular system Uv = en, which is easily solved by
backsubstitution. Since U−1 is a nonnegative matrix, so is v. Normalization of v in the 1-norm
produces the desired vector in Ker(L).

4.2. Computation of the vector Ldb

Next, we show how to compute the action of Ld on a vector b, i.e. Ldb. The action of the
absorption inverse on a vector Ldb is evaluated through the expression (In −VD)Y(In −DV)b, by
considering as Y the generalized inverse L−, the pseudoinverse L+ or the group inverse L# of the
matrix L. A crucial step in this computation is to solve the system Lx = c for c = b − DVb. For
this system, the following holds.

Proposition 6. The system Lx = c, for c = b − DVb is consistent.

Proof The system Lx = c for c = b − DVb is consistent since it holds 1T c = 1T (b − DVb) =

1T b− 1T Dv1T b/d̃ = 1T b− 1T b = 0, as 1T D = dT and dT v = d̃. Hence c⊥Ker(LT) and therefore
c ∈ Range(L).

14

i. A direct method

In this algorithm, the action of the absorption inverse on a vector Ldb is evaluated through the
expression (In − VD)L−(In − DV)b = (In − VD)L−c, where c = b − DVb, as follows.

Algorithm 2: Direct method for computing Ldb
Input: L ∈ Rn×n a Laplacian matrix, d ∈ Rn a vector of absorption rates, b ∈ Rn a vector
Output: Ldb
Obtain the triangular factorization L = LDU

Find the normalized vector v ∈ Ker(L)
Compute the vectors

c = b − DVb and
x = L−c

Return Ldb = x − v(dT x)/d̃

Remark 5. In this Algorithm, the matrix L− is not formed explicitly and the quantity L−c is
computed using the triangular factors of L. In particular, the procedure followed for solving
Lv = 0 is described in Remark 4. In addition, when solving Lx = c with c ∈ Range(L), c , 0,
we use again the triangular factors of L (or, in practice, of PLPT). Formally, the solution is
given by x = L−c = U−1(D−(L−1c)). Hence, computing x amounts to performing a forward
substitution with L, a diagonal scaling, and finally a back substitution with U. Additionally, in
the implementation of Algorithm 2 we make use of the colamd and symamd functions in Matlab,
for directed and undirected graphs respectively, as permutations.

ii. Iterative Algorithms

In the sequel, the steps of the iterative algorithms are presented for undirected and directed
graphs. In these algorithms, the action of the absorption inverse on a vector Ldb is evaluated
through the expression (In − VD)Y(In − DV)b, by considering as Y the pseudoinverse L+ of the
matrix L. The main computational task in these algorithms is to solve the system Lx = c for
c = b − DVb. Then, by considering the solution x of the system Lx = c, it follows that Ldb is
given by the expression x − v(dT x)/d̃.

Undirected case

We recall that for any symmetric positive semidefinite matrix A and b ∈ Range(A), b , 0, the
preconditioned conjugate gradients method with x0 = 0 converges to the pseudoinverse solution
A+b of Ax = b [14].

15

Algorithm 3: Iterative methods for computing Ldb for undirected case
Input: L ∈ Rn×n a Laplacian matrix, d ∈ Rn a vector of absorption rates, b ∈ Rn a vector
Output: Ldb
Compute the normalized vector v = (1/n)1
Compute the vector c = b − DVb
Solve the system Lx = c using the preconditioned conjugate gradient method
Return Ldb = x − v(dT x)/d̃

As we will see in the section on numerical experiments, good results can be obtained using
an incomplete LU (or incomplete LDLT) factorization of the Laplacian as a preconditioner. It
is known [5] that the no-fill incomplete LU factorization of a singular M-Matrix is well-defined.
The effectiveness of this type of preconditioner can be improved if L is first permuted by a band-
reducing ordering, such as a reverse Cuthill-McKee; see, e.g., [3]. In our implementation we
make use of the symrcm function in Matlab to reorder L prior to computing its incomplete LU
factorization.

Directed case

Here, we consider the use of an iterative method for computing the action of Ld on a vector
b for the directed case. In the procedure given in Algorithm 4 below, the two linear systems are
solved using the preconditioned GMRES method [20].

Algorithm 4: Iterative methods for computing Ldb for directed case
Input: L ∈ Rn×n a Laplacian matrix, d ∈ Rn a vector of absorption rates, b ∈ Rn a vector
Output: Ldb
Solve the system Lv = 0
Compute the vector c = b − DVb
Solve the system Lx = c
Return Ldb = x − v(dT x)/d̃

The convergence properties of GMRES applied to singular systems have been studied in many
papers; see, e.g., the recent report [18]. Laplacian matrices of graphs satisfy the condition
Ker(L) ∩ Range(L) = {0}. For such matrices it is known that GMRES applied to a consistent
system Lx = c starting from an arbitrary initial guess x0 ∈ Rn converges to a solution of Lx = c
without breakdowns. Moreover, the computed solution is of the form x = L#c + (In − L#L)x0.
Hence, for x0 = 0 we obtain x = L#c. Since the group inverse is a particular case of {1}-inverse,
this solution satisfies our requirements. It is easy to see that the same holds when preconditioning
is used.

5. Updating/downdating the graph

Let us suppose that we have an updating of the graph, such as the addition of an edge between
two nodes i and j with i , j. This can be interpreted as a rank-one change in the adjacency matrix
A of the form A1 = A+eieT

j in case of directed graphs or a rank-two change in the matrix A of the
form A1 = A + (ei + e j)(ei + e j)T in case of undirected graphs. Assume that we have a rank-one

16

change in the matrix A. In this case, the diagonal matrix W is changed into W1 = W + e jeT
j and

therefore, the Laplacian matrix of A1, denoted as L1, has the form L1 = W1−A1 = L− (ei−e j)eT
j .

Then we have the following results. The case of a deletion of an edge, i.e. downdating of the
graph, is treated along similar lines.

Proposition 7. The generalized inverse (5) of the Laplacian matrix L1 = L− (ei − e j)eT
j , denoted

as L−1 , is L−1 = L− −
1
q j

qL−j,:, where L−j,: denotes the jth row of the matrix L− and q =
1
vn

v. In the

case of balanced graphs, the aforementioned expression of L−1 can be written as L−1 = L− − 1L−j,:.

Proof Let us consider the formula L−1 = (In − M)L−, given in [9, page 32], where M =
1

eT
j FFT e j

FFT e jeT
j and F = In − L−L . It follows from Lemma 2 that the matrix F has all

its entries zero except for its last column, which is equal to
[
−L−1

n−1u
1

]
. In turn, this is equal to

the vector q =
1
vn

v. To see this, recall that v is the unique positive vector in the null space of L

with entries adding up to 1. Recall the partitioning of L in Lemma 2. Our claim is that

1
vn

v =

[
−Ln−1u

1

]
.

Note that the vector on the right hand side is positive, since the entries of L−1
n−1 are strictly positive

and u is a nonpositive, nonzero vector. We have[
Ln−1 u
wT ln,n

] [
−L−1

n−1u
1

]
=

[
0n−1,1

ln,n − wT L−1
n−1u

]
.

From the (unique) block LU factorization of L,

L =

[
Ln−1 u
wT ln,n

]
=

[
In−1 0n−1,1

wT L−1
n−1 1

] [
Ln−1 u
01,n−1 0

]
we obtain ln,n = wT L−1

n−1u. This shows that the last column of F is in the null space of L and
therefore (up to the normalization factor vn) it must equal v. Then, the matrix M has only one

nonzero column, namely its jth column, which is equal to the vector
1
q j

q.Hence, ML− =
1
q j

qL−j,:.

In the case of balanced graphs, q = 1.

Proposition 8. The absorption inverse of L1, Ld
1, can be computed by updating Ld by the formula

Ld
1 = Ld − (In − VD)L−DK − KD(In − M)L−(In − D(V + K)),

where M =
1
q j

qeT
j and q =

1
vn

v, K =
1

dT v − k1
(Vk1 − K2), k1 = dT z, K2 = z1T ,

z =
v j

L−ji − L−j j − 1
(L−:,i − L−:, j), v j is the jth entry of v and L−:, j denotes the jth column of the

matrix L−.
17

Proof The vector ṽ ∈ Ker(L1) can be computed by the formula ṽ = v−
v j

eT
j L−(ei − e j) − 1

(L−(ei−

e j)) [9, equation (1.4)]. Then, Ṽ =
1

dT ṽ
ṽ1T = V + K, where K =

1
dT v − k1

(Vk1 − K2), k1 =

dT z, K2 = z1T , z =
v j

e jL−(ei − e j) − 1
(L−(ei − e j)) and v j is the jth entry of v. Therefore,

Ld
1 = (In − ṼD)L−1 (In − DṼ) = Ld − (In − VD)L−DK − KD(In − M)L−(In − D(V + K)), since

(In − VD)M = 0n,n.

It can be seen that the absorption inverse of the modified graph is at most a rank-two modifi-
cation of the absorption inverse of the original graph.

6. Estimation of individual entries of the absorption inverse matrix for undirected graphs

In some situations, individual entries of Ld are of interest. It is desirable to be able to compute
or estimate these entries without having to compute the whole matrix Ld. For estimating specific
entries of the matrix Ld we can consider estimates of the bilinear form yT Ldx, x, y ∈ Rn for
the specific selection of the vectors y, x to be the ith and the jth columns of the identity matrix,
respectively. In particular, in the case of an undirected graph, considering formula Ld = (In −

VD)L+(In − DV) and x = y = ei we have

Ld
ii = eT

i Ldei = (eT
i − eT

i VD)L+(ei − DVei) = uT L+u,

where u = ei − DVei and L+ =

(
L +

1
n

11T

)−1

−
1
n

11T [24]. Hence, we have

Ld
ii = uT

(
L +

1
n

11T
)−1

u −
1
n

(uT 1)2.

Proposition 9. For an undirected graph, it holds Ld
ii = uT

(
L +

1
n

11T

)−1

u, where u = ei−DVei.

Proof It holds Ld
ii = uT

(
L +

1
n

11T

)−1

u −
1
n

(uT 1)2, where u = ei − DVei and
1
n

(uT 1)2 = 0 since

uT 1 = eT
i 1 − eT

i VD1 = 1 − eT
i v1T d/d̃ as D1 = d. Also, we have 1T d =

∑n
i=1 di, d̃ = dT v =∑n

i=1 di/n and v = (1/n)1. Therefore, uT 1 = 1 − eT
i v1T d/d̃ = 1 − eT

i 1 = 1 − 1 = 0.

We can obtain approximations and upper/lower bounds for the quantity uT

(
L +

1
n

11T

)−1

u

through an approach based on Gauss quadrature rules and the Lanczos algorithm [11]. Let B =

L +
1
n

11T . Note that B is symmetric positive definite. Consider the spectral decompositions

B = QΛQT , B−1 = QΛ−1QT ,

where Q is orthogonal and Λ diagonal, with the eigenvalues of B in nondecreasing order down
the main diagonal. For u ∈ Rn we have

uT B−1u = uT QΛ−1QT u = pT Λ−1p =

n∑
i=1

λ−1
i p2

i ,

18

where p = QT u. Rewrite this as a Riemann-Stieltjes integral:

uT B−1u =

∫ b

a
λ−1dµ(λ),

where the measure dµ is defined via

µ(λ) =

0 λ < a = λ1∑i

j=1 p2
j λi ≤ λ < λi+1∑N

j=1 p2
j b = λn ≤ λ.

Evaluation of the Riemann-Stieltjes integral requires knowledge of the eigendecomposition of
B, which is not available in general. The integral, however, can be approximated by means of
Gaussian quadrature rules [1, 11]. Recall that the general Gauss-type quadrature rule is∫ b

a
f (λ)dµ(λ) =

m∑
j=1

w j f (t j) +

M∑
k=1

vk f (zk) + R[f],

where the nodes t j are the zeros of orthogonal polynomials (with respect to the measure dµ), the
nodes z j (if any) are prescribed, and the weights w j and vk are to be determined. The error term
R[f] is given by

R[f] =
f (2m+M)(η)
(2m + M)!

∫ b

a

M∏
k=1

(λ − zk)

 m∏
j=1

(λ − t j)

2

dµ(λ),

where η ∈ (a, b), assuming that the function f is of class C(2m+M) on [a, b].
More precisely, we have three types of Gaussian quadrature rules:

• Gauss: M = 0,

• Gauss–Radau: M = 1, z1 = a or z1 = b,

• Gauss–Lobatto: M = 2, z1 = a and z2 = b.

The Lanczos algorithm (with starting vector u) can be used to generate the family of (discrete)
orthogonal polynomials with respect to dµ. These polynomials satisfy a three-term recurrence,
the coefficients of which are the entries of the tridiagonal matrix Jm generated by the Lanczos
algorithm after m steps:

Jm =

ω1 γ1
γ1 ω2 γ2

. . .
. . .

. . .

γm−2 ωm−1 γm−1
γm−1 ωm

.

The eigenvalues of Jm are the Gauss quadrature nodes, whereas the Gauss weights are given
by the squares of the first entries of the normalized eigenvectors of Jm. Alternatively, the Gauss
quadrature rule can also be computed as the (1, 1) entry of J−1

m , which can be evaluatted incremen-
tally for m = 1, 2, . . . (see [11, Section 6.2.4]). When u = ei − DVei, we obtain approximations

19

of the (i, i) entry of Ld. From the expression of the quadrature error term given above and the
fact that M = 0 for the Gauss rule, we see that the error is always positive and therefore the
Gauss approximation to the (i, i) entry of Ld is a lower bound. The Gauss–Radau rule and the
Gauss–Lobatto rules can be used to obtain upper bounds; all these bounds become increasingly
tight as m increases. Taking the mean of these lower and upper bounds results in estimates for the
quantities of interest, together with bounds on the corresponding error. Usually, a few Lanczos
steps (i.e., a few quadrature nodes) are sufficient to obtain very good approximations.

The non-diagonal entries of Ld can be approximated by using the polarization identity

zT B−1y =
1
4

((s, B−1s) − (t, B−1t)), for z, y ∈ Rn, s = z + y, t = z − y. Therefore, for z = ei

and y = e j we have

Ld
i j =

1
4

(
(s, B−1s) − (t, B−1t)

)
+

1
4n

(
(tT 1)2 − (sT 1)2

)
, s = ei+e j−DV(ei+e j), t = ei−e j−DV(ei−e j).

Proposition 10. For an undirected graph, it holds Ld
i j =

1
4

(
(s, B−1s) − (t, B−1t)

)
, s = ei + e j −

DV(ei + e j), t = ei − e j − DV(ei − e j).

Proof It holds Ld
i j =

1
4

(
(s, B−1s) − (t, B−1t)

)
+

1
4n

(
(tT 1)2 − (sT 1)2

)
, s = ei +e j−DV(ei +e j), t =

ei − e j − DV(ei − e j) and
1
4n

(
(tT 1)2 − (sT 1)2

)
= 0, since tT 1 = sT 1 = 0 along the same lines as

in the proof of Proposition 9.

Then, estimates for the elements Ld
i j can be obtained by approximating the quadratic forms on

the right hand side of the identity.

7. Numerical examples

In this section, numerical experiments are presented for the computation of the matrix vector
product Ldb, where b is a vector with all ones, through the iterative methods (Example I) and
through the direct method (Example II). In cases that the given graph is not strongly connected,
i.e. rank(L) < n − 1, we consider the largest connected graph component (LCC). In Example II
the matrix Ld is also computed through the direct approach. Additionally, individual entries of
the absorption inverse matrix are estimated in Example III following the procedure described in
section 6. In these experiments, random absorption rates are considered.

The networks tested in the following Tables are obtained by the SuiteSparse matrix collection
[21]. The computations are performed in matlab R2015b 64-bit (win64), on an Intel Core i5-
6200U with 8 GB RAM at 2.3 GHz.

Example I. Computation of Ldb through the iterative algorithms for directed and undi-
rected graphs

We compute Ldb for directed (Tables 8-9) and undirected graphs (Tables 10 - 13) of fairly
large dimension varying from O(104) − O(106) by employing iterative methods with specific
preconditioners and with a tolerance of O(10−6). In particular, we used the Jacobi (or diagonal)
preconditioner, the symmetric Gauss-Seidel (SGS) preconditioner, the ILU preconditioner with

20

no-fill and the block ILU preconditioner with number of blocks 8, 16 and 32. Here, by block ILU
preconditioner we mean a block Jacobi type preconditioner with a no-fill ILU decomposition of
each diagonal block replacing the exact blocks. Whenever n is not divisible by one of these
integers, the last block will have smaller size than the remaining ones.

Tables 8-13 summarize the attained results as follows. The first columns of the Tables 8,
10, 12 display the characteristics of the networks, i.e. the name, the number of nodes n of the
network and of the LCC if the network is not strongly connected, as well as the number of edges
of the network or its LCC. In the subsequent columns of these Tables and in Tables 9, 11, 13 we
report the number of iterations required for attaining the given tolerance and the execution time
(in seconds) for each applied preconditioner. Also, for undirected graphs an algebraic multigrid
(AMG) solver of the symmetric linear system Lx = c is employed with a tolerance of O(10−6)
and maximum number of iterations equal to 2000 [12], [17]. The results are presented in the
last two columns of Tables 11 and 13 and concern the standard V-cycle AMG solver, using the
Heavy Edge Coarsening (HEC) algorithm [23].

All the presented results are averaged and rounded (for the iteration counts) over 5 runs, since
we are using random absorption rates. For the results presented in Table 8, the GMRES method
is restarted every 100 iterations. In this Table the iterations required are reported in brackets [·, ·],
where the first number corresponds to the iterations required for the computation of v ∈ Ker(L)
and the second number corresponds to the iterations required for the solution of the system
Lx = c.

Network n nodes edges Jacobi SGS
of LCC of LCC its Time its Time

ca-HepPh 12008 11204 235268 [57, 86] 3.855e-1 [32, 56] 2.662e-1
email-Enron 36692 33696 361622 [46, 83] 7.312e-1 [34, 52] 5.739e-1

p2p-Gnutella31 62586 14149 50916 [32, 32] 1.115e-1 [17, 17] 7.190e-2
enron 69244 8271 147353 [45, 43] 1.392e-1 [28, 28] 1.141e-1

soc-Epinions1 75888 32223 443506 [39, 80] 6.577e-1 [24, 49] 4.913e-1
soc-Slashdot0811 77360 70355 888662 [34, 42] 6.918e-1 [22, 26] 6.083e-1

Wordnet3 82670 13755 37497 [98, 132] 6.704e-1 [54, 68] 3.560e-1
internet 124651 6437 18327 [444, 473] 1.689e0 [201, 198] 8.873e-1
Stanford 281903 150532 1576314 [202, 518] 4.179e1 [201, 308] 3.206e1

Linux call graph 324085 2760 6425 [51, 50] 5.470e-2 [26, 25] 3.354e-2
cnr-2000 325557 112023 1646332 [401, 1281] 3.995e1 [202, 1237] 5.294e1

NotreDame www 325729 34643 179725 [303, 679] 6.638e0 [141, 334] 4.408e0
web-NotreDame 325729 53968 304685 [401, 963] 1.339e1 [195, 512] 8.478e0

Stanford Berkeley 683446 333752 4509784 [141, 248] 5.729e1 [101, 691] 1.386e2
web-BerkStan 685230 334857 4523232 [540, 1405] 2.813e2 [197, 428] 1.031e2

flickr 820878 527476 9357071 [164, 241] 9.422e1 [82, 117] 5.417e1
eu-2005 862664 752725 17933415 [224, 963] 4.170e2 [106, 715] 3.542e2

web-Google 916428 434818 3419124 + + [665, 4040] 1.029e3
in-2004 1382908 593687 7827263 [674, 2430] 8.220e2 [541, 1543] 6.376e2

wikipedia-20051105 1634989 1103453 18245140 [39, 41] 2.777e1 [23, 25] 2.255e1
wiki-Talk 2394385 111881 1477893 [26, 28] 7.832e-1 [15, 17] 7.814e-1

wikipedia-20061104 3148440 2104115 36125805 [39, 36] 5.297e1 [22, 22] 4.272e1

Table 8: Execution time in seconds and number of iterations for computing Ldb, where b is a vector with all ones
(directed case). The symbol + stands for failure to converge.

In Tables 8-13 we notice that the quantity Ldb can be computed efficiently in seconds or at
21

Network ILU block - ILU-8 block - ILU-16 block - ILU-32
its Time its Time its Time its Time

ca-HepPh [12, 15] 1.503e-1 [30, 38] 2.306e-1 [32, 41] 1.939e-1 [31, 42] 2.068e-1
email-Enron [14, 19] 2.176e-1 [38, 59] 6.015e-1 [40, 67] 6.585e-1 [40, 61] 6.102e-1

p2p-Gnutella31 [12, 12] 4.775e-2 [29, 29] 1.042e-1 [30, 31] 1.144e-1 [31, 31] 1.196e-1
enron [12, 12] 5.153e-2 [31, 31] 1.049e-1 [33, 33] 1.134e-1 [34, 35] 1.142e-1

soc-Epinions1 [13, 22] 2.432e-1 [34, 63] 6.123e-1 [33, 63] 5.681e-1 [33, 64] 5.495e-1
soc-Slashdot0811 [11, 15] 3.709e-1 [25, 29] 5.881e-1 [30, 36] 6.948e-1 [32, 37] 6.876e-1

Wordnet3 [17, 18] 6.452e-2 [79, 93] 5.406e-1 [82, 98] 5.328e-1 [86, 101] 5.831e-1
internet [100, 101] 4.943e-1 [359, 295] 1.340e0 [397, 339] 1.356e0 [428, 407] 1.545e0
Stanford [89, 561] 4.142e1 [201, 513] 4.658e1 [182, 528] 4.338e1 [202, 656] 4.530e1

Linux call graph [17, 17] 1.560e-2 [42, 41] 4.458e-2 [45, 44] 4.818e-2 [46, 45] 5.047e-2
cnr-2000 [101, 502] 1.762e1 [142, 1672] 5.011e1 [104, 2733] 6.973e1 [184, 2714] 7.043e1

NotreDame www [88, 255] 2.560e0 [195, 819] 7.450e0 [200, 1142] 9.335e0 [201, 1396] 1.123e1
web-NotreDame [91, 2303] 2.696e1 [201, 1340] 1.632e1 [219, 1461] 1.846e1 [220, 2225] 2.639e1

Stanford Berkeley [101, 391] 7.962e1 [101, 411] 8.213e1 [102, 607] 1.067e2 [102, 606] 1.053e2
web-BerkStan [127, 415] 8.632e1 [201, 381] 9.558e1 [225, 1402] 2.469e2 [301, 973] 1.921e2

flickr [35, 58] 2.183e1 [101, 201] 8.370e1 [101, 201] 8.101e1 [101, 201] 8.015e1
eu-2005 [81, 249] 1.313e2 [191, 9062] 4.239e2 [192, 765] 3.628e2 [132, 1000] 4.269e2

web-Google [304, 781] 2.291e2 [601, 1818] 5.081e2 [400, 4039] 9.464e2 [500, 4371] 1.018e3
in-2004 [269, 1635] 5.814e2 [624, 1776] 6.880e2 [319, 947] 3.487e2 [546, 1468] 5.551e2

wikipedia-20051105 [12, 12] 1.074e1 [29, 31] 2.151e1 [31, 35] 2.254e1 [34, 36] 2.393e1
wiki-Talk [10, 10] 6.067e-1 [23, 24] 9.343e-1 [23, 24] 8.633e-1 [23, 24] 7.806e-1

wikipedia-20061104 [14, 12] 2.637e1 [31, 30] 4.771e1 [35, 33] 5.025e1 [36, 34] 5.031e1

Table 9: Execution time in seconds and number of iterations for computing Ldb, where b is a vector with all ones
(directed case).

Network n edges Jacobi SGS ILU
its Time its Time its Time

cs4 22499 87716 220 1.645e-1 86 1.299e-1 77 1.260e-1
as-22July06 22963 96872 62 5.681e-2 30 5.288e-2 22 4.149e-2

fe tooth 78136 905182 242 9.784e-1 108 9.916e-1 84 8.058e-1
fe rotor 99617 1324862 278 1.496e0 123 1.543e0 101 1.289e0
fe ocean 143437 819186 599 4.214e0 212 2.568e0 206 2.478e0

coAuthorsCiteseer 227320 1628268 305 4.107e0 124 3.480e0 48 1.410e0
citationCiteseer 268495 2313294 243 4.224e0 101 3.665e0 79 2.959e0
coAuthorsDBLP 299067 1955352 173 3.163e0 70 2.635e0 34 1.403e0

auto 448695 6629222 433 1.359e1 191 1.285e1 154 1.058e1
coPapersDBLP 540486 30491458 224 1.917e1 93 1.842e1 40 1.076e1

tx2010 914231 4456272 2616 1.304e2 1061 9.956e1 784 7.340e1
NACA0015 1039183 6229636 3712 2.026e2 1529 1.566e2 1132 1.108e2

belgium osm 1441295 3099940 14722 9.207e2 5462 5.335e2 2613 2.573e2
netherlands osm 2216688 4882476 25219 2.576e3 9521 1.466e3 5108 7.835e2

M6 3501776 21003872 6261 1.129e3 2478 7.961e2 1827 6.130e2
333SP 3712815 22217266 8876 1.663e3 3599 1.200e3 2653 9.055e2

venturiLevel3 4026819 16108474 10079 1.804e3 3623 1.023e3 3282 9.626e2

Table 10: Execution time in seconds and number of iterations for computing Ldb, where b is a vector with all ones
(undirected case).

22

Network block - ILU-8 block - ILU-16 block - ILU-32 AMG
its Time its Time its Time its Time

cs4 103 1.598e-1 122 2.111e-1 162 2.435e-1 121 1.539e0
as-22July06 58 7.939e-2 59 7.221e-2 59 7.334e-2 49 3.268e-1

fe tooth 161 1.399e0 187 1.497e0 204 1.618e0 285 7.608e0
fe rotor 159 1.931e0 189 2.083e0 202 2.243e0 + +

fe ocean 253 3.038e0 278 3.173e0 316 3.548e0 281 1.106e1
coAuthorsCiteseer 106 2.777e0 108 2.698e0 113 2.828e0 + +

citationCiteseer 104 3.301e0 117 3.354e0 150 4.175e0 454 4.398e1
coAuthorsDBLP 79 2.972e0 91 2.916e0 96 3.092e0 517 5.094e1

auto 219 1.461e1 252 1.617e1 318 1.959e1 + +

coPapersDBLP 74 1.340e1 100 1.663e1 105 1.686e1 888 4.149e2
tx2010 902 8.484e1 976 8.914e1 1093 1.005e2 † †

NACA0015 1258 1.234e2 1293 1.242e2 1362 1.317e2 1294 3.567e2
belgium osm 2851 2.765e2 3050 2.918e2 3526 3.383e2 + +

netherland osm 5442 8.230e2 5762 8.672e2 6067 9.202e2 + +

M6 2114 6.774e2 2101 6.907e2 2189 7.038e2 + +

333SP 3228 1.071e3 3524 1.261e3 3738 1.240e3 + +

venturiLevel3 3558 1.026e3 3567 1.006e3 3593 1.009e3 + +

Table 11: Execution time in seconds and number of iterations for computing Ldb, where b is a vector with all ones
(undirected case). The symbol † stands for failure to converge due to instability.

Network n nodes edges Jacobi SGS
of of LCC its Time its Time

roadNet-CA 1971281 1957027 5520776 8342 7.762e2 3266 5.201e2
roadNet-PA 1090920 1087562 3083028 5665 2.985e2 2098 1.890e2
roadNet-TX 1393383 1351137 3758402 10301 6.601e2 4088 4.492e2

as-Skitter 1696415 1694616 22188418 357 5.575e1 167 5.099e1
hollywood-2009 1139905 1069126 113682432 157 6.429e1 68 7.071e1

packing-500x100x100-b050 2145852 2145839 34976486 1062 1.543e2 388 1.173e2

Table 12: Execution time in seconds and number of iterations for computing Ldb, where b is a vector with all ones
(undirected case).

Network ILU block - ILU-8 block - ILU-16 block - ILU-32 AMG
its Time its Time its Time its Time its Time

roadNet-CA 2644 4.372e2 2795 4.492e2 2949 4.677e2 3154 4.980e2 1482 9.073e2
roadNet-PA 1793 1.697e2 1931 1.738e2 1979 1.772e2 2110 1.885e2 892 2.770e2
roadNet-TX 3272 3.638e2 3457 3.836e2 3600 3.936e2 3711 4.051e2 1152 4.592e2

as-Skitter 163 5.277e1 265 6.181e1 306 6.623e1 316 6.535e1 + +

hollywood-2009 18 1.008e2 42 6.675e1 46 5.364e1 47 4.409e1 302 1.262e3
packing-500x100x100-b050 340 1.039e2 382 1.159e2 395 1.168e2 411 1.223e2 + +

Table 13: Execution time in seconds and number of iterations for computing Ldb, where b is a vector with all ones
(undirected case).

23

most a few minutes of CPU time even for large graphs with up to 36 million edges. In particular,
concerning the directed graphs, the results presented in Tables 8 and 9 show that the ILU precon-
ditioner attains the fastest convergence and execution time in most of the test cases. Although
the block ILU preconditioners are not as efficient as the ILU preconditioner, their performance
is presented since they can be easily used in a parallel implementation reducing in this way the
execution time of the whole computation. Also, we observe that for the web-Google network, the
method does not converge using the Jacobi preconditioner (Table 8), considering the maximum
number of iterations equal to 50000.

Concerning the undirected graphs, the results presented in Tables 10 - 13 show again that the
ILU preconditioner results in the fastest convergence and execution time in the most of the graphs
that are tested, whereas the Jacobi preconditioner requires the most iterations and execution
time. In these Tables, the results of the PCG method using various preconditioners are also
compared with those using an algebraic multigrid (AMG) solver of the symmetric linear system
Lx = c. In these experiments we notice that AMG is generally much slower than the incomplete
factorization preconditioned CG and in several cases it failed to convergence in 2000 iterations.

Example II. Computation of Ld and Ldb through the direct algorithm

Let us consider the undirected networks email, data, uk, power, wing-nodal and the directed
networks cage9 and cell1. In Table 14 we report the execution time in seconds for computing Ld

and Ldb, through the direct algorithm. The first three columns of the Table display the charac-
teristics of the networks, i.e. the name, the number of nodes n and the number of edges of each
network. We remark that Ld is generally a dense matrix.

Network n edges Ld Ldb
email 1133 10902 2.493e-1 3.997e-2
data 2851 30186 1.902e0 1.012e-1

cage9 3534 41594 1.636e1 6.460e-1
uk 4824 13674 5.072e0 2.113e-1

power 4941 13188 4.905e0 2.101e-1
cell1 7055 30082 1.153e1 3.205e-1

wing nodal 10937 150976 2.217e2 3.918e0

Table 14: Execution time in seconds for computing Ld and Ldb, where b is a vector with all ones, through the direct
algorithm.

From Table 14 we can see that for networks of moderate size the direct methods are sufficient
for the computation of the absorption inverse Ld and of the quantity Ldb. In particular, we observe
that Ldb is computed in less than half second of CPU time, for graphs with up to 5000 nodes,
and less than 5 seconds of CPU time, for graphs with up to 10000 nodes.

Example III. Estimation of individual entries of the absorption inverse matrix

In this Example, we estimate individual entries of the absorption inverse matrix for undirected
graphs through the method described in section 6 by using Gauss-Radau quadrature rule. In Table
15 we report the iterations of the algorithm and the execution time in seconds for computing

24

certain diagonal elements of the tested networks as well as an upper bound for the relative error
that is attained for this estimation, given by the absolute value of the difference of the upper and
lower bound for the diagonal element divided by the absolute value of its lower bound. In this
Table we keep the upper bound for the relative error less that 10−2.

Network n edges i its Time Rel. error ub
email 1133 10902 10 11 2.054e-1 6.974e-3
data 2851 30186 100 67 1.548e1 9.863e-3

power 4941 13188 20 165 2.240e2 9.755e-3
wing-nodal 10937 150976 5 28 2.448e0 9.353e-3

cs4 22499 87716 50 55 1.037e1 9.811e-3
as-22July06 22963 96872 500 72 2.245e1 9.550e-3

wing 62032 243088 1 74 2.678e1 9.954e-3
fe tooth 78136 905182 3 72 2.945e1 9.406e-3
fe rotor 99617 1324862 2 146 1.775e2 9.807e-3
fe ocean 143437 819186 30 215 4.484e2 9.826e-3

Table 15: Estimation of the ith diagonal entry of the absorption inverse matrix

In Table 15 we can see that individual entries of the test networks can be approximated using
the Gauss quadrature rules and the Lanczos algorithm. In particular, using the Gauss-Radau
rule we obtain upper and lower bounds for these entries which also give an upper bound for the
relative error of this approximation, in a satisfactory execution time. It should be observed that
the estimation of the ith diagonal entry is independent of the estimation of the jth diagonal entry;
therefore, multiple diagonal entries can be computed in parallel.

8. Conclusions

We have described and compared different algorithms for the computation of the absorption
inverse and related quantities. Direct and iterative methods with various preconditioners have
been tested and compared for networks of various types. Techniques for estimating individual
entries of the absorption inverse have been also discussed.

Based on the numerical methods developed, we also studied different centrality measures for
graphs with absorption. These measures are compared with the one proposed in [13] for various
graphs such as the star graph, the cycle and the path graph. The proposed centrality measures
take into consideration both the absorption rates and the structure of the underlying graph and
can be applied also when the absorption rates are all equal.

Furthermore, we have considered the case where the graph undergoes the addition (or deletion)
of an edge. In this case the absorption inverse can be efficiently computed by updating the
absorption inverse of the initial graph with a rank-two change.

Based on the numerical experiments performed, we can conclude that the proposed methods
are efficient and provide easily applied tools for handling large graphs with several million nodes
and edges.

25

Acknowledgments

The authors acknowledge Junyuan Lin for sharing the AMG code. The work of M.B. was sup-
ported in part by the US National Science Foundation (grant DMS-1719518). P. F. would like to
acknowledge financial support from the Foundation for Education and European Culture (IPEP)
as well as from the Department of Mathematics and Computer Science of Emory University.

References
[1] Z. Bai, M. Fahey, G. H. Golub, Some large-scale matrix computation problems, J. Comput. Appl. Math., 74 (1996)

71–89.
[2] M. Benzi, A direct projection method for Markov chains, Linear Algebra Appl., 386 (2004) 27–49.
[3] M. Benzi, Preconditioning techniques for large linear systems: a survey, J. Comp. Phys., 182 (2002), 418–477.
[4] A. Berman, R. J. Plemmons, Nonnegative Matrices in the Mathematical Sciences, Society for Industrial and Ap-

plied Mathematics, Philadelphia, 1994.
[5] J. J. Buoni, Incomplete factorization of singular M-matrices, SIAM J. Alg. Discrete Methods, 7 (2) (1986) 193–198.
[6] S. L. Campbell and C. D. Meyer, Generalized Inverses of Linear Transformations, Pitman Publishing Ltd., London

and San Francisco, 1979. Reprinted by Dover Publishing Co., New York, 1991.
[7] E. Estrada, The Structure of Complex Networks, Oxford University Press, Oxford, UK, 2011.
[8] E. Estrada, J. A. Rodrı́guez-Velázquez, Subgraph centrality in complex networks, Phys. Rev. E, 71 (2005) 056103.
[9] R. E. Funderlic, R. J. Plemmons, Updating LU factorizations for computing stationary distributions, SIAM

J. Alg. Disc. Meth., 7(1) (1986) 30–42.
[10] R. E. Funderlic, R. J. Plemmons, LU decomposition of M-matrices by elimination without pivoting, Linear Algebra

Appl., 41 (1981) 99–110.
[11] G. H. Golub, G. Meurant, Matrices, Moments and Quadrature with Applications, Princeton University Press,

Princeton, 2010.
[12] X. Hu, J. Lin, L. Zikatanov, An adaptive multigrid method based on path cover, arXiv:1806.07028va1, 19 June

2018.
[13] K. A. Jacobsen, J. H. Tien, A generalized inverse for graphs with absorption, Linear Algebra Appl., 537 (2018)

118–147.
[14] E. F. Kaasschieter, Preconditioned conjugate gradients for solving singular systems, J. Comput. Appl. Math., 24

(1988) 265–275.
[15] L. Katz, A new status index derived from sociometric data analysis, Psychometrika, 18 (1953) 39–43.
[16] A. N. Langville, C. D. Meyer, Google’s PageRank and Beyond: The Science of Search Engine Rankings, Princeton

University Press, Princeton, NJ, 2006.
[17] O. E. Livne, A. Brandt, Lean Algebraic Multigrid (LAMG): Fast Graph Laplacian Linear Solver, SIAM J. Sci.

Comput., 34 (2012) B499–B522.
[18] K. Morikuni, M. Rozloznik, On GMRES for singular EP and GP systems, SIAM J. Matrix Anal. Applic., 39 (2018)

1033–1048.
[19] M. E. J. Newman, Networks: An Introduction, Cambridge University Press, Cambridge, UK, 2010.
[20] Y. Saad, M. Schultz, GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems,

SIAM J. Sci. Stat. Comput., 7 (3) (1986) 856–869.
[21] The SuiteSparse Matrix Collection, https://sparse.tamu.edu/

[22] J. H. Tien, Z. Shuai, M. C. Eisenberg, P. van den Driessche, Disease invasion on community networks with envi-
ronmental pathogen movement, J. Math. Biol., 70 (5) (2015) 1065–1092.

[23] J. C. Urschel, X. Hu, J. Xu, L. Zikatanov, A cascadic multigrid algorithm for computing the Fiedler vector of graph
Laplacians, J. Comput. Math., 33 (2) (2015) 209–226.

[24] P. Van Mieghem, Graph Spectra for Complex Networks, Cambridge University Press, 2011.

26

