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We study Nash equilibria for a sequence of symmetric N -player stochas-
tic games of finite-fuel capacity expansion with singular controls and their
mean-field game (MFG) counterpart. We construct a solution of the MFG
via a simple iterative scheme that produces an optimal control in terms of a
Skorokhod reflection at a (state-dependent) surface that splits the state space
into action and inaction regions. We then show that a solution of the MFG
of capacity expansion induces approximate Nash equilibria for the N -player
games with approximation error ε going to zero as N tends to infinity. Our
analysis relies entirely on probabilistic methods and extends the well-known
connection between singular stochastic control and optimal stopping to a
mean-field framework.

1. Introduction. Mean-field games (MFGs) were first introduced in Huang, Malhamé
and Caines (2006) and Lasry and Lions (2007) as an elegant and tractable way to study ap-
proximate Nash equilibria in nonzero-sum symmetric stochastic differential games for a large
population of players with a mean-field interaction, that is, each player interacts with the rest
of the population through its empirical distribution. The idea is that a large-population game
of this type should behave similarly to its MFG counterpart, which may be thought of as an
infinite-player version of the game. Exploiting the underlying symmetry while passing to the
limit with the number of players tending to infinity, the sequence of games converges in some
sense to a problem in which the game structure is preserved in a simpler form for a “repre-
sentative player”. Such representative player responds optimally to the distribution of the
population which, at equilibrium, coincides with the distribution of the optimally controlled
state variable. Once the limit problem is solved, its solution can typically be implemented in
the N -player game and provides an approximate Nash equilibrium with vanishing error as N

tends to infinity.
From a practical point of view, this approximation result can be very useful since tackling

directly the N -player game is often unfeasible when N is very large due the curse of di-
mensionality. In the past few years, many authors from different mathematical backgrounds
have studied this class of games. Two approaches have been adopted to address the study of
MFGs: an analytic approach as in, for example, the initial paper Lasry and Lions (2007), and
a probabilistic one. Here we follow the latter, which has been developed in a series of papers
by Carmona, Delarue, and their co-authors (see, e.g., Carmona and Delarue (2013a, 2013b),
Carmona, Delarue and Lacker (2016), Carmona and Lacker (2015)). We refer the reader to
the lecture notes by Cardaliaguet (2012) and the two-volume monograph by Carmona and
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Delarue (2018) for comprehensive presentations of MFG theory and its applications from
analytic and probabilistic perspective, respectively.

The literature on MFGs is rapidly growing. Most of the papers deal with games where
players use “regular controls” in order to optimise their payoffs. Here by regular controls we
mean those having a bounded impact on the velocity of the underlying dynamics. Only few
papers have studied the case of MFGs with singular controls, which is a larger class of con-
trols allowing for unbounded changes in the velocity of the underlying process and possible
discontinuities in the state trajectories. More specifically, Fu and Horst (2017) established
an abstract existence result for solutions of a general MFG with singular control, using the
notion of relaxed solutions. The same approach was also applied in Fu (2017) to extend the
previous results to MFG with interaction through the controls as well. In both papers, the
issue of finding approximate Nash equilibria in the N -player games is left aside. Guo, Tang
and Xu (2018) propose and analyse a class of N -player stochastic games that also includes
so-called ‘finite fuel’ controls, which will be introduced in detail later in the paper. To the
best of our knowledge, only the works of Cao, Guo and Lee (2017), Guo and Xu (2019)
and Cao and Guo (2022) tackle simultaneously MFGs and N -player games with singular
controls. Their analysis is based on verification theorems and quasi-variational inequalities
specifically designed for their settings and not amenable to simple extensions. For complete-
ness, we also mention the two papers Hu, Øksendal and Sulem (2014), Zhang (2012), which
use a maximum principle approach to solve singular control problems with mean-field dy-
namics for the state variables. A class of controls closely related to singular controls is that of
impulses, which has also received attention recently within MFG theory. We mention the two
papers Basei, Cao and Guo (2019) and Zhou and Huang (2017), where MFGs with impulse
controls are considered and solved using an approach based on quasi-variational inequalities
and exploiting the stationarity properties of their settings. Finally, the article Bertucci (2020)
proves existence and uniqueness of a MFG equilibrium with impulse controls and it provides
a variational characterization of the density of jumping particles arising from such problem.

1.1. Model description. In this article, we study Nash equilibria for a class of symmetric
N -player stochastic differential games, for large N , and we characterise the solutions of the
associated MFG. Specifically, we consider a class of finite-fuel capacity expansion games
with singular controls. The control exerted by each agent (the “capacity expansion”) is mod-
elled via a bounded variation process and the “finite-fuel” condition prescribes that the total
variation of the control be bounded by a deterministic constant (i.e., the maximum capacity
expansion is capped). Moreover, each agent incurs costs proportional to the amount of fuel
being used.

In order to set out our main results, we provide here a short description of the N -player
game of capacity expansion (see Section 4.1 for a full account). The game is set over a finite-
time horizon T given and fixed. We consider a complete probability space (�,F, P̄) equipped
with a right-continuous filtration F := (Ft )t∈[0,T ] which is augmented with all the P̄-null sets.
There are N players in the game and the ith player, i = 1, . . . ,N , chooses a strategy ξN,i =
(ξ

N,i
t )t∈[0,T ] from the set of all right-continuous nondecreasing adapted processes, affecting

the player’s own private state variables (XN,i, YN,i). Given a drift a : R× [0,1] → R and a
volatility σ :R →R+, the private states have dynamics

X
N,i
t = Xi

0 +
∫ t

0
a
(
XN,i

s ,mN
s

)
ds +

∫ t

0
σ

(
XN,i

s

)
dWi

s ,

Y
N,i
t = Y i

0− + ξ
N,i
t , t ∈ [0, T ],

(1.1)

where (W 1, . . . ,WN) is a N -dimensional Brownian motion. The initial conditions (Xi
0, Y

i
0−)

are i.i.d. random variables with common distribution ν ∈ P(�), where P(�) is the space of
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all probability measures on � := R×[0,1]. The players interact through the mean-field term
mN

t appearing in the drift and given by

mN
t = 1

N

N∑
i=1

Y
N,i
t =

∫
�

yμN
t (dx,dy), t ∈ [0, T ],

where μN
t = 1

N

∑N
i=1 δ

(X
N,i
t ,Y

N,i
t )

denotes the empirical probability measure of the players’

states with δz the Dirac delta mass at z ∈ �. In (1.1), each ξN,i represents the investment
in additional capacity made by the ith player. Each player aims at maximizing an expected
payoff of the form

JN,i := Ē
[∫ T

0
e−rtf

(
X

N,i
t , Y

N,i
t

)
dt −

∫
[0,T ]

e−rt c0 dξ
N,i
t

]
,(1.2)

for a fixed discount rate r ≥ 0, some cost c0 > 0 and some running payoff f (the same for all
players). The optimisation is subject to the so-called finite-fuel constraint: Y0− +ξ

N,i
t ∈ [0,1]

for all t ∈ [0, T ] and all i = 1, . . . ,N . We are interested in computing (approximate) Nash
equilibria of this N -player game via the MFG approach. This requires to pass to the limit
as N → ∞ and to identify the limiting MFG. The latter must be solved (as explicitly as
possible) and the associated optimal control is then implemented in the N -player game for
sufficiently large N , as a proxy for the equilibrium strategy.

Singular control problems with finite (and infinite) fuel find numerous applications in the
economic literature and originated from the engineering literature in the late 1960s (see
Bather and Chernoff (1967) for a seminal paper and, for example, Beneš, Shepp and Wit-
senhausen (1980), El Karoui and Karatzas (1988), Karatzas (1985) for early contributions to
the finite fuel case). Game versions of these problems are a natural extension of the single
agent set-up and allow to model numerous applied situations. Here in particular we make
assumptions on the structure of the interaction across players that are suitable to model the
so-called goodwill problem (see, e.g., Ferrari, Riedel and Steg (2017), Jack, Johnson and Zer-
vos (2008), Marinelli (2007) in a stochastic environment and Buratto and Viscolani (2002) in
a deterministic one). Specifically, players can be interpreted as firms that produce the same
good (e.g., mobile phones) and must decide how to advertise it over a finite time horizon.
The ith firm’s product has a market price that depends on the particular type/brand (e.g.,
Apple, Huawei, etc.) and we model that by the process XN,i . Each firm can invest in mar-
keting strategies in order to raise the profile of their product and its popularity. The ith firm’s
cumulative amount of investment that goes towards advertising is modelled by the process
YN,i , where the finite-fuel feature naturally incorporates the idea that firms set a maximum
budget for advertising over the period [0, T ]. All firms measure their performance in terms of
future discounted revenues: they use a running profit function (x, y) �→ f (x, y) and deduct
the (proportional) cost of advertising c0 dξ . A typical example is f (x, y) = x · yα , α ∈ (0,1),
where profits are linear in the product’s price x ≥ 0 and increasing and concave as function
of the total investment y made towards advertising.

From the point of view of the ith firm, investing 
ξN,i > 0 has a cost c0
ξN,i and pro-
duces two effects. First of all, it increases the popularity of the ith firm’s product, hence in-
creasing the running profit to the level f (x, y +
ξN,i) (we are tacitly assuming y �→ f (x, y)

increasing). Second, it has a broader impact on the visibility of the type of product (e.g., mo-
bile phones) and will stimulate the public’s demand for that good. This has a knock-on effect
on the trend of the prices of all the firms that produce the same good. We model this fact
via the interaction term mN

t in the price dynamics and we will assume that the drift function
increases with the average spending in advertising across all companies, that is, m �→ a(x,m)

is nondecreasing.
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1.2. Our contribution and methodology. We focus on the construction of approximate
Nash equilibria for the N -player game through solutions of the corresponding MFG. First, we
formulate the MFG of capacity expansion, that is, the limit model corresponding to the above
N -player games as N → ∞ (Section 2). Then, under mild assumptions on the problem’s
data we construct a solution in feedback form of the MFG of capacity expansion (Section 3).
Our constructive approach, based on an intuitive iterative scheme, allows us to determine
the optimal control in the MFG in terms of an optimal boundary (t, x) �→ c(t, x) that splits
the state space [0, T ] × � into an action region and an inaction region; see Theorem 2.5 in
Section 2. The optimal strategy prescribes to keep the controlled dynamics underlying the
MFG inside the closure of the inaction region by Skorokhod reflection. Finally, whenever the
optimal boundary in the MFG is Lipschitz continuous in its second variable we can show
that it induces a sequence of approximate εN -Nash equilibria for the N -player games with
vanishing approximation error at rate O(1/

√
N) as N tends to infinity; see Theorem 4.2 in

Section 4. While Lipschitz regularity of optimal boundaries is in general a delicate issue, we
provide sufficient conditions on our problem data that guarantee such regularity. Since our
conditions are far from being necessary, in Section 4.4 we also illustrate an example with
a clear economic interpretation which violates those conditions and yet yields a Lipschitz
boundary.

The proof of Theorem 2.5 on the existence of a feedback solution for the limit MFG hinges
on a well-known connection between singular stochastic control and optimal stopping (e.g.,
Baldursson and Karatzas (1996), Karatzas and Shreve (1984, 1985)), which we apply in the
analysis of our iterative scheme. This approach allows us to overcome the usual difficulties
arising from fixed-point arguments often employed in the literature on MFGs. Ideas around
iterative schemes for the solution of MFGs date back to Lasry and Lions (2007) and were then
adopted in various forms by several other authors including, for example, Cardaliaguet and
Hadikhanloo (2017), Guéant (2012) and Dianetti et al. (2021). Besides offering a construc-
tive solution method, iterative schemes may be interpreted as learning procedures. Intuitively,
these schemes consist of three steps that begin with a flow of measures obtained from an edu-
cated guess based on past iterations. In each iteration the three steps are: (i) the representative
agent derives an optimal strategy for the control problem associated to the initial flow of mea-
sures, (ii) using such optimal strategy the agent computes certain quantities of interest that
she will use in the third step of the iteration, (iii) the agent updates the original guess for the
flow of measures using the information acquired in step (ii). The procedure is then repeated.

In our case the MF interaction is via the limit function m(t) obtained by the empirical
average of the control mN

t when letting N → ∞. Our iteration, starts with a constant func-
tion m[−1](t) ≡ 1 which is updated at each subsequent step and denoted by m[k] for k ≥ 0.
The learning procedure we adopt is to simply compute m[k] as the average of the optimal
control used in the (k − 1)th step (as best response to the previous one). This approach is
in a similar spirit to the one used in Guéant (2012) in an analytical study of MFG equations
with quadratic Hamiltonian. Other learning procedures in the existing literature prescribe, for
example, to take the average flow of measures over the past iterations (see, e.g., Cardaliaguet
and Hadikhanloo (2017)).

As a byproduct of our approach we also obtain that a connection between singular control
problems of capacity expansion and problems of optimal stopping holds in the setting of our
MFG. The finite-fuel condition is not a structural condition and it is clear that our choice of
y ∈ [0,1] is not restrictive: indeed, we could equally consider y ∈ [0, ȳ] for any ȳ > 0 (see
Remark 2.2). This is suggestive that our results may be extended to the infinite-fuel setting
by considering sequences of problems with increasing fuel and limiting arguments. However,
since this extension is nontrivial, we leave it for later work and here focus on the finite-fuel
case.
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1.3. Organization of the paper. In Section 2, we formulate the MFG of capacity expan-
sion, we state the standing assumptions on the coefficients in the underlying dynamics and
on the profit function, and we state the existence result for the MFG (Theorem 2.5). In Sec-
tion 3, we prove Theorem 2.5 by constructing a solution of the MFG in feedback form via
an iterative scheme. In particular, we characterise the optimal control in terms of the solu-
tion to a Skorokhod reflection problem at an optimal boundary (surface) that splits the state
space [0, T ] × � into action and inaction regions. Finally, in Section 4, we formally intro-
duce the symmetric N -player game of capacity expansion and we show that the solution of
the MFG found in Section 3 induces approximate Nash equilibria for the N -player games,
with vanishing error of order O(1/

√
N) as N → ∞.

1.4. Frequently used notations. We conclude the Introduction with a summary of nota-
tions that will be used throughout the paper.

Let � := R×[0,1] and let P(�) denote the set of all probability measures on � equipped
with the Borel σ -field B(�). Let P2(�) be the subset of P(�) of probability measures with
finite second moment. The set � and the N -fold product space �N are the state spaces for
the controlled processes (X,Y ) and (XN,YN) that are underlying the MFG and the N -player
game, respectively. Since our problems are set on a finite-time horizon, we also consider
“time” as a state variable and will use the state space [0, T ] × �. Given a set A ⊂ [0, T ] × �

we denote its closure by A. In some cases, we will also need �′ := R × (0,1] and �◦ :=
R× (0,1).

Given a filtered probability space � := (�,F,F= (Ft )t≥0, P̄) satisfying the usual condi-
tions and a F0-measurable random variable Z ∈ [0,1], we denote

��(Z) := {
ξ : (ξt )t≥0 is F-adapted, nondecreasing, right-continuous,

with ξ0− = 0 and Z + ξt ∈ [0,1] for all t ∈ [0, T ], P̄-a.s.
}
.

The set ��(Z) will be the set of admissible strategies for the players in our games. The
random variable Z will be replaced by the initial value of the process Y (for the MFG) or of
the process YN,i (for the ith player in the N -player game). Often we will drop the dependence
of � on the probability space � and the random variable Z, as no confusion shall arise. Notice
that the controls in ��(Z) are of open-loop type, that is, they are general progressively
measurable maps (t,ω) �→ ξt (ω). We show in Theorem 2.5 that the MFG admits an optimal
control in feedback form which is then used to construct ε-Nash equilibria for the N -player
games in Theorem 4.2. Those equilibria are in closed-loop feedback form in the sense that
each player’s control depends in a nonanticipative way on the state variables.

2. The mean-field game: Setting and main results. In this section, we set-up the mean-
field game associated with the N -player game described above and we state the main result
concerning the existence and structure of the optimal control for this game; see Theorem 2.5.
Later, in Section 4 we will link the MFG to the N -player game. Below we use the notation
introduced in Section 1.4.

2.1. The mean-field game. Let � = (�,F,F = (Ft )t≥0, P̄) be a filtered probability
space satisfying the usual conditions and supporting a one-dimensional F-Brownian motion
W . Notice that the initial σ -field F0 is not necessarily trivial.

Let (X0, Y0−) be a two-dimensional F0-measurable random variable with joint law ν ∈
P(�) independent of the Brownian motion, and let ξ ∈ ��(Y0−) be an admissible strategy.
Then, given a bounded Borel measurable function m : [0, T ] → [0,1], for all t ∈ [0, T ] we
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define the two-dimensional, degenerate, controlled dynamics

Xt = X0 +
∫ t

0
a
(
Xs,m(s)

)
ds +

∫ t

0
σ(Xs)dWs,

Y
ξ
t = Y0− + ξt .

(2.1)

The goal of the “representative player” consists of maximizing over the set of all admissible
strategies ξ ∈ ��(Y0−) the following objective functional:

J (ξ) = Ē
[∫ T

0
e−rtf

(
Xt,Y

ξ
t

)
dt −

∫
[0,T ]

e−rt c0 dξt

]
,(2.2)

where Ē is the expectation under P̄, f is a running payoff function, c0 > 0 is a cost and r ≥ 0
a discount rate. Assumptions on all the coefficients appearing in the state variables’ dynamics
and in the objective functional will be given below. The integral with respect to the positive
random measure dξ includes possible atoms at the initial and terminal time (corresponding
to possible jumps of ξ ). The value of the optimization problem for the representative player
is denoted by

V ν = sup
ξ∈�(Y0−)

J (ξ).

REMARK 2.1. We observe that a slightly more general running cost f (Xt , Yt ,m(t)), de-
pending also on the function m, could be considered. In that case, in addition to Assumption 2
we would need to require m �→ ∂yf (x, y,m) (continuous) nondecreasing. In particular, that
extra assumption would allow us to prove Proposition 3.2(iii) while the rest of our analysis
would remain unchanged.

REMARK 2.2. The choice Y ∈ [0,1] in the definition of the set � of admissible strate-
gies is with no loss of generality and we could equally consider Y ∈ [0, ȳ] for ȳ > 0. The
assumption of finite fuel is consistent with real-world applications, where a firm would set
aside a certain budget to be spent over a given period [0, T ].

Since we are interested in the MFG that arises from the N -player game (1.1)–(1.2), in the
limit as N → ∞, it is natural to seek for an admissible optimal strategy ξ (given m) such that
the following consistency condition holds:

m(t) = Ē
[
Y

ξ
t

]
, t ∈ [0, T ].(2.3)

The consistency condition will appear in the precise definition of MFG solution which will
be given in Definition 2.3 below.

In order to develop our methodology, it is convenient to state a version of the MFG
parametrized by a triple (t, x, y), where t ∈ [0, T ] indicates the initial time and (x, y) ∈ �

denotes any realization of the states (Xt , Yt−). Let us start by denoting

P0,x,y(·) := P̄(·|X0 = x,Y0− = y)

and recall that (X0, Y0−) ∼ ν. Then

P̄(·) =
∫
�

P0,x,y(·)ν(dx,dy) and Ē[·] =
∫
�

E0,x,y[·]ν(dx,dy).(2.4)

The dynamics (2.1) conditional on the initial data (t, x, y) ∈ [0, T ] × � read

X
t,x
t+s = x +

∫ s

0
a
(
X

t,x
t+u,m(t + u)

)
du +

∫ s

0
σ

(
X

t,x
t+u

)
dWt+u,

Y
t,x,y;ξ
t+s = y + (ξt+s − ξt−), s ∈ [0, T − t],

(2.5)
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where we notice for future reference that dWt+u = d(Wt+u − Wt). Since the increments
of the control ξ ∈ ��(Y0−), after time t , may in general depend on (t, x, y), we account
for that dependence by denoting Y t,x,y;ξ (and ξ t,x,y if necessary). Instead, given a bounded
measurable function m, the dynamics of X only depends on the initial condition Xt = x,
which motivates the use of the notation Xt,x . For the original case of the process started at
time zero (i.e., t = 0), we use the simpler notation (Xx

s , Y
x,y;ξ
s )s∈[0,T ]. It is worth noticing

that the dynamics of X also depends on the choice of the function m appearing in the drift
but we omit this dependence in our notation as it should cause no confusion in the rest of the
paper.

Consistently with the notation introduced so far, we will often use Pt,x,y(·) = P̄(·|Xt =
x,Yt− = y) for simplicity. For any (Ft+s)s∈[0,T −t]-stopping time τ ∈ [0, T − t] (i.e., such
that {τ ≤ s} ∈ Ft+s) and any bounded measurable function g, we have

Ē
[
g
(
t + τ,X

t,x
t+τ , Y

t,x,y;ξ
t+τ

)] = Et,x,y

[
g
(
t + τ,Xt+τ , Y

ξ
t+τ

)]
,

and, moreover, we use Px,y = P0,x,y for the special case t = 0. When no confusion shall arise
we drop the subscript from Pt,x,y and Et,x,y and simply use P and E.

It is clear that given ξ ∈ ��(Y0−) the process ξ̂t+s := ξt+s − ξt− is right continuous, non-
decreasing and adapted with ξ̂t− = 0. Moreover, y + ξ̂ ∈ [0,1], Pt,x,y a.s. (i.e., conditionally

on (Xt , Y
ξ
t−) = (x, y)) because ξ ∈ ��(Y0−). Motivated by this observation, for t ∈ (0, T ] it

is useful to introduce the set

��
t,x(y) := {

ξ : ξu = 0 for each u ∈ [0, t),

(ξt+s)s≥0 is (Ft+s)s≥0-adapted, nondecreasing, right-continuous,

with y + ξt+s ∈ [0,1] for all s ∈ [0, T − t], Pt,x,y-a.s.
}
.

(2.6)

With a slight abuse of notation ��
0,x(y) = ��

x (y). Here � is fixed, so we can drop the super-
script in the definition of the set of admissible controls.

Assuming that the mapping (x, y) �→ Ex,y[Y ξ
t ] is measurable for any admissible ξ , we can

express the consistency condition (2.3) as

m(t) =
∫
�

Ex,y

[
Y

ξ
t

]
ν(dx,dy) =

∫
�

∫
�

y′μx,y;ξ
t

(
dx′,dy′)ν(dx,dy),

where μ
x,y;ξ
t := L(Xx

t , Y
x,y;ξ
t ) ∈ P(�) is the law of the pair (Xx

t , Y
x,y;ξ
t ) and the integral

with respect to ν(dx,dy) accounts for the fact that (X0, Y0−)
d∼ ν.

Turning our attention to the optimisation problem, we have that the maximal expected
payoff associated with a condition (t, x, y) ∈ [0, T ] × � is given by

v(t, x, y) := sup
ξ∈�t,x(y)

J (t, x, y; ξ) with

J (t, x, y; ξ) := Et,x,y

[∫ T −t

0
e−rsf

(
Xt+s, Y

ξ
t+s

)
ds −

∫
[0,T −t]

e−rsc0 dξt+s

]
.

(2.7)

The function v depends also on m via the dynamics of X in (2.5), so we should write
v(t, x, y;m). However, we drop the dependence on m as this should cause no confusion.
We will show that for each (x, y) ∈ � we can find an optimal control ξ∗, jointly measurable
in (ω, x, y), for the problem above such that (x, y) �→ J (0, x, y; ξ∗) is measurable. Then the
initial objective function in (2.2) and the optimization problem in (2.7) are easily linked by

averaging the latter over the initial condition (X0, Y0−)
d∼ ν ∈ P(�). That is,

V ν = sup
ξ∈�(Y0−)

J (ξ) = sup
ξ∈�(Y0−)

∫
�

J (0, x, y; ξ)ν(dx,dy) =
∫
�

v(0, x, y)ν(dx,dy).
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Indeed, on the one hand we have

V ν = sup
ξ∈�(Y0−)

∫
�

J (0, x, y; ξ)ν(dx,dy) ≤
∫
�

v(0, x, y)ν(dx,dy) = Ē
[
v(0,X0, Y0)

]
.

On the other hand we have

Ē
[
v(0,X0, Y0)

] =
∫
�

J
(
0, x, y; ξ∗)

ν(dx,dy)

=
∫
�

E0,x,y

[∫ T

0
f

(
Xs,Y

ξ∗
s

)
ds −

∫ T

0
c0 dξ∗

s

]
ν(dx,dy)

= Ē
[∫ T

0
f

(
Xs,Y

ξ∗
s

)
ds −

∫ T

0
c0 dξ∗

s

]
≤ V ν,

where we used (2.4) in the third equality and, for the final inequality, ξ∗ ∈ ��
x (y) condition-

ally on (X0, Y0−) = (x, y) for all (x, y) ∈ �.
The problem formulation (2.7) can be interpreted as a game between a continuum of agents

(see, e.g., Lacker and Zariphopoulou (2019) and Cardaliaguet and Lehalle (2018)) indexed
by (x, y) ∈ �. Each agent is assigned a “type” (x, y) based on the realization of i.i.d. random
variables (X0, Y0−). The game starts after the random assignment and v(0, x, y) is the value
of the optimization problem faced by an agent of “type” (x, y) (i.e., the value of the game
ex-post). Instead, the optimization problem specified by (2.1)–(2.2) is the one faced by any of
the agents before the random assignment of (X0, Y0−). In this interpretation V ν is the value
of the game before the players know their “type” (i.e., the value of the game ex-ante).

Now we define solutions of the MFG of capacity expansion.

DEFINITION 2.3 (Solution of the MFG of capacity expansion). A solution of the MFG
of capacity expansion with initial condition (X0, Y0−) ∼ ν ∈ P2(�) is a pair (m∗, ξ∗) with
m∗ : [0, T ] → [0,1] a measurable function and ξ∗ ∈ �(Y0−) such that:

(i) (Optimality property). ξ∗ is optimal, that is,

J
(
ξ∗) = V ν = sup

ξ∈�

Ē
[∫ T

0
e−rtf

(
X∗

t , Y
ξ
t

)
dt −

∫
[0,T ]

e−rt c0 dξt

]
,

where (X∗, Y ξ ) is a solution of equation (2.1) associated to (m∗, ξ).
(ii) (Mean-field property). Letting (X∗, Y ∗) be the solution of equation (2.1) associated to

(m∗, ξ∗), the consistency condition holds, that is,

m∗(t) =
∫
�

Ex,y

[
Y ∗

t

]
ν(dx,dy),

for each t ∈ [0, T ].
We will say that a solution ξ∗ of the MFG is in feedback form if we have ξ∗

t = η(t,X∗, Y0−),
t ∈ [0, T ], for some nonanticipative mapping

η : [0, T ] × C
([0, T ];R) × [0,1] → [0,1]

(i.e., such that η(t,X∗, Y0−) = η(t, (X∗
s∧t )s∈[0,T ], Y0−)).

We observe that the definition of MFG solution above mimics the structure of a Nash
equilibrium (NE) in classical game theory. Indeed, for a NE we first need to compute the
best response of each player while keeping the strategies of her competitors fixed, and then
we obtain the equilibrium as a fixed point of the best response map. Likewise, the optimality
condition (i) corresponds to computing the best response against a given behaviour of the
population described by m∗; condition (ii) is a fixed point condition, stating that m∗ has to be
consistent with the best response of the “representative player”.
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2.2. Assumptions and main result. Before stating our main result regarding the existence
and structure of the solution to the MFG, we list below the assumptions needed in our ap-
proach.

ASSUMPTION 1 (Coefficients of the SDE). For the functions a : � → R and σ : R →
(0,∞) the following hold:

(i) a and σ are Lipschitz continuous with constant L > 0, that is, for all x, x′ ∈ R and
m,m′ ∈ [0,1], we have∣∣a(x,m) − a

(
x′,m′)∣∣ + ∣∣σ(x) − σ

(
x′)∣∣ ≤ L

(∣∣x − x′∣∣ + ∣∣m − m′∣∣).
(ii) The mapping m �→ a(x,m) is nondecreasing on [0,1] for all x ∈ R.

Part (i) of the assumption guarantees that given any Borel measurable function m :
[0, T ] → [0,1] the first equation in (2.5) admits a unique strong solution (see, e.g., Karatzas
and Shreve (1988), Theorem 5.2.9). Moreover, by a well-known application of Kolmogorov–
Chentsov’s continuity theorem, there exists a modification X̃ of X which is continuous as
a random field, that is, (t, x, s) �→ X̃

t,x
t+s is continuous P-a.s. (see, e.g., Karatzas and Shreve

(1988), pp. 397–398, or Baldi (2017), Theorem 9.9). From now on, we tacitly assume that
we always work with such modification and we denote it again by X.

Part (i) of the assumption could be relaxed but at the cost of additional technicalities in
the proofs. In principle we only need sufficient regularity on the coefficients to guarantee
existence of a unique strong solution for X which is also continuous with respect to its initial
datum (t, x). Part (ii) instead is instrumental in our construction of the optimal control in
the MFG and will be used later for a comparison result (Lemma 3.1). Notice that (ii) is well
suited for the application to the goodwill problem described in Section 1.1 in the Introduction.
Typical examples that we have in mind for the drift are a(x,m) = (m − x) (mean-reverting),
a(x,m) = mx (geometric Brownian motion) and a(x,m) = m (arithmetic Brownian motion).

Next, we give assumptions on the running profit appearing in the optimisation problem
and let �′ =R× (0,1].

ASSUMPTION 2 (Profit function). The running profit f : � → [0,∞) is continuous and
the partial derivatives ∂yf and ∂xyf exist and are continuous on �′. Furthermore, we have:

(i) Monotonicity: x �→ f (x, y), y �→ f (x, y) and x �→ ∂yf (x, y) are nondecreasing,
with

lim
x→−∞ ∂yf (x, y) < rc0 < lim

x→+∞ ∂yf (x, y);(2.8)

(ii) Concavity: y �→ f (x, y) is strictly concave for all x ∈R.
(iii) The mixed derivative is strictly positive, that is, ∂xyf > 0 on R× (0,1).

The set of assumptions above is in line with the literature on irreversible investment and
is fulfilled for example by profit functions of Cobb–Douglas type (i.e., f (x, y) = xαyβ with
α ∈ [0,1], β ∈ (0,1) and x > 0); see examples in Section 4 and Remark 2.4.

We conclude with some standard integrability conditions that guarantee that the problem
is well posed and will allow us to use the dominated convergence theorem in some of the
technical steps in the proofs.

ASSUMPTION 3 (Integrability). There exists p > 1 such that, given any Borel measur-
able m : [0, T ] → [0,1] and letting X be the associated solution of the SDE (2.5), we have

Et,x,y

[∫ T −t

0
e−rs(∣∣f (Xt+s, y)

∣∣p + ∣∣∂yf (Xt+s, y)
∣∣p)

ds

]
< ∞,

for all (t, x, y) ∈ [0, T ] × �′. Finally, ν ∈ P2(�).
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REMARK 2.4 (State space). For specific applications, it may be convenient to restrict
the state space of the process X to the positive half-line [0,∞) or to a generic (possibly
unbounded) interval (x, x). In those cases, the assumptions above and the further ones we
will make in the next sections can be adapted in a straightforward manner. In particular,
the limits in (2.8) are amended by letting x tend to the endpoints of the relevant domain. If
the end-points of the domain are inaccessible to the process X all our arguments of proof
continue to hold up to trivial changes in the notation. For a more general boundary behaviour
of the process, some tweaks may be needed on a case by cases basis.

We are now ready to state the main results concerning the MFG described above. The
proof requires a number of technical steps and hinges on a iterative method whose details are
provided in Section 3.

THEOREM 2.5 (Solution of the MFG of capacity expansion). Suppose Assumptions 1, 2
and 3 hold. Then, there exists a upper-semicontinuous function c : [0, T ] ×R → [0,1], with
t �→ c(t, x) and x �→ c(t, x) both nondecreasing, such that the pair (m∗, ξ∗) with

ξ∗
t := sup

0≤s≤t

(
c
(
s,X∗

s

) − Y0−
)+

, m∗(t) :=
∫
�

Ex,y

[
Y ∗

t

]
ν(dx,dy), t ∈ [0, T ],

is a solution of the MFG as in Definition 2.3.

Notice that the iterative scheme that we devise for the proof of the theorem suggests a
procedure to actually construct the optimal boundary numerically.

The second key result in this paper shows that the optimal control ξ∗ solution of the MFG
can be used (under mild additional assumptions) to construct an ε-Nash equilibrium in the
N -player game. The statement and proof of this fact are given in Section 4 below, whereas in
the next section we prove Theorem 2.5.

3. Construction of the solutions to the MFG. In this section, we provide the complete
proof of Theorem 2.5 together with an intuitive description of the iterative scheme that un-
derpins it. Some of the auxiliary results used along the way can be found in the Appendix as
indicated.

3.1. Description of the iterative scheme. The idea is to start an iterative scheme based on
singular control problems that are analogue to the one in the MFG but without consistency
condition in the mean-field interaction.

We initialise the scheme by setting m[−1](t) ≡ 1, for t ∈ [0, T ]. At the nth step, n ≥ 0,
assume a nondecreasing, right-continuous function m[n−1] : [0, T ] → [0,1] is given and fixed
and consider the dynamics

X
[n];t,x
t+s = x +

∫ s

0
a
(
X

[n];t,x
t+u ,m[n−1](t + u)

)
du +

∫ s

0
σ

(
X

[n];t,x
t+u

)
dWt+u,

Y
[n];t,x,y
t+s = y + ξt+s,

(3.1)

for (x, y) ∈ �, s ∈ [0, T − t], t ∈ [0, T ] and where ξ ∈ �t,x(y) (cf. (2.6)). We define the
singular control problem SC[n]

t,x,y as:

vn(t, x, y) := sup
ξ∈�t,x(y)

Jn(t, x, y; ξ) with(3.2)

Jn(t, x, y; ξ) := Et,x,y

[∫ T −t

0
e−rsf

(
X

[n]
t+s, y + ξt+s

)
ds −

∫
[0,T −t]

e−rsc0 dξt+s

]
.(3.3)
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Now, in order to define the (n + 1)th step of the algorithm, let us assume that we can find
an optimal control ξ [n]∗ for problem SC[n]

0,x,y for each (x, y) ∈ �. Set Y [n]∗ := y + ξ [n]∗ and

assume that (x, y) �→ Ex,y[Y [n]∗
t ] is measurable for all t ∈ [0, T ]. Then we define

m[n](t) :=
∫
�

Ex,y

[
Y

[n]∗
t

]
ν(dx,dy).

The map t �→ m[n](t) is nondecreasing and right-continuous (by dominated convergence)
with values in [0,1], so we can use it to define (X[n+1], Y [n+1]) and vn+1 by iterating the
above construction.

It is well known in singular control theory that since y �→ f (x, y) is concave and the
dynamics of X[n] is independent of the control ξ , then the y-derivative of vn(t, x, y) corre-
sponds to the value function of an optimal stopping problem. While we will re-derive this fact
in Proposition 3.5 for completeness, here we state the optimal stopping problem that should
be associated to SC[n]

t,x,y above. For (t, x, y) ∈ [0, T ] × �′ we define the stopping problem

OS[n]
t,x,y as

un(t, x, y) := inf
τ∈Tt

Un(t, x, y; τ) with(3.4)

Un(t, x, y; τ) := Et,x

[∫ τ

0
e−rs∂yf

(
X

[n]
t+s, y

)
ds + c0e

−rτ

]
for τ ∈ Tt(3.5)

and where Tt is the set of stopping times for the filtration generated by the Brownian motion
(Wt+s − Wt)s≥0 appearing in (3.1) with values in [0, T − t] (in particular {τ ≤ s} ∈ Ft+s ,
since (Ft+s)s∈[0,T −t] is an even larger filtration). Due to Assumption 2, it may be ∂yf (x,0) =
+∞ (e.g., for Cobb–Douglas profit). In that case, by convention τ = 0 is an optimal stopping
time and un(t, x,0) = c0. With this convention un is well defined on [0, T ] × �.

The stopping problem above is standard (see, e.g., Peskir and Shiryaev (2006), Chapter I,
Section 2, Theorem 2.2): thanks to Assumption 3 and continuity of the gain process

u �→
∫ u

0
e−rs∂yf

(
X

[n]
t+s, y

)
ds + c0e

−ru

we know that the smallest optimal stopping time is

τ [n]∗ (t, x, y) = inf
{
s ∈ [0, T − t] : un

(
t + s,X

[n];t,x
t+s , y

) = c0
}
.(3.6)

Letting

Z[n]
s := e−rsun

(
t + s,X

[n]
t+s, y

) +
∫ s

0
e−ru∂yf

(
X

[n]
t+u, y

)
du

we have that, under Pt,x,y ,(
Z[n]

s

)
s∈[0,T −t] is a submartingale and

(
Z

[n]
s∧τ

[n]∗

)
s∈[0,T −t] is a martingale.

Accordingly, we define the continuation region, C[n], and the stopping region, S[n], of the
optimal stopping problem as

C[n] := {
(t, x, y) ∈ [0, T ] × � : un(t, x, y) < c0

}
,

S[n] := {
(t, x, y) ∈ [0, T ] × � : un(t, x, y) = c0

}
.

Finally, we introduce an auxiliary set which will be used in our analysis:

H := {
(x, y) ∈R× [0,1] : ∂yf (x, y) − rc0 < 0

}
.(3.7)
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Notice that condition (2.8) in Assumption 2 implies that H is not empty. This will be needed
to prove that the continuation and stopping regions are not empty either.

Since Wt+u −Wt = Wu in law, it is possible (and convenient for some steps in the analysis
of the stopping problems) to use always the same Brownian motion in the dynamics of the
process X[n];t,x , irrespectively of t ∈ [0, T ]. More formally, on a probability space (�̂, F̂, P̂)

let us consider a Brownian motion (Ŵt )t≥0 with its natural filtration (F̂t )t≥0. For each n ≥ 0,
we can define a family of processes X̂[n];t,x parametrized by couples (t, x) ∈ [0, T ] × R so
that for each (t, x) we have

X̂
[n];t,x
t+s = x +

∫ s

0
a
(
X̂

[n];t,x
t+u ,m[n−1](t + u)

)
du +

∫ s

0
σ

(
X̂

[n];t,x
t+u

)
dŴu.(3.8)

Clearly X̂
[n];t,x
t+s is F̂s-measurable, irrespectively of (t, x), and

LawP̄

((
X

[n];t,x
t+s

)
s∈[0,T −t]

) = LawP̂

((
X̂

[n];t,x
t+s

)
s∈[0,T −t]

)
,

since our SDEs for X[n] and X̂[n] admit a unique strong solution.
Let T̂t be the class of (F̂s)s≥0-stopping times bounded by T − t . As explained above, one

only needs to look for optimal stopping times in the form of (3.6). Then the equality in law
of X[n];t,x and X̂[n];t,x guarantees that

un(t, x, y) = inf
τ∈T̂t

Ûn(t, x, y; τ),(3.9)

where

Ûn(t, x, y; τ) := Êt,x

[∫ τ

0
e−rs∂yf

(
X̂

[n]
t+s, y

)
ds + c0e

−rτ

]
.

The representation (3.9) for the value function of our stopping problem is convenient because
T̂t2 ⊂ T̂t1 for t1 < t2. This fact and Lemma 3.1 below will be used to prove monotonicity of
the mapping t �→ un(t, x, y) in Proposition 3.2(iii).

The rest of our algorithm of proof for Theorem 2.5 goes as follows:

Step 1. Using a probabilistic approach, we study in detail continuity and monotonicity of the
value function un, for a generic n ≥ 0.

Step 2. Thanks to the results in Step 1, we construct a (unique) solution to OS[n]
t,x,y by deter-

mining the geometry of the stopping region S[n]. In particular we need to prove regularity
properties of the optimal stopping boundary ∂C[n] that guarantee that we can construct a

process Y [n]∗ so that the state (t,X[n], Y [n]∗) is bound to evolve in the closure C[n]
of the

continuation set, by Skorokhod reflection.
Step 3. We confirm that Y [n]∗ is the unique optimal control in problem SC[n]

t,x,y and that vn

can be constructed by integrating un with respect to y (as already shown in the existing
literature).

Step 4. We prove that the sequence (un)n≥0 is decreasing and use this fact to prove that the
iterative scheme converges to the MFG, in the sense that (X[n], Y [n]∗,m[n]) converges to
(X∗, Y ∗,m∗) from Definition 2.3 and that (Y ∗,m∗) are expressed as in Theorem 2.5.

3.2. Solution of the nth stopping problem. Here we construct the solution to problem
OS[n]

t,x,y for a generic n ≥ 0. In particular, t �→ m[n−1](t) is a given right-continuous, nonde-
creasing function bounded between zero and one. First, we state a simple but useful compar-
ison result.
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LEMMA 3.1 (Comparison). Let Assumption 1 hold and recall that m[n−1] : [0, T ] →
[0,1] is nondecreasing. Then for any t ≤ t ′ we have

P̂
(
X̂

[n];t,x
t+s ≤ X̂

[n];t ′,x
t ′+s ,∀s ∈ [

0, T − t ′
]) = 1,(3.10)

under the dynamics in (3.8).

PROOF. Since the SDEs for X̂[n];t,x and X̂[n];t ′,x are driven by the same Brownian mo-
tion, it suffices to compare their drift coefficients and then apply the comparison result in
Karatzas and Shreve (1988), Proposition 5.2.18—although it is mentioned in its statement,
the proof of Proposition 5.2.18 does not use time-continuity of the drift.

Set A(x, s) := a(x,m(t + s)) and A′(x, s) := a(x,m(t ′ + s)). Since both t �→ m(t) and
m �→ a(x,m) are nondecreasing (Assumption 1(ii)), we have A(x, s) ≤ A′(x, s) for all
(x, s) ∈ R×[0, T − t ′]. Therefore, applying Karatzas and Shreve (1988), Proposition 5.2.18,
we obtain (3.10). �

Next, we prove continuity and monotonicity of the value function. Recall our convention
that un(t, x,0) = c0 if ∂yf (x,0) = ∞, and the set �′ = R× (0,1].

PROPOSITION 3.2 (Value function of OS[n] ). Let Assumptions 1–3 hold. Then the value
function of the optimal stopping problem OS[n]

t,x,y has the following properties:

(i) 0 ≤ un(t, x, y) ≤ c0;
(ii) the map x �→ un(t, x, y) is nondecreasing for each fixed (t, y) ∈ [0, T ] × [0,1] and

y �→ un(t, x, y) is nonincreasing for each (t, x) ∈ [0, T ] ×R;
(iii) the map t �→ un(t, x, y) is nondecreasing for each fixed (x, y) ∈ �;
(iv) the value function is continuous, that is, un ∈ C([0, T ] × �′).

PROOF. (i). The upper bound is due to un(t, x, y) ≤ Un(t, x, y;0) = c0. For the lower
bound, it is enough to recall that ∂yf ≥ 0 by Assumption 2(i).

(ii). Fix (t, y) ∈ [0, T ] × [0,1]. Let x2 > x1 and set τ2 := τ
[n]∗ (t, x2, y) as in (3.6), which

is optimal in un(t, x2, y). Then

un(t, x2, y) − un(t, x1, y) ≥ E
[∫ τ2

0
e−rs(∂yf

(
X

[n];t,x2
t+s , y

) − ∂yf
(
X

[n];t,x1
t+s , y

))
ds

]
≥ 0

because X
[n];t,x2
t+s ≥ X

[n];t,x1
t+s by uniqueness of the solution to (3.1) and x �→ ∂yf (x, y) is

increasing by Assumption 2(i). By a similar argument, we also obtain monotonicity in y,
since y �→ ∂yf (x, y) is decreasing by Assumption 2(ii).

(iii). For this part of the proof, we use Lemma 3.1 and the representation (3.9) of the value
function. Fix (x, y) ∈ � and take t2 > t1 in [0, T ]. Let

τ2 = τ̂ [n]∗ (t2, x, y) = inf
{
s ∈ [0, T − t2] : un

(
t2 + s, X̂

[n];t2,x
t2+s , y

) = c0
}
,

which is optimal in un(t2, x, y), and notice that the stopping time is also admissible for
un(t1, x, y) because T̂t2 ⊂ T̂t1 . Then

un(t2, x, y) − un(t1, x, y) ≥ Ê
[∫ τ2

0
e−rs(∂yf

(
X̂

[n];t2,x
t2+s , y

) − ∂yf
(
X̂

[n];t1,x
t1+s , y

))
ds

]
≥ 0,

where the final inequality uses that X̂
[n];t2,x
t2+s ≥ X̂

[n];t1,x
t1+s for s ∈ [0, T − t2], P-a.s. by

Lemma 3.1 and x �→ ∂yf (x, y) is nondecreasing by Assumption 2(i).
(iv). Joint continuity of the value function can be deduced by separate continuity in each

variable and monotonicity (see, e.g., Kruse and Deely (1969)). Thanks to (ii) and (iii), it
suffices to show that un is continuous separately in each variable.
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Fix (t, x, y) ∈ [0, T ] × �′. Let xk → x as k → ∞ and let τ∗ = τ
[n]∗ (t, x, y) be optimal for

un(t, x, y). First, we show right-continuity of un(t, ·, y) and assume that xk ↓ x. For each k,
using monotonicity proven in (ii) we have

0 ≤ un(t, xk, y) − un(t, x, y)

≤ E
[∫ τ∗

0
e−rs(∂yf

(
X

[n];t,xk
t+s , y

) − ∂yf
(
X

[n];t,x
t+s , y

))
ds

]
(3.11)

≤ E
[∫ T −t

0
e−rs

∣∣∂yf
(
X

[n];t,xk
t+s , y

) − ∂yf
(
X

[n];t,x
t+s , y

)∣∣ ds

]
.

Taking limits as k → ∞, Assumption 3 allows us to use dominated convergence so that we
only need

lim
k→∞

∣∣∂yf
(
X

[n];t,xk
t+s , y

) − ∂yf
(
X

[n];t,x
t+s , y

)∣∣ = 0, P-a.s.

The latter holds by continuity of ∂yf and continuity of the flow x �→ X[n];t,x (which is guar-
anteed by Assumption 1).

We can prove left-continuity by analogous arguments. Letting xk ↑ x and, for each k,
selecting the stopping time τk = τ

[n]∗ (t, xk, y) which is optimal for un(t, xk, y) we get

0 ≤ un(t, x, y) − un(t, xk, y)

≤ E
[∫ τk

0
e−rs(∂yf

(
X

[n];t,x
t+s , y

) − ∂yf
(
X

[n];t,xk
t+s , y

))
ds

]
.

Then we can conclude as in (3.11). Completely analogous arguments allow to prove continu-
ity of the value function with respect to y and we omit them here for brevity.

Continuity in time only requires a small adjustment to the argument above. Let tk → t

as k → ∞, with (t, x, y) ∈ [0, T ] × �′ fixed. First, let us consider tk ↓ t and set τ∗ =
τ

[n]∗ (t, x, y), which is optimal for un(t, x, y). Then τ∗ ∧ (T − tk) is admissible for un(tk, x, y)

and, by the monotonicity proven in (iii), we have

0 ≤ u(tk, x, y) − u(t, x, y)

≤ E
[∫ τ∗∧(T −tk)

0
e−rs(∂yf

(
X

[n];tk,x
tk+s , y

) − ∂yf
(
X

[n];t,x
t+s , y

))
ds

]
+ E

[∫ τ∗

τ∗∧(T −tk)
e−rs∂yf

(
X

[n];t,x
t+s , y

)
ds

]

≤ E
[∫ T −tk

0
e−rs

∣∣∂yf
(
X

[n];tk,x
tk+s , y

) − ∂yf
(
X

[n];t,x
t+s , y

)∣∣ds

]

+ E
[∫ T −t

T −tk

e−rs
∣∣∂yf

(
X

[n];t,x
t+s , y

)∣∣ds

]
.

Now we can let k → ∞ and use dominated convergence (thanks to Assumption 3), conti-
nuity of the stochastic flow t �→ X

t,x
t+· and continuity of ∂yf (Assumption 2) to obtain right-

continuity of un(·, x, y). An analogous argument allows to prove left-continuity as well. �

Continuity of un on [0, T ] × � is immediate if ∂yf is continuous on �. If ∂yf is not well
defined for y = 0, one can still prove continuity of un on [0, T ] × � in some cases, upon
further specifying the exact form of f . We leave further details aside as they are not needed
in the rest of our analysis.
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Thanks to the properties of the value function we can easily determine the shape of the
continuation region C[n], whose boundary ∂C[n] turns out to be a surface with ‘nice’ mono-
tonicity properties, that we will subsequently use to obtain a solution of the singular control
problem SC[n]. Part of the proof is based on the following equivalent representation of the
value function:

un(t, x, y) = c0 + inf
τ∈Tt

Et,x

[∫ τ

0
e−rs(∂yf

(
X

[n]
t+s, y

) − rc0
)

ds

]
.(3.12)

PROPOSITION 3.3 (Optimal boundary). Under Assumptions 1–3, the continuation and
stopping regions, C[n] and S[n], are nonempty. The boundary of C[n] can be expressed as a
function cn : [0, T ] ×R → [0,1], such that

C[n] = {
(t, x, y) ∈ [0, T ] × � : y > cn(t, x)

}
,

S[n] = {
(t, x, y) ∈ [0, T ] × � : y ≤ cn(t, x)

}
.

The map (t, x) �→ cn(t, x) is upper-semicontinuous with t �→ cn(t, x) and x �→ cn(t, x) non-
decreasing (hence cn(·, x) and cn(t, ·) are right-continuous).

PROOF. Thanks to (ii) in Proposition 3.2, for any (t, x) ∈ [0, T ] ×R we can define

cn(t, x) := inf
{
y ∈ [0,1] : un(t, x, y) < c0

} = inf
{
y ∈ [0,1] : (t, x, y) ∈ C[n]}(3.13)

with the convention that inf∅ = 1. Since x �→ un(t, x, y) and t �→ un(t, x, y) are nonde-
creasing we have, for any ε > 0

(t, x, y) ∈ S[n] =⇒ (t, x + ε, y) ∈ S[n]

and

(t, x, y) ∈ S[n] =⇒ (t + ε, x, y) ∈ S[n].

Then, cn is nondecreasing in both t and x.
To show upper-semicontinuity we fix (t, x) and take a sequence (tk, xk)k≥1 that converges

to (t, x). Then (tk, xk, cn(tk, xk)) ∈ S[n] for all k’s and, since the stopping region is closed, in
the limit we get

lim sup
k→∞

(
tk, xk, cn(tk, xk)

) =
(
t, x, lim sup

k→∞
cn(tk, xk)

)
∈ S[n].

Then, by definition of cn it must be

lim sup
k→∞

cn(tk, xk) ≤ cn(t, x).

It only remains to show that C[n] and S[n] are both nonempty. A standard argument implies
that [0, T ) ×H ⊂ C[n] with H the open set in (3.7). Indeed, starting from (t, x, y) ∈ [0, T ) ×
H and taking the suboptimal strategy

τH := inf
{
s ∈ [0, T − t] : (

X
[n];t,x
t+s , y

)
/∈ H

}
we easily obtain un(t, x, y) ≤ Un(t, x, y; τH) < c0 by continuity of paths of X[n] and
since Pt,x,y(τH > 0) = 1. So C[n] �= ∅ because H �= ∅ thanks to (2.8) in Assumption 2.
We conclude with an argument by contradiction. Assume that S[n] = ∅. Then, given any
(t, x, y) ∈ [0, T ) × � we have

un(t, x, y) = c0 + E
[∫ T −t

0
e−rs(∂yf

(
X

[n];t,x
t+s , y

) − rc0
)

ds

]
,
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thanks to (3.12). Taking limits as x → ∞ and using monotone convergence to pass it under
the expectation and the integral (Assumption 2(i)), we get

lim
x→∞un(t, x, y) − c0 = E

[∫ T −t

0
e−rs

(
lim

x→∞ ∂yf
(
X

[n];t,x
t+s , y

) − rc0

)
ds

]
> 0

thanks to (2.8). This contradicts un(t, x, y) ≤ c0, hence S �= ∅. �

The optimal boundary is unique and thus it unambiguously characterises the minimal op-
timal stopping time τ∗. It will also be shown in the proof of Lemma 4.4 (see equation (A.2))
that τ∗ is in fact the largest optimal stopping time, hence it is unique.

3.3. Solution of the nth singular control problem. Here we follow a well-trodden path to
show that the boundary cn obtained in the section above is actually all we need to construct
the optimal control in the singular control problem SC[n]. First, we provide the candidate
optimal control in the next lemma.

LEMMA 3.4. Fix (t, x, y) ∈ [0, T ] × � and let ξ [n]∗ be defined Pt,x,y -almost surely as

ξ
[n]∗
t+s := sup

0≤u≤s

(
cn

(
t + u,X

[n]
t+u

) − y
)+ with ξ [n]∗

u = 0, u ∈ [0, t).

Then, ξ [n]∗ ∈ �t,x(y) and realises Pt,x,y -almost surely the Skorokhod reflection of the process

(t + s,X
[n]
t+s, Y

[n]∗
t+s )s∈[0,T −t] inside the continuation region C[n], where Y [n]∗ = y +ξ [n]∗. That

is, Pt,x,y -almost surely we have:

(i) (t + s,X
[n]
t+s, Y

[n]∗
t+s ) ∈ C[n]

for all s ∈ [0, T − t] (recall that C[n]
is the closure of C[n]);

(ii) Minimality condition:∫
[t,T ]

1{Y [n]∗
s− >cn(s,X

[n]
s )} dξ [n]∗

s = ∑
t<s≤T

∫ Y
[n]∗
s

Y
[n]∗
s−

1{Y [n]∗
s− +z>cn(s,X

[n]
s )} dz = 0.(3.14)

PROOF. Clearly ξ [n]∗ is nondecreasing, adapted and bounded by 1 − y. So if we prove
that it is also right-continuous we have shown that it belongs to �t,x(y). The proof of right-
continuity uses ideas as in De Angelis, Federico and Ferrari (2017). For any ε > 0, we have

ξ
[n]∗
t+s ≤ ξ

[n]∗
t+s+ε = ξ

[n]∗
t+s ∨ sup

0<u≤ε

(
cn

(
t + s + u,X

[n]
t+s+u

) − y
)+

.

By upper-semicontinuity of the boundary and continuity of the trajectories of X[n] we have

lim
ε→0

sup
0<u≤ε

(
cn

(
t + s + u,X

[n]
t+s+u

) − y
)+

= lim sup
u→0

(
cn

(
t + s + u,X

[n]
t+s+u

) − y
)+ ≤ (

cn

(
t + s,X

[n]
t+s

) − y
)+ ≤ ξ

[n]∗
t+s

Then, combining the above expressions we get ξ
[n]∗
t+s = limε→0 ξ

[n]∗
t+s+ε as needed.

Next we show the Skorokhod reflection property. By construction, we have

Y
[n]∗
t+s = y + ξ

[n]∗
t+s ≥ cn

(
t + s,X

[n]
t+s

)
so that (t + s,X

[n]
t+s, Y

[n]∗
t+s ) ∈ C[n]

for all s ∈ [0, T − t] as claimed in (i). For the minimality
condition (ii) fix ω ∈ � and let s ∈ [t, T ] be such that Y

[n]∗
s− (ω) > cn(s,X

[n]
s (ω)). Then by

definition of Y [n]∗ we have

sup
t≤u<s

(
cn

(
u,X[n]

u (ω)
) − y

)+
> cn

(
s,X[n]

s (ω)
) − y,(3.15)



3690 CAMPI, DE ANGELIS, GHIO AND LIVIERI

which implies Y
[n]∗
s− (ω) = Y [n]∗

s (ω). The latter and (3.15) imply that there exists δ > 0 such
that (

cn

(
s,X[n]

s (ω)
) − y

)+ ≤ sup
t≤u≤s

(
cn

(
u,X[n]

u (ω)
) − y

)+ − δ.(3.16)

By upper-semicontinuity of s �→ cn(s,X
[n]
s (ω)) there must exist s ′ > s such that(

cn

(
u,X[n]

u (ω)
) − y

)+ ≤ (
cn

(
s,X[n]

s (ω)
) − y

)+ + δ

2

for all u ∈ [s, s′). The latter and (3.16) imply Y
[n]∗
s− (ω) = Y [n]∗

u (ω) for all u ∈ [s, s ′). Hence,
dξ [n]∗(ω) = 0 on [s, s′) as needed to show that the first term in (3.14) is zero. For the second
term, it is enough to notice that by the explicit form of ξ [n]∗ we easily derive {
ξ [n]∗

s > 0} =
{Y [n]∗

s− < c(s,X[n]
s )} for any s ∈ [t, T ]. Therefore,

Y
[n]∗
s− + 
ξ [n]∗

s = Y
[n]∗
s− + ξ

[n]∗
s− ∨ (

cn

(
s,X[n]

s

) − y
)+ − ξ

[n]∗
s−

= Y
[n]∗
s− + (

cn

(
s,X[n]

s

) − Y
[n]∗
s−

)+ = Y
[n]∗
s− ∨ cn

(
s,X[n]

s

)
,

as needed (i.e., any jump of the control ξ [n]∗ will bring the controlled process to the boundary
of the continuation set). �

Using the lemma, we can now establish optimality of ξ [n]∗ and obtain vn as the integral
of un. The proof of the next proposition follows very closely the proof of Theorem 5.1 in
De Angelis, Federico and Ferrari (2017), except that here we have a finite-fuel problem (see
also Baldursson and Karatzas (1996) and El Karoui and Karatzas (1991) for earlier similar
proofs). So we move it to the Appendix for completeness.

PROPOSITION 3.5 (Value function of SC[n]). Let Assumptions 1–3 hold. For any
(t, x, y) ∈ [0, T ] × � we have

vn(t, x, y) = �n(t, x) −
∫ 1

y
un(t, x, z)dz,

with

�n(t, x) := Et,x

[∫ T −t

0
e−rsf

(
X

[n]
t+s,1

)
ds

]
.

Moreover, ξ [n]∗ as in Lemma 3.4 is optimal, that is, vn(t, x, y) = Jn(t, x, y; ξ [n]∗).

It turns out that the optimal control found above is also unique due to the strict concavity
of f (x, ·) (Assumption 2(ii)). A proof of uniqueness is given in Proposition 3.11 below in a
similar context and we omit it here to avoid repetitions.

3.4. Limit of the iterative scheme. Now that we have characterised the solution of the nth
singular control problem, we turn to the study of convergence of the iterative scheme. First,
we show monotonicity of the scheme in terms of the sequence of value functions (un)n≥0 of
the stopping problems.

PROPOSITION 3.6 (Monotonicity of the iterative scheme). Under Assumptions 1–3 we
have un ≥ un+1 on [0, T ] × � and cn ≥ cn+1 on [0, T ] × R. Moreover, for any (t, x, y) ∈
[0, T ] × � we also have

X
[n]
t+s ≥ X

[n+1]
t+s and Y

[n]∗
t+s ≥ Y

[n+1]∗
t+s for s ∈ [0, T − t],Pt,x,y-a.s.(3.17)

Finally, m[n] ≥ m[n+1] on [0, T ].
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PROOF. We argue by induction and assume that for some n ≥ 0 we have m[n−1] ≥
m[n] on [0, T ]. Then, by monotonicity of the drift coefficient (Assumption 1(ii)), we have
a(x,m[n](t)) ≤ a(x,m[n−1](t)) for all (t, x) ∈ [0, T ] × R. It follows from comparison re-
sults for SDEs (see, e.g., Karatzas and Shreve (1988), Proposition 5.2.18) and (3.1) that
X

[n]
t+s ≥ X

[n+1]
t+s for all s ∈ [0, T − t], Pt,x -a.s., for all (t, x) ∈ [0, T ] ×R. By monotonicity of

the profit function (Assumption 2(i)), we have ∂yf (X
[n+1]
t+s , y) ≤ ∂yf (X

[n]
t+s, y) and therefore

(3.4) and (3.5) imply un+1 ≤ un on [0, T ] × �. The latter and the definition of the optimal
boundary in (3.13) give us cn+1 ≤ cn on [0, T ] ×R. Now, using the definition of the optimal
control in Lemma 3.4 we have Pt,x,y -a.s.

ξ
[n+1]∗
t+s = sup

0≤u≤s

(
cn+1

(
t + u,X

[n+1]
t+u

) − y
)+ ≤ sup

0≤u≤s

(
cn

(
t + u,X

[n+1]
t+u

) − y
)+

≤ sup
0≤u≤s

(
cn

(
t + u,X

[n]
t+u

) − y
)+ = ξ

[n]∗
t+s ,

where the first inequality is due to cn ≥ cn+1 and the second one to X[n] ≥ X[n+1], since x �→
cn(t, x) is nondecreasing (Proposition 3.3). Monotonicity of the optimal controls implies
monotonicity of the optimally controlled processes Y

[n]∗
t+s ≥ Y

[n+1]∗
t+s for all s ∈ [0, T − t] and

from the latter we obtain

m[n+1](t) =
∫
�

Ex,y

[
Y

[n+1]∗
t

]
ν(dx,dy) ≤

∫
�

Ex,y

[
Y

[n]∗
t

]
ν(dx,dy) = m[n](t).

So the argument is complete once we show that we can find n ≥ 0 such that m[n−1] ≥ m[n] on
[0, T ]. The latter is true in particular for n = 0 since m[−1] ≡ 1 and m[0] ≤ 1 on [0, T ]. �

It is clear that by construction 0 ≤ cn(t, x) ≤ 1 and 0 ≤ m[n](t) ≤ 1 for all (t, x) ∈ [0, T ]×
R and all n ≥ 0. Moreover, a(x,0) ≤ a(x,m[n](t)) ≤ a(x,1) for all (t, x) ∈ [0, T ] × R and
all n ≥ 0, so that by the comparison principle X̄0

t+s ≤ X
[n]
t+s ≤ X

[0]
t+s , for all s ∈ [0, T − t],

Pt,x,y -a.s. for all n ≥ 0 and with X̄0 the solution of (3.1) associated to a(x,0).
By monotonicity of the sequences (un)n≥0, (cn)n≥0 and (m[n])n≥0 we can define the func-

tions

u(t, x, y) := lim
n→∞un(t, x, y), c(t, x) := lim

n→∞ cn(t, x) and

m̃(t) := lim
n→∞m[n](t),

(3.18)

for all (t, x, y) ∈ [0, T ] × �. Pointwise limit preserves the monotonicity of m̃, c and u with
respect to (t, x, y). Moreover, since un is continuous and cn, m[n] are upper-semicontinuous
for all n ≥ 0 we have that

the functions u, m̃ and c are upper-semicontinuous(3.19)

on their respective domains as decreasing limit of upper-semicontinuous functions. Since m̃

is also nondecreasing, then it must be right-continuous.
Notice that for each n ≥ 0 the null set in (3.17) depends on n and (t, x, y) so we denote it

by Nn
t,x,y . Then we can define a universal null set Nt,x,y := ⋃

n≥0 Nn
t,x,y and for any (t, x, y) ∈

[0, T ] × � and all ω ∈ � \ Nt,x,y we define the processes X̃ and ξ̃ as

X̃t+s(ω) := lim
n→∞X

[n]
t+s(ω) and ξ̃t+s(ω) := lim

n→∞ ξ
[n]∗
t+s (ω),(3.20)

for all s ∈ [0, T − t]. We can then set X̃ ≡ 0 and ξ̃ ≡ 0 on Nt,x,y and recall that the filtration
is completed with Pt,x,y -null sets, so that the limit processes are adapted. Of course we also
have

Ỹt := y + ξ̃t = lim
n→∞Y

[n]∗
t
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and thanks to monotone convergence we can immediately establish

m̃(t) = lim
n→∞

∫
�

Ex,y

[
Y

[n]∗
t

]
ν(dx,dy) =

∫
�

Ex,y[Ỹt ]ν(dx,dy).(3.21)

Notice that here we are using that (x, y) �→ Ex,y[ξ [n]∗
t ] is measurable, thanks to the explicit

expression of ξ [n]∗ and measurability of cn. Therefore (x, y) �→ Ex,y [̃ξt ] is measurable too as
pointwise limit of measurable functions.

We now derive the dynamics of X̃ and show that ξ̃ ∈ �t,x(y).

LEMMA 3.7 (Limit state processes). Suppose Assumptions 1–3 hold. For any (t, x, y) ∈
[0, T ] × � the process X̃ is the unique strong solution of

X̃t+s = x +
∫ s

0
a
(
X̃t+u, m̃(t + u)

)
du +

∫ s

0
σ(X̃t+u)dWt+u, s ∈ [0, T − t],(3.22)

and the process ξ̃ belongs to �t,x(y).

PROOF. Fix (t, x, y) ∈ [0, T ] × �. The first observation is that X̃ and ξ̃ are (Ft+s)s≥0-
adapted processes as pointwise limit of adapted processes on � \ Nt,x,y and by Pt,x,y -
completeness of the filtration. Since ξ̃ is decreasing limit of right-continuous nondecreas-
ing processes (hence upper-semicontinuous), then it is also nondecreasing and upper-
semicontinuous. The latter two properties imply right-continuity of the limit process ξ̃ as
well. Since ξ [n]∗

u = 0 for u ∈ [0, t) and ξ
[n]∗
T ≤ 1 − y, for all n ≥ 0, we also have ξ̃u = 0 for

u ∈ [0, t) and ξ̃T ≤ 1 − y. Hence ξ̃ ∈ �t,x(y).
Let us now prove (3.22). Denote by X′ the unique strong solution of (3.22) and let us

show that X̃ = X′. By standard estimates and using Lipschitz continuity of the drift a(·)
(Assumption 1(i)) we have

Et,x

[
sup

0≤s≤T −t

∣∣X[n]
t+s − X′

t+s

∣∣2]

≤ 2Et,x

[
L2 · T

∫ T −t

0

(∣∣X[n]
t+s − X′

t+s

∣∣2 + ∣∣m[n](t + s) − m̃(t + s)
∣∣2)

ds

]

+ 2Et,x

[
sup

0≤s≤T −t

∣∣∣∣∫ s

0

(
σ

(
X

[n]
t+u

) − σ
(
X′

t+u

))
dWt+u

∣∣∣∣2]
.

Since σ enjoys linear growth and X[n] and X′ are solutions of SDEs with Lipschitz coeffi-
cients, then

s �→
∫ s

0

(
σ

(
X

[n]
t+u

) − σ
(
X′

t+u

))
dWt+u

is a martingale on [0, T − t] and we can use Doob’s inequality to get

Et,x

[
sup

0≤s≤T −t

∣∣∣∣∫ s

0

(
σ

(
X

[n]
t+u

) − σ
(
X′

t+u

))
dWt+u

∣∣∣∣2]

≤ 4Et,x

[∫ T −t

0

(
σ

(
X

[n]
t+s

) − σ
(
X′

t+s

))2 ds

]
≤ 4L2Et,x

[∫ T −t

0

∣∣X[n]
t+s − X′

t+s

∣∣2 ds

]
.

Combining the estimates above and using Gronwall’s inequality, we obtain

Et,x

[
sup

0≤s≤T −t

∣∣X[n]
t+s − X′

t+s

∣∣2]
≤ c

∫ T −t

0

∣∣m[n](t + s) − m̃(t + s)
∣∣2 ds,
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for some constant c > 0. Letting n → ∞ and using bounded convergence and the definition
of m̃ we conclude. �

Next, we connect u(·) and c(·) with an optimal stopping problem for X̃. Recall that u and
c are upper-semicontinuous by (3.19) and enjoy the same monotonicity properties of un and
cn. Recall also the convention un(t, x,0) = c0 if ∂yf (x,0) = ∞.

LEMMA 3.8 (Limit optimal stopping problem). Suppose Assumptions 1–3 hold. Then,
for all (t, x, y) ∈ [0, T ] × � we have

u(t, x, y) = inf
τ∈Tt

U(t, x, y; τ) with

U(t, x, y; τ) := Et,x

[∫ τ

0
e−rs∂yf (X̃t+s, y)ds + c0e

−rτ

](3.23)

and

c(t, x) = inf
{
y ∈ [0,1] : u(t, x, y) < c0

}
with inf∅ = 1.

In particular c is the boundary of the set

C := {
(t, x, y) ∈ [0, T ] × � : u(t, x, y) < c0

}
(3.24)

and, moreover, both C and S := ([0, T ] × �) \ C are not empty.

PROOF. Since X[n] ≥ X̃ for all n ≥ 0 and x �→ ∂yf (x, y) is nondecreasing, for any τ ∈ Tt

we have Un(t, x, y; τ) ≥ U(t, x, y; τ) and therefore

u(t, x, y) = lim
n→∞ inf

τ∈Tt

Un(t, x, y; τ) ≥ inf
τ∈Tt

U(t, x, y; τ).

Now, given ε > 0 we can find a stopping time τε ∈ Tt such that

inf
τ∈Tt

U(t, x, y; τ) + ε ≥ U(t, x, y; τε).

Moreover, by dominated convergence (Assumption 3) and continuity of ∂yf we have

U(t, x, y; τε) = Et,x

[∫ τε

0
e−rs lim

n→∞∂yf
(
X

[n]
t+s, y

)
ds + c0e

−rτε

]
= lim

n→∞Un(t, x, y; τε).

So combining the above we get

inf
τ∈Tt

U(t, x, y; τ) + ε ≥ lim
n→∞Un(t, x, y; τε) ≥ lim

n→∞un(t, x, y) = u(t, x, y)

and since ε > 0 was arbitrary we conclude

u(t, x, y) ≤ inf
τ∈Tt

U(t, x, y; τ)

as needed for the first claim. Notice that the expression in (3.23) is readily verified also if
∂yf (x,0) = ∞, with un(t, x,0) = u(t, x,0) = c0.

Let us next prove that c coincides with the optimal stopping boundary for the limit prob-
lem. Since u ≤ un for all n ≥ 0 we have

cn(t, x) = inf
{
y ∈ [0,1] : un(t, x, y) < c0

} ≥ inf
{
y ∈ [0,1] : u(t, x, y) < c0

}
so that

c(t, x) ≥ inf
{
y ∈ [0,1] : u(t, x, y) < c0

}
.
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For the reverse inequality, let us fix (t, x) ∈ [0, T ] ×R, take η ∈ [0,1] such that

η > inf
{
y ∈ [0,1] : u(t, x, y) < c0

}
.(3.25)

Then there must be δ > 0 such that u(t, x, η) ≤ c0 −δ. By pointwise convergence, there exists
nδ ≥ 0 such that un(t, x, η) ≤ u(t, x, η) + δ/2 for all n ≥ nδ and therefore, un(t, x, η) ≤
c0 − δ/2 for all n ≥ nδ . Hence, η > cn(t, x) for all n ≥ nδ and η > c(t, x) too. The result
holds for any η ∈ [0,1] such that (3.25) is true and therefore

c(t, x) ≤ inf
{
y ∈ [0,1] : u(t, x, y) < c0

}
.

Since y �→ u(t, x, y) is decreasing it is clear that c is the boundary of the set C defined in
(3.24).

The exact same arguments as in the proof of Proposition 3.3 apply to the stopping problem
with value u and allow us to show that C �= ∅ and S �= ∅ thanks to (2.8) in Assumption 2.

�

Thanks to the probabilistic representation of u we can use the same arguments as in the
proof of Proposition 3.2 to show that u indeed fulfils the same properties as un.

COROLLARY 3.9. Under Assumptions 1–3 the function u satisfies (i)–(iv) in Proposi-
tion 3.2.

In what follows, we let

τ∗(t, x, y) = inf
{
s ∈ [0, T − t] : u(

t + s, X̃
t,x
t+s, y

) = c0
}
,(3.26)

which is optimal for the limit problem with value u(t, x, y). Continuity of the value function
allows a simple proof of convergence of optimal stopping times. The result is of independent
interest and might be used for numerical approximation of the optimal stopping rule τ∗. We
state the result here but put its proof in the Appendix as it will not be needed in the rest of the
paper.

LEMMA 3.10. For all (t, x, y) ∈ [0, T ] × � we have τ
[n]∗ ↑ τ∗, Pt,x,y -a.s., as n → ∞.

Since the dynamics of (X̃t )t∈[0,T ] is fully specified and we have obtained a solution of
the optimal stopping problem with value u (Lemma 3.8), we can state a result similar to
Proposition 3.5.

PROPOSITION 3.11. Let Assumptions 1–3 hold and let X̃ be specified as in Lemma 3.7.
Define

v̂(t, x, y) := sup
ξ∈�t,x(y)

Ĵ (t, x, y; ξ) with

Ĵ (t, x, y; ξ) := Et,x

[∫ T −t

0
e−rsf (X̃t+s, y + ξt+s)ds −

∫
[0,T −t]

e−rsc0 dξt+s

]
.

(3.27)

Then, for any (t, x, y) ∈ [0, T ] × � we have

v̂(t, x, y) = �(t, x) −
∫ 1

y
u(t, x, z)dz with �(t, x) := Et,x

[∫ T −t

0
e−rsf (X̃t+s,1)ds

]
.

Moreover,

ξ∗
t+s := sup

0≤u≤s

(
c(t + u, X̃t+u) − y

)+ with ξ∗
u = 0, u ∈ [0, t),(3.28)

is the unique optimal control in (3.27), up to indistinguishability.
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REMARK 3.12. Before passing to the proof we would like to emphasise that at this stage
we are not claiming that (m̃, ξ∗) is a solution of the MFG because m̃ is specified in (3.21)
and a priori the consistency condition (Definition 2.3(ii)) may not hold. Hence, a priori v̂ is
not the function v defined in (2.7). Of course uniqueness of the optimal control also holds in
Proposition 3.5 albeit not stated there.

PROOF. We only need to prove uniqueness of the optimal control as all remaining claims
are obtained by repeating verbatim the proof of Proposition 3.5. As usual, uniqueness follows
by strict concavity of the map y �→ f (x, y), convexity of the set �t,x(y) of admissible con-
trols and an argument by contradiction.

For notational simplicity and with no loss of generality, we take t = 0. Assume that η ∈
�0,x(y) is another optimal control. Since, η and ξ∗ are both right-continuous they are indis-
tinguishable as soon as they are modifications, that is, if Px,y(ξ

∗
s = ηs) = 1 for all s ∈ [0, T ].

Arguing by contradiction assume there exists s0 ∈ [0, T ) such that 3p := Px,y(ξ
∗
s0

�= ηs0) > 0.
Then, there also exists ε > 0 such that Px,y(|ξ∗

s0
− ηs0 | ≥ ε) ≥ 2p and, by right-continuity of

the paths, there exists s1 > s0 such that

Px,y

(
inf

s0≤u≤s1

∣∣ξ∗
u − ηu

∣∣ ≥ ε
)

≥ p > 0.

Let us denote

A0 :=
{
ω : inf

s0≤u≤s1

∣∣ξ∗
u (ω) − ηu(ω)

∣∣ ≥ ε
}
.(3.29)

For any λ ∈ (0,1), since η and ξ∗ are both optimal, we have

v̂(0, x, y) = λĴ (0, x, y;η) + (1 − λ)Ĵ
(
0, x, y; ξ∗)

= Ex

[∫ T

0
e−rs[λf (X̃s, y + ηs) + (1 − λ)f

(
X̃s, y + ξ∗

s

)]
ds

]
− Ex

[∫
[0,T ]

e−rsc0
(
λdηs + (1 − λ)dξ∗

s

)]
.

Now, letting ζ λ := λη + (1 − λ)ξ∗ it is immediate to check that ζ λ ∈ �0,x(y) and, by strict
concavity of y �→ f (x, y) (and joint continuity of f ), we have

1A0

[
λf (X̃s, y + ηs) + (1 − λ)f

(
X̃s, y + ξ∗

s

)]
< 1A0f

(
X̃s, y + ζ λ

s

)
for s ∈ [s0, s1]

with 1A0 the indicator of the event in (3.29). For all times s ∈ [0, T ] and on � \ A0 the same
inequality holds with ‘≤’ by concavity. Since P0,x(A0) > 0 and s0 < s1, the strict inequality
holds for the expected values as well. Hence we reach the contradiction

v̂(0, x, y) < Ĵ
(
0, x, y; ζ λ)

,

which concludes the proof. �

3.5. Solution of the MFG. In this section, we first show that ξ̃ obtained in the previous
section (see (3.20)) is optimal for the control problem in Proposition 3.11 and then conclude
that (m̃, ξ̃ ) solves the MFG.

PROPOSITION 3.13. Let Assumptions 1–3 hold, take ξ̃ as in (3.20), m̃ as in (3.21) and
X̃ as in Lemma 3.7. Then

v̂(t, x, y) = Ĵ (t, x, y; ξ̃ ) for any (t, x, y) ∈ [0, T ] × �

and ξ̃ is indistinguishable from ξ∗ as in (3.28).
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PROOF. We only need to prove optimality of ξ̃ as the rest follows by uniqueness of the
optimal control (Proposition 3.11).

Recall the value function vn of SC[n] (see (3.2)–(3.3)) and its expression from Proposi-
tion 3.5. Using dominated convergence, we obtain

lim
n→∞

(
�n(t, x) −

∫ 1

y
un(t, x, z)dz

)

= Et,x

[∫ T −t

0
e−rs lim

n→∞f
(
X

[n]
t+s,1

)
ds

]
−

∫ 1

y
lim

n→∞un(t, x, z)dz = v̂(t, x, y),

where the final equality is due to (3.18), (3.20) and Proposition 3.11. Therefore, we have

lim
n→∞vn(t, x, y) = v̂(t, x, y).

Since vn(t, x, y) = Jn(t, x, y; ξ [n]∗), if we can show that

lim
n→∞Jn

(
t, x, y; ξ [n]∗) = Ĵ (t, x, y; ξ̃ ),

the proof is complete. The latter is not difficult, indeed by integration by parts and dominated
convergence, we have

lim
n→∞Jn

(
t, x, y; ξ [n]∗)

= lim
n→∞ Et,x

[∫ T −t

0
e−rsf

(
X

[n]
t+s, y + ξ

[n]∗
t+s

)
ds − c0e

−r(T −t)ξ
[n]∗
T − rc0

∫ T −t

0
e−rsξ

[n]∗
t+s ds

]

= Et,x

[∫ T −t

0
e−rs lim

n→∞f
(
X

[n]
t+s, y + ξ

[n]∗
t+s

)
ds

− c0e
−r(T −t) lim

n→∞ ξ
[n]∗
T − rc0

∫ T −t

0
e−rs lim

n→∞ ξ
[n]∗
t+s ds

]

= Et,x

[∫ T −t

0
e−rsf (X̃t+s, y + ξ̃t+s)ds − c0e

−r(T −t)ξ̃T − rc0

∫ T −t

0
e−rs ξ̃t+s ds

]
= Ĵ (t, x, y; ξ̃ ),

where the penultimate equality comes from (3.20) and the final one is obtained by undoing
the integration by parts. �

By construction Ỹ and m̃ fulfill the consistency condition (3.21) hence, we have a simple
corollary.

COROLLARY 3.14. The pair (m̃, ξ̃ ) is a solution of the MFG as in Definition 2.3. Since
ξ̃ is indistinguishable from ξ∗ in (3.28) then Theorem 2.5 holds with

X∗ = X̃, Y ∗ = Y0− + ξ̃ = Y0− + ξ∗ and m∗ = m̃.

As a byproduct of this result and of Proposition 3.11 we also have that the classical con-
nection between singular stochastic control and optimal stopping still holds in our specific
mean-field game.

REMARK 3.15. It is interesting to notice that, upon a close inspection, the existence
of a solution for our MFG could have been derived following ideas as in Dianetti et al.
(2021) based on submodularity of the game’s structure and the use of Tarski’s fixed point
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theorem. However, that approach does not reveal any information on the structure of the so-
lution, which makes its implementation in the N -player (pre-limit) games a very difficult
task. Thanks to our constructive method, we have obtained a more explicit form of a MFG’s
solution, which we use in the next section to also obtain approximate Nash equilibria in the
N -player games for N large enough (with a convergence rate).

A clearer parallel at the technical level seems in order. In our set-up the function f is inde-
pendent of the measure flow so that the submodularity is trivially satisfied. We also have an
indirect dependence of the players’ objectives on the measure flow via the state X (similarly
to Section 4.4 in Dianetti et al. (2021)). Indeed, we recall that the drift of X depends on the av-
erage of the state Y in a monotone fashion (Assumption 1(ii)). Denoting Y

m,∗
t := Y0− + ξ

m,∗
t

the optimally controlled process Y (where we emphasise its dependence on m(t)), it is not
difficult to show as in Proposition 3.6 that m �→ E[Ym,∗

t ] is nonincreasing with respect to the
natural order m′ ≥ m. The latter is defined as m′(t) ≥ m(t) for all t ∈ [0, T ] over the set of all
measurable functions m : [0, T ] → [0,1]. Such set is a complete lattice under that order, so
Tarski’s fixed point theorem applies leading to the existence of MFG solutions in our case.

4. Approximate Nash equilibria for the N -player game.

4.1. The N -player game: Setting and assumptions. Here we start with a formal descrip-
tion of the N -player game sketched in the Introduction.

Let � := (�,F, F̄= (Ft )t≥0, P̄) be a filtered probability space satisfying the usual condi-
tions, supporting an infinite sequence of independent one-dimensional F̄-Brownian motions
(Wi)∞i=1, as well as i.i.d. F0-measurable initial states (Xi

0, Y
i
0−)∞i=1 with common distribution

ν ∈ P(�), independent of the Brownian motions. With no loss of generality, we assume that
� is the same probability space that also accommodates the Brownian motion and the ran-
dom initial conditions used in the setting of the MFG in Section 2.1. For each N ≥ 1, define
F

N = (F0 ∨FN
t )t≥0, where (FN

t )t≥0 is the augmented filtration generated by the Brownian
motions (Wi)Ni=1. Then the filtered probability spaces �N := (�,F,FN, P̄) satisfy the usual
conditions. These are the spaces on which we define strong solutions for the SDEs appearing
in the N -player systems. In what follows, the classes of admissible strategies associated to
the probability spaces �N are denoted by ��N

with the same meaning as in Section 1.4 but
with �N instead of �.

Each player i = 1, . . . ,N observes/controls her own private state process (XN,i, YN,i),
whose dynamics is

X
N,i
t = Xi

0 +
∫ t

0
a
(
XN,i

s ,mN
s

)
ds +

∫ t

0
σ

(
XN,i

s

)
dWi

s ,

Y
N,i
t = Y i

0− + ξ
N,i
t , t ∈ [0, T ],

(4.1)

where ξN,i ∈ ��N
(Y i

0−) is the strategy chosen by the ith player, while mN is the mean-field
interaction term given by

mN
t = 1

N

N∑
i=1

Y
N,i
t =

∫
�

yμN
t (dx,dy), μN

t = 1

N

N∑
i=1

δ
(X

N,i
t ,Y

N,i
t )

.

The process μN
t above denotes the empirical distribution of the players’ states, with δz the

Dirac delta mass at z ∈ �.
In the rest of this section, we use the notations ξN := (ξN,i)Ni=1 and

�N(Y0−) = {
ξN : ξN,i ∈ ��N (

Y i
0−

)
for all i = 1, . . .N

}
,
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where Y0− = (Y 1
0−, . . . , YN

0−). We will also consider the dynamics of (XN,YN) conditionally
on specific initial conditions (x,y) := (xi, yi)Ni=1 drawn independently from the common
initial distribution ν. Analogously to (2.4), we have

P̄(·) =
∫
�N

Px,y(·)νN(dx,dy), Ē(·) =
∫
�N

Ex,y(·)νN(dx,dy),

where νN is the N -fold product of the measure ν. The dynamics of the state variables under
Px,y reads

X
N,i
t = xi +

∫ t

0
a
(
XN,i

s ,mN
s

)
ds +

∫ t

0
σ

(
XN,i

s

)
dWi

s ,

Y
N,i
t = yi + ξ

N,i
t , t ∈ [0, T ].

Accordingly, since the initial conditions (x,y) = (xi, yi)Ni=1 are drawn from νN , the expected
payoff of the ith player is given by

JN,i(ξN ) :=
∫
�N

JN,i(x,y; ξN )
νN(dx,dy),

where

JN,i(x,y; ξN ) := Ex,y

[∫ T

0
e−rtf

(
X

N,i
t , Y

N,i
t

)
dt −

∫
[0,T ]

e−rt c0 dξ
N,i
t

]
.

DEFINITION 4.1 (ε-Nash equilibrium for the N -player game). Given ε ≥ 0, an admis-
sible strategy vector ξε ∈ �N(Y0−) is called ε-Nash equilibrium for the N -player game of
capacity expansion if for every i = 1, . . . ,N and for every admissible individual strategy
ξ i ∈ ��N

(Y i
0−), we have

JN,i(ξε) ≥ JN,i([ξε,−i , ξ i]) − ε,

where [ξε,−i , ξ i] denotes the N -player strategy vector that is obtained from ξε by replacing
the ith entry with ξ i .

In order to construct ε-Nash equilibria using the optimal control obtained in the MFG, it
is convenient to make an additional set of assumptions on the profit function.

ASSUMPTION 4. The running payoff f is locally Lipschitz, that is,∣∣f (x, y) − f
(
x′, y′)∣∣ ≤ �

(
x, x′)(∣∣x − x′∣∣ + ∣∣y − y′∣∣), (x, y),

(
x′, y′) ∈ �.

Moreover, there exists q > 1 such that the function � :R×R →R+ satisfies the integrability
condition

C(�,q) := sup
N∈N

sup
ξN,1

Ē
[∫ T

0
�q(

X
N,1
t ,X∗

t

)
dt

]
< ∞,(4.2)

where XN,1 is the solution of (4.1), X∗ = X̃ is the solution of (2.1) obtained in the MFG (see
also (3.22)) and the supremum is taken over all admissible controls ξN,1 ∈ ��N

(Y 1
0−) and all

N ∈ N.

The assumption above is of technical nature and it is needed in the proof of Theorem 4.2
in order to use dominated convergence in some steps of the construction of ε-Nash equilibria.
In Section 4.3, we will provide two examples of running profit of Cobb–Douglas type that
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satisfy that assumption. The integrability condition (4.2) is redundant if f is Lipschitz con-
tinuous. Since YN,1 ∈ [0,1] there is no loss of generality in taking � independent of y and
the supremum over ξN,1 is not restrictive either. If � has polynomial growth of order p ≥ 1,
then (4.2) holds thanks to the Lipschitz continuity of the coefficients a(x,m) and σ(x) as
soon as E[(X0)

p·q] < ∞. Later in Section 4.4 we will consider and example where � has
exponential growth and (4.2) holds.

The next is an assumption on the optimal boundary found in Theorem 2.5.

ASSUMPTION 5. The optimal boundary (t, x) �→ c(t, x) of Theorem 2.5 is uniformly
Lipschitz continuous in x with constant θc > 0, that is,

sup
0≤t≤T

∣∣c(t, x) − c
(
t, x′)∣∣ ≤ θc

∣∣x − x′∣∣, x, x′ ∈R.

The study of regularity of free boundaries in singular stochastic control and in optimal
stopping has a long tradition. Early work by, for example, van Moerbeke (1975) and Kotlow
(1973) address the question in optimal stopping of one-dimensional diffusions with finite-
time horizon. In those cases the free boundary is a function of time only and it is shown
to be continuously differentiable away from the terminal time in the optimisation. Methods
from those papers (and subsequent ones in analogous settings) do not extend easily to free
boundaries which are functions of several variables.

In singular stochastic control some of the main contributions were given by Shreve and
Soner (1991), Soner and Shreve (1991) and Williams, Chow and Menaldi (1994), who adopt
an approach based on variational inequalities with gradient constraint. The latter two papers
consider problems with an infinite-time horizon, which lead to elliptic variational problems.
The first paper is more closely related to our set-up as it considers problems with finite-time
horizon and d-dimensional dynamics (with controls acting on a single spatial coordinate). In
Soner and Shreve (1991), the free boundary is shown to be a Lipschitz continuous function
of time and of d − 1 spatial coordinates. Differently from our set-up the state dynamics in all
three papers has diffusive component in all its spatial coordinates, thus leading to uniformly
elliptic second order differential operators. In our case there is no diffusive component in the
y-coordinate, so those PDE techniques cannot be employed directly.

Free boundary problems are also widely studied in the PDE literature, often beyond their
applications in stochastic control theory. Self-contained expositions of fundamental results
and complementary methods are contained, for example, in the monographs Friedman (1988)
and Caffarelli and Salsa (2005). Also in these references the regularity of the free boundary
is analysed when the second order differential operator is the Laplacian or a uniformly el-
liptic operator with suitable coefficients. Extensions to degenerate settings like ours are not
straightforward.

A probabilistic approach developed in De Angelis and Stabile (2019) instead does not
require uniform nondegeneracy of the state dynamics. In Section 4.3, we show how those
ideas can be used in our framework to prove that Assumption 5 indeed holds in a large class
of examples.

4.2. Approximate Nash equilibria. Here we prove that the MFG solution constructed in
Theorem 2.5 induces approximate Nash equilibria in the N -player game of capacity expan-
sion, when N is large enough.

THEOREM 4.2 (Approximate Nash equilibria for the N -player game). Suppose Assump-
tions 1–5 hold. Recall the solution (m∗, ξ∗) of the MFG of capacity expansion constructed in
Theorem 2.5. Notice that the control ξ∗ is in feedback form and reads

ξ∗
t = η∗(

t,X∗, Y0−
)
, t ∈ [0, T ],
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with η∗ : [0, T ] × C([0, T ];R) × [0,1] → [0,1] the nonanticipative mapping defined by

η∗(t, ϕ, y) := sup
0≤s≤t

(
c
(
s, ϕ(s)

) − y
)+(4.3)

and with X∗ the dynamics in (2.1) associated to m∗.
Setting ξ̂

N,i
t := η∗(t,XN,i, Y i

0−), the vector ξ̂N is a εN -Nash equilibrium for the N -player
game of capacity expansion according to Definition 4.1 with εN → 0 as N → ∞. Further, if
q ≥ 2 in (4.2) of Assumption 4, then the rate of convergence is at least of order N−1/2.

PROOF. For each Brownian motion Wi we introduce the following auxiliary dynamics
with m∗ as in Theorem 2.5 and with η∗ as defined in (4.3):

Xi
t = Xi

0 +
∫ t

0
a
(
Xi

s,m
∗(s)

)
ds +

∫ t

0
σ

(
Xi

s

)
dWi

s ,

Y i
t = Y i

0− + ζ i
t := Y0− + η∗(

t,Xi, Y i
0−

)
, t ∈ [0, T ], i ∈ {1, . . . ,N}.

(4.4)

These are the analogues of the solution (X∗, Y ∗) of (2.1).
Notice that the initial conditions above are the same as in the dynamics of (XN,i, YN,i).

Moreover, (Xi
t , Y

i
t )

∞
i=1 is a sequence of i.i.d. random variables with values in R × [0,1], so

that in particular the law of large numbers (LLN) holds. The rest of the proof is structured in
three steps:

(i) We prove that JN,1(ξ̂N ) → J (ξ∗) as N → ∞.
(ii) Recalling the notation [ξ̂N,−1, ξ ] = (ξ, ξ̂N,2, . . . , ξ̂N,N) introduced in Definition 4.1

we prove

lim sup
N→∞

sup
ξ∈��N

(Y 1
0−)

JN,1([
ξ̂N,−1, ξ

]) ≤ J
(
ξ∗) = V ν.

(iii) Combining (i) and (ii), for any ε > 0 there exists Nε ∈N such that

JN,1(
ξ̂N ) ≥ sup

ξ∈��N
(Y 1

0−)

JN,1([
ξ̂N,−1, ξ

]) − ε

for all N ≥ Nε .

In the three steps above we singled out the first player with no loss of generality since the
N -player game is symmetric.

(i) Let us start by observing that (X∗, Y ∗, ξ∗) from Theorem 2.5 and (X1, Y 1, ζ 1) defined
above have the same law, so that

J
(
ξ∗) = Ē

[∫ T

0
e−rsf

(
X1

t , Y
1
t

)
dt − c0

∫
[0,T ]

e−rt dζ 1
t

]
.

By triangular inequality, we get∣∣JN,1(
ξ̂N ) − J

(
ξ∗)∣∣ ≤ Ē

[∫ T

0
e−rt

∣∣f (
X̂

N,1
t , Ŷ

N,1
t

) − f
(
X1

t , Y
1
t

)∣∣ dt

]
+ c0Ē

[∣∣∣∣∫[0,T ]
e−rt d

(
ξ̂

N,1
t − ζ 1

t

)∣∣∣∣],

(4.5)

where we use (X̂N,i, Ŷ N,i) for the state process of the ith player when all players use the
control vector ξ̂N . Similarly, we denote by m̂N the empirical average of the processes Ŷ N,i ,
that is,

m̂N
t = 1

N

N∑
i=1

Ŷ
N,i
t .
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We estimate the first term on the right-hand side using Assumption 4 and obtain

Ē
[∫ T

0
e−rt

∣∣f (
X̂

N,1
t , Ŷ

N,1
t

) − f
(
X1

t , Y
1
t

)∣∣ dt

]

≤ Ē
[∫ T

0
e−rt�

(
X̂

N,1
t ,X1

t

)(∣∣X̂N,1
t − X1

t

∣∣ + ∣∣Ŷ N,1
t − Y 1

t

∣∣) dt

]

≤ C1Ē
[∫ T

0
�q(

X̂
N,1
t ,X1

t

)
dt

] 1
q

Ē
[∫ T

0

(∣∣X̂N,1
t − X1

t

∣∣p + ∣∣Ŷ N,1
t − Y 1

t

∣∣p)
dt

] 1
p

≤ C1C(�,q)Ē
[∫ T

0

(∣∣X̂N,1
t − X1

t

∣∣p + ∣∣Ŷ N,1
t − Y 1

t

∣∣p)
dt

] 1
p

,

for some positive constant C1 = C1(T , q), using Hölder’s inequality with p = q/(q − 1) and
q > 1 as in Assumption 4. For the remaining term in (4.5), we use integration by parts and
ξ̂

N,1
0− = ζ 1

0− = 0 to obtain

Ē
[∣∣∣∣∫[0,T ]

e−rt d
(
ξ̂

N,1
t − ζ 1

t

)∣∣∣∣] = Ē
[∣∣∣∣e−rT (

ξ̂
N,1
T − ζ 1

T

) + r

∫ T

0
e−rt (ξ̂N,1

t − ζ 1
t

)
dt

∣∣∣∣]
(4.6)

≤ Ē
[∣∣ξ̂N,1

T − ζ 1
T

∣∣ + r

∫ T

0
e−rt

∣∣ξ̂N,1
t − ζ 1

t

∣∣ dt

]
.

Recall that ξ̂
N,1
t = η∗(t, X̂N,1, Y 1

0−) and ζ 1
t = η∗(t,X1, Y 1

0−). Then using Assumption 5 we
obtain for any t ∈ [0, T ]∣∣ξ̂N,1

t − ζ 1
t

∣∣ ≤ sup
0≤s≤t

∣∣c(
s, X̂N,1

s

) − c
(
s,X1

s

)∣∣ ≤ θc sup
0≤s≤t

∣∣X̂N,1
s − X1

s

∣∣(4.7)

and the same bound also holds for |Ŷ N,1
t − Y 1

t |. Then, combining the above estimates we
arrive at ∣∣JN,1(

ξ̂N ) − J
(
ξ∗)∣∣ ≤ C1C(�,q)T (1 + θc)Ē

[
sup

0≤t≤T

∣∣X̂N,1
t − X1

t

∣∣p] 1
p

+ c0θc(1 + rT )Ē
[

sup
0≤t≤T

∣∣X̂N,1
t − X1

t

∣∣].(4.8)

Since p > 1 it remains to show that

lim
N→∞ Ē

[
sup

0≤t≤T

∣∣X̂N,1
t − X1

t

∣∣p]
= 0.(4.9)

Repeating the same estimates as those in the proof of Lemma 3.7 but with (X̂N,1,X1) instead
of (X[n],X′) and with (m̂N ,m∗) instead of (m[n], m̃) we obtain

Ē
[

sup
0≤t≤T

∣∣X̂N,1
t − X1

t

∣∣p]
≤ CĒ

[∫ T

0

∣∣m̂N
t − m∗(t)

∣∣p dt

]
,(4.10)

for some constant C > 0 depending on p, T and the Lipschitz constant of the coefficients
a(·) and σ(·).

In order to estimate the right-hand side of (4.10) we first observe that for Y i introduced in
(4.4) we have

εp,N :=
∫ T

0
Ē

[∣∣∣∣∣ 1

N

N∑
i=1

Y i
t − m∗(t)

∣∣∣∣∣
p]

dt → 0 as N → ∞,(4.11)
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by the LLN and the bounded convergence theorem, since (Y i
t )

N
i=1 are i.i.d. with mean m∗(t)

(recall that η∗ is the feedback map of the optimal control in the MFG). Hence, we have

Ē
[∫ T

0

∣∣m̂N
t − m∗(t)

∣∣p dt

]
≤ 2p−1

∫ T

0
Ē

[∣∣∣∣∣ 1

N

N∑
i=1

(
Ŷ

N,i
t − Y i

t

)∣∣∣∣∣
p]

dt + 2p−1εp,N

≤ 2p−1
∫ T

0

1

N

N∑
i=1

Ē
[∣∣Ŷ N,i

t − Y i
t

∣∣p]
dt + 2p−1εp,N

(4.12)

= 2p−1
∫ T

0
Ē

[∣∣Ŷ N,1
t − Y 1

t

∣∣p]
dt + 2p−1εp,N

≤ 2p−1θp
c

∫ T

0
Ē
[

sup
0≤s≤t

∣∣X̂N,1
s − X1

s

∣∣p]
dt + 2p−1εp,N ,

where the first inequality uses |a + b|p ≤ 2p−1(|a|p + |b|p), the second inequality follows
by Jensen’s inequality (p > 1), the equality by the fact that the processes (Ŷ N,i − Y i)Ni=1 are

exchangeable and the final inequality uses (4.7) applied to |Ŷ N,1
t − Y 1

t |.
Plugging the latter estimate back into (4.10) and applying Gronwall’s lemma we obtain

Ē
[

sup
0≤t≤T

∣∣X̂N,1
t − X1

t

∣∣p]
≤ C′εp,N ,

for a suitable constant C′ > 0 depending on T and the other constants above. Thanks to (4.11)
we obtain (4.9).

(ii) This part of the proof is similar to the above but now the first player deviates by
choosing a generic admissible control ξ while all remaining players pick ξ̂N,i , i = 2, . . . ,N ;
we denote this strategy vector βN = [ξ̂N,−1, ξ ]. In particular, we notice that the empirical
average associated to this strategy reads

1

N

(
Y 1

0− + ξt +
N∑

i=2

(
Y i

0− + ξ̂
N,i
t

)) = m̄N
t + 1

N

(
ξt − ξ̂

N,1
t

)
,

where m̄N
t := N−1 ∑N

i=1(Y
i
0− + ξ̂

N,i
t ). One should be careful here that m̄N is different to

m̂N used in the proof of (i) above, because the deviation of player 1 from the strategy vector
ξ̂N causes a knock-on effect on the dynamics of ξ̂N,i for all i’s through the nonanticipative
mapping η∗(t,XN,i;β,Y i

0−). To keep track of this subtle aspect, we use the notations ξ̂
N,i;β
t =

η∗(t,XN,i;β,Y i
0−) and Ȳ

N,i;β
t = Y i

0− + ξ̂
N,i;β
t , for i = 1, . . . ,N , in the calculations below.

Accordingly, the state process of the first player reads

X
N,1;β
t = X1

0 +
∫ t

0
a
(
XN,1;β

s , m̄N
s + N−1(

ξs − ξ̂N,1;β
s

))
ds +

∫ t

0
σ

(
XN,1;β

s

)
dW 1

s

Y
N,1;β
t = Y 1

0− + ξt , t ∈ [0, T ].
Using the above expression for XN,1;β and the same arguments as in (4.10), we obtain

Ē
[

sup
0≤t≤T

∣∣XN,1;β
t − X1

t

∣∣p]

≤ CĒ
[∫ T

0

∣∣m̄N
t + N−1(

ξt − ξ̂
N,1;β
t

) − m∗(t)
∣∣p dt

]

≤ 2p−1CĒ
[∫ T

0

∣∣m̄N
t − m∗(t)

∣∣p dt

]
+ 2p2p−1CT N−p,
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where the final inequality uses |a + b|p ≤ 2p−1(|a|p + |b|p) and |ξt − ξ̂
N,1;β
t | ≤ 2 (by the

finite-fuel condition), and C > 0 is a suitable constant. Repeating the same steps as in (4.12),
we have

Ē
[∫ T

0

∣∣m̄N
t − m∗(t)

∣∣p dt

]
≤ 2p−1

∫ T

0
Ē

[∣∣∣∣∣ 1

N

N∑
i=1

(
Ȳ

N,i;β
t − Y i

t

)∣∣∣∣∣
p]

dt + 2p−1εp,N

≤ 2p−1
∫ T

0
Ē

[∣∣Ȳ N,1;β
t − Y 1

t

∣∣p]
dt + 2p−1εp,N

≤ 2p−1θp
c

∫ T

0
Ē

[
sup

0≤s≤t

∣∣XN,1;β
s − X1

s

∣∣p]
dt + 2p−1εp,N ,

where we have used that (Ȳ N,i;β − Y i)Ni=1 are exchangeable by construction. Combining the
two estimates above and using Gronwall’s inequality we obtain a bound which is uniform
with respect to ξ ∈ ��N

(Y 1
0−). In particular, we have

lim
N→∞ sup

ξ∈��N
(Y 1

0−)

Ē
[

sup
0≤t≤T

∣∣XN,1;β
t − X1

t

∣∣p]
≤ C′ lim

N→∞
(
εp,N + N−p) = 0,(4.13)

where C′ > 0 is the constant appearing from Gronwall’s inequality. Since any ξ ∈ ��N
(Y 1

0−)

is admissible but suboptimal in the MFG with state process X1 as in (4.4) we get

sup
ξ∈��N

(Y 1
0−)

JN,1([
ξ̂N,−1, ξ

]) − V ν

≤ sup
ξ∈��N

(Y 1
0−)

(
JN,1([

ξ̂N,−1, ξ
]) − J (ξ)

)

≤ sup
ξ∈��N

(Y 1
0−)

Ē
[∫ T

0
e−rs(f (

X
N,1;β
t , Y 1

0− + ξt

) − f
(
X1

t , Y
1
0− + ξt

))
dt

]

≤ sup
ξ∈��N

(Y 1
0−)

Ē
[∫ T

0
e−rt�

(
X

N,1;β
t ,X1

t

)∣∣XN,1;β
t − X1

t

∣∣ dt

]
,

where in the final inequality we used Assumption 4. Now, arguing as in (i) and using (4.13)
and (4.2) we obtain

lim sup
N→∞

sup
ξ∈��N

(Y 1
0−)

JN,1([
ξ̂N,−1, ξ

]) ≤ V ν = J
(
ξ∗)

,

where the final equality holds by optimality of ξ∗ in the MFG.
(iii) This step follows from the previous two. With no loss of generality we consider only

the first player as the game is symmetric. Given ε > 0, thanks to (ii) there exists Nε > 0
sufficiently large that for any ξ ∈ ��N

(Y 1
0−)

JN,1([
ξ̂N,−1, ξ

]) ≤ V ν + ε

2
for all N > Nε.

From (i), with no loss of generality we can also assume Nε > 0 sufficiently large that

JN,1(
ξ̂N ) ≥ V ν − ε

2
for all N > Nε.

Combining the two inequalities above we obtain that for all ξ ∈ ��N
(Y 1

0−) it holds

JN,1(
ξ̂N ) ≥ JN,1([

ξ̂N,−1, ξ
]) − ε for all N > Nε.
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The final claim on the speed of convergence can be verified by taking q = p = 2 in the
above estimates (for q > 2 the result clearly continues to hold). The leading term in the
convergence of (4.8) is

√
ε2,N (see (4.13)). Equation (4.11) reads

ε2,N =
∫ T

0
Var

(
1

N

N∑
i=1

Y i
t

)
dt = 1

N

∫ T

0
Var

(
Y 1

t

)
dt,

upon noticing that E[N−1 ∑N
i=1 Y i

t ] = E[Y 1
t ] = m∗(t) since (Y i)Ni=1 are i.i.d. Then the claim

follows. �

4.3. Conditions for a Lipschitz continuous optimal boundary. Here we complement re-
sults from De Angelis and Stabile (2019) to provide sufficient conditions under which As-
sumption 5 holds. Notice that our problem is parabolic and degenerate as there is no diffusive
dynamics in the y-direction. Therefore, as explained above, classical PDE results cannot be
applied. Moreover, we extend De Angelis and Stabile (2019) by considering nonconstant dif-
fusion coefficients in the the dynamics of X∗. Thanks to Lemma 3.8, the question reduces to
finding sufficient conditions on the data of the optimal stopping problem (3.23) that guarantee
a Lipschitz stopping boundary. In (3.23) the dynamics of X̃ was obtained from Lemma 3.7
and it corresponds to the dynamics of X∗ in the MFG. In the rest of this section, we always
use such X∗.

We make some additional assumptions on the coefficients of the SDE.

ASSUMPTION 6. We have x �→ a(x,m) and x �→ σ(x) continuously differentiable with
∂xσ (x) ≥ 0 and ∂xa(x,m) ≤ ā for some ā > 0.

Thanks to this assumption we have that the stochastic flow x �→ X∗;t,x(ω) is continuously
differentiable. The dynamics of Zt,x := ∂xX

∗;t,x is given by (see Protter (1990), Chapter V.7)

Z
t,x
t+s = 1 +

∫ s

0
∂xa

(
X

∗;t,x
t+u ,m∗(t + u)

)
Z

t,x
t+u du +

∫ s

0
∂xσ

(
X

∗;t,x
t+u

)
Z

t,x
t+u dWt+u,(4.14)

for all (t, x) ∈ [0, T ] ×R and s ∈ [0, T − t]. The solution of (4.14) is explicit in terms of X∗
and it reads

Z
t,x
t+s = exp

[∫ s

0

(
∂xa

(
X

∗;t,x
t+u ,m∗(t + u)

) − 1

2
∂xσ

(
X

∗;t,x
t+u

)2
)

du +
∫ s

0
∂xσ

(
X

∗;t,x
t+u

)
dWt+u

]
,

for (t, x) ∈ [0, T ] ×R and s ∈ [0, T − t]. Thanks to this explicit formula we can deduce that
(t, x) �→ Zt,x is a continuous flow, by continuity of the flow (t, x) �→ X∗;t,x .

Later on we will perform a change of measure using Z and for that we also require the
following.

ASSUMPTION 7. For all (t, x) ∈ [0, T ] ×R we have

Et,x

[∫ T −t

0

(
∂xσ

(
X∗

t+u

)
Zt+u

)2 du

]
< +∞.

Then letting ZT = Z
0,x
T ,

dQ

dP

∣∣∣∣
FT

:= ZT exp
(
−

∫ T

0
∂xa

(
X∗

t ,m
∗(t)

)
dt

)
(4.15)

defines the Radon–Nikodym derivative of the absolutely continuous change of measure from
P to Q.

Next, we assume some extra conditions on the profit function. Let �◦ = R× (0,1).
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ASSUMPTION 8. We have f ∈ C2(�◦) and either σ(x) = σ is constant or we have x �→
∂xyf (x, y) nonincreasing. Moreover, the integrability condition below holds:

sup
(t,x,y)∈K

Et,x

[∫ T −t

0
e−rs(∣∣∂yyf

(
X∗

t+s, y
)∣∣ + (1 + Zt+s)

∣∣∂xyf
(
X∗

t+s, y
)∣∣) ds

]
< ∞,

for any compact K ⊂ [0, T ] × �◦.

Notice that f (x, y) = xαyβ with α ∈ (0,1], β ∈ (0,1) and x > 0 satisfies Assumption 8
combined with Assumption 1. The next proposition provides sufficient conditions for Lips-
chitz continuity of the optimal boundary.

PROPOSITION 4.3. Let Assumptions 1–3 and Assumptions 6–8 hold. If either of the two
conditions below holds:

(i) there exist α,γ > 0 such that

|∂yyf | ≥ α > 0 and |∂xyf | ≤ γ
(
1 + |∂yyf |) on �◦;

(ii) there exists γ > 0 such that |∂xyf | ≤ γ |∂yyf | on �◦;

then Assumption 5 holds.

The proof of the proposition uses the next lemma concerning the optimal stopping time
defined in (3.26). We move its slightly technical proof to the Appendix.

LEMMA 4.4. The mapping (t, x, y) �→ τ∗(t, x, y) is P-almost surely continuous on
[0, T ] × �◦ with τ∗(t, x, y) = 0, P-a.s. for (t, x, y) ∈ ∂C.

PROOF OF PROPOSITION 4.3. The proof combines ideas from De Angelis and Stabile
(2019) and De Angelis and Peskir (2020). First, for δ > 0 we define

cδ(t, x) := inf
{
y ∈ [0,1] : u(t, x, y) < c0 − δ

}
with inf∅= 1. Then it is clear that cδ(·) > cδ′(·) > c(·) for all 0 < δ′ < δ by monotonicity of
y �→ u(t, x, y). Since u is continuous then

lim
δ↓0

cδ(t, x) = c(t, x), (t, x) ∈ [0, T ] ×R

and if we can prove that x �→ cδ(t, x) is Lipschitz with a constant independent of δ we can
conclude. By continuity of u we know that

u
(
t, x, cδ(t, x)

) = c0 − δ

so that by the implicit function theorem, whose use is justified in step 1 below, we have

∂xcδ(t, x) = −∂xu(t, x, cδ(t, x))

∂yu(t, x, cδ(t, x))
, (t, x) ∈ [0, T ] ×R.(4.16)

Thanks to Corollary 3.9 we have ∂xcδ(t, x) ≥ 0. In step 2 below, we will find an upper bound
so that 0 ≤ ∂xcδ ≤ θc on [0, T ] ×R, for a suitable constant θc > 0. This concludes the proof.

Step 1 (Gradient estimates). We fix an arbitrary (t, x, y) ∈ [0, T ] × �◦ and let τ∗ =
τ∗(t, x, y). Then for any small ε > 0 we have

u(t, x, y + ε) − u(t, x, y)

≤ E
[∫ τ∗

0
e−rs(∂yf

(
X

∗;t,x
t+s , y + ε

) − ∂yf
(
X

∗;t,x
t+s , y

))
ds

]
=

∫ ε

0
E
[∫ τ∗

0
e−rs∂yyf

(
X

∗;t,x
t+s , y + z

)
ds

]
dz,
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where we used Fubini’s theorem in the final equality. Dividing by ε, letting ε → 0 and using
the integrability condition from Assumption 8 we conclude

lim sup
ε→0

u(t, x, y + ε) − u(t, x, y)

ε
≤ E

[∫ τ∗

0
e−rs∂yyf

(
X

∗;t,x
t+s , y

)
ds

]
.

Taking τ ε∗ := τ∗(t, x, y + ε) in the first expression above we have

u(t, x, y + ε) − u(t, x, y)

≥ E
[∫ τ ε∗

0
e−rs(∂yf

(
X

∗;t,x
t+s , y + ε

) − ∂yf
(
X

∗;t,x
t+s , y

))
ds

]

=
∫ ε

0
E
[∫ τ ε∗

0
e−rs∂yyf

(
X

∗;t,x
t+s , y + z

)
ds

]
dz.

Dividing again by ε > 0 and letting ε → 0, we can now invoke Lemma 4.4 to justify that
τ ε∗ → τ∗ and obtain

lim inf
ε→0

u(t, x, y + ε) − u(t, x, y)

ε
≥ E

[∫ τ∗

0
e−rs∂yyf

(
X

∗;t,x
t+s , y

)
ds

]
.

So, in conclusion we have shown that ∂yu exists in [0, T ] × �◦ and it reads

∂yu(t, x, y) = E
[∫ τ∗

0
e−rs∂yyf

(
X

∗;t,x
t+s , y

)
ds

]
.

Further, in light of the fact that (t, x, y) �→ τ∗(t, x, y) and (t, x, y) �→ (X
∗;t,x
t+s , y) are P-

a.s. continuous, we deduce that ∂yu is also continuous on [0, T ] × �◦, by dominated conver-
gence and Assumption 8. Finally, since ∂yyf < 0 (Assumption 2(ii)), we have that

∂yu
(
t, x, cδ(t, x)

)
< 0, for all (t, x) ∈ [0, T ) ×R,(4.17)

for which (t, x, cδ(t, x)) ∈ [0, T ) × �◦, since τ∗ > 0 at those points.
Next, we obtain a similar result for ∂xu. With the same notation as above, we have

u(t, x + ε, y) − u(t, x, y)

≤ E
[∫ τ∗

0
e−rs(∂yf

(
X

∗;t,x+ε
t+s , y

) − ∂yf
(
X

∗;t,x
t+s , y

))
ds

]
=

∫ x+ε

x
E
[∫ τ∗

0
e−rs∂xyf

(
X

∗;t,η
t+s , y

)
Z

t,η
t+s ds

]
dη.

Dividing by ε and letting ε → 0, we use dominated convergence (Assumption 8) and conti-
nuity of the flows x �→ (X∗;t,x,Zt,x) to conclude

lim sup
ε→0

u(t, x + ε, y) − u(t, x, y)

ε
≤ E

[∫ τ∗

0
e−rs∂xyf

(
X

∗;t,x
t+s , y

)
Z

t,x
t+s ds

]
.

By a symmetric argument and continuity of the optimal stopping time, we also obtain the
reverse inequality and therefore conclude

∂xu(t, x, y) = E
[∫ τ∗

0
e−rs∂xyf

(
X

∗;t,x
t+s , y

)
Z

t,x
t+s ds

]
.

Also in this case continuity of (t, x, y) �→ τ∗(t, x, y), due to Lemma 4.4, and (t, x) �→
(X∗;t,x,Zt,x), combined with dominated convergence, imply that ∂xu is continuous on
[0, T ] × �◦.

Since ∂yu and ∂xu are continuous and (4.17) holds, the equation in (4.16) is fully justified
as an application of the implicit function theorem.
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Step 2 (Bound on ∂xcδ). In this step, we use the probabilistic representations of ∂xu and
∂yu to obtain an upper bound on ∂xcδ . First, we recall the change of measure induced by Z

(see (4.15)) and we use it to write

∂xu(t, x, y) = EQ
t,x

[∫ τ∗

0
e−rs+∫ s

0 a(X∗
t+u,m∗(t+u))du∂xyf

(
X∗

t+s, y
)
ds

]
.

We want to find an upper bound for ∂xu in terms of the process under the original measure
P. Under the measure Q we have, by Girsanov theorem, that X∗ evolves according to

dX∗
t+s = [

a
(
X∗

t+s,m
∗(t + s)

) + σ
(
X∗

t+s

)
∂xσ

(
X∗

t+s

)]
ds + σ

(
X∗

t+s

)
dWQ

t+s,

where WQ
t+s = Wt+s − ∫ s

0 ∂xσ (X∗
t+u)du defines a Brownian motion under Q. Analogously,

under the original measure P we can define a process X̄ with the same dynamics, that is,

dX̄t+s = [
a
(
X̄t+s,m

∗(t + s)
) + σ(X̄t+s)∂xσ (X̄t+s)

]
ds + σ(X̄t+s)dWt+s,

and denote

τ̄∗ := inf
{
s ∈ [0, T − t] : c(t + s, X̄t+s) ≥ y

}
.

Then we have that the processes and stopping times are equal in law, that is,

LawQ(
X∗, τ∗

) = LawP(X̄, τ̄∗)
and we can express ∂xu in terms of the original measure as

∂xu(t, x, y) = Et,x

[∫ τ̄∗

0
e−rs+∫ s

0 a(X̄t+u,m∗(t+u))du∂xyf (X̄t+s, y)ds

]
.(4.18)

Let us first consider x �→ σ(x) not constant. By comparison principles, we have X̄ ≥ X∗,
P-a.s., since ∂xσ ≥ 0 (Assumption 6). Therefore, ∂xyf (X̄, y) ≤ ∂xyf (X∗, y), P-a.s., by As-
sumption 8. Since x �→ c(t, x) is nondecreasing as pointwise limit of nondecreasing functions
(recall Proposition 3.3), then c(t + s, X̄t+s) ≥ c(t + s,X∗

t+s), hence implying τ̄∗ ≤ τ∗, P-a.s.
Recalling that ∂xyf > 0 from Assumption 2 and combining these few facts, we have

∂xu(t, x, y) ≤ eā(T −t)Et,x

[∫ τ∗

0
e−rs∂xyf

(
X∗

t+s, y
)
ds

]
,

where we also used ∂xa ≤ ā (Assumption 6). If instead σ(x) = σ is constant then X∗ = X̄

by uniqueness of the SDE and therefore the above estimate follows directly from (4.18).
Plugging this bound into (4.16) and recalling that ∂yyf < 0 we obtain

0 ≤ ∂xcδ(t, x) ≤ eā(T −t) Et,x[∫ τ∗
0 e−rs∂xyf (X∗

t+s, cδ(t, x))ds]
Et,x[∫ τ∗

0 e−rs |∂yyf (X∗
t+s, cδ(t, x))|ds] .

Now, if condition (i) holds we obtain

0 ≤ ∂xcδ(t, x) ≤ eā(T −t)

(
γ

α
+ γ

)
for all (t, x) ∈ [0, T ] ×R and any δ > 0,

whereas if condition (ii) holds we obtain

0 ≤ ∂xcδ(t, x) ≤ eā(T −t)γ for all (t, x) ∈ [0, T ] ×R and any δ > 0.

So in the first case Assumption 5 holds with

θc = eāT

(
γ

α
+ γ

)
,

and in the second case with θc = γ exp(āT ). �

Next we provide a couple of examples meeting the requirements of Proposition 4.3.



3708 CAMPI, DE ANGELIS, GHIO AND LIVIERI

EXAMPLE 4.5 (Ornstein–Uhlenbeck dynamics with exponential Cobb–Douglas profit).
Let a(x,m) := α(m − x) for some α > 0 and σ(x) ≡ σ for some σ > 0. Given a Borel
function m : [0, T ] → [0,1] the dynamics of X from (2.1) reads

Xt = X0 +
∫ t

0
α

(
m(s) − Xs

)
ds + σWt, t ∈ [0, T ].

Let f (x, y) := exyβ for some β ∈ (0,1) and for all (x, y) ∈ �. Finally, assume that
E[exp(qX0)] < ∞ for some q ≥ 1.

We check the assumptions of Proposition 4.3. Assumptions 1 and Assumption 6 on the
coefficients of the SDE are trivially satisfied. The profit function f has the monotonicity
required by Assumption 2(i) and it is strictly concave (Assumption 2(ii)). Also, ∂xyf (x, y) =
βexyβ−1 > 0 (Assumption 2(iii)) and (2.8) is satisfied since

lim
x→−∞

βex

y1−β
= 0 < rc0 < lim

x→∞
βex

y1−β
= +∞

for any y ∈ (0,1] fixed. The integrability Assumption 3 is satisfied by the Ornstein–
Uhlenbeck dynamics with initial condition as above. Assumption 7 is trivially satisfied since
∂xσ ≡ 0. Assumption 8 holds because σ is constant and the integrability condition is not
difficult to check. Finally, Assumption (ii) in Proposition 4.3 is satisfied with any γ ≥ 1

1−β

since ∣∣∂xyf (x, y)
∣∣ = βex

y1−β
and

∣∣∂yyf (x, y)
∣∣ = β(1 − β)ex

y2−β
.

We also notice that Assumption 4 holds so that Theorem 4.2 can be applied.

EXAMPLE 4.6 (GBM dynamics with linear-Cobb–Douglas profit). Let a(x,m) := αmx

for some α > 0 and σ(x) := σx for some σ > 0. Given a Borel function m : [0, T ] → [0,1],
the dynamics of X from (2.1) reads

Xt = X0 +
∫ t

0
αXsm(s)ds +

∫ t

0
σXs dWs, t ∈ [0, T ].

Nonnegativity of the trajectories reduces the state space � to (0,∞) × [0,1] (see Re-
mark 2.4). Let f (x, y) := (1 + x)(1 + y)β for some β ∈ (0,1) and for all (x, y) ∈ �. Finally,
assume that ν ∈ P2(�) and that rc0 > β .

Let us check the assumptions of Proposition 4.3. Assumptions 1 and Assumption 6 on
the coefficients of the SDE are trivially satisfied. The profit function f has the monotonicity
required by Assumption 2(i) and it is strictly concave (Assumption 2(ii)). Also, ∂xyf (x, y) =
β(1 + y)β−1 > 0 (Assumption 2(iii)) and equation (2.8) is satisfied since

lim
x→0

β(1 + x)

(1 + y)1−β
= β

(1 + y)1−β
≤ β < rc0 < lim

x→∞
β(1 + x)

(1 + y)1−β
= +∞

for any y ∈ [0,1] fixed. The integrability Assumption 3 is satisfied with p = 2 (or higher pro-
vided the initial condition has finite pth moment) thanks to sublinearity of the logarithm and
standard estimates on the GBM dynamics. Assumption 7 is another integrability assumption
that reduces to finiteness of the second moment of the exponential martingale Z (which is
satisfied by boundedness of ∂xa and ∂xσ ). Assumption 8 holds because x �→ ∂xyf (x, y) is
nonincreasing. Finally, Assumption (ii) in Proposition 4.3 is satisfied with any γ ≥ 2

1−β
since

∣∣∂xyf (x, y)
∣∣ = β

(1 + y)1−β
and

∣∣∂yyf (x, y)
∣∣ = β(1 − β)(1 + x)

(1 + y)2−β
.

We also notice that Assumption 4 holds so that Theorem 4.2 can be applied.
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We would like to emphasise that the conditions of Proposition 4.3 are far from being
necessary. While it would be overly complicated to state a general theorem in this sense, we
provide below an example with a clear economic interpretation for which Proposition 4.3 is
not directly applicable.

4.4. A model with geometric Brownian motion. Let us assume that a(x,m) = (μ + m)x

and σ(x) = σx for some μ ∈ R and σ ∈ R+. Let us also assume that f (x, y) = xg(y) with
g ∈ C2([0,1]), g > 0, strictly concave and strictly increasing. This specification corresponds
to the classical model of the goodwill problem in which firms produce a good whose price
evolves as a geometric Brownian motion and revenues are linear in the price of the good and
increasing and concave in the amount of investment that goes towards advertising.

On the one hand, Assumptions 1–3 are easily verified and Theorem 2.5 holds (i.e., our
construction of the solution to the MFG holds). On the other hand, neither (i) or (ii) in Propo-
sition 4.3 hold, so we cannot apply directly the result on Lipschitz continuity of the boundary
which is needed for the approximation result in Theorem 4.2. However, we shall now see how
an alternative argument of proof can be applied to prove that Assumption 5 remains valid.

First of all, we change our coordinates by letting ψ := lnx, so that the value function of
the optimal stopping problem can be written as

ũ(t,ψ, y) := u
(
t, eψ, y

) = inf
τ∈Tt

Et,ψ

[∫ τ

0
e−rsg′(y)e�t+s ds + e−rτ c0

]
,

where �t+s := lnX∗
t+s is just a Brownian motion with drift, that is,

�
t,ψ
t+s = ψ +

∫ s

0

(
μ − σ 2/2 + m∗(t + u)

)
du + σ(Wt+s − Wt)

The optimal boundary can also be expressed in terms of (t,ψ) by putting c̃(t,ψ) = c(t, eψ).
Then the mean-field optimal control reads

ξ∗
t = sup

0≤s≤t

(
c̃(s,�s) − y

)+
, t ∈ [0, T ]

whereas the optimal stopping time for the value ũ(t,ψ, y) reads

τ∗ = inf
{
s ∈ [0, T − t] : c̃(t + s,�t+s) ≥ y

}
.

Now we show that the optimal boundary c̃(·) is indeed Lipschitz with respect to ψ and there-
fore the proof of Theorem 4.2 can be repeated with � instead of X∗ so that the theorem holds
as stated. Since ∂ψ�

t,ψ
t+s ≡ 1 for s ∈ [0, T − t] and Assumption 8 holds, we can use the same

arguments as in step 1 of the proof of Proposition 4.3 to obtain

∂yũ(t,ψ, y) = g′′(y)Et,ψ

[∫ τ∗

0
e−rs+�t+s ds

]
and

∂ψũ(t,ψ, y) = g′(y)Et,ψ

[∫ τ∗

0
e−rs+�t+s ds

]
.

Then, by the same arguments as in step 2 of the proof of Proposition 4.3 we obtain

∂ψ c̃δ(t,ψ) = −∂xw̃(t,ψ, c̃δ(t,ψ))

∂yw̃(t,ψ, c̃δ(t,ψ))
= g′(c̃δ(t,ψ))

|g′′(c̃δ(t,ψ))| ≤ κ,

for some κ > 0, where the final inequality holds because g ∈ C2([0,1]) and strictly concave.
Therefore, for the optimal boundary we have

sup
0≤t≤T

∣∣̃c(t,ψ1) − c̃(t,ψ2)
∣∣ ≤ κ|ψ1 − ψ2|, ψ1,ψ2 ∈ R,

as needed. In conclusion, the result of Theorem 4.2 remains valid, even though the optimal
boundary in the original parameterisation of the problem is not uniformly Lipschitz.
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APPENDIX

In this appendix, we collect a number of technical results used in the paper.

PROOF OF PROPOSITION 3.5. Fix (t, x, y) ∈ [0, T ] × �. Take any admissible con-
trol ζ ∈ �t,x(y) and define, for q ≥ 0, its right-continuous inverse (see, e.g., Revuz and
Yor (1999), Chapter 0, Section 4) τ ζ (q) := inf{s ∈ [t, T ) : ζs > q} ∧ T . The process
τ ζ := (τ ζ (q))q≥0 has increasing right-continuous sample paths, hence it admits left limits

τ
ζ
−(q) := inf{s ∈ [t, T ) : ζs ≥ q} ∧ T , for q ≥ 0. It can be shown that both τ ζ (q) and τ

ζ
−(q)

are (Ft+s)-stopping times for any q ≥ 0.
Let now q = z − y for z ≥ y and consider the function w defined as

w(t, x, y) := �n(t, x) −
∫ 1

y
un(t, x, z)dz.

Since τ ζ (z − y) is admissible for un(t, x, z) we have

w(t, x, y) − �n(t, x) ≥ −
∫ 1

y
Et,x

[
c0e

−rτ ζ (z−y) +
∫ τ ζ (z−y)

t
e−rs∂yf

(
X[n]

s , z
)
ds

]
dz.

In order to compute the integral with respect to dz, we observe that for t ≤ s < T we have

{ζs < z − y} ⊆ {
s < τζ (z − y)

} ⊆ {ζs ≤ z − y}
by right-continuity and monotonicity of the process s �→ ζs . The left-most and right-most
events above are the same up to dz-null sets. Then, applying Fubini’s theorem more than
once we obtain

w(t, x, y) − �n(t, x)

≥ Et,x

[
−

∫ 1

y
e−rτ ζ (z−y)c0 dz −

∫ T

t
e−rs

∫ 1

y
∂yf

(
X[n]

s , z
)
1{s<τζ (z−y)} dz ds

]

= Et,x

[
−

∫ 1

y
e−rτ ζ (z−y)c0 dz −

∫ T

t
e−rs

∫ 1

y
∂yf

(
X[n]

s , z
)
1{ζs<z−y} dz ds

]

= Et,x

[
−

∫ 1

y
e−rτ ζ (z−y)c0 dz −

∫ T

t
e−rs[f (

X[n]
s ,1

) − f
(
X[n]

s , y + ζs

)]
ds

]
= Jn(t, x, y; ζ ) − �n(t, x),

where the final equality uses the well-known change of variable formula (see, e.g., Revuz and
Yor (1999), Ch. 0, Proposition 4.9)∫ 1

y
e−rτ ζ (z−y) dz =

∫
[t,T ]

e−rs dζs.

By the arbitrariness of ζ ∈ �t,x(y) we conclude wn(t, x, y) ≥ vn(t, x, y).
For the reverse inequality we take ζt+s = ξ

[n]∗
t+s as defined in Lemma 3.4. Recall that

τ [n]∗ (t, x, z) = inf
{
s ∈ [0, T − T ] : z ≤ cn

(
t + s,X

[n];t,x
t+s

)}
and since s �→ cn(s,X

[n];t,x
s ) − z is upper-semicontinuous, it attains a maximum over any

compact interval in [t, T ). In particular, for s ∈ [t, T )

τ [n]∗ (t, x, z) ≤ s ⇐⇒ there exists θ ∈ [t, t + s] such that cn

(
θ,X

[n];t,x
θ

) ≥ z.
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For any y < z, the latter is also equivalent to

ξ
[n]∗
t+s = sup

0≤u≤s

(
cn

(
t + u,X

[n];t,x
t+u

) − y
)+ ≥ z − y

and, therefore, it is also equivalent to τ
ξ [n]∗
− (z − y) ≤ s. Since s ∈ [t, T ] was arbitrary the

chain of equivalences implies that τ
ξ [n]∗
− (z−y) = τ

[n]∗ (t, x, z), P-a.s. for any z > y. However,

we have already observed that for a.e. z > y it must be τ
ξ [n]∗
− (z − y) = τ ξ [n]∗

(z − y), P-a.s.,

hence τ ξ [n]∗
(z − y) = τ

[n]∗ (t, x, z) as well. The latter, in particular, implies

w(t, x, y) − �n(t, x) = −
∫ 1

y
Et,x

[
c0e

−rτ ξ [n]∗
(z−y) +

∫ τ ξ [n]∗
(z−y)

t
e−rs∂yf

(
X[n]

s , z
)

ds

]
dz,

by optimality of τ
[n]∗ (t, x, z) in un(t, x, z). Repeating the same steps as above, we then find

w(t, x, y) = Jn

(
t, x, y; ξ [n]∗)

,

which combined with vn ≤ w concludes the proof. �

PROOF OF LEMMA 3.10. We have C[n] ⊂ C[n+1] ⊂ C because the sequence (cn)n≥0 is
decreasing. Then the sequence (τ

[n]∗ )n≥0 is increasing and limn→∞ τ
[n]∗ ≤ τ∗, Pt,x,y -a.s. for

any (t, x, y) ∈ [0, T ] × �. In order to prove the reverse inequality, first we observe that t �→
X

[k]
t (ω) is continuous for all ω ∈ � \Nk with P(Nk) = 0, for all k ≥ 0. Moreover, t �→ X̃t (ω)

is continuous for all ω ∈ � \ N with P(N) = 0. Let us set N0 := (
⋃

k Nk) ∪ N and �0 :=
� \ N0 so that P(�0) = 1. Fix (t, x, y) ∈ [0, T ] × � and ω ∈ �0. Let δ > 0 be such that
τ∗(ω) > δ (if no such δ exists, then τ∗(ω) = 0 and τ

[n]∗ (ω) ≥ τ∗(ω) for all n ≥ 0). Then, since
s �→ u(t + s, X̃t+s(ω), y) is continuous, there must exist ε > 0 such that

sup
0≤s≤δ

(
u
(
t + s, X̃t+s(ω), y

) − c0
) ≤ −ε.(A.1)

At the same time we also notice that s �→ un(t + s,X
[n]
t+s(ω), y) is continuous and moreover

un

(
t + s,X

[n]
t+s(ω), y

) ≥ un+1
(
t + s,X

[n]
t+s(ω), y

) ≥ un+1
(
t + s,X

[n+1]
t+s (ω), y

)
by monotonicity of the sequences (un)n≥0 and (X[n])n≥0 and of the map x �→ un(t, x, y). So
we have that un(t + ·,X[n]· (ω), y) is a decreasing sequence of continuous functions of time
and since the limit is also continuous, the convergence is uniform on [0, δ]. Then there exists
n0 ≥ 0 sufficiently large that

sup
0≤s≤δ

∣∣u(
t + s, X̃t+s(ω), y

) − un

(
t + s,X

[n]
t+s(ω), y

)∣∣ ≤ −ε

2
for n ≥ n0.

Using this fact and (A.1), we have

sup
0≤s≤δ

(
un

(
t + s,X

[n]
t+s(ω), y

) − c0
) ≤ −ε

2

and τ
[n]∗ (ω) > δ, for all n ≥ n0. Since δ > 0 was arbitrary, we obtain

lim
n→∞ τ [n]∗ (ω) ≥ τ∗(ω).

Recalling that ω ∈ �0 was also arbitrary, we obtain the desired result. �

PROOF OF LEMMA 4.4. The proof is divided into two steps: first we show that
(t, x, y) �→ τ∗(t, x, y) is lower semicontinuous and then that it is upper-semicontinuous. Both
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parts of the proof rely on continuity of the flow (t, x, s) �→ X
∗;t,x
t+s (ω). The latter holds for all

ω ∈ � \ N where N is a universal set with P(N) = 0. For simplicity, in the rest of the proof
we just write X instead of X∗.

Step 1 (Lower semicontinuity). This part of the proof is similar to that of Lemma 3.10.
Fix (t, x, y) ∈ [0, T ] × � and take a sequence (tn, xn, yn)n≥1 that converges to (t, x, y) as
n → ∞. Denote τ∗ = τ∗(t, x, y) and τn := τ∗(tn, xn, yn) and fix an arbitrary ω ∈ � \ N .
If (t, x, y) ∈ S then τ∗(ω) = 0 and lim infn τn(ω) ≥ τ∗(ω) trivially. Let δ > 0 be such that
τ∗(ω) > δ. Then by continuity of the value function u and of the trajectory s �→ X

t,x
t+s(ω)

there must exist ε > 0 such that

sup
0≤s≤δ

(
u
(
t + s,X

t,x
t+s(ω), y

) − c0
) ≤ −ε.

Thanks to continuity of the stochastic flow there is no loss of generality in assuming that
(tn + s,X

tn,xn
tn+s (ω), yn) lies in a compact K for all n ≥ 1 and s ≤ δ. Then there must exits

nε > 0 such that

sup
0≤s≤δ

∣∣u(
t + s,X

t,x
t+s(ω), y

) − u
(
tn + s,X

tn,xn
tn+s (ω), y

)∣∣ ≤ ε/2

for all n ≥ nε (by uniform continuity). Combining the above, we get

sup
n≥nε

sup
0≤s≤δ

(
u
(
tn + s,X

tn,xn
tn+s (ω), yn

) − c0
) ≤ −ε/2,

which implies τn(ω) > δ for all n ≥ nε . Hence, lim infn τn(ω) > δ and since δ and ω were
arbitrary we conclude lim infn τn(ω) ≥ τ∗(ω), for all ω ∈ � \ N .

Step 2 (Upper-semicontinuity). For this part of the proof, we need to introduce the hitting
time σ ◦∗ to the interior of the stopping set S◦ := int(S) (which is not empty thanks to the
argument of proof of Lemma 3.8), that is,

σ ◦∗ (t, x, y) := inf
{
s ∈ (0, T − t] : (

t + s,X
t,x
t+s, y

) ∈ S◦}.
Assume for a moment that

Pt,x,y

(
τ∗ = σ ◦∗

) = 1 for all (t, x, y) ∈ [0, T ] × �◦.(A.2)

Then we can invoke Lemma 4 in De Angelis and Peskir (2020) (see equation (3.7) therein)
to conclude that (t, x, y) �→ σ ◦∗ (t, x, y) is upper-semicontinuous. Hence, given (t, x, y) ∈
[0, T ] × �◦ and any sequence (tn, xn, yn)n≥1 converging to (t, x, y) as n → ∞, setting τn =
τ∗(tn, xn, yn) and σ ◦

n = σ ◦∗ (tn, xn, yn), we have τn(ω) = σ ◦
n (ω) for all ω ∈ �n with P(�n) = 1

for each n ≥ 1; therefore letting �̄ := ⋂
n≥1 �n we have P(�̄) = 1 and

lim sup
n→∞

τn(ω) = lim sup
n→∞

σ ◦
n (ω) ≤ σ ◦∗ (ω) = τ∗(ω),

with τ∗ = τ∗(t, x, y) and σ ◦∗ = σ ◦∗ (t, x, y), for all ω ∈ �̄ ∩ {τ∗ = σ ◦∗ } where P(�̄ ∩ {τ∗ =
σ ◦∗ }) = 1.

Let us now prove (A.2). We introduce the generalised left-continuous inverse of x �→
c(t, x), that is,

b(t, y) = sup
{
x ∈ R : c(t, x) < y

}
.

Then it is easy to check that t �→ b(t, y) is nonincreasing. This implies that Pt,x,y(τ∗ = σ ◦∗ ) =
1 for all (t, x, y) ∈ S◦ by continuity of the paths of X. Moreover, for (t, x, y) ∈ C we have
σ ◦∗ = τ∗ + σ ◦∗ ◦ θτ∗ , where {θt , t ≥ 0} is the shift operator, that is, (t,Xt(ω)) ◦ θs = (t +
s,Xt+s(ω)). Then, τ∗ = σ ◦∗ if and only if σ ◦∗ ◦ θτ∗ = 0. Since σ ◦∗ ◦ θτ∗ is the hitting time to S◦
after the process (t,X,y) has reached the boundary ∂C of the continuation set, the previous
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condition is implied by Pt,x,y(σ
◦∗ = 0) = 1 for (t, x, y) ∈ ∂C. So we now focus on proving

the latter.
We claim that

S◦ = {
(t, x, y) ∈ (0, T ) × �◦ : x > b(t, y)

}
and will give a proof of this fact in Lemma A.1 below. Then by the law of iterated logarithm
and nonincreasing t �→ b(t, y) we immediately obtain Pt,x,y(σ

◦∗ = 0) = 1 for (t, x, y) ∈ ∂C
because (t, x, y) ∈ ∂C ∩ [(0, T ) × �◦] if and only if x ≥ b(t, y). �

LEMMA A.1. We have

S◦ = {
(t, x, y) ∈ (0, T ) × �◦ : x > b(t, y)

}
.(A.3)

PROOF. While the claim may seem obvious, since y �→ b(t, y) is nondecreasing, one
should notice that for it to hold we must rule out the case b(t, y) < b(t, y+) for all (t, y) ∈
[0, T ] × [0,1). Indeed, if the latter occurs for some (t0, y0) ∈ (0, T ) × (0,1) we have {t0} ×
(b(t0, y0), b(t0, y0+)) × {y0} ∈ ∂C and (A.3) fails.

We proceed in two steps.
Step 1 (A PDE for the value function). Since (t, x) �→ a(x,m∗(t)) is not continuous in

general we cannot immediately apply standard PDE arguments that guarantee that

∂tu + σ 2(·)
2

∂xxu + a
(·,m∗(·))∂xu − ru = −∂yf for (t, x, y) ∈ C(A.4)

(see Peskir and Shiryaev (2006), Chapter III). However, we show that for any y ∈ [0,1],
u(·, y) solves (A.4) in the a.e. sense. Fix (t, x, y) ∈ C and let O be an open rectangle in
[0, T ] ×R containing (t, x) with parabolic boundary ∂PO such that O × {y} ⊂ C. Let

(A.5) τO = inf
{
s ≥ 0 : (

t + s,X∗
t+s

)
/∈ O

}
and τO = inf

{
s ≥ 0 : (

t + s,X∗
t+s

)
/∈O

}
.

Since inf(t,x)∈O σ(x) > 0, then it is not difficult to verify that Pt,x(τO = τO) = 1 for all
(t, x) ∈ O.

Let us now regularise the drift of X∗ by introducing

an(x, t) = n

∫ t+1/n

t
a(x,m∗(s))ds.

Notice that |an(x, t) − an(x′, t)| ≤ L|x − x′| with the same constant L as in Assumption 1.
Moreover, an is locally bounded on any compact by a constant independent of n. By Lipschitz
continuity of a it is immediate to verify

(A.6) sup
x∈R

∣∣an(x, t) − a
(
x,m∗(t)

)∣∣ ≤ L n

∫ t+1/n

t

∣∣m∗(s) − m∗(t)
∣∣ ds,

so that an(·, t) → a(·,m∗(t)) when n → ∞, for each t and uniformly in x, by right-continuity
of m∗. Denoting by Xn the unique strong solution of (2.5) with the drift a(·) replaced by
an(·), thanks to (A.6) we have

lim
n→∞ Et,x

[
sup

0≤s≤T −t

∣∣Xn
t+s − X∗

t+s

∣∣2]
= 0.

Then, there is a subsequence (nj )j∈N for which

lim
j→∞ sup

0≤s≤T −t

∣∣Xnj

t+s − X∗
t+s

∣∣2 = 0, Pt,x-a.s.(A.7)
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Letting τn
O and τn

O be the analogues of (A.5) but with Xn instead of X∗, we have

τO ≤ lim inf
j→∞ τ

nj

O ≤ lim sup
j→∞

τ
nj

O ≤ τO = τO, Pt,x-a.s.(A.8)

thanks to (A.7) and arguments as in the proof of Lemma 4.4 (step 1 for lower semicontinuity
of τ

nj

O and step 2 for upper-semicontinuity of τ
nj

O ).
Thanks to the improved regularity of an, for each y ∈ [0,1] there exists a unique solution

un(·, y) ∈ C1,2(O) ∩ C(O) of the boundary value problem(
∂tu

n + σ 2

2
(·)∂xxu

n + an(·)∂xu
n − run

)
(t, x, y) = −∂yf (t, x, y), (t, x) ∈O,

un(t, x, y) = u(t, x, y), (t, x) ∈ ∂PO.

(A.9)

By Feynman-Kac formula and (A.9) we have

un(t, x, y) = Et,x

[
e−rτn

Ou
(
t + τn

O,Xn
t+τn

O
, y

) +
∫ τn

O

0
e−rs∂yf

(
Xn

t+s, y
)

ds

]
.

Taking limits along the subsequence (nj )j∈N, using (A.7), (A.8) and dominated convergence,
we obtain

lim
j→∞unj (t, x, y)

= Et,x

[
e−rτOu

(
t + τO,X∗

t+τO , y
) +

∫ τO

0
e−rs∂yf

(
X∗

t+s, y
)

ds

]
= u(t, x, y),

(A.10)

where the final equality holds because u is an harmonic function in O by standard optimal
stopping theory.

Thanks to Krylov ((2008), Theorem 5.2.5), for any compact K ⊂ O and p ∈ [2,∞) there
is a constant c > 0 depending on K and p, on L from Assumption 1 and on ‖u(·, y)‖L∞(K),
‖a‖L∞(K) and ‖σ‖L∞(K), such that ‖un(·, y)‖W 1,2;p(K) ≤ c for all n ∈ N. Here W 1,2;p(K)

is the Sobolev space of functions ϕ ∈ Lp(K) whose weak derivatives ∂tϕ, ∂xϕ, ∂xxϕ also
belong to Lp(K). Then, unj (·, y) → ū(·, y) weakly in W 1,2;p(K) as j → ∞. By uniqueness
of the limit and (A.10) we have ū(·, y) = u(·, y) ∈ W 1,2;p(K). Thus, by arbitrariness of O
and K we have u(·, y) ∈ W

1,2;p
�oc (Cy) with Cy = {(t, x) : (t, x, y) ∈ C}. Passing to the (weak)

limit in (A.9) and using (A.6) we have(
∂tu + σ 2( · )

2
∂xxu + a

( ·,m∗( · ))∂xu − ru

)
(·, y) = −∂yf (·, y), a.e. in O.(A.11)

Finally, we notice the Sobolev compact embedding W
1,2;p
�oc (Cy) ↪→ C

0,1;α
�oc (Cy) for α =

1 − 3/p with p > 3, where C0,1;α is the class of α-Hölder continuous function with Hölder
continuous spatial derivative. We will later use that ∂xu(·, y) is continuous in Cy .

Step 2 (Contradiction). Here we use an argument by contradiction inspired to De An-
gelis (2015). Assume that there exists (t0, y0) ∈ (0, T ) × (0,1) such that x0

1 := b(t0, y0) <

b(t0, y0+) =: x0
2 . Let O × (y0, y0 + δ) ⊂ C and {t0} × (x0

1 , x0
2) ⊂ O. Pick an arbitrary

ϕ ∈ C∞
c ((x0

1 , x0
2)), ϕ ≥ 0 and multiply (A.11) by ϕ. Since t �→ u(t, x, y) is nondecreasing

we have ∂tu(·, y) ≥ 0 on O and therefore, for each y ∈ (y0, y0 + δ) we have

ϕ(·)
[
σ 2(·)

2
∂xxu(·, y) + a

(·,m∗−(·))∂xu(·, y) − ru(·, y)

]
≤ −ϕ(·)∂yf (·, y) on O.
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By monotonicity of t �→ b(t, y), we have [0, t0) × (x0
1 , x0

2) × (y0, y0 + δ) ⊂ C. Then, for
arbitrary 0 ≤ t < t0 and 0 < h < t0 − t , using integration by parts we obtain1

1

h

∫ t+h

t

∫ x0
2

x0
1

(
1

2
∂xx

[
σ 2(x)ϕ(x)

] + a
(
x,m∗(s)

)
ϕ(x)∂x − rϕ(x)

)
u(s, x, y)dx ds

≤ −1

h

∫ t+h

t

∫ x0
2

x0
1

∂yf (x, y)ϕ(x)dx ds.

Thanks to continuity of u(·, y), ∂xu(·, y) and a(·), and right-continuity of m∗(·), letting h ↓ 0
we obtain ∫ x0

2

x0
1

(
1

2
∂xx

[
σ 2(x)ϕ(x)

]+a
(
x,m∗(t)

)
ϕ(x)∂x − rϕ(x)

)
u(t, x, y)dx ds

≤ −
∫ x0

2

x0
1

∂yf (x, y)ϕ(x)dx ds.

Recall that {t0} × (x0
1 , x0

2) × (y0, y0 + δ) ⊂ C. Then we can let t ↑ t0 and integrate by parts
the term with ∂xu to obtain∫ x0

2

x0
1

(
1

2
∂xx

[
σ 2(x)ϕ(x)

] − ∂x

[
a
(
x,m(t0−)

)
ϕ(x)

] − rϕ(x)

)
u(t0, x, y)dx

≤ −
∫ x0

2

x0
1

∂yf (x, y)ϕ(x)dx,

where m∗(t0−) = limt↑t0 m∗(t). Now, letting y ↓ y0, using dominated convergence and
u(t0, x, y0) = c0 for x ∈ (x0

1 , x0
2), and undoing the integration by parts we obtain∫ x0

2

x0
1

(
∂yf (x, y0) − rc0

)
ϕ(x)dx ≤ 0.(A.5)

Hence, ∂yf (x, y0) − rc0 ≤ 0 for all x ∈ (x0
1 , x0

1) by arbitrariness of ϕ ≥ 0 and continuity of
x �→ ∂yf (x, y0) − rc0. However, since S ⊆ [0, T ] × (� \ H) (recall (3.7)), then it must be
∂yf (x, y0) − rc0 = 0 for all x ∈ (x0

1 , x0
1), which contradicts ∂xyf > 0 (Assumption 2(iii)).

�
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