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abstract. Given a compact closed surface Σ, we consider the generalized Toda system of equations on
Σ: −∆ui =

∑2
j=1 ρjaij

(
hjeujR

Σ hjeuj dVg
− 1

)
for i = 1, 2, where ρ1, ρ2 are real parameters and h1, h2 are

smooth positive functions. Exploiting the variational structure of the problem and using a new minimax
scheme we prove existence of solutions for generic values of ρ1 and for ρ2 < 4π.
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1 Introduction

The following system, defined on a domain Ω ⊆ R2,

(1) −∆ui =
N∑

j=1

aije
uj , i = 1, . . . , N,

where A = (aij)ij is the Cartan matrix of SU(N + 1),

A =




2 −1 0 . . . . . . 0
−1 2 −1 0 . . . 0
0 −1 2 −1 . . . 0

. . . . . . . . . . . . . . . . . .
0 . . . . . . −1 2 −1
0 . . . . . . 0 −1 2




,

is known as the Toda system, and it arises in the study of non-abelian Chern-Simons theory, see for
example [16] or [31].

In this paper we consider a generalized version of (1) on a closed surface Σ (which from now on we
assume with total volume 1), namely

(2) −∆ui =
N∑

j=1

ρjaij

(
hje

uj∫
Σ

hjeuj dVg
− 1

)
, i = 1, . . . , N,

where hi are smooth and positive functions on the surface Σ. We specialize here to the case N = 2, so
the system becomes

(3)




−∆u1 = 2ρ1

(
h1eu1R

Σ h1eu1dVg
− 1

)
− ρ2

(
h2eu2R

Σ h2eu2dVg
− 1

)
;

−∆u2 = 2ρ2

(
h2eu2R

Σ h2eu2dVg
− 1

)
− ρ1

(
h1eu1R

Σ h1eu1dVg
− 1

)
,

on Σ.

1E-mail addresses: malchiod@sissa.it, ndiaye@sissa
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Problem (3) is variational, and solutions can be found as critical points of a functional Jρ : H1(Σ)×H1(Σ),
ρ = (ρ1, ρ2) defined as

Jρ(u1, u2) =


1

2

2∑

i,j=1

∫

Σ

aij∇ui · ∇ujdVg


 +

2∑

i=1

ρi

∫

Σ

uidVg −
2∑

i=1

ρi log
∫

Σ

hie
uidVg.

Here aij are the entries of the inverse matrix A−1.

The structure of the functional Jρ strongly depends on the values of ρ1 and ρ2. For example, the condition
ρi ≤ 4π for both i = 1, 2 has been proven in [18] to be necessary and sufficient for Jρ to be bounded from
below, see Theorem 2.1 (we refer also to [27] and [28]). In particular, for ρ1 and ρ2 strictly less than 4π,
Jρ becomes coercive (once we factor out the constants, since Jρ is invariant under the transformation
ui 7→ ui + ci, ci ∈ R) and solutions of (3) can be found as global minima.

The case in which one of the ρi’s becomes equal to 4π (or both of them) is more subtle since the
functional is still bounded from below but not coercive anymore. In [17] and [22] some conditions for
existence are given in this case, and the proofs involve a delicate analysis of the limit behavior of the
solutions when the ρi’s converge to 4π from below.

On the other hand, when some of the ρi’s is bigger than 4π, Jρ is unbounded from below and solutions
should be found as saddle points. In [23], [25] and [26] some existence results are given and it is proved
that if hi ≡ 1 and if some additional assumptions are satisfied, then (0, 0) is a local minimizer for Jρ,
so the functional has a mountain pass structure and some corresponding critical points. Furthermore in
[17] a very refined blow-up behavior of solutions is given (below we report Theorem 2.4 as a consequence
of this analysis) and existence is proved if Σ has positive genus and if ρ1, ρ2 satisfy either (i) ρ1 < 4π,
ρ2 ∈ (4π, 8π) (and viceversa), or (ii) ρ1, ρ2 ∈ (4π, 8π).

Our goal here is to give a general existence result when one of the coefficients ρi can be arbitrarily large.
We have indeed the following theorem.

Theorem 1.1 Suppose m is a positive integer, and let h1, h2 : Σ → R be smooth positive functions. Then
for ρ1 ∈ (4πm, 4π(m + 1)) and for ρ2 < 4π problem (3) is solvable.

Remark 1.2 The solution (u1, u2) found in Theorem 1.1 is non-constant provided the following generic
conditions hold: either ρ2 6= 0 and h1 or h2 are non-constant, or if ρ2 = 0 and h1 is non constant. In
the latter case the system decouples and u2 = − 1

2u1.

Remark 1.3 By Proposition 2.5 below, if we assume also that
∫
Σ

uidVg = 0 for i = 1, 2, the solutions of
(3) stay bounded in Cl(Σ) for any integer l.

To give an idea of the proof of Theorem 1.1 we recall first the analogy of (3) with some nonlinear scalar
equations. First of all we should mention that (2) for N = 1

(4) −∆u = 2ρ

(
heu

∫
Σ

heudVg
− 1

)
on Σ

arises in the study of mean field limit of point vortices of Euler flows, spherical Onsager vortex theory
and condensates in some Chern-Simons-Higgs models, see for example the papers [3], [4], [7], [8], [9], [10],
[12], [20], [30] and the references therein.

We also mention the similarity of the scalar equation (4) with the geometric equations

(5) −∆gu + Kg = Kg̃e
2u on Σ; Pgu + 2Qg = 2Qg̃e

4u on M.

Here Kg is the Gauss curvature of Σ, ∆g the Laplace-Beltrami operator, g̃ = e2ug a conformal metric and
Kg̃ the Gauss curvature of g̃. The second equation in (5) is the transformation law of the Q-curvature
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on a four-dimensional manifold M under a similar conformal change of metric, and Pg is the Paneitz
operator associated to (M, g), see for example [15], [24] and the references therein.

We recall next the ideas used in [15] to find conformal metrics of constant Q-curvature. For the
reader’s convenience we transpose the discussion to equation (4), for which analogous considerations
hold. Actually the method in [15] has been used in [13] to study (4) as well, in order to obtain existence
results on surfaces of arbitrary genus.

Equation (4) also has variational structure and is the Euler equation of the functional

Iρ(u) =
1
2

∫

Σ

|∇u|2dVg − 2ρ

∫

Σ

udVg − 2ρ log
∫

Σ

heudVg; u ∈ H1(Σ)

which, as before, is bounded from below if and only if ρ ≤ 4π by the Moser-Trudinger inequality, see (6).
For ρ > 4π, instead of using degree theory, as in [9] and [10] one can indeed employ directly a minimax
scheme based on improvements of (6). In fact, if the integral of eu is distributed into ` different distinct
regions, then (naively) the coefficient in (6) reduces by a factor `. For a precise statement see Proposition
2.2 below. As a consequence one has that if ρ ∈ (4kπ, 4(k + 1)π)) and if Iρ(ul) → −∞ along a sequence
ul, then eul has to concentrate near at most k points in Σ. For such a result we refer to Lemma 2.4
in [15] or in [13]. Assuming that

∫
Σ

euldVg = 1, then we have that eul ⇀
∑k

i=1 tiδxi
for some non-

negative coefficients ti such that
∑k

i=1 ti = 1. This family of formal convex combinations of Dirac deltas
is known as the set of formal barycenters of Σ, see Section 2, and we denote it by Σk. We notice that
for k = 1 the set Σ1 is simply homeomorphic to Σ but for larger k the ti’s do not have any bound from
below or the xi’s could collapse onto each-other, so the set could be degenerate near some of its points.
In fact, Σk is a stratified manifold, namely union of sets of different dimensions. Nevertheless, since
eul ⇀

∑k
i=1 tiδxi ∈ Σk, with some work it is possible to build a continuous and non-trivial map Πk from

sublevels {Iρ ≤ −L} (with L large) into Σk. By non-triviality we mean that this map is homotopically
non-trivial, and indeed for any L > 0 there exists a map ϕ : Σk → {Iρ ≤ −L} (see (26) for the explicit
formula, and Proposition 4.1 in [13] for the evaluation of Iρ) such that Πk ◦ϕ is homotopic to the identity
on Σk, which is non-contractible. This allows then to define a minimax scheme using maps from the
topological cone over Σk with values into H1(Σ) (see e.g. [13], Section 5) which coincide with ϕ on Σk

(the boundary of the cone).

Having sketched this argument for the scalar equation (4), we can now describe our approach to
study system (3). First of all we prove a compactness result under the assumptions of Theorem 1.1, see
Proposition 2.5. This result exploits the blow-up analysis in [17] when ρ2 stays positive and away from
zero. On the other hand, for ρ2 ∈ (−∞, δ] with δ positive and small, we use an argument inspired by
Brezis and Merle, [6], combined with a compactness result in [21], see Theorem 2.3.

Next, a main ingredient in our proof is again an improved version of the Moser-Trudinger inequality
for systems, which was given in [18], see Theorem 2.1. In Proposition 3.1 we see that, in analogy with the
scalar case, if eu1 is distributed among disjoint sets, then the Moser-Trudinger inequality improves and
the bigger is the spreading, the better the improvement is. The argument relies both on Theorem 2.1 and
Proposition 2.2. The way we use them is the following. Assuming eu1 spread into ` sets S1, . . . , S`, we
can find another `-tuple S̃1, . . . , S̃` ⊆ Σ such that each of these sets contain a fixed portion of the integral
of eu1 , and such that S̃1 contains also a fixed portion of the integral of eu2 , see Lemma 3.2. Then, by
a localization argument through some cutoff functions g1, . . . , g`, we use the Moser-Trudinger inequality
for systems near S̃1, and the improved scalar inequality near S̃2, . . . , S̃`. In this step we employ some
interpolation inequalities and some cutoffs in the Fourier modes of u1, u2 to deal with some lower order
terms.

From the improved inequality we derive the following consequence. If ρ1 ∈ (4πm, 4π(m + 1)), if
ρ2 < 4π and if Jρ(u1,l, u2,l) → −∞ along a sequence (u1,l, u2,l), then eu1,l has to concentrate near at
most m points of Σ. Therefore, as for the scalar equation, we can map eu1,l onto Σm for l large. Precisely,
for L À 1 we can define a continuous projection Ψ : {Jρ ≤ −L} → Σm which is homotopically non-trivial.
Indeed, recalling that Σm is non-contractible (see Lemma 2.6), there exists a map Φ such that Ψ ◦ Φ is
homotopic to the identity and such that Jρ(Φ(Σm)) can become arbitrarily large negative, so that Ψ is
well-defined on its image.
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Some comments on the construction of the map Φ are in order. If we want to obtain low values of
Jρ on a couple (u1, u2), since eu1 has necessarily to concentrate near at most m points of Σ, a natural
choice of the test functions (u1, u2) is

(
ϕλ,σ,− 1

2ϕλ,σ

)
, where σ is any element of Σm, and where ϕλ,σ is

given in (26). In fact, as λ tends to infinity eϕλ,σ converges to σ in the weak sense of distributions, while
the choice of u2 is done in such a way to obtain the best possible cancelation in the quadratic part of the
functional, see Remark 4.3. We notice that this kind of function (for the case m = 1 only), was used in
[18] to prove unboundedness of Jρ from below if some of the ρi’s is bigger than 4π. Letting σ varying in
Σm, we get a full embedding of Σm into low sublevels of Jρ through the map Φ.

At this point we are in position to run a minimax scheme similar to that described above, based on the
topological cone over Σm. The scheme yields a Palais-Smale sequence for Jρ, but since we cannot ensure
convergence directly, following Struwe ([29]) we introduce the auxiliary functional Jtρ (tρ = (tρ1, tρ2))
where t belongs to a small neighborhood of 1. Running the same scheme on the functional Jtρ, via some
monotonicity argument, yields existence of critical points for almost every value of t, and in particular
along a sequence tk → 1. To conclude, it is sufficient to apply the compactness result in Proposition 2.5.

The plan of the paper is the following. In Section 2 we collect some preliminary results regarding the
Moser-Trudinger inequality, the barycentric sets Σk and the proof of Proposition 2.5. In Section 3 we
give an improved version of the inequality for systems, and we apply it to characterize the low sublevels
of Jρ in terms of the concentration of the function eu1 , see Corollary 3.5. Then in Section 4 we introduce
the topological argument to study (3). We first define the global projection Ψ onto Σm (where m is the
integer in Theorem 1.1) and then we define also the map Φ : Σm → H1(Σ)×H1(Σ), proving that Ψ ◦Φ
is homotopic to the identity on Σm. Finally we run the minimax scheme based on the topological cones
over Σm.

Acknowledgements: The authors have been supported by M.U.R.S.T within the PRIN 2004 Variational
methods and nonlinear differential equations.

2 Notation and preliminaries

In this section we collect some useful preliminary facts. For x, y ∈ Σ we denote by d(x, y) the metric
distance between x and y on Σ. In the same way, we denote by d(S1, S2) the distance between two sets
S1, S2 ⊆ Σ, namely

d(S1, S2) = inf {d(x, y) : x ∈ S1, y ∈ S2} .

Recalling that we are assuming V olg(Σ) :=
∫
Σ

1dVg = 1, given a function u ∈ L1(Σ), we denote its
average (or integral) as

u =
∫

Σ

udVg.

Below, by C we denote large constants which are allowed to vary among different formulas or even within
lines. When we want to stress the dependence of the constants on some parameter (or parameters), we
add subscripts to C, as Cδ, etc.. Also constants with subscripts are allowed to vary.

We now recall some Moser-Trudinger type inequalities and compactness results. The functional under
interest is the following

Jρ(u1, u2) =


1

2

2∑

i,j=1

∫

Σ

aij∇ui · ∇ujdVg


 +

2∑

i=1

ρi

∫

Σ

uidVg −
2∑

i=1

ρi log
∫

Σ

hie
uidVg,

which for large values of ρ1 and ρ2 will be in general unbounded from below. In fact, there is a precise
criterion for Jρ to have this boundedness, which has been proved by Jost and Wang.

Theorem 2.1 ([18]) For ρ = (ρ1, ρ2) the functional Jρ : H1(Σ) ×H1(Σ) is bounded from below if and
only if both ρ1 and ρ2 satisfy the inequality ρi ≤ 4π.
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Concerning the scalar Moser-Trudinger inequality

(6) log
∫

Σ

e(u−u)dVg ≤ C +
1

16π

∫

Σ

|∇u|2dVg,

we have the following improvement which occurs if the integral of e(u−u) is distributed among different
sets of positive mutual distance.

Proposition 2.2 Let S1, . . . , S` be subsets of Σ satisfying dist(Si, Sj) ≥ δ0 for i 6= j, and let γ0 ∈
(
0, 1

`

)
.

Then, for any ε̃ > 0 there exists a constant C = C(ε̃, δ0, γ0) such that

log
∫

Σ

e(u−u)dVg ≤ C +
1

16`π − ε̃

∫

Σ

|∇u|2dVg

for all the functions u ∈ H1(Σ) satisfying
∫

Si
eudVg∫

Σ
eudVg

≥ γ0; i ∈ {1, . . . , `}.

For the proof in the case ` = 2 see [11]. We also refer the reader to [15].

We now recall the following compactness results from [21] and [17].

Theorem 2.3 ([21]) Let (uk)k be a sequence of solutions of the equations

−∆uk = λk

(
Vkeuk∫

Σ
VkeukdVg

−Wk

)
,

where (Vk)k and (Wk)k satisfy
∫

Σ

WkdVg = 1; ‖Wk‖C1(Σ) ≤ C; | log Vk| ≤ C; ‖∇Vk‖L∞(Σ) ≤ C,

and where λk → λ0 > 0, λ0 6= 8kπ for k = 1, 2, . . . . Then, under the additional constraint
∫
Σ

ukdVg = 1,
(uk)k stays uniformly bounded in L∞(Σ).

Theorem 2.4 ([17]) Let m1,m2 be two non-negative integers, and suppose Λ1, Λ2 are two compact sets
of the intervals (4πm1, 4π(m1 + 1)) and (4πm2, 4π(m2 + 1)) respectively. Then if ρ1 ∈ Λ1 and ρ2 ∈ Λ2

and if we impose
∫
Σ

uidVg = 0, i = 1, 2, the solutions of (3) stay uniformly bounded in L∞(Σ) (actually
in every Cl(Σ) with l ∈ N).

This theorem, as stated in [17], requires m1 and m2 to be positive. However it is clear from the blow-up
analysis there that one can allow also zero values of m1 or of m2. Combining Theorem 2.3 and Theorem
2.4 we obtain another compactness result which includes all the possibilities of Theorem 1.1.

Proposition 2.5 Suppose h1, h2 are smooth positive functions on Σ, and consider the sequence of solu-
tions of the system

(7)




−∆u1,k = 2ρ1,k

(
h1eu1,kR

Σ h1eu1,k dVg
− 1

)
− ρ2,k

(
h2eu2,kR

Σ h2eu2,k dVg
− 1

)
;

−∆u2,k = 2ρ2,k

(
h2eu2,kR

Σ h2eu2,k dVg
− 1

)
− ρ1,k

(
h1eu1,kR

Σ h1eu1,k dVg
− 1

)
,

on Σ.

Suppose (ρ1,k)k lie in a compact set K1 of ∪∞i=1(4iπ, 4(i + 1)π), and that (ρ2,k)k lie in a compact set K2

of (−∞, 4π). Then, if
∫
Σ

ui,kdVg = 0 for i = 1, 2 and for k ∈ N, the functions (u1,k, u2,k) of (7) stay
uniformly bounded in L∞(Σ)× L∞(Σ).
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Proof. First of all we claim that the following property holds true: for any p > 1 there exists ρ > 0
(depending on p,K1,K2, h1 and h2) such that for ρ2,k ≤ ρ the solutions of (eu2,k)k stay uniformly bounded
in Lp(Σ).

The proof of this claim follows an argument in [6]: using the Green’s representation formula and the
fact that ρ1 > 0 we find (recall that

∫
Σ

u2,kdVg = 0)

u2,k(x) ≤ C +
∫

Σ

G(x, y)
(

2ρ2,k
h2e

u2,k∫
Σ

h2eu2,kdVg

)
dVg(y),

where G(x, y) is the Green’s function of −∆ on Σ. Using the Jensen’s inequality we then find

epu2,k(x) ≤ C

∫

Σ

exp(2pρ2,kG(x, y))
h2e

u2,k∫
Σ

h2eu2,kdVg
dVg(y).

Recalling that G(x, y) ' 1
2π log

(
1

d(x,y)

)
and using also the Fubini theorem we get

∫

Σ

epu2,kdVg ≤ C sup
x∈Σ

∫

Σ

1

d(x, y)
pρ2,k

π

dVg(y).

Now it is sufficient to take ρ = π
2p in order to obtain the claim.

For proving the proposition, in the case ρ2,k ≥ ρ we simply use Theorem 2.4, while for ρ2,k ≤ ρ we
employ the above claim. In fact, from uniform Lp bounds on eu2,k and from elliptic regularity theory, we
obtain uniform W 2,p bounds on the sequence (vk)k, where vk is defined as the unique (we can assume
that every vk has zero average) solution of

−∆vk = −ρ2,k

(
h2e

u2,k∫
Σ

h2eu2,kdVg
− 1

)
.

Taking p sufficiently large, by the Sobolev embedding, we also obtain uniform C1,α bounds on (vk)k (and
hence on (evk)k). Now we write u1,k = w1,k + vk, so that w1,k satisfies

−∆w1,k = 2ρ1,k

(
h1e

vkew1,k∫
Σ

h1evkew1,kdVg
− 1

)
.

Moreover, since we are assuming
∫
Σ

u1,kdVg = 0 and since
∫
Σ

vkdVg = 0 as well, we have that also∫
Σ

w1,kdVg = 0. Hence, applying Theorem 2.3 with uk = w1,k, λk = 2ρ1,k, Vk = h1e
vk and Wk ≡ 1,

we obtain uniform bounds on w1,k in L∞(Σ). Since (vk)k stays uniformly bounded in L∞(Σ), we also
get uniform bounds on u1,k in L∞(Σ). Then, from the second equation in (7) we also achieve uniform
bounds on u2,k in W 2,p(Σ) (and hence in L∞(Σ) taking p large enough). This concludes the proof.

At this point some notation is in order. For k ∈ N, we let Σk denote the family of formal sums

(8) Σk =
k∑

i=1

tiδxi ; ti ≥ 0,

k∑

i=1

ti = 1, xi ∈ Σ,

where δx stands for the Dirac delta at the point x ∈ Σ. We endow this set with the weak topology of
distributions. This is known in literature as the formal set of barycenters of Σ (of order k), see [1], [2], [5].
Although this is not in general a smooth manifold (except for k = 1), it is a stratified set, namely union
of cells of different dimensions. The maximal dimension is 3k− 1, when all the points xi are distinct and
all the ti’s belong to the open interval (0, 1).

Next we recall the following result from the last references (see also Lemma 3.7 in [15]), which is
necessary in order to carry out the topological argument below.

Lemma 2.6 (well-known) For any k ≥ 1 one has H3k−1(Σk;Z2) 6= 0. As a consequence Σk is non-
contractible.
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If ϕ ∈ C1(Σ) and if σ ∈ Σk, we denote the action of σ on ϕ as

〈σ, ϕ〉 =
k∑

i=1

tiϕ(xi), σ =
k∑

i=1

tiδxi
.

Moreover, if f is a non-negative L1 function on Σ with
∫
Σ

fdVg = 1, we can define a distance of f from
Σk in the following way

(9) dist(f, Σk) = inf
σ∈Σk

sup
{∣∣∣∣

∫

Σ

fϕdVg − 〈σ, ϕ〉
∣∣∣∣ | ‖ϕ‖C1(Σ) = 1

}
.

We also let
Dε,k =

{
f ∈ L1(Σ) : f ≥ 0, ‖f‖L1(Σ) = 1, dist(f, Σk) < ε

}
.

From a straightforward adaptation of the arguments of Proposition 3.1 in [15], we obtain the following
result.

Proposition 2.7 Let k be a positive integer, and for ε > 0 let Dε,k be as above. Then there exists εk > 0,
depending on k and Σ such that, for ε ≤ εk there exists a continuous map ψ : Dε,k → Σk.

Now we introduce some more notation. For any positive integer m, we let KΣm
denote the topological

cone over Σm

(10) KΣm = (Σm × [0, 1]) /∼,

where the equivalence relation means that the set Σm × {1} is collapsed to a single point.

3 An improved Moser-Trudinger inequality with applications

In this section we present an improvement of the Moser-Trudinger type inequality for the Toda system
given in [18]. The condition to get this improvement is that the integral of the function eu1 is distributed
among different sets with positive mutual distance. Our proof relies heavily on the main result in [18],
and is combined with some arguments in [11] and [15]. As an application, see Corollary 3.5, we derive a
characterization of the sublevels {Jρ ≤ −L}, for L > 0 large, in terms of the concentration of eu1 .

3.1 The improved inequality

In this subsection we analyze the Moser-Trudinger inequality, depending on the distribution of the function
eu1 . A consequence of this inequality is that it allows to give an upper bound (depending on ρ1) for the
number of concentration points of eu1 .

Proposition 3.1 Let δ0 > 0, ` ∈ N, and let S1, . . . , S` be subsets of Σ satisfying dist(Si, Sj) ≥ δ0 for
i 6= j. Let γ0 ∈

(
0, 1

`

)
. Then, for any ε̃ > 0 there exists a constant C = C(ε̃, δ0, γ0, `, Σ) such that

` log
∫

Σ

e(u1−u1)dVg + log
∫

Σ

e(u2−u2)dVg ≤ C +
1

4π − ε̃


1

2

2∑

i,j=1

∫

Σ

aij∇ui · ∇ujdVg




provided the function u1 satisfies the relations

(11)

∫
Si

eu1dVg∫
Σ

eu1dVg
≥ γ0, i ∈ {1, . . . , `}.

Before proving the proposition, we state a preliminary lemma, which will be proved later on.
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Lemma 3.2 Under the assumptions of Proposition 3.1, there exist numbers γ̃0, δ̃0 > 0, depending only
on γ0, δ0,Σ, and ` sets S̃1, . . . , S̃` such that d(S̃i, S̃j) ≥ δ̃0 for i 6= j and such that

(12)

∫
S̃1

eu1dVg∫
Σ

eu1dVg
≥ γ̃0,

∫
S̃1

eu2dVg∫
Σ

eu2dVg
≥ γ̃0;

∫
S̃i

eu1dVg∫
Σ

eu1dVg
≥ γ̃0, i ∈ {2, . . . , `}.

Proof of Proposition 3.1. We modify the argument in [11] and [15]. Let S̃1, . . . , S̃` be given by
Lemma 3.2. Assuming without loss of generality that u1 = u2 = 0, we can find ` functions g1, . . . , g`

satisfying the properties

(13)





gi(x) ∈ [0, 1], for every x ∈ Σ;
gi(x) = 1, for every x ∈ S̃i, i = 1, . . . , `;
supp(gi) ∩ supp(gj) = ∅, for i 6= j;
‖gi‖C2(Σ) ≤ Cδ̃0

,

where Cδ̃0
is a positive constant depending only on δ̃0. We decompose the functions u1 and u2 in the

following way

(14) u1 = û1 + ũ1; u2 = û2 + ũ2, û1, û2 ∈ L∞(Σ).

The explicit decomposition (via some truncation in the Fourier modes) will be chosen later on. Using
(12), for any b = 2, . . . , ` we can write that

` log
∫

Σ

eu1dVg + log
∫

Σ

eu2dVg = log

[(∫

Σ

eu1dVg

∫

Σ

eu2dVg

)(∫

Σ

eu1dVg

)`−1
]

≤ log

[(∫

S̃1

eu1dVg

∫

S̃1

eu2dVg

) (∫

S̃b

eu1dVg

)`−1
]
− (` + 1) log γ̃0

≤ log

[(∫

Σ

eg1u1dVg

∫

Σ

eg1u2dVg

)(∫

Σ

egbu1dVg

)`−1
]

− (` + 1) log γ̃0,

where C is independent of u1 and u2.
Now, using the fact that û1 and û2 belong to L∞(Σ), we also write

` log
∫

Σ

eu1dVg + log
∫

Σ

eu2dVg ≤ log

[(∫

Σ

eg1ũ1dVg

∫

Σ

eg1ũ2dVg

)(∫

Σ

egbũ1dVg

)`−1
]

− (` + 1) log γ̃0 + `(‖û1‖L∞(Σ) + ‖û2‖L∞(Σ)).

Therefore we get

` log
∫

Σ

eu1dVg + log
∫

Σ

eu2dVg ≤ log
∫

Σ

eg1ũ1dVg + log
∫

Σ

eg1ũ2dVg + (`− 1)
∫

Σ

egbũ2dVg

− (` + 1) log γ̃0 + `(‖û1‖L∞(Σ) + ‖û2‖L∞(Σ)).(15)

At this point we can use Theorem 2.1 with parameters (4π, 4π), applied to the couple (g1ũ1, g1ũ2), and
the standard Moser-Trudinger inequality (6) applied to gbũ1 and we get the following estimates

log
∫

Σ

eg1ũ1dVg + log
∫

Σ

eg1ũ2dVg ≤ 1
4π


1

2

2∑

i,j=1

∫

Σ

aij∇(g1ũi) · ∇(g1ũj)dVg




+
(
g1ũ1 + g1ũ2

)
+ C;(16)

8



(`− 1)
∫

Σ

egbũ1dVg ≤ (`− 1)
16π

∫

Σ

|∇(gbũ1)|2dVg + (`− 1)gbũ1 + (`− 1)C.

Now we notice that for N = 2 one has

aij =
(

2
3

1
3

1
3

2
3

)
,

and that

(17)
1
2

2∑

i,j=1

aijξi · ξj =
1
4
|ξ1|2 +

1
12
|ξ1 + 2ξ2|2.

This implies

(18)
1
2

∑

i,j

aijξi · ξj ≥ 1
4
|ξ1|2 for every couple (ξ1, ξ2) ∈ TxΣ× TxΣ.

Applying this inequality to (∇(gbũ1),∇(gbũ2)) and integrating one finds

(19)
(`− 1)
16π

∫

Σ

|∇(gbũ1)|2dVg ≤ (`− 1)
4π


1

2

2∑

i,j=1

∫

Σ

aij∇(gbũi) · ∇(gbũj)dVg


 .

Putting together (15)-(19) we then obtain

` log
∫

Σ

eu1dVg + log
∫

Σ

eu2dVg ≤ 1
4π


1

2

2∑

i,j=1

∫

Σ

aij∇(g1ũi) · ∇(g1ũj)dVg




+
(`− 1)

4π


1

2

2∑

i,j=1

∫

Σ

aij∇(gbũi) · ∇(gbũj)dVg


(20)

+
(
g1ũ1 + g1ũ2

)
+ (`− 1)gbũ1 + `C − (` + 1) log γ̃0

+ `(‖û1‖L∞(Σ) + ‖û2‖L∞(Σ)).

Now we notice that, by interpolation, for any ε > 0 there exists Cε,δ̃0
(depending only on ε and δ̃0) such

that for a = 1, . . . , `

1

2

2∑

i,j=1

∫

Σ

aij∇(gaũi) · ∇(gaũj)dVg


 ≤


1

2

2∑

i,j=1

∫

Σ

g2
aaij∇ũi · ∇ũjdVg




+ ε


1

2

2∑

i,j=1

∫

Σ

aij∇ũi · ∇ũjdVg


 + Cε,δ̃0

∫

Σ

(ũ2
1 + ũ2

2)dVg.(21)

Inserting this inequality into (20) we get

` log
∫

Σ

eu1dVg + log
∫

Σ

eu2dVg ≤ 1
4π


1

2

2∑

i,j=1

∫

Σ

g2
1aij∇ũi · ∇ũjdVg




+
(`− 1)

4π


1

2

2∑

i,j=1

∫

Σ

g2
baij∇ui · ∇ũjdVg




+
`

4π
ε


1

2

2∑

i,j=1

∫

Σ

aij∇ũi · ∇ũjdVg


 + `Cε,δ̃0

∫

Σ

(ũ2
1 + ũ2

2)dVg

+
(
g1ũ1 + g1ũ2

)
+ (`− 1)gbũ1 + `C − (` + 1) log γ̃0

+ `(‖û1‖L∞(Σ) + ‖û2‖L∞(Σ)),
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for b = 2, . . . , `.
We now choose b ∈ {2, . . . , `} such that

1
2

2∑

i,j=1

∫

Σ

g2
baij∇ui · ∇ũjdVg ≤ 1

`− 1
1
2

2∑

i,j=1

∫

∪`
s=1+1supp(gs)

aij∇ui · ∇ũjdVg.

Since the g′is have disjoint supports, see (13), the last formula yields

` log
∫

Σ

eu1dVg + log
∫

Σ

eu2dVg ≤ 1
4π

(1 + `ε)


1

2

2∑

i,j=1

∫

Σ

aij∇ũi · ∇ũjdVg




+ `Cε,δ̃0

∫

Σ

(ũ2
1 + ũ2

2)dVg +
(
g1ũ1 + g1ũ2

)
+ (`− 1)gbũ1

+ `C − (` + 1) log γ̃0 + `(‖û1‖L∞(Σ) + ‖û2‖L∞(Σ)).

By elementary estimates we find

` log
∫

Σ

eu1dVg + log
∫

Σ

eu2dVg ≤ 1
4π

(1 + `ε)


1

2

2∑

i,j=1

∫

Σ

aij∇ũi · ∇ũjdVg




+ Cε,δ̃0,`

∫

Σ

(ũ2
1 + ũ2

2)dVg

+ Cε,δ̃0,`,γ̃0
+ `(‖û1‖L∞(Σ) + ‖û2‖L∞(Σ)).

Now comes the choice of û1 and û2, see (14). We choose C̃ε,δ̃0,` to be so large that the following property
holds

Cε,δ̃0,`

∫

Σ

(v2
1 + v2

2)dVg <
ε

2

∫

Σ

aij∇vi · ∇vjdVg, ∀v1, v2 ∈ Vε,δ̃0,` ⊕ Vε,δ̃0,`,

where Vε,δ̃0,` denotes the span of the eigenfunctions of the Laplacian on Σ corresponding to eigenvalues
bigger than C̃ε,δ̃0,`.

Then we set
ûi = PVε,δ̃0,`

ui; ũi = PV ⊥
ε,δ̃0,`

ui,

where PVε,δ̃0,`
(resp. PV ⊥

ε,δ̃0,`
) stands for the orthogonal projection onto Vε,δ̃0,` (resp. V ⊥

ε,δ̃0,`
). Since ui = 0,

the H1-norm and the L∞-norm on Vε,δ̃0,` are equivalent (with a proportionality factor which depends on
ε, δ̃0 and `), hence by our choice of u1 and u2 there holds

‖ûi‖2L∞(Σ) ≤ Ĉε,δ̃0,`

1
2

2∑

i,j=1

∫

Σ

aij∇ui · ∇ujdVg; Cε,δ̃0,`

∫

Σ

(ũ2
1 + ũ2

2)dVg <
ε

2

2∑

i,j=1

∫

Σ

aij∇v · ∇vjdVg.

Hence the last formulas imply

` log
∫

Σ

eu1dVg + log
∫

Σ

eu2dVg ≤ 1
4π

(1 + 3`ε)


1

2

2∑

i,j=1

∫

Σ

aij∇ũi · ∇ũjdVg




+ Ĉε,δ̃0,`,γ̃0
.

This concludes the proof.

Proof of Lemma 3.2. First of all we fix a number r0 < δ0
80 . Then we cover Σ with a finite union of

metric balls (Br0(xl))l. The number of these balls can be bounded by an integer Nr0 which depends only
on r0 (and Σ).
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Next we cover the closure Si of every set Si by a finite number of these balls, and we choose a point
yi ∈ ∪l{xl} such that

∫

Br0 (yi)

eu1dVg = max

{∫

Br0 (xl)

eu1dVg : Br0(xl) ∩ Si 6= ∅
}

.

We also choose y ∈ ∪l{xl} such that
∫

Br0 (y)

eu2dVg = max
l

∫

Br0 (xl)

eu2dVg.

Since the total number of balls is bounded by Nr0 and since by our assumption the integral of eu1 over
Si is greater or equal than γ0, it follows that

(22)

∫
Br0 (yi)

eu1dVg∫
Σ

eu1dVg
≥ γ0

Nr0

;

∫
Br0 (y)

eu2dVg∫
Σ

eu2dVg
≥ 1

Nr0

.

By the properties of the sets Si, we have that

B20r0(yi) ∩Br0(yj) for i 6= j; card {ys : Br0(ys) ∩B20r0(y) 6= ∅} ≤ 1.

In other words, if we fix yi, the ball B20r0(yi) intersects no other of the balls Br0(yj) except Br0(yi), and
given y, B20r0(y) intersects at most one of the balls Br0(yi).

Now, by a relabeling of the points yi, we can assume that one of the following two possibilities occurs

(a) B20r0(y) ∩Br0(y1) 6= ∅ (and hence B20r0(y) ∩Br0(yi) = ∅ for i > 1)

(b) B20r0(y) ∩Br0(yi) = ∅ for every i = 1, . . . , `.

In case (a) we define the sets S̃i as

S̃i =
{

B10r0(y1) ∪B10r0(y) for i = 1;
B10r0(yi), for i = 2 . . . `,

while in case (b) we define
S̃i = B30r0(yi), for i = 1, . . . , `.

We also set γ̃0 = γ0
Nr0

and δ̃0 = 5r0. We notice that γ̃0 and δ̃0 depend only on γ0, δ0 and Σ, as claimed,

and that the sets S̃i satisfy the required conditions. This concludes the proof of the lemma.

3.2 Application to the study of Jρ

In this subsection we apply the improved inequality in order to understand the structure of the sublevels
of Jρ. Our main result here is Corollary 3.5.

In the next lemma we show a criterion which implies the situation described by (11). The result is
proven in [15] Lemma 2.3, but we repeat here the argument for the reader’s convenience.

Lemma 3.3 Let f ∈ L1(Σ) be a non-negative function with ‖f‖L1(Σ) = 1. We also fix an integer ` and
suppose that the following property holds true. There exist ε > 0 and r > 0 such that

∫

∪`
i=1Br(pi)

fdVg ≤ 1− ε for all the `-tuples p1, . . . , p` ∈ Σ.

Then there exist ε > 0 and r > 0, depending only on ε, r, ` and Σ (and not on f), and ` + 1 points
p1, . . . , p`+1 ∈ Σ (which depend on f) satisfying

∫

Br(p1)

fdVg > ε, . . . ,

∫

Br(p`+1)

fdVg > ε; B2r(pi) ∩B2r(pj) = ∅ for i 6= j.
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Proof. Suppose by contradiction that for every ε, r > 0 and for any `+1 points p1, . . . , p`+1 ∈ Σ there
holds

(23)
∫

Br(p1)

fdVg ≥ ε, . . . ,

∫

Br(p`+1)

fdVg ≥ ε ⇒ B2r(pi) ∩B2r(pj) 6= ∅ for some i 6= j.

We let r = r
8 , where r is given in the statement. We can find h ∈ N and h points x1, . . . , xh ∈ Σ such

that Σ is covered by ∪h
i=1Br(xi). If ε is as above, we also set ε = ε

2h . We point out that the choice of r
and ε depends on r, ε and Σ only, as required.

Let {x̃1, . . . , x̃j} ⊆ {x1, . . . , xh} be the points for which
∫

Br(x̃i)
fdVg ≥ ε. We define x̃j1 = x̃1, and let

A1 denote the set
A1 = {∪iBr(x̃i) : B2r(x̃i) ∩B2r(x̃j1) 6= ∅} ⊆ B4r(x̃j1).

If there exists x̃j2 such that B2r(x̃j2) ∩B2r(x̃j1) = ∅, we define

A2 = {∪iBr(x̃i) : B2r(x̃i) ∩B2r(x̃j2) 6= ∅} ⊆ B4r(x̃j2).

Proceeding in this way, we define recursively some points x̃j3 , x̃j4 , . . . , x̃js
satisfying

B2r(x̃js
) ∩B2r(x̃ja

) = ∅ ∀1 ≤ a < s;

and some sets A3, . . . , As by

As = {∪iBr(x̃i) : B2r(x̃i) ∩B2r(x̃js) 6= ∅} ⊆ B4r(x̃js).

By (23), the process cannot go further than x̃j`
, and hence s ≤ `. Using the definition of r we obtain

(24) ∪j
i=1Br(x̃i) ⊆ ∪s

i=1Ai ⊆ ∪s
i=1B4r(x̃ji) ⊆ ∪s

i=1Br(x̃ji).

Then by our choice of h, ε, {x̃1, . . . , x̃j} and by (24) there holds
∫

Σ\∪s
i=1Br(x̃ji

)

fdVg ≤
∫

Σ\∪j
i=1Br(x̃i)

fdVg < (h− j)ε ≤ ε

2
.

Finally, if we chose pi = x̃ji for i = 1, . . . , s and pi = x̃js for i = s + 1, . . . , `, we get a contradiction to
the assumptions.

Next we characterize the functions in H1(Σ)×H1(Σ) for which the value of Jρ is large negative.

Lemma 3.4 Suppose ρ1 ∈ (4πm, 4π(m + 1)) and that ρ2 < 4π. Then for any ε > 0 and any r > 0 there
exists a large positive L = L(ε, r) such that for every (u1, u2) ∈ H1(Σ) × H1(Σ) with Jρ(u) ≤ −L and
with

∫
Σ

euidVg = 1, i = 1, 2, there exists m points p1,u1 , . . . , pm,u1 ∈ Σ such that

(25)
∫

Σ\∪m
i=1Br(pi,u1 )

eu1dVg < ε.

Proof. Suppose by contradiction that the statement is not true. Then we can apply Lemma 3.3 with
` = m + 1 and f = eu1 to obtain δ̂0, γ̂0 and sets Ŝ1, . . . Ŝm+1 such that

d(Ŝi, Ŝj) ≥ δ̂0, i 6= j;
∫

Ŝi

eu1dVg > γ̂0

∫

Σ

eu1dVg, i = 1, . . . ,m + 1.

Now we notice that, by the normalization of the ui’s and the Jensen’s inequality, there holds
∫
Σ

uidVg ≤ 0
for i = 1, 2, and that two cases may occur

12



(a) ρ2 ≤ 0;

(b) ρ2 > 0.

In case (a) we have that −ρ2

∫
Σ

u2dVg ≥ 0. Using also inequality (18) we find

Jρ(u1, u2) ≥ 1
4

∫

Σ

|∇u1|2dVg + ρ1

∫

Σ

u1dVg − C.

Now it is sufficient to use Proposition 2.2 with ` = m + 1, δ0 = δ̂0, γ0 = γ̂0, Sj = Ŝj , j = 1, . . . , m + 1
and ε̃ ∈ (0, 16π(m + 1)− 4ρ1), to get

Jρ(u1, u2) ≥ 1
4

∫

Σ

|∇u1|2dVg − ρ1

16π(m + 1)− ε̃

∫

Σ

|∇u1|2dVg − C

≥ 16π(m + 1)− 4ρ1 − ε̃

4 [16π(m + 1)− ε̃]

∫

Σ

|∇u1|2dVg − C̃,

where C̃ is independent of (u1, u2). This contradicts the fact that Jρ(u) ≤ −L if L is large enough.

In case (b) we use Proposition 3.1 with δ0 = δ̂0, γ0 = γ̂0, ` = m + 1, Sj = Ŝj and ε̃ such that
(4π − ε̃)(m + 1) > ρ1 and such that 4π − ε̃ > ρ2 (recall that ρ1 is strictly less than 4π(m + 1) and that
ρ2 < 4π), to deduce

Jρ(u1, u2) ≥ (4π − ε̃) [−(m + 1)u1 − u2] + ρ1u1 + ρ2u2

= (ρ1 − (m + 1)(4π − ε̃))u1 + (ρ2 − 4π + ε̃) u2 − C ≥ −C,

by the Jensen inequality, where, again, C̃ is independent of (u1, u2). In this way we arrive to a contra-
diction as before. This concludes the proof.

As a consequence of Lemma 3.4 we have the following result, regarding the distance of the functions eu1

(suitably normalized) from Σm, see (9).

Corollary 3.5 Let ε be a (small) arbitrary positive number, and let ρ1 ∈ (4πm, 4π(m + 1)), ρ2 < 4π.
Then there exists L > 0 such that, if Jρ(u1, u2) ≤ −L and if

∫
Σ

eu1dVg = 1, we have dist(eu1 , Σm) < ε.

Proof. We consider ε and r small and positive (to be fixed later), and we let L be the corresponding
constant given by Lemma 3.4. We let p1, . . . , pm denote the corresponding points. Now we define σ ∈ Σm

by

σ =
m∑

j=1

tjδpj ; where tj =
∫

Ar,j

eu1dVg, Ar,j := Br(pj) \ ∪j−1
k=1Br(pk).

Notice that all the sets Ar,j ’s are disjoint by construction. Now, given ϕ ∈ C1(Σ) with ‖ϕ‖C1(Σ) = 1,
(using also (25)) we have that ∪m

j=1Br(pj) = ∪m
j=1Ar,j and that

∣∣∣∣∣
∫

Σ\∪m
j=1Br(pj)

eu1ϕdVg

∣∣∣∣∣ < ε;

∣∣∣∣∣
∫

Ar,j

ϕeu1dVg − tjϕ(pj)

∣∣∣∣∣ ≤ CΣr‖ϕ‖C1(Σ) ≤ CΣr.

By (9) then it follows that

dist(eu1 ,Σm) ≤ sup
{∣∣∣∣

∫

Σ

eu1ϕdVg − 〈σ, ϕ〉
∣∣∣∣ | ‖ϕ‖C1(Σ) = 1

}
≤ ε + mCΣr.

Now it is sufficient to choose ε and r such that ε + mCΣr < ε. This concludes the proof.
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4 The minimax argument

In this section we perform the topological construction to be used in order to produce solutions of (3).
First of all, Corollary 3.5 allows to construct a projection Ψ from suitable sublevels of Jρ onto Σm.
Next, the main idea is to use for the minimax some maps from the cone Km over Σm, see (10), into
H1(Σ)×H1(Σ). We impose that these maps at the boundary all coincide with a given function Φ, which
is defined in the next subsection.

The map Φ is chosen so that (see Proposition 4.2) Ψ ◦ Φ is homotopic to the identity on Σm, and so
that the functional Jρ on the image is very large negative. Considering then the image of Km with respect
to the above maps (with fixed boundary datum), in Proposition 2.7 we will verify that the maximal value
of Jρ on the image will be strictly greater than the maximum on the boundary. By standard arguments
(considering a pseudo-gradient flow for Jρ), we can conclude that the functional possesses a Palais-Smale
sequence at some level αρ.

At this point, in order to recover boundedness of the Palais-Smale sequences, we employ crucially a
method due to Struwe. We introduce a modified functional Jtρ and we prove a sort of monotonicity of
αtρ with respect to t. This allows to prove existence of solutions of (3) with ρ replaced by tkρ where
tk → 1 as k → ∞. Finally we apply the compactness result in Proposition 2.5 to achieve existence for
t = 1 as well.

4.1 Construction of the maps Ψ and Φ

Proposition 4.1 Suppose m is a positive integer, and suppose that ρ1 ∈ (4πm, 4π(m+1)), and that ρ2 <
4π. Then there exists a large L > 0 and a continuous projection Ψ from {Jρ ≤ −L} ∩ {∫

Σ
eu1dVg = 1

}
(with the natural topology of H1(Σ)×H1(Σ)) onto Σm which is homotopically non-trivial.

Proof. We fix εm so small that Proposition 2.7 applies with k = m. Then we apply Corollary 3.5 with
ε = εm. We let L be the corresponding large number, so that if Jρ(u) ≤ −L, then dist(eu1 , Σm) < εm.
Hence for these ranges of u1 and u2, since the map u 7→ eu is continuous from H1(Σ) into L1(Σ), the
projections Πm from H1(Σ) onto Σm is well defined and continuous. The non-triviality of this map is a
consequence of Proposition 4.2 (ii), which proof is given below.

The next step consists in mapping Σm into arbitrarily negative sublevels of Jρ. In order to do this, we
need some preliminary notation. Given σ ∈ Σm, σ =

∑m
i=1 tiδxi (

∑m
i=1 ti = 1) and λ > 0, we define the

function ϕλ,σ : Σ → R by

(26) ϕλ,σ(y) = log
m∑

i=1

ti

(
λ

1 + λ2d2
i (y)

)2

,

where we have set
di(y) = d(y, xi), xi, y ∈ Σ.

We point out that, since the distance from a fixed point of Σ is a Lipschitz function, ϕλ,σ(y) is also
Lipschitz in y, and hence it belongs to H1(Σ).

Proposition 4.2 Suppose m is a positive integer, that ρ1 ∈ (4πm, 4π(m + 1)), and that ρ2 < 4π. For
λ > 0 and for σ ∈ Σm, we define Φ : Σm → H1(Σ)×H1(Σ) as

(27) (Φ(σ))(·) = (Φ(σ)1(·), Φ(σ)2(·)) :=
(

ϕλ,σ(·),−1
2
ϕλ,σ(·)

)
,

where ϕλ,σ is given in (26). Then for L sufficiently large there exists λ > 0 such that

(i) Jρ(Φ(σ)) ≤ −L uniformly in σ ∈ Σm;

(ii) Ψ ◦ Φ is homotopic to the identity on Σm,
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where Ψ is given by Proposition 4.1, and where we assume L to be so large that Ψ is well defined on
{Jρ ≤ −L}.

Proof. The main ideas follow the strategy in [15], but for the reader’s convenience we present here
a simplified argument (for the H2 setting in [15] it was necessary to introduce a cutoff function on the
distances di which made the computations more involved).

The proof of (i) relies on showing the following two pointwise estimates on the gradient of ϕλ,σ

(28) |∇ϕλ,σ(y)| ≤ Cλ; for every y ∈ Σ,

where C is a constant independent of σ and λ, and

(29) |∇ϕλ,σ(y)| ≤ 4
dmin(y)

where dmin(y) = min
i=1,...,m

d(y, xi).

For proving (28) we notice that the following inequality holds

(30)
λ2d(y, xi)

1 + λ2d2(y, xi)
≤ Cλ, i = 1, . . . , m,

where C is a fixed constant (independent of λ and xi). Moreover we have

(31) ∇ϕλ,σ(y) = −2λ2

∑
i ti(1 + λ2d2

i (y))−3∇y(d2
i (y))∑

j tj(1 + λ2d2
j (y))−2

.

Using the fact that |∇y(d2
i (y))| ≤ 2di(y) and inserting (30) into (31) we obtain immediately (28). Similarly

we find

|∇ϕλ,σ(y)| ≤ 4λ2

∑
i ti(1 + λ2d2

i (y))−3di(y)∑
j tj(1 + λ2d2

j (y))−2
≤ 4λ2

∑
i ti(1 + λ2d2

i (y))−2 di(y)
λ2d2

i (y)∑
j tj(1 + λ2d2

j (y))−2

≤ 4

∑
i ti(1 + λ2d2

i (y))−2 1
dmin(y)∑

j tj(1 + λ2d2
j (y))−2

≤ 4
dmin(y)

,

which is (29).
Now, using (28), (29) and the fact that ∇Φ(σ)2 = − 1

2∇Φ(σ)1, one easily finds that

1
2

2∑

i,j=1

∫

Σ

aij(∇Φ(σ)i) · (∇Φ(σ)j)dVg ≤ C + 4
∫

Σ\∪iB 1
λ

(xi)

1
d2

min(y)
dVg(y).

Reasoning as in [15] one can show that
∫

Σ\∪iB 1
λ

(xi)

1
d2

min(y)
dVg(y) ≤ 8πm(1 + oλ(1)) log λ, (oλ(1) → 0 as λ → +∞),

and that
∫

Σ

ϕλ,σdVg = −2(1 + oλ(1)) log λ; log
∫

Σ

eϕλ,σdVg = O(1); log
∫

Σ

e−
1
2 ϕλ,σdVg = (1 + oλ(1)) log λ.

Using the last four inequalities one then obtains

Jρ(Φ(σ)) ≤ (8mπ − 2ρ1 + oλ(1)) log λ + C,

where C is independent of λ and σ. Since we are assuming that ρ1 is bigger than 4mπ, we achieve (i).
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To prove (ii) it is sufficient to consider the family of maps Tλ : Σm → Σm defined by

Tλ(σ) = Ψ(Φλ(σ)), σ ∈ Σm.

We recall that when λ is sufficiently large this composition is well defined. Therefore, since eϕλ,σR
Σ eϕλ,σ dVg

⇀ σ

in the weak sense of distributions, letting λ →∞ we obtain an homotopy between Ψ ◦Φ and IdΣm
. This

concludes the proof.

Remark 4.3 We point out that, fixing p ∈ Σ and ξ1 ∈ TpΣ, the choice of ξ2 which minimizes the
quadratic form

∑
i,j aijξ1 · ξj is ξ2 = − 1

2ξ1, see also (17). This motivates the coefficient − 1
2 in the second

component of Φ.

4.2 The minimax scheme: proof of Theorem 1.1

In this section we prove Theorem 1.1 employing a minimax scheme based on the cone over Σm, see Lemma
4.4. As anticipated in the introduction, we then define a modified functional Jtρ1,tρ2 for which we can
prove existence of solutions in a dense set of the values of t. Following an idea of Struwe, this is done
proving the a.e. differentiability of the map t 7→ αtρ, where αtρ is the minimax value for the functional
Jtρ1,tρ2 given by the scheme.

Let Km be the topological cone over Σm, see (10). First, let L be so large that Proposition 4.1 applies
with L

4 , and choose then Φ such that Proposition 4.2 applies for L. Fixing L and Φ, we define the class
of maps

(32) ΠΦ =
{
π : Km → H1

∗ (Σ)×H1
∗ (Σ) : π is continuous and π|Σm(=∂Km) = Φ

}
,

where

H1
∗ =

{
u ∈ H1(Σ) :

∫

Σ

eudVg = 1
}

.

Then we have the following properties.

Lemma 4.4 The set ΠΦ is non-empty and moreover, letting

αρ = inf
π∈ΠΦ

sup
m∈Km

Jρ1,ρ2(π(m)), there holds αρ > −L

2
.

Proof. To prove that ΠΦ 6= ∅, we just notice that the following map

(33) π(σ, t) = tΦ(σ)− log
(∫

Σ

etΦ(σ)dVg

)
; σ ∈ Σm, t ∈ [0, 1] ((σ, t) ∈ Km)

belongs to ΠΦ. Assuming by contradiction that αρ ≤ −L
2 , there would exist a map π ∈ ΠΦ with

supσ̃∈Km
II(π(σ̃)) ≤ − 3

8L. Then, since Proposition 4.1 applies with L
4 , writing σ̃ = (σ, t), with σ ∈ Σm,

the map
t 7→ Ψ ◦ π(·, t)

would be an homotopy in Σm between Ψ ◦ Φ and a constant map. But this is impossible since Σm is
non-contractible (see Lemma 2.6) and since Ψ ◦ Φ is homotopic to the identity on Σm, by Proposition
4.2. Therefore we deduce αρ > −L

2 .

Proof of Theorem 1.1 We introduce a variant of the above minimax scheme, following [29] and [12].
For t close to 1, we consider the functional

Jtρ1,tρ2(u) =
1
2

∑

i,j

∫

Σ

aij∇ui · ∇ujdVg + tρ1

∫

Σ

u1dVg + tρ2

∫

Σ

u2dVg

− tρ1 log
∫

Σ

h1e
u1dVg − tρ2 log

∫

Σ

h2e
u2dVg.
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Repeating the estimates of the previous sections, one easily checks that the above minimax scheme applies
uniformly for t ∈ [1 − t0, 1 + t0] with t0 sufficiently small. More precisely, given L > 0 as before, for t0
sufficiently small we have

sup
π∈ΠΦ

sup
m∈∂Km

Jtρ1,tρ2(π(m)) < −2L; αtρ := inf
π∈ΠΦ

sup
m∈Km

Jtρ1,tρ2(π(m)) > −L

2
;

for every t ∈ [1− t0, 1 + t0],(34)

where ΠΦ is defined in (32).
Next we notice that for t′ ≥ t there holds

Jtρ1,tρ2(u)
t

− Jt′ρ1,t′ρ2(u)
t′

=
1
2

(
1
t
− 1

t′

) ∫

Σ

aij∇ui · ∇ujdVg ≥ 0, u ∈ H1(Σ)×H1(Σ).

Therefore it follows easily that also
αtρ

t
− αt′ρ

t′
≥ 0,

namely the function t 7→ αtρ

t is non-increasing, and hence is almost everywhere differentiable. Using
Struwe’s monotonicity argument, see for example [12], one can see that at the points where αtρ

t is
differentiable Jtρ1,tρ2 admits a bounded Palais-Smale sequence at level αtρ, which converges to a critical
point of Jtρ1,tρ2 . Therefore, since the points with differentiability fill densely the interval [1− t0, 1 + t0],
there exists tk → 1 such that the following system has a solution (u1,k, u2,k)

(35) −∆ui,k =
N∑

j=1

tkρjaij

(
hje

uj,k∫
Σ

hjeuj,kdVg
− 1

)
, i = 1, 2.

Now it is sufficient to apply Proposition 2.5 to obtain a limit (u1, u2) which is a solution of (3). This
concludes the proof.
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