
A&A, 688, A199 (2024)
https://doi.org/10.1051/0004-6361/202449309
c© The Authors 2024

Astronomy
&Astrophysics

How informative are summaries of the cosmic 21 cm signal?
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ABSTRACT

The cosmic 21 cm signal will bring data-driven advances to studies of Cosmic Dawn (CD) and the Epoch of Reionization (EoR).
Radio telescopes such as the Square Kilometre Array (SKA) will eventually map the HI fluctuations over the first billion years – the
majority of our observable Universe. With such large data volumes, it becomes increasingly important to develop “optimal” summary
statistics, which will allow us to learn as much as possible about the CD and EoR. In this work we compare the astrophysical parameter
constraining power of several 21 cm summary statistics, using the determinant of the Fisher information matrix, det F. Since we do not
have an established “fiducial” model for the astrophysics of the first galaxies, we computed for each summary the distribution of det F
across the prior volume. Using a large database of cosmic 21 cm light cones that include realizations of telescope noise, we compared
the following summaries: (i) the spherically averaged power spectrum (1DPS), (ii) the cylindrically averaged power spectrum (2DPS),
(iii) the 2D wavelet scattering transform (WST), (iv) a recurrent neural network (RNN) trained as a regressor; (v) an information-
maximizing neural network (IMNN); and (vi) the combination of 2DPS and IMNN. Our best performing individual summary is
the 2DPS, which provides relatively high Fisher information throughout the parameter space. Although capable of achieving the
highest Fisher information for some parameter choices, the IMNN does not generalize well, resulting in a broad distribution across
the prior volume. Our best results are achieved with the concatenation of the 2DPS and IMNN. The combination of only these two
complimentary summaries reduces the recovered parameter variances on average by factors of ∼6.5–9.5, compared with using each
summary independently. Finally, we point out that that the common assumption of a constant covariance matrix when doing Fisher
forecasts using 21 cm summaries can significantly underestimate parameter constraints.
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1. Introduction

The cosmic 21 cm signal, corresponding to the spin flip transi-
tion of the ground state of HI, provides a window on the first
billion years of the Universe’s evolution. This under-explored
period witnessed fundamental cosmic milestones, including the
Cosmic Dawn (CD) of the first galaxies and the final phase
change of our Universe: the Epoch of Reionization (EoR).
Current radio interferometers are setting increasingly tight
upper limits on its power spectrum (PS; e.g., Trott et al. 2020;
Mertens et al. 2020; Gehlot et al. 2020; HERA Collaboration
2023; Munshi et al. 2024), while the upcoming Square Kilo-
metre Array (SKA)1 promises to provide a 3D image of
the EoR in the next decade(s) (e.g., Koopmans et al. 2015;
Mesinger 2020). The unknown properties of the first galax-
ies and intergalactic medium (IGM) structures are encoded
in the timing and morphology of the cosmic 21 cm signal
(e.g., Pritchard & Furlanetto 2007; McQuinn & O’Leary 2012;
Visbal et al. 2012; Pacucci et al. 2014).

The only statistically robust way to infer these properties is
through Bayesian inference: sampling from theory and comparing
forward models to observations. But what should we use to com-
pare the forward model to the data? In other words, how should we
construct the likelidhood? The cosmic 21 cm signal is intrinsically
a 3D light cone map. Performing inference directly on the light
cone would be incredibly challenging due to the high dimension-
ality of the data. Effectively, at each frequency the SKA should
obtain a sky map comparable to current cosmic microwave back-
? Corresponding author; david.prelogovic@sns.it

1 https://www.skatelescope.org

ground maps, but with the full light cone including thousands of
such frequency slices (e.g., Loeb & Zaldarriaga 2004)2. Instead,
the data are compressed into a summary statistic. Summary statis-
tics usually involve some form of averaging, which increases the
signal-to-noise ratio (S/N) and can motivate assuming an approx-
imately Gaussian likelihood when performing inference (e.g.,
Greig & Mesinger 2015; Gazagnes et al. 2021; Watkinson et al.
2022)3.

The most common choice of a 21 cm summary statistic
is the spherically averaged power spectrum (1DPS). The
1DPS maximizes the S/N of an interferometric observation
– a primary concern in the run-up to a first detection (e.g.,
Greig & Mesinger 2018; Trott et al. 2020; Mertens et al. 2020;

2 Inference on high-dimensional light cones is still possible in
some cases, for example galaxy large-scale structure maps (e.g.,
Kitaura & Enßlin 2008; Jasche & Kitaura 2010; Jasche & Wandelt
2012, 2013; Leclercq et al. 2017; McAlpine et al. 2022; Dai & Seljak
2022; Bayer et al. 2023). Although such studies still compress the full
galaxy observations, only treating them as biased tracers of the matter
field, they are able to recover the phase information of our Universe’s
initial conditions (so-called constrained realizations). It remains to be
seen if such studies can be extended to the EoR and CD (though see
Zhao et al. 2023b for a recent proof-of-concept study).
3 The Gaussianity of summaries constructed by averaging can be
loosely motivated by appealing to the Central Limit Theorem. However,
the theorem holds only for independent, identically distributed random
variables. Unfortunately, we only have a single observable Universe; thus
summaries of cosmological datasets (e.g., the PS) often involve binning
over correlated (i.e., not independent) and/or differently evolving fields
(i.e., not identically distributed), resulting in non-Gaussian likelihoods
(e.g., Prelogović & Mesinger 2023).
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HERA Collaboration 2023). Another common summary choice
is the cylindrically averaged power spectrum (2DPS), which
includes additional information on the anisotropy of the cosmic
21 cm signal (e.g., Bharadwaj & Ali 2005; Barkana & Loeb
2006; Datta et al. 2012; Mao et al. 2012). Fourier space is
also a natural basis for isolating the cosmic signal from
instrumental effects and foregrounds, which primarily reside
in a wedge region in the 2DPS (e.g., Morales et al. 2012;
Vedantham et al. 2012; Trott et al. 2012; Parsons et al. 2014;
Liu et al. 2014a,b; Murray & Trott 2018). However, the PS
ignores Fourier phases, which can encode significant infor-
mation for a highly non-Gaussian signal such as the 21 cm
signal from the EoR and CD (e.g., Bharadwaj & Pandey 2005;
Mellema et al. 2006; Shimabukuro et al. 2016; Majumdar et al.
2018; Watkinson et al. 2019). Because of this, several stud-
ies have also explored non-Gaussian statistics, such as the
bispectrum (Shimabukuro et al. 2016; Majumdar et al. 2018;
Watkinson et al. 2019, 2022), the trispectrum (Cooray et al.
2008; Flöss et al. 2022), morphological spectra (Gazagnes et al.
2021), the bubble size distribution (Lin et al. 2016; Giri et al.
2018; Shimabukuro et al. 2022; Doussot & Semelin 2022;
Lu et al. 2024), one-point statistics (Harker et al. 2009;
Watkinson & Pritchard 2015; Kittiwisit et al. 2022), genus
topology (Hong et al. 2014), wavelet scattering transform
(WST; Greig et al. 2022, 2023; Zhao et al. 2023a), Minkowski
functionals and tensors (Gleser et al. 2006; Yoshiura et al. 2017;
Chen et al. 2019; Kapahtia et al. 2019; Spina et al. 2021), and
Betti numbers (Giri & Mellema 2021; Kapahtia et al. 2021).

Is there an “optimal” choice of summary statistic? One
way to define optimal is by how tightly we can recover cos-
mological and astrophysical parameters. This can be quanti-
fied through the Fisher information matrix (Fisher 1935). The
Fisher information is commonly used to make forecasts using
predetermined summary statistics, or even to define the summary
statistic itself. Optimal summaries (algorithms) that are based
on the Fisher matrix include Karhunen-Loéve methods and mas-
sively optimized parameter estimation and data compression for
linear transformations (e.g., Tegmark et al. 1997; Heavens et al.
2000), as well as nonlinear generalizations like information-
maximizing neural networks (IMNNs; Charnock et al. 2018) and
fishnets (Makinen et al. 2023). However, these summary statis-
tics come at the cost of interpretability, making the compression
more of a “black box” compared to physically motivated and
easy-to-interpret summaries like the PS4.

It is also important to note that, unlike Λ cold dark matter
(ΛCDM), there is no obvious or unique choice for parameter-
izing the astrophysics of early galaxies whose radiation deter-
mines the cosmic 21 cm signal. Nor do we have a good idea of
a “fiducial” model. Thus, there is no guarantee that a summary
statistic that maximizes Fisher information at a single parameter
value for a single model parametrization would generalize well
to other parameters and models.

Here we systematically compare the information content of
several common 21 cm summaries on the basis of their Fisher
information. These include: (i) the 1DPS, (ii) the 2DPS, (iii)
the 2D WST, (iv) a recurrent neural network (RNN) trained

4 An interesting question is why would we even expect a truly opti-
mal (lossless) compression to exist? The answer to this can be moti-
vated through the manifold hypothesis (Fefferman et al. 2016), which
states that physical probability distributions of the data often lie on a
low-dimensional manifold. Optimal (lossless) compression would then
“extract” such manifolds from the original high-dimensional data. The
above-mentioned algorithms do not attempt this directly, but aim at
making compression as optimal as possible, given certain assumptions.

as a regressor; and (v) an IMNN5. Several previous studies
compared the constraining power of 21 cm summaries (e.g.,
Gazagnes et al. 2021; Watkinson et al. 2022; Greig et al. 2022;
Zhao et al. 2023b; Hothi et al. 2024). Here we explore a broader
range of summary statistics, introducing IMNNs to the field.
Unlike previous 21 cm Fisher studies, we do not make the
simplifying assumption of a constant covariance matrix. Most
importantly, we compare the summary statistics across a broad
parameter space, instead of choosing only one or two fiducial
values to make a mock 21 cm observation. This is very impor-
tant for verifying the robustness of the summary since we do not
have a fiducial astrophysical model for the first galaxies.

The paper is organized as follows. In Sect. 2 we define the
information content of a summary through the Fisher matrix
and introduce the Fisher information distribution. In Sect. 3
we introduce our 21 cm simulator and explain the summaries
we consider in detail. In Sect. 4 we discuss our database
of prior samples for evaluating the Fisher information. In
Sect. 5 we present our results, quantifying the most informa-
tive summaries as well as the error introduced by the com-
mon assumption of a constant covariance matrix. Finally, we
present concluding remarks and future prospects in Sect. 6.
All quantities are quoted in comoving units, and we assume
a standard ΛCDM cosmology: (ΩΛ,ΩM,Ωb, n, σ8,H0) =(
0.69, 0.31, 0.048, 0.97, 0.81, 68 km s−1Mpc−1

)
, consistent with

the results from Planck Collaboration VI (2020).

2. The Fisher matrix as a measure of information
content

How do we measure the information content of a summary? If
we have a theoretical model with a given parametrization, we can
see how sensitive the summary is to changes in the astrophysi-
cal/cosmological parameters around some fiducial value. Specif-
ically, we can calculate the Fisher matrix (e.g., Spall 2005):

F(θ∗)mn =

∫
dd P(d|θ∗)

∂

∂θm
ln P(d|θ∗) ·

∂

∂θn
ln P(d|θ∗)

= E

[
∂

∂θm
ln P(d|θ) ·

∂

∂θn
ln P(d|θ)

∣∣∣∣∣ θ∗] , (1)

where d is the data summary (cf. Fig. 1), P(d|θ) is the likelihood,
and E denotes the expectation value over the likelihood (i.e., an
empirical average over many realizations) evaluated at a given
point in parameter space θ∗. The Fisher information matrix pro-
vides the maximum constraining power, known as the Cramér-
Rao bound (Rao 1992; Cramér 1999): Var(θ̂m) ≥ (F−1)mm, where
θ̂ is an unbiased estimator of the parameters. In the multivariate
case, one can equivalently write:

Cov(θ̂) ≥ F−1 , (2)

where the matrix inequality is interpreted as Cov(θ̂)− F−1 being
a positive semi-definite matrix. One can then prove the following
inequality (see Appendix A):

det Cov(θ̂) ≥ det F−1 . (3)

Therefore, the determinant of the Fisher matrix measures the
tightest parameter volume that can be constrained by the data.

5 Note that the dimensionality of the PS (1D or 2D) labels the dimen-
sionality of the summary, while for the WST, 2D labels the dimension-
ality of the data on which it is computed. In our case, those are 2D
sky-plane images.
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From now on, we refer to det F(θ∗) as simply the Fisher infor-
mation around θ∗ – the higher its value, the more constraining
the summary is around θ∗.

2.1. Gaussian approximation

In almost all cosmological scenarios, we do not explicitly know
the full likelihood function P(d|θ), nor its “score”, ∇θ ln P(d|θ).
For performing quick forecasts, it is instead common to approx-
imate the likelihood as a Gaussian in data space P(d|θ) ≈
N(d|µ(θ),Σ(θ)), where the mean µ(θ) and covariance Σ(θ) are
general functions of the parameter space.

Assuming a Gaussian likelihood, one can compute the inte-
gral in Eq. (1) analytically (Appendix B; see also Tegmark et al.
1997; Vogeley & Szalay 1996):

Fmn ≡ Fµ,mn + FΣ,mn

=
∂µT

∂θm
Σ−1 ∂µ

∂θn
+

1
2

tr
[
Σ−1 ∂Σ

∂θm
Σ−1 ∂Σ

∂θn

]
. (4)

Here the first (second) term measures how the mean (covari-
ance) of the data summary changes with respect to the param-
eters. Cosmological Fisher forecasts usually ignore one of the
two terms (most often the second term FΣ), effectively fixing
either the mean or the covariance matrix to some fiducial value.
However, we will see below that both terms are non-negligible
for some summaries (e.g., Carron 2013).

2.2. Finite differencing

To numerically evaluate Eq. (4), we grouped the terms into
“fixed” (µ, Σ, Σ−1) and “differentiated” (∇θ µ, ∇θ Σ). We cal-
culated fixed terms from realizations of the summary around the
same parameter value θ∗. To compute the mean, we can use the
maximum likelihood estimator (MLE):

µ(θ∗) =
1
N

N∑
i=1

d(θ∗)i , (5)

where the index i labels different realizations of initial conditions
and other sources of stochasticity (e.g., telescope noise). It is
known that such an estimator of the mean is unbiased. However,
for the covariance matrix the situation is more complex, as the
MLE

ΣMLE(θ∗) =
1
N

N∑
i=1

(d(θ∗)i − µ(θ∗))(d(θ∗)i − µ(θ∗))T (6)

is biased. One can show that the estimators of the covariance
and its inverse can be unbiased in the following way (e.g.,
Hartlap et al. 2007):

Σ(θ∗) =
N

N − 1
ΣMLE(θ∗) , (7)

Σ−1(θ∗) =
N − D − 2

N − 1
Σ−1

MLE(θ∗) , (8)

where D is dimensionality of the summary d. The correction
prefactor for the inverse of the covariance is particularly impor-
tant when D is close to the number of samples N. Without it,
both Fµ and FΣ would end up over-confident, with the effect on
FΣ being quadratic (see Eq. (4)).

A similar approach is used to estimate the “differentiated
parameters”. In the case in which the simulator is not differen-
tiable, we can use finite differencing to estimate gradients of the
mean and covariance:

δd(θ∗)i

δθm
≡

d(θ∗ + δθm/2)i − d(θ∗ − δθm/2)i

δθm
, (9)

∂µ

∂θm

∣∣∣∣∣
θ∗

=
1
M

M∑
i=1

δd(θ∗)i

δθm
, (10)

∂Σ

∂θm

∣∣∣∣∣
θ∗

=
2

L − 1

L∑
i=1

(
δd(θ∗)i

δθm
−

∂µ

∂θm

∣∣∣∣∣
θ∗

)
(d(θ∗)i − µ(θ∗))T . (11)

Here, δθm represents a small change in the parameter over which
the derivative is computed and δd(θ∗)i/δθm corresponds to the
numerical derivative of a given summary realization (i.e., fixing
all sources of stochasticity).

2.3. The distribution of the Fisher information over parameter
space

Below we show examples of common 21 cm summaries eval-
uated at a fiducial set of parameters, θfid. Unfortunately, the
cosmic 21 cm signal does not yet have a well-defined fiducial
model and our choice of θfid is only a “best guess”. Therefore, to
properly assess the quality of a particular summary, we sampled
many points θ∗ from the prior P(θ), calculating the Fisher infor-
mation det F(θ∗) at each sample. We used this prior-weighted
distribution of Fisher information as the main metric for assess-
ing the quality of a given summary6.

3. The cosmic 21 cm signal and its summary
statistics

For a given sample of astrophysical parameters, θ∗, we computed
a realization of mock data using the following steps (illustrated
in Fig. 1):
1. Sampling cosmological initial conditions, we simulated a

realization of the 21 cm lightcone using the 21cmFAST code.
2. We subtracted the mean from each frequency slice, mimick-

ing an interferometric observation.
3. We simulated a 1000 h tracked scan with the SKA1-low tele-

scope, including the corresponding uv coverage and realiza-
tion of the instrument noise.

4. We compressed the resulting light cone into a given summary
observation.

We elaborate on these steps below.
The cosmic 21 cm signal was simulated using the semi-

numerical code, 21cmFASTv37 (Mesinger & Furlanetto 2007;
Mesinger et al. 2011; Murray et al. 2020). In brief, we used the
Park et al. (2019) galaxy model, varying five parameters that
characterize the unknown UV and X-ray properties of high-z
galaxies through scaling relations:

– f∗,10 – the fraction of galactic gas in stars, normalized at the
halo mass of 1010M�. The stellar to halo mass relation of
the faint galaxies that drive reionization is well described by
a power law: M∗/Mh = f∗,10(Mh/1010M�)0.5(Ωb/Ωm) (see
Park et al. 2019 and references therein).

6 Note that the prior-weighted distribution of the Fisher infor-
mation is closely related to the Mutual Information I(x, θ) =
DKL(p(x, θ)‖p(x)p(θ)), where DKL is Kullback-Liebler divergence
(Brunel & Nadal 1998). Mutual Information can also be used to asses
the quality of a summary (e.g., Sui et al. 2023).
7 https://github.com/21cmfast/21cmFAST
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Fig. 1. Schematic illustrating our pipeline for producing data sum-
maries for a given astrophysical parameter combination (adapted from
Prelogović & Mesinger 2023). Starting from a realization of the cosmo-
logical signal simulated with 21cmFAST, we remove the mean at each
redshift and add a telescope noise realization corresponding to a 1000 h
observation with SKA1-Low. The resulting light cone is compressed
into different summaries. Explicitly defined summaries are marked in
blue, while neural network summaries are marked in red. This realiza-
tion is computed at the fiducial parameter set, which was used only for
IMNN training and visualizations of the summaries. See the main text
for more details.

– fesc,10 – the ionizing UV escape fraction, normalized at the
halo mass 1010M�. Again, the (mean) escape fraction is
assumed to be a power law with halo mass, and here we fixed
its index to αesc = −0.5 (e.g., Qin et al., in prep.).

– Mturn – the characteristic host halo mass below which galax-
ies are inefficient at forming stars, due to slow gas accretion,
supernovae feedback, and/or photo-heating.

– E0 – the characteristic X-ray energy below which photons
are absorbed by the interstellar medium (ISM) of the host
galaxy.

– LX<2keV/SFR – the X-ray soft band (in the energy range
E0 – 2 keV) luminosity per star formation rate (SFR), in
units of erg s−1 keV−1 M−1

� yr. The SFR is taken to be: Ṁ∗ =

M∗/(0.5 H(z)−1), where the Hubble time, H(z)−1, also scales
with the dynamical time at the virial radius.

Our fiducial, θfid parameter vector corresponds to the follow-
ing: log10 f∗,10 = −1.3, log10 fesc = −1, log10 Mturn[M�] = 8.7,
log10 LX<2keV/SFR[erg s−1 keV−1 M−1

� yr] = 40, E0[keV] = 0.5.
This particular choice is only used when training the IMNN, and
for the visualizations of the summaries below. More details on
the model and its motivations are provided in Park et al. (2019)
and references therein.

To simulate the observation, we followed the procedure
described in Prelogović et al. (2022), Prelogović & Mesinger
(2023; cf. Fig. 1). In brief, we calculated the 21 cm signal from
redshifts 30 to 5, on a 300 Mpc coeval cube, with 1.5 Mpc resolu-
tion. The snapshots of the evolved coeval cube were then stacked
to produce the final light cone of the signal. After the subtraction
of the mean for every sky-plane slice, we added thermal noise
corresponding to a a 6 h/day, 10 s integration time tracked scan
with SKA1-Low antenna configuration for a 1000 h observation
in total. For this task we used tools21cm8, where a separate

8 https://github.com/sambit-giri/tools21cm
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Fig. 2. 1DPS for the fiducial light cone shown in Figure 1. Different
colors correspond to different wave modes, while solid (dashed) lines
correspond to light cones with (without) noise. Comparing the solid
and dashed lines, we see that the signal is noise dominated at higher k
modes and redshifts (see also Fig. 1). All power spectra are computed
from comoving cubes extracted from the light cone, centered on the
redshifts indicated by the vertical dashed lines.

UV coverage and noise is calculated for each sky-plane slice.
Before computing each summary, we additionally smoothed the
light cone with a box-car filter obtaining a final resolution of
6 Mpc. This final step does not impact our results as it is com-
parable to the SKA1-Low beam, but is needed in order to mini-
mize GPU memory usage for certain summaries (see below for
more details). We also note that in this work we made the opti-
mistic assumption of perfect foreground removal, thus exploring
the maximum future potential of our set of summary statistics.

The resulting 3D light cone was compressed into a given
summary statistic. We explore the following summaries in this
work:
1DPS – spherically averaged 1D power spectrum,
2DPS – cylindrically averaged 2D power spectrum,
Wavelets – 2D wavelet scattering transform,
RNN – recurrent neural network,
IMNN – information-maximizing neural network.
2DPS + IMNN – concatenation of the 2DPS and IMNN sum-
maries.
The first four are explicitly defined while the following two are
“learned” by neural networks (NNs). The last, 2DPS + IMNN,
is a combination of the two individual summaries. We describe
them in detail below.

3.1. Spherically averaged (1D) power spectrum

As discussed in the introduction, the 1DPS, is the most common
choice of a summary statistic. Despite the cosmic 21 cm signal
being non-Gaussian, the 1DPS is a natural choice when seeking
to maximize the S/N of an interferometric first detection.

The 1DPS of the 21 cm signal δTb(x, z), where x is the sky-
plane coordinate and z the redshift, is defined as

δT̄ 2
b ∆2

21(k, z′) ≡
k3

2π2V

〈∣∣∣δTb(k, z′) − δT̄b(z′)
∣∣∣2〉

k
. (12)

The δTb(k, z′) is calculated from the Fourier transforms of mean-
subtracted light cone segments centered around z′. Here we cal-
culated the 1DPS in three log-spaced k-bins, computed at eight
different z′. In Fig. 2 we show the 1DPS of the fiducial light cone
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(see Fig. 1). Solid curves correspond to the full signal: cosmic +
noise, while the dashed curves are only the cosmic signal. We see
the usual three peaked redshift evolution of the large-scale power
at k ∼ 1 Mpc−1, tracing fluctuations in the IGM ionized frac-
tion, the IGM temperature and Lyman alpha background (e.g.,
Pritchard & Furlanetto 2007; Mesinger et al. 2014). By compar-
ing the solid and dashed curves, we see that the signal is noise
dominated at small scales and early times. Indeed, k ≥ 0.4 Mpc−1

remains noise dominated virtually at all redshifts (z > 7), for this
fiducial model and choice of 1000 h integration time.

3.2. Cylindrical (2D) power spectrum

The cylindrically averaged 2DPS distinguishes between sky-
plane (k⊥) and line-of-sight (k‖) modes. Redshift space distor-
tions (e.g., Bharadwaj & Ali 2005; Barkana & Loeb 2005) and
light cone evolution (e.g., Greig & Mesinger 2018; Mondal et al.
2018) result in an anisotropic cosmic signal. Therefore, the
2DPS should encode more physical information compared to the
1DPS. Moreover, the instrument/foregrounds are better charac-
terized in the 2DPS (e.g., see the review in Liu et al. 2014b),
making it a natural summary observable for preliminary, low S/N
measurements.

The 2DPS is defined as

δT̄ 2
b ∆2

21(k⊥, k‖, z′) ≡
k2
⊥ k‖

4π2V

〈∣∣∣δTb(k, z′) − δT̄b(z′)
∣∣∣2〉

k⊥,k‖
, (13)

where the Fourier transform is performed on the same light cone
chunks as in the 1D case, with the difference being that the
expectation value is calculated over (k⊥, k‖) bins. Here we picked
3 × 3 log-spaced bins, aligned to the 1D case as close as possi-
ble. The 2DPS for the fiducial light cone (see Fig. 1) is shown in
Fig. 3. The panels correspond to the mean redshifts of the light
cone chunks, coinciding with the ones of the 1DPS (see Fig. 2).
The columns correspond to the cases with and without noise, as
labeled at the top. We can verify that both the cosmic signal and
the noise are anisotropic. For the cosmic signal, this is most evi-
dent for z . 10 where the noise is subdominant. For the noise,
the same can be clearly seen for higher redshifts, where the noise
dominates the signal at high k‖ much more than in high k⊥.

3.3. Wavelet scattering transform

The wavelet transform (Gabor 1946; Goupillaud et al. 1984;
Trott et al. 2012) and WST (Mallat 2011) are based on con-
volutional filters designed on a Fourier basis with an addi-
tional Gaussian envelope along the frequency direction. As such,
they capture local features in both image and Fourier domains,
which is often relevant in audio and image processing. Higher-
order convolutions combined with NNs (wavelet-based con-
volutional NNs) have been very successful for such purposes
(Bruna & Mallat 2012; Sifre & Mallat 2013; Anden & Mallat
2014). The WST has been extensively explored in cosmologi-
cal (e.g., Cheng et al. 2020) and 21 cm (e.g., Greig et al. 2022,
2023; Zhao et al. 2023a; Hothi et al. 2024) analyses.

Here we briefly introduce how the WST is defined. It repre-
sents a convolution of an input image I(x) by a set of wavelet
(here specifically Morlet) filters. They are characterized by the
physical scale j and rotation moment l. The actual physical scale
of the filter ψ j,l will then be 2 j pixels, and its orientation angle
l · π/L. The wavelet coefficients correspond to the average of
the convolved images, to which we refer as simply wavelets. We
note that in this work we restricted ourselves to the 2D WST

(see, e.g., Zhao et al. 2023a for recent work using the 3D trans-
form).

The first- and second-order wavelets can be written as

s j1,l1
1 = 〈|I(x) ∗ ψ j1,l1 |〉 , (14)

s j1,l1, j2,l2
2 = 〈||I(x) ∗ ψ j1,l1 | ∗ ψ j2,l2 |〉 . (15)

One can see the similarity between first-order wavelets and the
PS by writing PS(k) = 〈|I(x) ∗ ψ′|2〉, with ψ′ = e−ik·x. To extract
only cylindrically averaged information imprinted in the 21 cm
signal (analogous to calculating 2DPS in a Fourier basis), one
can average coefficients over the rotations:

S j1
1 = 〈s j1,l1

1 〉l1 , (16)

S j2
2 = 〈s j1,l1, j2,l2

2 〉l1,l2 . (17)

It is important to mention that this procedure removes
anisotropic information. Alternative definitions such as the
reduced WST (Allys et al. 2019) are able to reduce the coeffi-
cient dimensionality, while keeping anisotropy. For further infor-
mation about the WST and wavelet coefficients we refer the
reader to Cheng et al. (2020) and Greig et al. (2022, 2023).

Our setup for calculating wavelets is the following. We first
selected a series of eight images, centered at the same redshifts
as for the power spectra. For each image we calculated the first-
and second-order wavelets and combined them for the final sum-
mary. As the WST scale (2J × 2J) has to be smaller than the
sky-plane images (50 × 50), we set J = 4. Furthermore, we
fixed L = 4 (Cheng et al. 2020; Greig et al. 2022). To com-
pute convolutions, we used the scattering_transform9 pack-
age (Cheng et al. 2020). For each redshift slice, we averaged
the first- and second-order coefficients computed on a rolling
32× 32 window. Our final WST summary thus consists of J = 4
S 1 and J(J + 1)/2 = 10 S 2 coefficients for each of the eight
redshift slices, for a total of 112 numbers.

In Figure 4, we show the redshift evolution of first-order
wavelet coefficients (S 1; see Eqs. (14), (16)). Solid (dashed)
lines correspond to coefficients with (without) telescope noise.
We see the same qualitative trends as in Fig. 2, with lower J
modes (i.e., smaller scales) more noise dominated. As a result,
these low J modes contribute less to the total Fisher information
(Hothi et al. 2024).

3.4. Recurrent neural network

A RNN is a type of NN architecture designed to efficiently
encode sequential or time-evolving information. In our previ-
ous work (Prelogović et al. 2022), we used RNNs along the red-
shift axis in combination with convolutional neural networks
(CNNs) along the sky-plane, to capture the anisotropic evolu-
tion of the cosmic 21 cm signal along the light cone. Specifically,
we used a long short-term memory (Hochreiter & Schmidhuber
1997; Shi et al. 2015) RNN, which is more stable to train com-
pared with older RNN versions (see, e.g., the review in Schmidt
2019). Using RNNs resulted in a more accurate regression of
astrophysical parameters, compared to only using CNNs (e.g.,
Gillet et al. 2019; La Plante & Ntampaka 2019; Mangena et al.
2020; Kwon et al. 2020; Zhao et al. 2022a; Heneka 2023).

In this work, we used the flagship model from
Prelogović et al. (2022), SummaryRNN, together with the
exact weights from that work. The model has been trained
in a supervised manner as a regressor. The database used for

9 https://github.com/SihaoCheng/scattering_transform
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Fig. 3. 2DPS of the fiducial model shown in
Fig. 1. Different columns show the 2DPS for the
pure cosmic signal and including thermal noise,
as labeled on the top. Each pair corresponds to a
different central redshift, coinciding with those
used in the 1DPS summary (see Fig. 2). Further-
more, the bins between 1DPS and 2DPS coin-
cide as much as possible. As in the 1DPS case,
high-k modes and high redshifts are noise dom-
inated.
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Fig. 4. First-order wavelet coefficients (Eqs. (14) and (16)) for the fidu-
cial light cone shown in Figure 1. Different colors correspond to dif-
ferent J modes, while solid (dashed) lines correspond to the case with
(without) noise. Comparing the solid and dashed lines, we see that the
signal is noise dominated at smaller scales (smaller J) and higher red-
shifts (see also Fig. 1).

training had the same telescope simulator, but used an older
version of the 21cmFAST simulator with a different astrophysical
parametrization.

Our RNN summary in this work is the 32-dim output
from the first dense layer of the network (see Table B3 in
Prelogović et al. 2022, where convolutional and recurrent lay-
ers are followed by dense layers, ending with prediction of four
parameters). Using such a higher-dimensional layer instead of
the final parameter regressor output (e.g., Zhao et al. 2022a),

makes the summary more sensitive to the general light cone fea-
tures instead of the specific model and/or parametrization used to
create the training set. This is similar to so-called transfer learn-
ing (e.g., Jiang et al. 2022), where one uses a NN that has been
pretrained on a different domain (i.e., database) and retrains its
last layers on a new domain. As our original RNN takes as input
25 × 25 sky-plane slices, we rolled a 25 × 25 window over each
redshift slice, averaging the corresponding dense layer outputs
to obtain the final RNN summary.

3.5. Information-maximizing neural network

An IMNN (Charnock et al. 2018)10 is an unsupervised learn-
ing algorithm, where the NN is specifically trained to maximize
the Fisher information det F of the summary compression, at
a single fixed point in parameter space θfid. IMNNs have been
previously applied to galaxy large-scale structure maps (e.g.,
Makinen et al. 2022) and catalog-free modeling of galaxy types
(Livet et al. 2021). Here we applied them for the first time to
21 cm maps of the EoR and CD. In what follows, we outline the
main ingredients of the algorithm and the training procedure.

Taking some NN architecture (in our case a simple CNN),
one compresses the light cone, l, into a summary vector, d,

d = NN(l) . (18)

The dimensionality of the summary is equal to the parameter
space dimensionality (D). This is motivated by the fact that, for
a given model parametrization, the “score” of the real likelihood

10 https://github.com/tomcharnock/IMNN
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function, ∇θ ln P(l|θ), is sufficient for optimal parameter recov-
ery, and thus the dimensionality of the summary that maximizes
information around one fiducial point can be the same as the
dimensionality of the parameter space (e.g., Heavens et al. 2000;
Charnock et al. 2018).

We trained the IMNN using the following loss function (cf.
Charnock et al. 2018; Makinen et al. 2021):

FIMNN(θfid)mn ≡
∂µT

∂θm

∣∣∣∣∣∣
θfid

∂µ

∂θn

∣∣∣∣∣
θfid

(19)

LF (Σ(θfid)) ≡ ‖Σ(θfid) − 1‖F (20)

L2(WNN) ≡ ‖WNN‖
2 (21)

L = − ln det FIMNN

+ λ LF (Σ) tanh LF (Σ) (22)
+ λW L2(WNN),

where

µ(θfid) =
1
N

M∑
i=1

d(θfid)i , (23)

Σ(θfid) =
1

N − 1

N∑
i=1

(d(θfid)i − µ(θfid)) (d(θfid)i − µ(θfid))T ,

(24)

∂µ

∂θm

∣∣∣∣∣
θfid

=
1
M

M∑
i=1

d(θfid + δθm/2)i − d(θfid − δθm/2)i

δθm
, (25)

LF (Σ(θfid)) is the Frobenius norm between the covariance and
the unit matrix 1, L2(WNN) is the l2 norm of the networks’
weights. The final loss is then the sum of the negative loga-
rithm of the Fisher information, together with the covariance
and weight regularizers. The tanh term in the covariance regu-
larizer is used to turn-off the regularization once the covariance
becomes close to the unity.

The main goal of the IMNN is therefore to maximize the
Fisher information, while keeping the covariance of the sum-
mary fixed to unity. The reason we have the flexibility to nor-
malize the covariance of the summary is the following. For
any summary d of dimensionality D, one can define a new
summary, d′ = a + Bd, where a is a constant D-dim vec-
tor serving to normalize d′ to be zero mean, and B is a non-
singular D × D matrix, serving to normalize d′ to be unit
variance (B is equivalent to a zero-phase component analysis
(ZCA) whitening kernel; see Kessy et al. 2018). One can then
show that ln P(d|θ) = ln P(d′|θ) + ln det B , or equivalently
∂ ln P(d|θ)/∂θm = ∂ ln P(d′|θ)/∂θm. This means there is a free-
dom to transform the summary d to be zero-mean, unit-variance
at a single point θfid, without changing the Fisher information
anywhere in the parameter space.

We also note that the Fisher matrix used for computing the
IMNN loss is calculated with two approximations: (i) using only
the first term; and (ii) without the inverse covariance between the
two derivatives (see Eq. (4)). Both of these simplifications were
needed in order to stabilize the training of the IMNN, and they
are correct as long as the covariance is kept at unity11.

11 The original work by Charnock et al. (2018) had slightly different
loss function, by having the inverse of the covariance in the Fisher term
and the additional Frobenius norm between Σ−1 and 1. We find that
these choices destabilized the training and are not crucial for the con-
vergence (see also Makinen et al. 2021).

For the IMNN training, we created a database around the
fiducial θfid (see Figs. 1 and 5) for N = M = 1024 (Eqs. (23),
(24), (25)), with 11 264 realizations in total. The training and
validation sets were formed by splitting the database in half, fol-
lowing the original work of Charnock et al. (2018). We trained
the network using stochastic gradient descent with a batch size
b = 128, regularization strengths λ = 10, λW = 10−9 and
the Adam optimizer. To increase the effective database size and
improve the training, the telescope noise was added to the sim-
ulations “on the fly”. The final model has been trained on 8 V-
100 GPUs in parallel, for ≈120k epochs and ≈ 20k GPUh. The
IMNN code developed for the purposes of this work we make
publicly available under 21cmIMNN12 package.

3.6. 2DPS + IMNN

Finally, we also computed the Fisher information of the con-
catenation of the individual 2DPS and IMNN summaries. As we
shall see in the following section, these are the two best per-
forming individual summaries. We note that one can cleanly
combine summaries when performing simulation-based infer-
ence (SBI), as the likelihood does not need to be specified explic-
itly. The main restriction is the size of the required database
and the stability of the SBI training (e.g., Cranmer et al. 2020;
Lueckmann et al. 2021). When computing the Fisher informa-
tion in this work, we were restricted to these two summaries
due to the limits imposed by our database size. In particular, the
minimal number of samples needed to estimate the covariance
matrix is proportional to the dimensionality of the total summary
(e.g., Hartlap et al. 2007). Furthermore, the dimensions of the
final summary should be uncorrelated, as otherwise the covari-
ance is singular and non-invertible. This can result in incorrect
Fisher matrix estimation (see however Tegmark et al. 1997 for
possible alternative solutions).

4. Database

Since we did not have a strongly motivated fiducial choice for
our galaxy parameters, we wanted to compare the Fisher infor-
mation of 21 cm summaries across our prior volume. To do
so, we constructed a “Fisher database”, sampling 152 param-
eter combinations from our prior. We used a flat prior for
the X-ray emission parameters, LX and E0, over the ranges
shown in Fig. 5 (for more motivation of these choices see
Fragos et al. 2013; Lehmer et al. 2016; Das et al. 2017). The
remaining parameters characterizing star formation and ionizing
emission of galaxies are constrained by observed UV luminosity
functions (e.g., Bouwens et al. 2015, 2017; Oesch et al. 2018) as
well as estimates of the reionization history (e.g., McGreer et al.
2015; Planck Collaboration Int. XLVII 2016). As our model is
nested in the 6D Park et al. (2019) model, we used the poste-
rior from that work, calculating the corresponding conditional
distributions over f∗,10, fesc,10 and Mturn, fixing the remaining
parameters to their fiducial values, as discussed in the previous
section. To compute the conditional distributions, we used the
conditional_kde13 code.

Our prior and samples are shown in Fig. 5. The diagonal
panels illustrate the 1D prior probability distribution functions
(PDFs), while the contours in the lower left enclose 95% of the
2D distributions. The 152 samples are shown as points, while

12 https://github.com/dprelogo/21cmIMNN
13 https://github.com/dprelogo/conditional_kde
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Fig. 5. Prior volume of the astrophysical parameter space. Dashed lines
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152 prior samples at which we computed the Fisher information for our
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clarity; see the main text and Fig. 1 for reference on the units.

the dashed vertical and horizontal lines demarcate the fiducial
choice used to train our IMNN.

We simulated N = 130 realizations for each of the 152
parameter samples, θ*, in order to estimate the mean and the
covariance of each summary (Eqs. (5), (6)), plus an additional
2 × 5 × M = 150 realizations at θ* ± δθm/2 to estimate the
derivative of the mean (Eq. (10)) along each of the 5 parame-
ter basis vectors. We note that no new simulations are needed to
estimate the derivative of the covariance matrix, since we used
the same L = M = 15 realizations that were used to compute the
first Fisher term mentioned above (cf. Eq. (11) and associated
discussion). In Appendix D we show convergence tests of these
choices for estimating the Fisher information of our summaries.
We caution that the WST and RNN summaries require a larger
dataset to fully converge.

5. Results

We now present the main results of this work. We first discuss
the training of the IMNN in Section 5.1, then compare the per-
formance of all of our 21 cm summaries in Section 5.2, adding a
final discussion on the importance of including the second Fisher
term (cf. Eq. (4)) in Section 5.3. Throughout, our figure of merit
will be the PDF of the Fisher information (log10(det F)), over
the prior volume (see Sect. 4). We quote both the median and the
variance of this distribution. A high value of the median means
that the typical parameter value is well constrained by the sum-
mary, while a narrow variance means that the constraining power
of the summary is relatively constant over the prior volume. We
note that the Fisher information is a measure of the average con-
straining power over our five parameters; we do not discuss the
relative constraints on individual parameters in this work.
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Fig. 6. Fisher information of the IMNN during training. Dark (light)
blue curves show the Fisher information for the training (validation) set
of the IMNN trained at θfid. The violin plots show the distribution of
the Fisher information over the full prior volume excluding θfid, P(θ),
at every interval of the 10k training epochs. Black dots and error bars
inside each violin denote the median and 68% CLs of the distributions.
The divergence between the Fisher information computed at θfid and its
PDF over the remaining prior volume clearly indicates that the IMNN
is over-specializing to the specific parameter combination, θfid, used in
the training.

5.1. IMNN training

In Fig. 6 we show the training results for the IMNN. Blue lines
show the training and validation Fisher information (see the first
term of the IMNN loss, Eq. (22)) at the fiducial point θfid. We
recall that the training and validation sets each consist of 5632
light cone realizations, evaluated at θfid with different cosmic ini-
tial conditions and telescope noise seeds. The Fisher information
of the training and validation sets are largely overlapping mean-
ing the network does not overfit to the training set. We see that
by the end of the training, the IMNN has learned to improve the
Fisher information by 40(!) orders of magnitude, corresponding
to parameter constraints that are improved by an average factor
of ∼108 in the variance!

Is the compression learned by the IMNN comparably infor-
mative at other parameter combinations? We can answer this
question by comparing the solid lines of Fig. 6 to the violin dis-
tributions. The latter show the distribution of the Fisher infor-
mation over the full prior volume, P(θ), at every interval of
10k training epochs, excluding θfid. We see that although the
IMNN is not overfitting in the classical sense (the Fisher infor-
mation of the validation set keeps increasing), it quickly “over-
specializes” to the specific parameter value used for training, θfid.
Thus, the compression learned by the IMNN does not generalize
well across parameter space14. The PDF of the Fisher informa-
tion over the prior volume does not change significantly after
epoch 40k, with the median beginning to decrease beyond epoch
90k. We took epoch 90k as the final state of the IMNN in the
remainder of this work.

14 One solution could be to train the IMNN around several different
points. However, this is extremely expensive in our application, both
in terms of database size and GPU time. Furthermore, it is not clear if
such a procedure would result in a meaningful summary, as the concept
of one point training is inherently built into the IMNN. Alternatively,
it might be possible to construct a generalized IMNN, maximizing the
Fisher information throughout parameter space; however, it is not obvi-
ous how this could be done.
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volume, for all summaries considered in this work. For the IMNN
summary, we used the weights that give the highest median value
(corresponding to 90k epochs; see Fig. 6). On the top axis we denote
the corresponding relative improvement in the single parameter vari-
ance (Eq. (26)), normalized to its median value of the 2DPS summary.
The 2DPS has the largest median value of all of the individual sum-
maries, while the combination of the 2DPS + IMNN dramatically out-
performs every individual summary. See Table 1 for quantitative values.

5.2. Comparison of all summaries

In Fig. 7 we show the main result of this work: the distribu-
tion of Fisher information across the prior volume, for all of the
summary statistics we consider. On the top axis we denote the
corresponding relative improvement in constraints on the sin-
gle parameter variance σ2. We define it as an effective variance
in each dimension with no correlation, giving the same Fisher
information. For a 5D parameter space we have

σ2 = (det F)−1/5 . (26)

Here, one can ignore the difference in the units (i.e., scal-
ing) between parameter dimensions (see Appendix C for more
details). Specifically, the top axis of Fig. 7 denotes the single
parameter variance normalized to its median value of the 2DPS
summary. To give an example, a factor of 10 times larger Fisher
information for a 5-dim parameter space would result in a 37%
smaller single parameter variance. The median values and 68%
confidence levels (CLs) of the Fisher information and single
parameter variance are also listed in Table 1.

Among the individual summaries, the 2DPS is a clear win-
ner. In comparison, the 1DPS has roughly a factor of 2 smaller
Fisher information across the prior volume, which translates to
a ∼15% larger single parameter variance (Eq. (26)). This dif-
ference between the 1DPS and 2DPS shows that indeed the
anisotropy of the cosmic 21 cm signal helps in parameter recov-
ery, though not very significantly. The distribution of the 2DPS
Fisher information is also relatively narrow, indicating its con-
straining power does not vary enormously across parameter
space, compared to most other summaries.

The median Fisher information of the IMNN is compara-
ble with that of the 1DPS. However, the IMNN results in the
widest distribution of all of the summaries. This means that the
compression that the IMNN learned at θfid can be much more
informative but also much less informative, depending on the
parameter choice. Therefore, if one has a good idea of where
the maximum likelihood value will be (e.g., from complemen-
tary observations; Park et al. 2019; Abdurashidova et al. 2022;

Table 1. Distributions of the Fisher information.

Summary Median+34%
−34% σ2/σ2

2DPS

Wavelets 9.6+2.9
−3.1 3.16

RNN 10.5+1.8
−2.2 2.09

IMNN 90k 11.8+8.2
−5.7 1.15

1DPS 11.8+3.1
−3.4 1.15

2DPS 12.1+3.1
−3.3 1.00

IMNN 90k + 2DPS 15.9+5.2
−4.9 0.17

Notes. Companion table to Fig. 7, summarizing the Fisher informa-
tion probability distribution across the prior volume for each summary.
In particular, the first column represents values of log10(det F) for the
median and 68% of probability volume around it. The second column
shows the single parameter variance (Eq. (26)), which serves as a guide
to how much would the recovered variance of a parameter increase or
decrease if one uses that particular summary instead of the 2DPS.

HERA Collaboration 2023; Breitman et al. 2024), it could be
beneficial to train the IMNN at that best guess value and use the
resulting summary in inference. An optimal strategy could be to
perform inference using the 2DPS in order to obtain the maxi-
mum likelihood estimate (MLE), train the IMNN at this MLE
parameter combination, then perform inference again using the
resulting IMNN summary.

The RNN performs worse than the two PS summaries, result-
ing in a factor of 2 larger single parameter variance compared to
the 2DPS. However, its distribution is the most homogeneous
across the prior volume (i.e., the narrowest). This could be inter-
preted as sacrificing the overall information content for robust-
ness throughout the parameter space. The RNN was trained as
a regressor over a large parameter space, and so it is under-
standable that it is much more consistent with respect to the
IMNN, which was trained on a single parameter combination.
The overall low median information content of the RNN com-
pression could be due to the fact that it was trained on a dif-
ferent parametrization of the cosmological signal than used in
this work. We expect that retraining the RNN as a regressor
on the same parametrization would improve the median infor-
mation content. Indeed, Zhao et al. (2022a) find that a regressor
CNN slightly outperforms the 1DPS, resulting in tighter parame-
ter constraints when using two different parameter combinations
for the mock observation. However, it is likely that this increase
in the information content would come at the cost of robust-
ness (i.e., a broader PDF), as the RNN over-specializes to fea-
tures inherent in that model’s parametrization and its training set.
Additionally, we caution the Fisher estimate for the RNN sum-
mary needs a larger dataset to fully converge (cf. Appendix D).

The wavelet summary results in a median Fisher information
that is a factor of ∼300 smaller than that of the 2DPS at their
median values (factor of ∼3 increase in the single parameter vari-
ance (Eq. (26)). Intuitively, one would expect more information
content in wavelets compared with the PS, as they effectively
include higher-order correlations. However, our WST followed
the definition in Greig et al. (2022, 2023), in which the wavelets
are only computed at one slice for each redshift chunk. Thus, the
physics-rich, line-of-sight modes inside each redshift bin are lost
for this choice of WST. The weaker performance of the WST (as
defined in this work) compared to the power spectra implies that
there is more information in the line-of-sight modes than there is
in higher-order correlations of the transverse modes.
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We note that recent works also using 2D wavelets achieved
better results than we do here (Greig et al. 2022; Hothi et al.
2024). However, their analysis differs from ours. In particular,
they use more redshift bins and they do not average the coeffi-
cients over the sky-plane (rolling the filter as described above).
We confirm that without the additional smoothing that we per-
formed in this work, the Gaussian approximation for the likeli-
hood that is intrinsic to the Fisher estimate (cf. Eq. (4)) is notably
worse, for both the wavelets and the RNN. Therefore, the higher
wavelet information found by Greig et al. (2022), Hothi et al.
(2024) could be partially due to a less appropriate application of
the Fisher estimate. Alternatively, the information content could
be improved by using 3D wavelets instead of 2D ones (see,
e.g., Zhao et al. 2023a). As for the RNN, we caution that the
WST needs a larger dataset for the Fisher to fully converge (cf.
Appendix D).

Finally, our concatenation of the 2DPS and IMNN signifi-
cantly outperforms all of the individual summaries (cf. the red
curve in Fig. 7). As we saw above, these two summary statis-
tics are highly complimentary: the 2DPS is robust (i.e., a nar-
row information PDF), while the IMNN summary can be much
more constraining for some parameters but much less for others
(i.e., it has a very broad information PDF). The distribution of
Fisher information of 2DPS + IMNN retains the narrowness of
the 2DPS, but is shifted to the right, including the high-value
tail from the IMNN15. The combined summary is a factor of
∼6.5–9.5 better in the single parameter variance (Eq. (26)), aver-
aged over the prior samples. Combining multiple 21 cm statistics
has already been proven to tighten parameter constraints (e.g.,
Gazagnes et al. 2021; Watkinson et al. 2022). However, previ-
ous work using traditional inference was limited by the need
to derive a tractable likelihood, which becomes impossible for
nontrivial summaries. Fortunately, recent advances in applying
SBI to 21 cm (e.g., Zhao et al. 2022a,b; Prelogović & Mesinger
2023; Saxena et al. 2023) will allow us to cleanly combine mul-
tiple summary statistics without having to explicitly define the
likelihood. Unfortunately, the neural density estimation that is
intrinsic to SBI can be unstable and/or require large training sets,
if the summary statistics become very high dimensional. This
work illustrates how combining only two complimentary statis-
tics can result in much tighter, more robust parameter constraints
than would be available using either individually.

5.3. One-term versus full Fisher matrix

The full Fisher matrix of a Gaussian likelihood can be sep-
arated in two terms F = Fµ + FΣ (see Eq. (4)), where the
first term includes the gradient of the mean and the second
term the gradient of the covariance matrix (e.g., Appendix B;
Tegmark et al. 1997). All of our results from the previous sec-
tions were calculated using the full expression, including both
terms. However, it is common in the literature to ignore one
of the terms, by approximating the mean or the covariance
matrix as a constant (e.g., Carron 2013). In most of cosmo-
logical Fisher forecasts using the PS (e.g., Sailer et al. 2021;
Abazajian et al. 2022; Euclid Collaboration 2022; Mason et al.

15 We note that in the case in which some value of the IMNN sum-
mary would be completely degenerate with some 2DPS bin, the result-
ing covariance matrix would be singular and therefore non-invertible.
This would make estimating the Fisher matrix unreliable. However, as
the IMNN compression and 2DPS are very different summaries, this is
unlikely to be a problem.
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Fig. 8. Distributions of Fisher information for the 1DPS (red) and
2DPS (blue). Solid lines account for both terms in the Fisher matrix
(cf. Eq. (4)), while the dashed lines correspond to the common simplifi-
cation of a constant covariance (i.e., including only the first term in Eq.
(4)). The assumption of a constant covariance underpredicts the Fisher
information by a factor of ∼2. For a 5-parameter model, this translates
to a ∼15% larger single parameter variance (Eq. (26)).

2023; Bykov et al. 2023), the second term, FΣ, is neglected16.
In some cases, the covariance matrix can indeed be independent
or only weakly dependent on the parameters, justifying ignor-
ing the second Fisher term. However, the importance of the FΣ
term for 21 cm Fisher forecasts has not yet been investigated
(e.g., Greig et al. 2022; Balu et al. 2023; Mason et al. 2023;
Hothi et al. 2024). Indeed in Prelogović & Mesinger (2023)
we showed that assuming a parameter-independent covariance
matrix of the 21 cm 1DPS likelihood can bias the posterior esti-
mation. In this section, we quantify the importance of the FΣ
term in determining the Fisher information17, for all of our 21
cm summaries. It is important to note that adding this term will
always increase the information content, as det(Fµ + FΣ) ≥
det Fµ. More details are given at the end of Appendix A.

In Fig. 8 we plot the Fisher information PDF of the com-
monly used 1DPS and 2DPS. The solid curves are the same as
in the previous figure, corresponding to the full expression for
the Fisher information. The dashed curves only include the first
term, assuming a constant covariance matrix. For both 1D and
2D power spectra, neglecting the second term underestimates the
Fisher information by a factor of ∼2.3 on average over the prior
samples. For our 5-parameter model, this translates into an under-
estimate of the single parameter variance (Eq. (26)) by 15%.

In Fig. 9 we compare the Fisher information PDFs with and
without the second Fisher term for the remaining individual sum-
maries. We see that for the other 21 cm summaries, the second
Fisher term is even more important than for the power spectra.
For example, assuming a constant covariance underestimates the
mean Fisher information of the RNN for a factor of ∼2000 and a
factor of ∼11 100 for the wavelets, averaged over the prior sam-
ples. We note that although the IMNN is trained to normalize the
covariance to unity, thus ensuring a constant covariance matrix by
construction, this is only done at θfid. For the other points in the
parameter space, there is no guarantee that this condition is met.

16 For examples of ignoring the first term, see, e.g., Abramo (2012) and
d’Assignies et al. (2023).
17 Assuming a constant covariance matrix can result in other biases at
the level of the full Fisher matrix. For example, it could impact param-
eter degeneracies and/or improve constraints of some parameters at the
cost of others. Here we only focus on the effect this simplification has
on the determinant of the Fisher matrix as this quantity measures the
average parameter constraining power of the summary statistics.
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Fig. 9. Analogous to Fig. 8, but for the other 21 cm summary statistics.

6. Conclusions

The cosmic 21 cm signal will revolutionize our understanding of
the CD and EoR. “Big Data” analysis techniques will be required
to cope with radio telescopes such as the SKA. In this work we
compare several approaches to compressing 21 cm light cone
data, on the basis of their Fisher information. Specifically, we
compare the determinant of the Fisher information for the fol-
lowing summary statistics: (i) the 1DPS, (ii) the 2DPS, (iii) the
2D WST, (iv) a RNN trained as a regressor; (v) an IMNN; and
(vi) the combination of 2DPS and IMNN. Importantly we com-
pare their Fisher information across the parameter space since
there is currently no standard model for the astrophysics of the
first galaxies, which determines the cosmic 21 cm signal.

The 2DPS is the individual summary with the highest median
Fisher information (Fig. 7, Table 1). The distribution of its Fisher
information is also relatively narrow across the parameter space.
This means that compared to most other summaries, the 2DPS
can recover astrophysical parameters with relatively similar pre-
cision regardless of what the “true” values of our Universe are.
We also show that the 2DPS slightly outperforms the 1DPS,
confirming that the anisotropy of the 21 cm signal helps con-
strain parameters. The information content of both the RNN and
wavelets is generally lower than either the 1DPS or the 2DPS.
However, we caution that both of these summaries could be
defined in several different ways, potentially improving their
performances (e.g., Greig et al. 2022, 2023; Hothi et al. 2024;
Zhao et al. 2023a). Moreover, our Fisher estimates for the RNN
and wavelet summaries require a larger dataset to fully converge
(see Appendix D).

In this work we also introduce IMNNs to the field of 21 cm
cosmology. Although capable of achieving the highest Fisher
information for some parameter choices, the IMNN does not
generalize well, resulting in a broad distribution across the prior
volume. We find an enormous difference between its Fisher
information computed at the parameter set used for training, θfid,
and its information computed at the remaining prior samples
(Fig. 6). This means that the IMNN overfits to the information
content of the fiducial. The regularization inherent to the IMNN
loss (see Eq. (22) and the following discussion) makes it difficult
to avoid this overfitting by training over many different choices
of θfid. A simpler solution could be to first perform inference
with a less optimal summary, in order to determine a maximum
likelihood point, and then train the IMNN at that point.

Combining the IMNN with the 2DPS results in a summary
whose median Fisher information is almost ∼4 orders of magni-
tude larger than the 2DPS alone. This results in a factor of ∼6.5–
9.5 tighter single parameter variance averaged over the prior

samples. This means the IMNN extracts complementary infor-
mation with respect to the 2DPS. Performing SBI using such a
summary could yield extremely tight and robust parameter con-
straints. Moreover, combining only these two complementary
summaries still preserves a high level of compression, with our
light cone of ∼1.6 × 106 cells reduced to just 77 numbers.

Finally, we stress the importance of not assuming a
constant covariance when performing Fisher forecasts using
21 cm observables. This common assumption underestimates the
Fisher information of the PS on average by a factor of ∼2.3, cor-
responding to a 15% increase in the single parameter variance
(Eq. (26)). For other summaries, the assumption underestimates
the Fisher information by orders of magnitude.
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Appendix A: Proof of the determinant inequality

We considered two matrices, C and F−1, of shape m × m for
which the following inequality holds:

C ≥ F−1 . (A.1)

This means that their difference is a positive, semi-definite
matrix:

xT (C − F−1)x ≥ 0 ∀x ∈ Rm . (A.2)

From this, it follows that

xT Cx ≥ xT F−1x (A.3)

exp
(
−

1
2

xT Cx
)
≤ exp

(
−

1
2

xT F−1x
)

(A.4)∫
dx exp

(
−

1
2

xT Cx
)
≤

∫
dx exp

(
−

1
2

xT F−1x
)

(A.5)

1
√

det(C/2π)
≤

1√
det(F−1/2π)

(A.6)

det C ≥ det F−1. (A.7)

Here the trick was to push the inequality toward the multivari-
ate Gaussian integral. After integrating, what is left is only the
inverse of a normalization constant. We note that if one wants to
interpret C as a covariance matrix and F as a Fisher matrix, then
it would make more sense to integrate over xT C−1x and xT Fx.
However, this is irrelevant for the proof, as it would only result
in the change of the inequality direction in each row, ending with
det C−1

≤ det F. We usually assume the matrices are nonsingular
and thus invertible, which is needed here.

We note that the identical procedure can be used to prove that
the one-term Fisher is a lower bound of the two-term Fisher. For
F = Fµ + FΣ one can write xT (Fµ + FΣ)x ≥ xT Fµx, which by
following the same steps translates into det(Fµ + FΣ) ≥ det Fµ.

Appendix B: Derivation of a Gaussian Fisher
information matrix

To derive Eq. 4 (i.e., the Fisher information of a multivariate
Gaussian distribution), we started by writing the Fisher informa-
tion matrix equation (Eq. 1) in the equivalent form:

F(θ∗)mn = −E
[
∂2

mn ln P(d|θ)
∣∣∣ θ*

]
, (B.1)

where we shorten the notation of derivatives as ∂/∂θm ≡ ∂m and
∂2/∂θm∂θn ≡ ∂

2
mn. This form comes from the fact that

−∂2
mn ln P(d|θ) = ∂m ln P(d|θ) · ∂n ln P(d|θ) −

1
P(d|θ)

∂2
mnP(d|θ) .

(B.2)

Taking the expectation value on both sides, together with

E

[
1

P(d|θ)
∂2

mnP(d|θ)
∣∣∣∣∣ θ∗] = ∂2

mn

∫
dd P(d|θ∗) = 0 , (B.3)

proves the equality between Eqs. 1 and B.1.
Before diving into evaluating B.1 for a Gaussian likelihood

N(d|µ(θ),Σ(θ)), we firstly list several useful relations:

∂mΣ
−1 = −Σ−1 ∂mΣΣ

−1 , (B.4)

∂m|Σ| = |Σ| tr
(
Σ−1∂mΣ

)
, (B.5)

E
[
A(d − µ)

]
= 0 , (B.6)

E
[
(d − µ)T A(d − µ)

]
= tr(AΣ) . (B.7)

The first one follows from ΣΣ−1 = 1 and calculating its deriva-
tive, the second one is Jacobi’s relation for the derivative of the
determinant. The last two are expectation relations for Gaussian
distributions for an arbitrary matrix A (where dim A = dimΣ).
The first of these follows from the antisymmetry of the integral,
and the second is left as an exercise for the conscientious reader.

With this at hand, we can attack the problem of calculating
the Fisher matrix for a Gaussian likelihood. By taking the loga-
rithm

ln P(d|θ) = const. −
1
2

ln |Σ| −
1
2

(d − µ)TΣ−1(d − µ) (B.8)

and computing its second derivative, we get

∂2
mn ln P(d|θ) = −∂mµ

T Σ−1∂nµ (B.9)

+
1
2

tr
(
Σ−1 ∂mΣΣ

−1 ∂nΣ
)

(B.10)

− (d − µ)T Σ−1 ∂mΣΣ
−1 ∂nΣΣ

−1(d − µ) (B.11)

−
1
2

tr
(
Σ−1 ∂2

mnΣ
)

(B.12)

+
1
2

(d − µ)T Σ−1 ∂2
mnΣΣ

−1(d − µ) (B.13)

+ ∂2
mnµ

TΣ−1(d − µ) (B.14)

−
(
∂mµ

TΣ−1∂nΣ + ∂nµ
TΣ−1∂mΣ

)
Σ−1(d − µ).

(B.15)

Taking the negative expectation value of the final equation can
now be done by using relations B.6 and B.7. One can easily see
that only the first three terms contribute, with others canceling
each other out or being equal to zero. With this, we finally have

Fmn = ∂mµ
T Σ−1∂nµ +

1
2

tr
(
Σ−1 ∂mΣΣ

−1 ∂nΣ
)
. (B.16)

Appendix C: Fisher information under linear
transformations

Imagine we calculate the Fisher information matrix in parameter
space θ around θ*:

Fθ(θ*)mn = E

[
∂

∂θm
ln P(d|θ) ·

∂

∂θn
ln P(d|θ)

∣∣∣∣∣ θ*
]
. (C.1)

If we now take a linear transformation of the parameter space
η = a � θ + b, where � is element-wise multiplication, we get

Fη(η∗ = a � θ∗ + b) = A Fθ(θ*) A , (C.2)

where A = diag(a) is a diagonal matrix with elements on the
diagonal equal to the vector a. That further means:

det Fη = det AFθA = (det A)2 det Fθ , (C.3)
ln det Fη = C + ln det Fθ . (C.4)

The final relation can be useful when thinking about Fisher infor-
mation calculated in different physical units (different scalings).
The only consequence of such a procedure is that the logarithm
of the Fisher information shifts by a constant C, independently
on the position in the parameter space. This further means that
the distribution of the Fisher information shifts by the same con-
stant.

For the single parameter variance definition (Eq. 26), the
units (scaling) do not play a role, as we always express it with
respect to the 2DPS. Therefore,

σ2

σ2
2DPS

=

(
det Fθ

det Fθ,2DPS

)−1/5

=

(
det Fη

det Fη,2DPS

)−1/5

. (C.5)
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Appendix D: Convergence tests for the Fisher
matrix

When computing the Fisher matrix (Eq. 4), one has to decide
on the number of samples from which Σ−1, ∇θµ and ∇θΣ are
computed. In other words, one has to decide on the size of N,
M and L (see Eqs. 5 - 11). In this work, we fixed M = L and
used the same samples to compute ∇θµ and ∇θΣ. Furthermore,
we fixed N = 130 and M = 15. We justified these choices by
running a series of convergence tests.

For this test, we used a database of 1024 simulations and
their numerical derivatives centered at the fiducial parameters
θfid, used to train the IMNN (see Section 3.5). For that reason, we
excluded the IMNN from this test – as the summary space size
for IMNN is only 5, it is the least problematic one considering
the convergence.

In Figures D.1, D.2, and D.3, we show three slices through
the N,M space. In Figure D.1, we fix N = M, computing the
Fisher information for each summary using five randomly sam-
pled realizations. The solid lines (shaded regions) correspond to
the means (standard deviations) computed over these five sub-
samples. These can be compared to the dashed lines, which show
the mean computed over the entire set of 1024 realizations. We
see that all of our summaries have converged over the entire
range shown except the wavelets, which converge after N ≥ 130.
This result is expected, as wavelets are 112-dim summary, while
others are significantly smaller.

In Figure D.2, we fix M = 15 and vary N in the same range
as in Fig. D.1. Here the black vertical line marks our fiducial
choice of N = 130. We see that all summaries at N = 130 have
converged, although the RNN and wavelets show evidence of a
small residual bias. The later statistics require a larger M to fully
converge to the mean.

Finally, in Figure D.3 we fix N = 130 and vary M ∈ [5, 200],
marking M = 15 with a black vertical line. Here 1DPS and 2DPS
stay almost constant, while RNNs and wavelets show some evo-
lution. Non-monotonic evolution of variance in the RNN might
be a consequence of small number of samples on which the
lines have been computed. Most importantly, the chosen point of
M = 15 shows a small bias for all summaries. The quality of the
measured Fisher information might be better at M ≈ 100; how-
ever, this would increase the database size by two orders of mag-
nitude, which is computationally unreachable. Importantly, these
biases are over an order of magnitude smaller than the summary
to summary and parameter to parameter variances computed in
the main text; therefore our main conclusions are robust to our
database size. However, we caution that RNN and wavelet sum-
maries need a larger M to fully converge.

One could increase the numerical stability and statistical sig-
nificance of the Fisher estimates by running a Bayesian infer-
ence over the covariance matrix and other parameters (see, e.g.,
Alvarez et al. 2014). This is noted in Hothi et al. (2024), in
which the authors study 21 cm Fisher forecasts using different
wavelet-based summaries. In our setup, this would mean intro-
ducing a prior distribution over the covariance matrix, such as
the inverse Wishart distribution (Barnard et al. 2000). One would
then estimate the posterior distribution of the covariance from
the samples of a summary and marginalize over it while recover-
ing a distribution of the Fisher information. A small step in this
direction has been made in this work by properly un-biasing esti-
mates of the covariance and its inverse (Eqs. 7 and 8). A more
complete statistical analysis is left for future work.
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Fig. D.1. Convergence test of the Fisher information at the fiducial
parameter combination, θfid, as a function of N = M. The solid lines
(shaded regions) correspond to the means (standard deviations) com-
puted over five random realizations of summaries at θfid. These can be
compared to the dashed lines, which show the mean computed over the
entire set of 1024 realizations.
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Fig. D.2. Like Fig. D.1, except here we fix M = 15 and vary N. The
black vertical line denotes the fiducial value, N = 130, used in this
work.
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Fig. D.3. Like Fig. D.1, except here we fix N = 130 and vary M. The
black vertical line denotes the fiducial value, M = 15, used in this work.
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