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Abstract

Let ψ : R+ → R+ be a non-increasing function. A pair (A,b), where A is a realm × n
matrix and b ∈ R

m, is said to be ψ -Dirichlet improvable, if the system

‖Aq + b − p‖m < ψ (T ), ‖q‖n < T

is solvable in p ∈ Z
m, q ∈ Z

n for all sufficiently large T where ‖ · ‖ denotes the
supremum norm. For ψ -Dirichlet non-improvable sets, Kleinbock–Wadleigh (2019)
proved the Lebesgue measure criterion whereas Kim–Kim (2022) established the
Hausdorff measure results. In this paper we obtain the generalised Hausdorff f -measure
version of Kim–Kim (2022) results for ψ -Dirichlet non-improvable sets.

1 Introduction
To begin with, we recall the higher dimensional general form of Dirichlet’s Theorem
(1842). Letm, n be positive integers and let Xmn denotes the space of realm× nmatrices.

Theorem 1.1 (Dirichlet’s Theorem) Given any A ∈ Xmn and T > 1, there exist p ∈ Z
m

and q ∈ Z
n \ {0} such that

‖Aq − p‖m ≤ 1
T

and ‖q‖n < T. (1.1)

Here ‖·‖ denotes the supremumnorm inR
i, i ∈ N.Theorem 1.1 guarantees a nontrivial

integer solution for all T. The standard application of (1.1) is the following corollary,
guaranteeing that such a system is solvable for an unbounded set of T.

Corollary 1.2 For any A ∈ Xmn there exist infinitely many integer vectors q ∈ Z
n such

that

‖Aq − p‖m ≤ 1
‖q‖n for some p ∈ Z

m. (1.2)

The two statements above give rise to two possible ways to pose Diophantine approxi-
mation problems sometimes referred to as uniform vs asymptotic approximation results:
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that is, looking for solvability of inequalities for all large enough T vs. for some arbitrar-
ily large T. The rate of approximation given in above two statements works for all real
matrices A ∈ Xmn, which serves as the beginning of the metric theory of Diophantine
approximation, a field concerned with understanding sets of A ∈ Xmn satisfying similar
conclusions but with the right hand sides replaced by faster decaying functions of T and
‖q‖n respectively. Those sets are well studied in the asymptotic setup (1.2) long ago.
Indeed, for a function ψ : R+ → R+ a matrix A ∈ Xmn is said to be ψ-approximable if

the inequality 1

‖Aq − p‖m < ψ(‖q‖n) for some p ∈ Z
m (1.3)

is satisfied for infinitely many integer vectors q ∈ Z
n. As the set of ψ-approximable

matrices is translation invariant under integer vectors, we can restrict attention to mn-
dimensional unit cube [0, 1]mn. Then the set of ψ-approximable matrices in [0, 1]mn will
be denoted byWm,n(ψ).
The following result gives the size of the setWm,n(ψ) in terms of Lebesgue measure.

Theorem 1.3 (Khintchine–Groshev Theorem, [11]) Given a non-increasing ψ , the set
Wm,n(ψ) has zero (respectively full) Lebesgue measure if and only if the series

∑
k ψ(k)

converges (respectively, diverges).

Let us now briefly describe what is known in the setting of (1.1). For a non-increasing
function ψ : [T0,∞) → R+ with T0 > 1 fixed, consider the set Dm,n(ψ) of ψ-Dirichlet
improvable matrices consisting of A ∈ Xmn such that the system

‖Aq − p‖m ≤ ψ(T ) and ‖q‖n < T

has a nontrivial integer solution for all large enough T . Elements of the complementary
set, Dm,n(ψ)c, will be referred as ψ-Dirichlet non-improvable matrices.
With the notation ψa(x) := x−a, (1.1) implies that D1,1(ψ1) = R, and that for any m, n

every matrix isψ1-Dirichlet improvable. It was observed in [8] that for min(m, n) = 1 and
in [17] for the general case, that the Lebesguemeasure ofDm,n(cψ1) of the set cψ1-Dirichlet
improvable matrices is zero for any c < 1,.
The theory of inhomogeneousDiophantine approximation starts by replacing the values

of a system of linear forms Aq by those of a system of affine forms q �→ Aq + b where
A ∈ Xmn and b ∈ R

m. Following [15], for a non-increasing function ψ : [T0,∞) → R+
a pair (A,b) ∈ Xmn × R

m is called ψ-Dirichlet improvable if for all T large enough, one
can find nonzero integer vectors q ∈ Z

n and p ∈ Z
m such that

‖Aq + b − p‖m < ψ(T ) and ‖q‖n < T. (1.4)

Let D̂m,n(ψ) denote the set of ψ-Dirichlet improvable pairs in the unit cube [0, 1]mn+m. If
the inhomogeneous vector b ∈ R

m is fixed then let D̂b
m,n(ψ) be the set of allA ∈ Xmn such

that (1.4) holds i.e. for a fixed b ∈ R
m we have D̂b

m,n(ψ) = {A ∈ Xmn : (A,b) ∈ D̂m,n(ψ)}.

1Here we use the definition as in [14,16], whereas in Sect. 4 we will consider slightly different definition such as in [4]
where instead of (1.3) the inequality ‖Aq − b‖ < ψ(‖q‖) is used.
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The Lebesgue measure criterion for the set D̂m,n(ψ) i.e. doubly metric case has been
proved by Kleinbock–Wadleigh [16] by reducing the problem to the shrinking target
problem on the space of grids in R

m+n. The proof of their theorem is based on a corre-
spondence between Diophantine approximation and homogenous dynamics.

Theorem 1.4 (Kleinbock–Wadleigh, [16]) Given a non-increasing ψ , the set D̂m,n(ψ)
has zero (respectively full) Lebesgue measure if and only if the series

∑
j

1
j2ψ(j) diverges

(respectively converges).

Recently (2022), Kim–Kim [12] established theHausdorffmeasure analogue ofTheorem
1.4.

Theorem 1.5 (Kim–Kim, [12]) Let ψ be non-increasing with limT→∞ ψ(T ) = 0 and
0 ≤ s ≤ mn + m. Then

Hs(D̂m,n(ψ)c) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 if
∞∑
q=1

1
ψ(q)q2

(
q
1
n

ψ(q)
1
m

)mn+m−s
< ∞;

Hs([0, 1]mn+m) if
∞∑
q=1

1
ψ(q)q2

(
q
1
n

ψ(q)
1
m

)mn+m−s
= ∞.

In the same article Kim–Kim also provided the Hausdorff measure criterion for the
singly metric case.

Theorem 1.6 (Kim–Kim, [12]) Let ψ be non-increasing with limT→∞ ψ(T ) = 0. Then
for any 0 ≤ s ≤ mn

Hs(D̂b
m,n(ψ)c) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 if
∞∑
q=1

1
ψ(q)q2

(
q
1
n

ψ(q)
1
m

)mn−s
< ∞;

Hs([0, 1]mn) if
∞∑
q=1

1
ψ(q)q2

(
q
1
n

ψ(q)
1
m

)mn−s
= ∞,

for every b ∈ R
m \ Z

m.

Naturally one can ask about the generalization of Theorems 1.5 and 1.6 in terms of f -
dimensional Hausdorff measure. Recall that a natural generalization of the s-dimensional
HausdorffmeasureHs is the f -dimensional HausdorffmeasureHf where f is a dimension
function, that is an increasing, continuous function f : R+ → R+ such that f (r) → 0 as
r → 0.
In this article we extend the results of Kim–Kim [12] by establishing the zero-full law for

the sets D̂m,n(ψ) and D̂b
m,n(ψ) in terms of generalised f -dimensional Hausdorff measure.

We obtain the following main results.

Theorem 1.7 Let ψ be non-increasing and f be a dimension function with

f (xy) � xsf (y) ∀ yα ≤ x ≤ y
1
α (1.5)

where mn + m − n < s < mn + m and α > 1 is some absolute constant independent of x
and y and suppose that

f ′(x) = a(x)
f (x)
x

(1.6)
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such that a(x) → s as x → 0. Further, let

(q−m
n )α ≤ ψ(q) ≤ (q−m

n )
1
α . (1.7)

Then

Hf (D̂m,n(ψ)c) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 if
∞∑
q=1

1
ψ(q)q2

(
q
1
n

ψ(q)
1
m

)mn+m
f
(

ψ(q)
1
m

q
1
n

)

< ∞;

Hf ([0, 1]mn+m) if
∞∑
q=1

1
ψ(q)q2

(
q
1
n

ψ(q)
1
m

)mn+m
f
(

ψ(q)
1
m

q
1
n

)

= ∞.

For the singly metric case we have the following result.

Theorem 1.8 Let ψ be non-increasing and f be a dimension function such that
r−mnf (r) → ∞ as r → 0. Suppose that (1.5)–(1.7) holds and mn − n < s < mn.
Then

Hf (D̂b
m,n(ψ)c) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 if
∞∑
q=1

1
ψ(q)q2

(
q
1
n

ψ(q)
1
m

)mn
f
(

ψ(q)
1
m

q
1
n

)

< ∞;

Hf ([0, 1]mn) if
∞∑
q=1

1
ψ(q)q2

(
q
1
n

ψ(q)
1
m

)mn
f
(

ψ(q)
1
m

q
1
n

)

= ∞

for every b ∈ R
m \ Z

m.

We remark that the conditions (1.5) and (1.6) are satisfied in a wide variety of cases,
for example f (x) = xs logt (x) for some s > 0 and t ∈ R. Indeed, (1.5) follows since
f (xy) = (xy)s logt (xy) � xsys logt (y) = xsf (y), and (1.6) follows since

xf ′(x)
f (x)

= x
d
dx

[s log(x) + t log log(x)] = x
(
s
x

+ t
x log(x)

)

→ s as x → 0.

2 Preliminaries and auxiliary results
2.1 Hausdorffmeasure and dimension

Let f : R+ → R+ be adimension function i.e. an increasing continuous function such that
f (r) → 0 as r → 0 and let V be an arbitrary subset of R

n. For ρ > 0, a ρ-cover for a set V
is defined as a countable collection {Ui}i≥1 of sets inR

n with diameters 0 < diam(Ui) ≤ ρ

such that V ⊆⋃∞
i=1Ui. Then for each ρ > 0 define

Hf
ρ(V) = inf

{ ∞∑

i=1
f
(
diam(Ui)

)
: {Ui} is a ρ − cover of V

}

.

Note that Hf
ρ(V) is non-decreasing as ρ decreases and therefore approaches a limit as

ρ → 0. Accordingly, the f -dimensional Hausdorff measure of V is defined as

Hf (V) := lim
ρ→0

Hf
ρ(V).

This limit could be zero or infinity, or take a finite positive value.
If f (r) = rs where s > 0, then Hf is the s-dimensional Hausdorff measure and is

represented byHs. It can be easily verified that Hausdorffmeasure is monotonic, that is, if
E is contained in F thenHs(E) ≤ Hs(F ), countably sub-additive, and satisfiesHs(∅) = 0.
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The following property

Hs(V) < ∞ =⇒ Hs′ (V) = 0 if s′ > s,

implies that there is a unique real point s at which the Hasudorff s-measure drops from
infinity to zero (unless V is finite so that Hs(V) is never infinite). The value taken by s at
this discontinuity is referred to as the Hausdorff dimension of a set V and is defined as

dimH V := inf{s > 0 : Hs(V) = 0}.

For establishing the convergent part of Theorems 1.7 and 1.8 we will apply the following
Hausdorff measure version of the famous Borel–Cantelli lemma [6, Lemma 3.10]:

Lemma 2.1 Let {Bi}i≥1 be a sequence of measurable sets in R
n and suppose that for some

dimension function f,
∑

i f (diam(Bi)) < ∞. ThenHf (lim supi→∞ Bi) = 0.

We will use the following principle known as Mass Distribution Principle [10, §4.1] for
the divergent part of Theorem 1.7.

Lemma 2.2 Let μ be a probability measure supported on a subset V of Rk . Suppose there
are positive constants c > 0 and ε > 0 such that

μ(U ) ≤ cf (diam(U ))

for all sets U with diam(U ) ≤ ε. ThenHf (V) ≥ μ(V)/c.

Theorem 2.3 ([1, Theorem 2]) Let ψ : N → R+ be any approximating function and
let mn > 1. Let f and g : r → g(r) := r−m(n−1)f (r) be dimension functions such that
r �→ r−mnf (r) is monotonic. Then

Hf (Wm,n(ψ)) =

⎧
⎪⎪⎨

⎪⎪⎩

0 if
∞∑
q=1

qm+n−1g
(

ψ̂(q)
q

)
< ∞;

Hf ([0, 1]mn) if
∞∑
q=1

qm+n−1g
(

ψ̂(q)
q

)
= ∞,

where ψ̂(q) = ψ(qn)
1
m .

2.2 Ubiquitous systems

To prove the divergent parts of Theorem 1.8 we will use the ubiquity technique developed
by Beresnevich, Dickinson, and Velani, see [5, §12.1]. The idea and concept of ubiquity
was originally formulated by Dodson, Rynne, and Vickers in [9] and coincided in part
with the concept of ‘regular systems’ of Baker and Schmidt [2]. Both have proven to be
extremely useful in obtaining lower bounds for the Hausdorff dimension of limsup sets.
The ubiquity framework in [5] provides a general and abstract approach for establishing
the Lebesgue and Hausdorff measure of a large class of limsup sets.
Consider the mn-dimensional unit cube [0, 1]mn with the supremum norm ‖ · ‖. Let

R = {Rκ ⊆ [0, 1]mn : κ ∈ J } be a family of subsets, referred to as resonant sets Rκ of
[0, 1]mn indexed by an infinite, countable set J. Let β : J → R+ : κ �→ βκ be a positive
function on J i.e. the function β attaches the weight βκ to the set Rκ . Next assume that
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the number of terms κ in J with βκ bounded above is always finite. Following the ideas
from [5, §12.1] and [12] let us assume that the family R of resonant sets Rκ consists of
(m − 1)n-dimensional, rational hyperplanes and define the following notations. For a set
S ⊆ [0, 1]mn, let

�(S, r) := {V ∈ [0, 1]mn : dist(V, S) < r},

where dist(V, S) := inf{‖V − Y ‖ : Y ∈ S}. Fix a decreasing function 	 : R+ → R+ let


(	) = {V ∈ [0, 1]mn : V ∈ �(Rκ ,	(βκ )) for i.m. κ ∈ J } (2.1)

The set
(	) is a lim sup set; it consists of elements of [0, 1]mn which lie in infinitely many
of the thickenings �(Rκ ,	(βκ )). It is natural to call 	 the approximating function as it
governs the ‘rate’ at which the elements of [0, 1]mn must be approximated by resonant
sets in order to lie in 
(	). Let us rewrite the set 
(	) in a way which brings its lim sup
nature to the forefront.
For N ∈ N, let

�(	 , N ) :=
⋃

κ∈J :2N−1<βκ≤2N
�(Rκ ,	(βκ )).

Thus 
(	) is the set consisting elements of [0, 1]mn which lie in infinitely many �(	 , N ),
that is,


(	) := lim sup
N→∞

�(	 , N ) (2.2)

Next let ρ : R+ → R+ be a function with ρ(t) → 0 as t → ∞ and let

�(ρ, N ) :=
⋃

κ∈J :2N−1<βκ≤2N
�(Rκ , ρ(βκ )). (2.3)

Definition 2.4 Let B be an arbitrary ball in [0, 1]mn. Suppose there exist a function ρ and
an absolute constant κ > 0 such that

|B ∩ �(ρ, N )| ≥ κ|B| for N ≥ N0(B), (2.4)

where | · | denotes the Lebesgue measure on [0, 1]mn. Then the pair (R,β) is said to be
a ‘local ubiquitous system’ relative to ρ and the function ρ will be referred to as the
‘ubiquitous function’.

A function h is said to be 2-regular if there exists a strictly positive constant λ < 1 such
that for N sufficiently large

h(2N+1) ≤ λh(2N ).

The next theorem is a simplified version of Theorem 1 and Theorem 2 from [5]. To
state the result we define notions similar to those in [5]. Note that with notions in [5], we
have � := [0, 1]mn, the Lebesgue measure on [0, 1]mn is of type (M2) with δ = mn and
γ = (m − 1)n and the local ubiquitous system (R,β) satisfies the intersection conditions
with γ = (m− 1)n (see [5, section 12.1]). Given that the Lebesgue measure is comparable
with Hδ− a simple consequence of (M2), we have the following combined version of
Theorem 1 and Theorem 2 from [5].
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Theorem 2.5 Suppose that (R,β) is a local ubiquitous system relative to ρ and that 	 is
an approximating function. Let f be a dimension function such that r−nmf (r) is monotonic,
r−nmf (r) → ∞ as r → 0 and r−n(m−1)f (r) is increasing. Furthermore, suppose that ρ is
2-regular and

∞∑

n=1

(	(2N ))−n(m−1)f (	(2N ))
ρ(2N )n

= ∞. (2.5)

Then

Hf (
(	)) = Hf ([0, 1]mn). (2.6)

Proof With δ = mn, and γ = (m − 1)n the function g in [5, Theorem 2] becomes
g(r) := f (	(r))	(r)−γ ρ(r)γ−δ = f (	(r))	(r)−(m−1)nρ(r)−n. Also ρ is 2-regular, thus
from [5, Theorem 2] it follows that

Hf (
(	)) = ∞ if
∞∑

n=1
g(2N ) = ∞,

which is same as the divergent sum condition in (2.5).
Note that as the dimension function r−nmf (r) → ∞ as r → 0 then Hf (�) = ∞ and

Theorem 2.5 leads to the same conclusion as Theorem 2 in [5]. ��

2.3 Dirichlet improvability and homogenous dynamics

In one dimensional settings, continued fraction expansions have been useful in charac-
terising ψ-Dirichlet improvable numbers [15]. However this machinery is not applicable
in higher dimensions. For general dimensions, building on ideas from [7] (also see [13]),
a dynamical approach was proposed in [15], reformulating the homogenous approxima-
tion problem as a shrinking target problem and a similar approach was used in [16] to
solve an analogous inhomogeneous problem. Following the ideas from [12,16] we will
use the standard argument usually known as the ‘Dani correspondence’ which serves as
a connection between Diophantine approximation and homogenous dynamics. In order
to describe how Dirichlet-improvability is related to dynamics we will start by recalling
the dynamics on space of grids. To describe this dynamical interpretation, let us fix some
notation.
Fix d = m + n. Let

Gd = SLd(R) and Ĝd = ASLd(R) = Gd � R
d

and put

�d = SLd(Z) and �̂d = ASLd(Z) = �d � Z
d.

Denote by Ŷd the space of affine shifts of unimodular lattices in R
d (i.e. space of uni-

modular grids). Clearly, Ŷd is canonically identified with Ĝd/�̂d via

< g,w > �̂d ∈ Ĝd/�̂d ←→ gZ
d + w ∈ Ŷd

where< g,w > is an element of Ĝd such that g ∈ Gd andw ∈ R
d. Similarly, Yd := Gd/�d

is identified with the space of unimodular lattices inR
d (i.e. the space of unimodular grids

containing zero vector). Note that�d (respectively, �̂d) is a lattice inGd (respectively, Ĝd).
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Denote bymYd the Haar probability measure on Yd. For any t ∈ R, the flow of interest at
is given by the diagonal matrix

at := diag(et/m, · · · , et/m, e−t/n, · · · , e−t/n).
Let

uA :=
(
Im A
0 In

)

∈ Gd,

uA,b :=
〈(

Im A
0 In

)

,
(
b
0

)〉

∈ Ĝd

for A ∈ Xmn and (A,b) ∈ Xmn × R
m. Let us also denote by


A := uAZ
d ∈ Yd and 
A,b := uA,bZ

d ∈ Ŷd ,

where uA,bZ
d =

{(
Aq + b − p

q

)

: p ∈ Z
m,q ∈ Z

n

}

.

Following [16], define � : Ŷd → [−∞,+∞) by
�(
) := log inf

v∈

‖v‖.

Lemma 2.6 ([14]) Let ψ : [T0,∞) → R+ be a continuous, non-increasing function where
T0 ∈ R+ and m, n be positive integers. Then there exists a continuous function

z = zψ : [t0,∞) → R,

where t0 := m
m+n log T0 − n

m+n logψ(T0), such that

(i) the function t �→ t + nz(t) is strictly increasing and unbounded;
(ii) the function t �→ t − mz(t) is non-decreasing;
(iii) ψ(et+nz(t)) = e−t+mz(t) for all t ≥ t0.

Note that, properties (i) and (ii) of Lemma 2.6 imply that any z = zψ does not oscillate
too wildly. Namely, z(s) − 1

m ≤ z(u) ≤ z(s) + 1
n whenever s ≤ u ≤ s + 1.

The following lemma, which rephrases ψ-Dirichlet improvable properties of (A,b) ∈
Xmn × R

m as the statement about the orbit of 
A,b in the dynamical space (Ŷd , at ), is the
general version of the correspondence between the improvability of the inhomogeneous
Dirichlet theorem and dynamics on Ŷd .

Lemma 2.7 ([16]) Let z = zψ be the function associated toψ by Lemma 2.6. Then (A,b) ∈
D̂m,n(ψ) if and only if �(at
A,b) < zψ (t) for all sufficiently large t.

This equivalence is usually called the Dani Correspondence. In view of this interpre-
tation a pair fails to be ψ-Dirichlet improvable if and only if the associated grid vis-
its the target �−1([zψ (t),∞)) at unbounded times t under the flow at . Note that from
the above lemma in the definitions D̂m,n(ψ)c = lim sup

t→∞
{
(A,b) : �(at
A,b) ≥ zψ (t)

}
and

D̂b
m,n(ψ)c = lim sup

t→∞
{
A : �(at
A,b) ≥ zψ (t)

}
, the limsup is taken for real values t ∈ R.

However to prove the convergent part, we need to useHausdorff–Cantelli lemma (Lemma
2.1), therefore we will consider limsup sets taken for t ∈ N. Thus we will use the following
definitions: there exists a non-zero positive constant C0 such that

D̂m,n(ψ)c ⊆ lim sup
t→∞,t∈N

{
(A,b) : �(at
A,b) ≥ zψ (t) − C0

}
, (2.7)
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D̂b
m,n(ψ)c ⊆ lim sup

t→∞,t∈N
{
A : �(at
A,b) ≥ zψ (t) − C0

}
. (2.8)

The validity of these definitions can be observed by the fact that zψ does not oscillate
wildly by [16, Remark 3.3] and � is uniformly continuous on the set �−1([z,∞)) for any
z ∈ R, ([16, Lemma 2.1]).

3 Proof of Theorems 1.7 and 1.8: the convergent case
Lemma 3.1 Let ψ : [T0,∞) → R+ be a non-increasing function, and let z = zψ be the
function associated to ψ by Lemma 2.6. Let f be a dimension function satisfying (1.5) and
(1.6) where nm − n < s ≤ nm. Also suppose that (1.7) holds. Then we have

∞∑

q=�T0�

1
ψ(q)q2

(
q

1
n

ψ(q)
1
m

)mn

f
(

ψ(q)
1
m

q
1
n

)

< ∞

⇐⇒
∞∑

t=�t0�
e−(m+n)z(t)e(m+n)t f (e−

(m+n)t
mn ) < ∞.

Proof The proof of this lemma uses ideas introduced in [14, Lemma 8.3] and [16]. Using
the monotonicity of ψ and [16, Remark 3.3], let us replace the sums with integrals

∫ ∞

T0

1
ψ(x)x2

(
x

1
n

ψ(x)
1
m

)mn

f
(

ψ(x)
1
m

x
1
n

)

dx and
∫ ∞

t0
e−(m+n)z(t)e(m+n)t f (e−

(m+n)t
mn )dt.

Define

P := − log ◦ψ ◦ exp : [T0,∞) → R and λ(t) := t + nz(t).

Since ψ(eλ) = e−P(λ), letting log x = λ we have

∫ ∞

T0

1
ψ(x)x2

(
x

1
n

ψ(x)
1
m

)mn

f
(

ψ(x)
1
m

x
1
n

)

dx =
∫ ∞

log T0

1
ψ(eλ)e2λ

(
eλm

ψ(eλ)n

)

f
(

ψ(eλ)
1
m

e
λ
n

)

eλdλ

=
∫ ∞

log T0
e(m−1)λe(1+n)P(λ)f (e

−P(λ)
m e

−λ
n )dλ. (3.1)

Using P(λ(t)) = t − mz(t), we have
∫ ∞

t0
e−(m+n)z(t)e(m+n)t f (e−

(m+n)t
mn )dt

=
∫ ∞

t0
e(m−1)λe(1+n)P(λ)f (e

−P(λ)
m e

−λ
n )d

[
m

m + n
λ + n

m + n
P(λ)

]

= m
m + n

∫ ∞

log T0
e(m−1)λe(1+n)P(λ)f (e

−P(λ)
m e

−λ
n )dλ

+ n
m + n

∫ ∞

log T0
e(m−1)λe(1+n)P(λ)f (e

−P(λ)
m e

−λ
n )d(P(λ)). (3.2)

The term in the last line can be expressed by

n
m + n

∫ ∞

log T0
e(m−1)λe(1+n)P(λ)f (e

−P(λ)
m e

−λ
n )d(P(λ))
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� n
m + n

∫ ∞

log T0
e(m−1)λf (e

−λ
n )e(1+n)P(λ)e−s P(λ)m d(P(λ)),

= n
m + n

(

1 + mn − s
m

)−1 ∫ ∞

log T0
e(m−1)λf (e

−λ
n )d(e((1+n)− s

m )P(λ)), (3.3)

the second last equation follows from (1.5) and (1.7). Since by using (1.7) and the fact that
ψ(eλ) = e−P(λ) we obtain the condition

(e
−λ
n )α ≤ e

−P(λ)
m ≤ (e

−λ
n )

1
α ,

therefore by using (1.5) we can write

f (e
−P(λ)
m e

−λ
n ) � e−s P(λ)m f (e

−λ
n ).

Next we will use integration by parts to evaluate the integral in (3.3).

∫ ∞

log T0
e(m−1)λf (e

−λ
n )d(e((1+n)− s

m )P(λ))

= −
∫ ∞

log T0
[(m − 1)e(m−1)λf (e−

λ
n ) − 1

n
e(m−1)λe

−λ
n f ′(e

−λ
n )]e((1+n)− s

m )P(λ)dλ

+ e(m−1)λf (e−
λ
n )e((1+n)− s

m )P(λ)
∣
∣
∣
∣

∞

log T0

=
∫ ∞

log T0

(

(1 − m)e(m−1)λf (e−
λ
n )e((1+n)− s

m )P(λ) + 1
n
e(m−1)λf ′(e−

λ
n )e−

λ
n e((1+n)− s

m )P(λ)
)

dλ

+ lim
λ→∞ e(m−1)λf (e−

λ
n )e((1+n)− s

m )P(λ) − Tm−1
0 f (T− 1

n
0 )ψ(T0)−((1+n)− s

m ),

by (1.6), we have f ′(e−
λ
n ) = a(e−

λ
n )
f (e− λ

n )
e− λ

n
,

=
∫ ∞

log T0

(

1 − m + 1
n
a(e−

λ
n )
)

e(m−1)λf (e−
λ
n )e((1+n)− s

m )P(λ)dλ

+ lim
λ→∞ e(m−1)λf (e−

λ
n )e((1+n)− s

m )P(λ) − Tm−1
0 f (T− 1

n
0 )ψ(T0)−((1+n)− s

m )

�
∫ ∞

log T0
(1 − m + 1

n
a(e−

λ
n ))e(m−1)λe(1+n)P(λ)f (e

−P(λ)
m e

−λ
n )dλ (3.4)

+ lim
λ→∞ e(m−1)λe(1+n)P(λ)f (e

−P(λ)
m e

−λ
n ) − Tm−1

0 f (T− 1
n

0 )ψ(T0)−((1+n)− s
m ). (3.5)

Note that as λ → ∞, e− λ
n → 0 thus by assumption a(e− λ

n ) → s and therefore
(

1 − mn − a(e− λ
n )

n

)

→
(

1 − mn − s
n

)

,

which is finite and positive for T0 large enough (since s > nm − n). Observe that

lim
λ→∞ e(m−1)λe(1+n)P(λ)f (e

−P(λ)
m e

−λ
n ) = 0

if the integral
∫ ∞

log T0
e(m−1)λe(1+n)P(λ)f (e

−P(λ)
m e

−λ
n )dλ

converges. Thus the convergence of
∫ ∞

T0

1
ψ(x)x2

(
x

1
n

ψ(x)
1
m

)mn

f
(

ψ(x)
1
m

x
1
n

)

dx or
∫ ∞

t0
e−(m+n)z(t)e(m+n)t f (e−

(m+n)t
mn )dt
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implies the convergence of other since all summands are positive except the finite value
−Tm−1

0 f (T− 1
n

0 )ψ(T0)−((1+n)− s
m ). ��

In order to apply the Hausdorff–Cantelli lemma (Lemma 2.1) we need a sequence of
coverings for the sets D̂m,n(ψ)c and D̂b

m,n(ψ)c.Recall thatwe are considering the supremum
norm ‖·‖ on [0, 1]mn and let λj(
) denote the j-th successiveminimumof a lattice
 ⊆ R

d

i.e. the infimum of λ such that the ball BR
d

λ (0) contains j independent vectors of 
. Then:

Proposition 3.2 (Kim–Kim, [12, Proposition 3.6]) Let C0 be the same constant as in (2.7)
and (2.8). For t ∈ N, let Zt := {A ∈ [0, 1]mn : log(dλd(at
A)) ≥ zψ (t) − C0}. Then Zt
can be covered with Ke(m+n)(t−zψ (t)) balls in Xmn = Mm,n(R) of radius 1

2e
−( 1m+ 1

n )t for a
constant K > 0 not depending on t.

We are now in a position to prove the following statement.

Proposition 3.3 Let mn − n < s ≤ mn. If
∞∑
q=1

1
ψ(q)q2

(
q
1
n

ψ(q)
1
m

)mn
f
(

ψ(q)
1
m

q
1
n

)

< ∞, then

Hf (lim sup
t→∞

Zt ) = 0 and Hf +m(lim sup
t→∞

Zt × [0, 1]m) = 0. (Note that Hf +m represents the

Hausdorff measure of a set when we take (f + m)(r) = rmf (r)).

Proof By Lemma 3.1, the assumption
∞∑
q=1

1
ψ(q)q2

(
q
1
n

ψ(q)
1
m

)mn
f
(

ψ(q)
1
m

q
1
n

)

< ∞ is equiva-

lent to
∞∑

t=1
e−(m+n)(z(t)−t)f (e−( 1m+ 1

n )t ) < ∞. (3.6)

For each t ∈ N, let Dt,1, Dt,2, · · · , Dt,pt be the balls of radius 1
2e

−( 1m+ 1
n )t covering Zt as in

Proposition 3.2. Note that pt , the number of the balls, is not greater than Ke(m+n)(t−zψ (t))

by Proposition 3.2. By applying Lemma 2.1 to the sequence of balls {Dt,j}t∈N,1≤j≤pt , we
haveHf (lim sup

t→∞
Zt ) ≤ Hf (lim sup

t→∞
Dtj ) = 0.

We prove the second statement by a similar argument. Proposition 3.2 implies that
Zt × [0, 1]m can be covered with Ke

m+n
n te(m+n)(t−zψ (t)) balls of radius 1

2e
−( 1m+ 1

n )t .Applying
Lemma 2.1 again, we haveHf +m(lim sup

t→∞
Zt × [0, 1]m) = 0. ��

The convergence parts of Theorems 1.7 and 1.8 follow from this proposition. We will
adapt a similar method as in [12].

Proof We first prove the singly metric case i.e., the convergent part of Theorem 1.8.
We claim that log(dλd(at
A)) ≥ �(at
A,b) for every b ∈ R

m. Let v1, . . . , vd be linearly
independent vectors satisfying ‖vi‖ ≤ 
d(at
A) for 1 ≤ i ≤ d. The shortest vector of
at
A,b can be written as a form of

∑d
1 αivi for some −1 ≤ αi ≤ 1, so the length of the

shortest vector is less than
∑d

1 ‖vi‖. Thus, �(at
A,b) ≤ log
d∑

i
‖vi‖ ≤ log(dλd(at
A)).

This implies D̂b
m,n(ψ)c ⊆ lim sup

t→∞
{A ∈ [0, 1]mn : �(at
A,b) ≥ zψ (t)−C0} ⊆ lim sup

t→∞
Zt by

Lemma 2.7 and Proposition 3.3, thus we obtainHf (D̂b
m,n(ψ)c) ≤ Hf (lim sup

t→∞
Zt ) = 0.

Similarly for the doubly metric case, together with the second statement of Proposition
3.3, D̂m,n(ψ)c ⊆ lim sup

t→∞
{(A,b) ∈ [0, 1]mn+m : �(at
A,b) ≥ zψ (t) − C0} ⊆ lim sup

t→∞
Zt ×

[0, 1]m provides the proof of the convergent part of Theorem 1.7. ��
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4 Proof of Theorems 1.7 and 1.8: the divergent case
Recall that d = m + n and assume that ψ : [T0,∞) → R+ is a decreasing function
satisfying limT→∞ ψ(T ) = 0. Denote by ‖ · ‖Z and |.|Z the distance to the nearest integer
vector and number, respectively. Define the function ψ̃ : [S0,∞) → R+ by

ψ̃(S) = (ψ−1(S−m)))
−1
n

where S0 = ψ(T0)
−1
m . The next lemma associates ψ-Dirichlet non-improvability with

ψ̃-approximability via a transference lemma as follows.

Lemma 4.1 [12, Lemma 4.2] Given (A,b) ∈ Xmn × R
m, if the system

‖Atx‖Z < d−1|b · x|Zψ̃(S) and ‖x‖ < d−1|b · x|ZS

has a nontrivial solution x ∈ Z
m for an unbounded set of S ≥ S0, then (A,b) ∈ D̂m,n(ψ)c.

Following [12] we adopt some notations. Let WS,ε be the set of A ∈ [0, 1]mn such that
there exists xA,S ∈ Z

m \ {0} satisfying
‖AtxA,S‖Z < d−1εψ̃(S) and ‖xA,S‖ < d−1εS

and let

ŴS,ε := {(A,b) ∈ [0, 1]mn+m : A ∈ WS,ε and |b · xA,S |Z > ε}.
For fixed b ∈ R

m, consider the setWb,S,ε of matrices A ∈ [0, 1]mn such that there exists
x ∈ Z

m \ {0} satisfying
• |b · x|Z > ε

• ‖Atx‖Z < d−1εψ̃(S) and ‖x‖ < d−1εS.

LetWb,ε := lim sup
S→∞

Wb,S,ε . Note that A ∈ WS,ε if and only if

‖AtxA,S‖Z < 	ε(U ) and ‖xA,S‖ < U for some xA,S ,

where

	ε(U ) := d−1εψ̃(dε−1U ), U = d−1εS. (4.1)

By Lemma 4.1 lim sup
S→∞

ŴS,ε ⊆ D̂m,n(ψ)c andWb,ε ⊆ D̂b
m,n(ψ)c.

Further lim sup
S→∞

WS,ε = {A ∈ [0, 1]mn : At ∈ Wn,m(	ε)} is the set of matrices whose

transposes are	ε-approximable. From here onwards we use a slightly different definition
of 	ε-approximability; recall from footnote 1 where the inequality ‖Atx‖Z < 	ε(‖x‖) is
used instead of (1.3). Then,Wb,ε can be considered as the set ofmatrices whose transposes
are 	ε-approximable with solutions restricted on the set {x ∈ Z

m : |b · x|Z > ε}.

4.1 Mass distributions on�ε-approximable matrices

In this subsection we prove the divergent part of Theorem 1.7 using mass distributions
on 	ε-approximable matrices following [1].
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Lemma 4.2 For each mn − n < s ≤ mn and 0 < ε < 1/2, let U0 = d−1εS0 and f be a
dimension function satisfying (1.5) and (1.6). Suppose that (1.7) holds. Then

∞∑

q=�T0�

1
ψ(q)q2

(
q

1
n

ψ(q)
1
m

)mn

f
(

ψ(q)
1
m

q
1
n

)

< ∞

⇐⇒
∞∑

h=�U0�
hm+n−1

(	ε(h)
h

)−n(m−1)
f
(	ε(h)

h

)
< ∞.

Proof Similar to Lemma 3.1, we may replace the sums with integrals

∫ ∞

T0

1
ψ(x)x2

(
x

1
n

ψ(x)
1
m

)mn

f
(

ψ(x)
1
m

x
1
n

)

dx and
∞∫

U0

hm+n−1
(

	ε(h)
h

)−n(m−1)
f
(

	ε(h)
h

)

dh,

respectively.

Note that since	ε(h) = d−1εψ̃(dε−1h), ifwe consider the term
∞∫

U0

hm+n−1
(

	ε(h)
h

)−n(m−1)

f
(

	ε(h)
h

)
dh, then

∞∫

U0

hm+n−1
(	ε(h)

h

)−n(m−1)
f
(	ε(h)

h

)
dh < ∞

⇐⇒
∞∫

S0

ym+n−1
( ψ̃(q)

y

)−n(m−1)
f
( ψ̃(q)

y

)
dy < ∞.

Also, since ψ̃(y) = ψ−1(y−m)− 1
n , we have

∫ ∞

S0
ym+n−1

(
ψ̃(y)
y

)−n(m−1)
f
(

ψ̃(y)
y

)

dy

=
∫ ∞

S0
ymn+m−1(ψ−1(y−m))m−1f

(
(ψ−1(y−m))− 1

n

y

)

dy

= 1
m

∫ ∞

Sm0
tn(ψ−1(t−1))m−1f

(
(ψ−1(t−1))− 1

n

t
1
m

)

dt

= 1
m

∫ ∞

ψ−1(S−m
0 )

xm−1(ψ(x)−1)nf
(

x− 1
n

(ψ(x)−1)
1
m

)

dψ(x)−1

� 1
m

(
n − s

m
+ 1
)−1 ∫ ∞

T0
xm−1f (x− 1

n )d(ψ(x)−1)n− s
m+1,

where in the second last line we used the change of variables x = ψ−1(t−1), t = ψ(x)−1

and in the last line we used (1.5) and (1.7). Since it follows from (1.7) that (x− 1
n )α ≤

(ψ(x)−1)− 1
m ≤ (x− 1

n )
1
α . Therefore by using (1.5) we can write

f ((ψ(x)−1)−
1
m x− 1

n ) � (ψ(x)−1)−
s
m f (x− 1

n ).

Using integration by parts
∫ ∞

T0
xm−1f (x− 1

n )d(ψ(x)−1)n− s
m+1
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= ( lim
x→∞ xm−1ψ(x)−n−1+ s

m f (x− 1
n ) − Tm−1

0 ψ(T0)−n−1+ s
m f (T

−1
n

0 ))

+
∫ ∞

T0

[

−(m − 1)xm−2f (x− 1
n ) + 1

n
xm−1x− 1

n−1f ′(x− 1
n )
]

ψ(x)−n−1+ s
m dx

= lim
x→∞ xm−1ψ(x)−n−1+ s

m f (x− 1
n ) − Tm−1

0 ψ(T0)−n−1+ s
m f (T

−1
n

0 )

+
∫ ∞

T0

[

−(m − 1) + 1
n
a(x− 1

n )
]

xm−2f (x− 1
n )ψ(x)−n−1+ s

m dx, by (1.6)

� lim
x→∞ xm−1ψ(x)−n−1f

(
ψ(x)

1
m

x
1
n

)

− Tm−1
0 ψ(T0)−n−1+ s

m f

⎛

⎝ψ(T0)
1
m

T
1
n
0

⎞

⎠

+
∫ ∞

T0

[
1
n
a(x− 1

n ) − (m − 1)
]

xm−2ψ(x)−n−1f
(

ψ(x)
1
m

x
1
n

)

dx.

Note that

∫ ∞

T0
xm−2ψ(x)−n−1f

(
ψ(x)

1
m

x
1
n

)

dx =
∫ ∞

T0
xm−1ψ(x)−n−1f

(
ψ(x)

1
m

x
1
n

)

d log x. (4.2)

Thus the convergence of
∫∞
T0

xm−2ψ(x)−1−nf
(

ψ(x)
1
m

x
1
n

)

dx gives that

lim
x→∞ xm−1ψ(x)−n−1f

(
ψ(x)

1
m

x
1
n

)

< ∞.

Also observe that as x → ∞, a(x
−1
n ) → s. Therefore

1
n
a(x

−1
n ) − (m − 1) → s − n(m − 1)

n
which is finite and positive (since s > mn − n). Therefore the convergence of
∫∞
T0

xm−2ψ(x)−1−nf
(

ψ(x)
1
m

x
1
n

)

dx gives the convergence of

1
n

∫ ∞

T0
a(x− 1

n )xm−2ψ(x)−n−1f
(

ψ(x)
1
m

x
1
n

)

dx − (m− 1)
∫ ∞

T0
xm−2ψ(x)−n−1f

(
ψ(x)

1
m

x
1
n

)

dx.

Hence the convergence of

∫ ∞

T0

1
ψ(x)x2

(
x

1
n

ψ(x)
1
m

)mn

f
(

ψ(x)
1
m

x
1
n

)

dx or
∫ ∞

S0
ym+n−1

(
ψ̃(y)
y

)−n(m−1)
f
(

ψ̃(y)
y

)

dy,

implies the convergence of other one since for T0 large enough all summands in (4.2) are
positive except the finite value

−Tm−1
0 ψ(T0)−n−1+ s

m f

⎛

⎝ψ(T0)
1
m

T
1
n
0

⎞

⎠ .

��
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Lemma 4.3 ([1, Section 5]) Assume that
∞∑
q=1

1
ψ(q)q2

(
q
1
n

ψ(q)
1
m

)mn
f
(

ψ(q)
1
m

q
1
n

)

= ∞. Fix

0 < ε < 1
2 . Then, for any η > 1 there exists a probability measure μ on lim supWS,ε

satisfying the condition that for an arbitrary ball D of sufficiently small radius r(D) we
have

μ(D) � f (r(D))
η

,

where the implied constant does not depend on D or η.

Proof Note that lim supS→∞ WS,ε = {A ∈ [0, 1]mn : At ∈ Wn,m(	ε)}. By Lemma 4.2
∞∑

h=1
hm+n−1

(	ε(h)
h

)−n(m−1)
f
(	ε(h)

h

)
= ∞,

which is the divergent assumption ofTheorem2.3 forWn,m(	ε). From the proof of Jarnik’s
Theorem in [1] and the construction of probabilitymeasure in [1, Section 5] we can obtain
a probability measure μ on lim supS→∞ WS,ε satisfying the above condition. ��

Let us prove the divergent part of Theorem 1.7.

Proof Assume that mn + m − n < s < mn + m and fix 0 < ε < 1
2 . For any fixed η > 1,

letμ be a probability measure on lim supS→∞ WS,ε as in Lemma 4.3 with f (r(D)) replaced
by r(D)−mf (r(D)).
Here we remark that since f (r) satisfies (1.5) and (1.6) it is not hard to check that the

new function f ∗(r) := f (r)
rm satisfies conditions (1.5) and (1.6) with s replaced by s − m.

Indeed, (1.5) (with s replaced by s−m) follows since f ∗(xy) = f (xy)
(xy)m � xsf (y)

xmym = xs−mf ∗(y),
and (1.6) (with s replaced by s − m) follows since

rf ∗′ (r)
f ∗(r)

= r
f ∗(r)

[r−mf ′(r) − mr−m−1f (r)] =
[

r
f ′(r)
f (r)

− m
]

→ (s − m) as r → 0.

Now consider the product measure ν = μ×mRm,wheremRm is the canonical Lebesgue
measure on R

m and let π1 and π2 be the natural projections from R
mn+m to R

mn and R
m,

respectively.
For any fixed integer N ≥ 1, let VS,ε = WS,ε\⋃S−1

k=N Wk,ε and V̂S,ε = {(A,b) ∈ ŴS,ε :
A ∈ VS,ε}. Then ν(

⋃
S≥N ŴS,ε) = ν(

⋃
S≥N V̂S,ε) ≥ 1 − 2ε, see [12, p.21].

Since N ≥ 1 is arbitrary, we have ν(lim supS→∞ ŴS,ε) ≥ 1 − 2ε. For an arbitrary ball
B ⊆ R

mn+m of sufficiently small radius r(B), we have

ν(B) ≤ μ(π1(B)) × mRm (π2(B)) � f (r(B))
η

,

where the implied constant does not depend on B or η. By using the Mass Distribution
Principle i.e. Lemma 2.2 and the Transference Lemma i.e. Lemma 4.1, we have

Hf (D̂m,n(ψ)c) ≥ Hf (lim sup
S→∞

ŴS,ε) � (1 − 2ε)η,

and by letting η → ∞ we obtain the desired result. ��
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4.2 Local ubiquity forWb,ε

Wewill use the idea of local ubiquity forWb,ε to prove the divergent part of Theorem 1.8.
Following [12] we define

ε(b) = min
1≤j≤m, |bj |Z>0

|bj|Z
4

, (4.3)

for b = (b1, · · · , bm) ∈ R
m \ Z

m. Note that ε(b) > 0 is due to the fact that b ∈ R
m \ Z

m.
The following lemma is used when we count the number of integral vectors z ∈ Z

m

such that

|b · z|Z ≤ ε(b). (4.4)

Lemma 4.4 ([12, Lemma 4.4]) For b = (b1, · · · , bm) ∈ R
m \ Z

m, let ε(b) be as in (4.3) and
1 ≤ i ≤ m be an index such that ε(b) = |bi|Z

4 . Then, for any x ∈ Z
m, at most one of x

and x + ei satisfies (4.4) where ei denotes the vector with a 1 in the ith coordinate and 0’s
elsewhere.

For a fixed b ∈ R
m \ Z

m, let ε0 := ε(b), 	0 := 	ε0 and 	(h) = 	0(h)
h . With notions in

the Subsection 2.2, which are defined for the ubiquitous system construction, let

J := {(x, y) ∈ Z
m × Z

n : ‖y‖ ≤ m‖x‖ and |b · x|Z > ε0} and (4.5)

for κ := (x, y) ∈ J denote βκ := ‖x‖ and Rκ := {A ∈ [0, 1]mn : Atx = y}. (4.6)

Note that Wb,ε0 ⊂ 
(	) and the family R of resonant sets Rκ consists of (m − 1)n-
dimensional, rational affine subspaces.
By Lemma 4.2, now we assume that the divergence part of Theorem 1.8 is satisfied.

Then we can find a strictly increasing sequence of positive integers {hi}i∈N such that

∞∑

hi−1<h≤hi

hm+n−1
(	0(h)

h

)−n(m−1)
f
(	0(h)

h

)
> 1 (4.7)

and hi > 2hi−1. Put ω(h) := i
1
n if hi−1 < h ≤ hi. Then

∞∑

h=1
hm+n−1

(	0(h)
h

)−n(m−1)
f
(	0(h)

h

)
ω(h)−n = ∞.

For a constant c > 0, define the ubiquitous function ρc : R+ → R+ by

ρc(h) =
⎧
⎨

⎩

ch− 1+n
n if m = 1;

ch−m+n
n ω(h) if m ≥ 2.

(4.8)

Clearly the ubiquitous function is 2-regular.

Theorem 4.5 ([12, Theorem 4.5]) The pair (R,β) is a locally ubiquitous system relative
to ρ = ρc for some constant c > 0.

The divergent part of Theorem 1.8.
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Assume that (m−1)n < s ≤ mn and r−nmf (r) → ∞ as r → 0. It follows fromTheorem
2.5 and Theorem 4.5 that

Hf (D̂b
m,n(ψ)c) ≥ Hf (Wb,ε0 ) = Hf ([0, 1]mn).

Similar as in [12] here we have used the fact that the divergence and convergence of the
sums

∞∑

N=1
2κNF (2N ) and

∞∑

h=1
hκ−1F (h)

coincide for any monotonic function F : Z+ → Z+ and κ ∈ R. This completes the proof
of the divergent part of Theorem 1.8.

Acknowledgements
The research of first named author was supported by the Australian Mathematical Society Lift-off Fellowship and the
Australian Research Council Grant DP180100201. The second-named author was supported by a Royal Society University
Research Fellowship, URF/R1/180649. The authors would like to thank the anonymous reviewer for the careful reading of
the paper which has led to multiple improvements.

Funding Open Access funding enabled and organized by CAUL and its Member Institutions.

Data availability Data sharing not applicable to this article as no datasets were generated or
analysed during the current study.

Author details
1School of Mathematics and Statistics, University of New South Wales, Sydney, NSW 2052, Australia, 2Department of
Mathematics, University of York, Heslington, York YO10 5DD, UK.

Received: 6 February 2022 Accepted: 19 March 2023 Published online: 5 July 2023

References
1. Allen, D., Beresnevich, V.: A mass transference principle for systems of linear forms and its applications. Compos. Math.

154(5), 1014–1047 (2018)
2. Baker, A., Schmidt, W.M.: Diophantine approximation and Hausdorff dimension. Proc. Lond. Math. Soc. 3(21), 1–11

(1970)
3. Beresnevich, V., Velani, S.: Ubiquity and a general logarithm law for geodesics. In: Dynamical Systems and Diophantine

Approximation. Sémin. Congr., vol. 19, pp. 21–36. Mathematical Society of France, Paris (2009)
4. Beresnevich, V., Velani, S.: Classical metric Diophantine approximation revisited: the Khintchine-Groshev theorem. Int.

Math. Res. Not. IMRN 1, 69–86 (2010)
5. Beresnevich, V., Dickinson, D., Velani, S.: Measure theoretic laws for lim sup sets. Mem. Am. Math. Soc. 179(846), x+91

(2006)
6. Bernik, V.I., Dodson, M.M.: Metric Diophantine Approximation on Manifolds. Cambridge Tracts in Mathematics, vol.

137. Cambridge University Press, Cambridge (1999)
7. Dani, S.G.: Divergent trajectories of flows on homogeneous spaces and Diophantine approximation. J. Reine Angew.

Math. 359, 55–89 (1985)
8. Davenport, H., Schmidt, W.M.: Dirichlet’s theorem on Diophantine approximation. In: Symposia Mathematica, vol. IV

(INDAM, Rome, 1968/69), pp. 113–132. Academic Press, London (1970)
9. Dodson, M.M., Rynne, B.P., Vickers, J.A.G.: Khintchine-type theorems on manifolds. Acta Arith. 57(2), 115–130 (1991)
10. Falconer, K.: Fractal Geometry. Mathematical Foundations and Applications, 3rd edn. Wiley, Chichester (2014)
11. Groshev, A.: Sur le domaine d’attraction de la loi de Poisson. Bull. Acad. Sci. URSS. Sér. Math. [Izvestia Akad. Nauk SSSR]

5, 165–172 (1941)
12. Kim, T., Kim, W.: Hausdorffmeasure of sets of Dirichlet non-improvable affine forms. Adv. Math. 403, Paper No. 108353

(2022)
13. Kleinbock, D.Y.: Bounded orbits conjecture and Diophantine approximation. In: Lie groups and ergodic theory (Mum-

bai, 1996). Tata Inst. Fund. Res. Stud. Math., vol. 14, pp. 119–130. Tata Institute of Fundamental Research, Bombay
(1998)

14. Kleinbock, D.Y., Margulis, G.A.: Logarithm laws for flows on homogeneous spaces. Invent. Math. 138(3), 451–494
(1999)

15. Kleinbock, D., Wadleigh, N.: A zero-one law for improvements to Dirichlet’s Theorem. Proc. Am. Math. Soc. 146(5),
1833–1844 (2018)



54 Page 18 of 18 A. Bakhtawar, D. Simmons Res. Number Theory (2023) 9:54

16. Kleinbock, D., Wadleigh, N.: An inhomogeneous Dirichlet theorem via shrinking targets. Compos. Math. 155(7),
1402–1423 (2019)

17. Kleinbock, D., Weiss, B.: Dirichlet’s theorem on Diophantine approximation and homogeneous flows. J. Mod. Dyn.
2(1), 43–62 (2008)

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


	Generalised Hausdorff measure of sets of Dirichlet non-improvable matrices in higher dimensions
	Abstract
	1 Introduction
	2 Preliminaries and auxiliary results
	2.1  Hausdorff measure and dimension
	2.2 Ubiquitous systems
	2.3 Dirichlet improvability and homogenous dynamics

	3 Proof of Theorems 1.7 and 1.8: the convergent case
	4 Proof of Theorems 1.7 and 1.8: the divergent case
	4.1 Mass distributions on Ψε-approximable matrices
	4.2 Local ubiquity for Wb,ε

	References




