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Abstract. Regularization by noise for certain classes of fluid dynamic equations, a

theme dear to Giuseppe Da Prato [23], is reviewed focusing on 3D Navier-Stokes

equations and dyadic models of turbulence.

1. Introduction

This is a review paper dealing with a specific question of stochastic fluid dynamics
which occupied many years of research of Giuseppe Da Prato, prepared on the oc-
casion of his 80th birthday. The question is whether noise may improve the theory
of well posedness of certain equations of fluid dynamics, first of all the 3D incom-
pressible Navier-Stokes equations.

As better remarked below, the deterministic theory of such equations has been
frozen for many years in the following duality (up to numerous side results, including
very advanced ones, which however do not change this simplified picture):

i. Weak solutions exist, globally in time, but their uniqueness is an open problem;
ii. More regular solutions exists uniquely locally in time, but their blow-up or

persistence is an open problem (see the Millennium Prize problem described by
Fefferman in [32]).

Why should the presence of a noise improve such results? Specifically for the 3D
Navier-Stokes equations we do not have a precise intuition, except for the vague
feeling that disorder, created intrinsically by turbulence or imposed from outside by
a noise, could disgregate well prepared configurations which could otherwise blow
up. Even if the intuition is poor, the question is meaningful, having in mind anal-
ogous results of regularization by noise holding for several classes of stochastic dif-
ferential equations, ranging from classical finite-dimensional cases such as [60, 52]
to infinite-dimensional ones, although the latter have been proved until now only
for nonlinear systems much simpler than 3D Navier-Stokes equations, as for ex-
ample [48, 24, 25, 26]. These results prove uniqueness for certain equations with
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nondegenerate additive noise, in cases where the same equations without noise miss
uniqueness; and, for the purpose of the upcoming discussion, let us mention that all of
them (with the exception of [48]) are based on suitable regularity results for the Kol-
mogorov equations associated to the stochastic equations. In response to such results,
the hope of proving uniqueness of weak solutions to the 3D Navier-Stokes equations
by adding a nondegenerate noise with suitable covariance rose high. Giuseppe Da
Prato made a tremendous contribution to answering this question, although for the
time being the final question is still open: together with Arnaud Debussche, in the
paper [23] he constructed a smooth solution of the infinite-dimensional Kolmogorov
equation associated to the stochastic 3D Navier-Stokes equations, with a really orig-
inal and highly non trivial procedure. Existence of sufficiently smooth solutions of
Kolmogorov equation is usually considered the first step in proving uniqueness for
the corresponding stochastic equation (at least uniqueness in law, if not pathwise
uniqueness). However, even though the regularity of the solutions constructed by [23]
is high in terms of differentiability, the regularity of their derivatives as functions on
the infinite-dimensional space is not good enough, being defined only in subspaces
where the weak solutions of Navier-Stokes equations do not live continuously in
time. Thus a careful consideration of the assumptions does not allow to apply Itô
formula to the composition of the solution of Kolmogorov equation and a weak so-
lution of the Navier-Stokes equations, a basic step in the usual proof of uniqueness.
Said differently, if the Kolmogorov equation is seen as the dual of the stochastic
equation (precisely the dual of the associated Fokker-Planck equation), the spaces
where the solutions of the two problems live, are not dual of one another, and thus
any argument for uniqueness based on duality fails. In spite of this, the result of
[23] can be considered the closest one to the solution of the open problem. We know
by personal communication that Giuseppe Da Prato always kept in mind the open
problem and continued to identify potential paths to its solution.

Below we describe some side results that may enrich the previous picture. In-
spired by the results in [23, 28], a theory of Markov selections for stochastic 3D
Navier-Stokes equations was developed in [44], with a special property of continuous
dependence on initial conditions that is unique with respect to the deterministic case
and thus worthy to be mentioned; this is Section 2 of this paper. Having touched the
difficulty to advance with additive noise in proving regularization by noise, around
2010 there has been a shift to other kinds of noise. Among them, multiplicative noise
of transport type occupied a relevant position (but it is not the only example; see for
instance a noise multiplying the Laplacian in Schrödinger equation [29] or multiply-
ing the nonlinear term in Hamilton Jacobi equations and conservation laws [46, 47]).
Heuristically, a multiplicative transport noise is the Eulerian counterpart to an ad-
ditive noise at the Lagrangian level, hence could transfer the special well posedness
properties of additive noise for finite-dimensional systems to the case of PDEs. The
first results have been for linear transport and advection equations [37, 41] but also
special solutions (point concentrated) of 2D Euler equations and 1D Vlasov-Poisson
system have been regularized by a similar noise [38, 30]. The same was proved for
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a Leray-α model [3] and, finally, in [6, 12] for dyadic models of turbulence, a topic
that we shall review in Section 3.

All the cited results of regularization by noise due to multiplicative noise of
transport type have been for inviscid problems and that seemed to be a rule. How-
ever, it was recently understood that such noise may have a regularizing effect also
on viscous problems, in particular the 3D Navier-Stokes equations since it increases
dissipation [40]. This is described in Section 2.4 and it is conceptually of interest
also because the regularization is not in the form of restored uniqueness by noise -
as all the previously mentioned results - but in the form of suppression of blow-up,
the second open question mentioned above, [32]. We hope this picture may convince
young researchers that there is still space for improvements, although the research
on this topic is slow and rarely based on repeated schemes.

2. The 3D Navier-Stokes equations

2.1. Deterministic case

For simplicity of exposition we assume that the fluid lives on the torus T3 = R3/Z3.
We will denote by H (resp. V ) the Hilbert space of L2

(
T3,R3

)
(resp. W 1,2

(
T3,R3

)
)

divergence free zero average vector fields (see [59] for more precise details about
the boundary conditions). Let us recall, among others, the following basic results
from [59]:

1. Given u0 ∈ H, there exists a weak solution, namely a function of class

u ∈ L∞ (0, T ;H) ∩ L2 (0, T ;V )

weakly continuous in H, satisfying the identity

〈u (t) , φ〉+ ν

∫ t

0
〈∇u (s) ,∇φ〉 ds = 〈u0, φ〉+

∫ t

0
〈u (s) , u (s) · ∇φ〉 ds

for every φ ∈ V .
2. If u0 ∈ V , there exists a unique maximal solution u ∈ C ([0, τ);V ).

Two questions (remember that we are in dimension 3) remain open and repre-
sent fundamental problems in PDE theory (see once more [32]):

1. Are weak solutions unique?
2. When u0 ∈ V , do we have τ = +∞ or

τ <∞, lim
t↑τ
‖u (t)‖V = +∞?

Here and in the following, we denote by ‖·‖H and ‖·‖V the usual norms in H
and V respectively and by 〈·, ·〉 either the scalar product in H or its extension to a
dual pairing between spaces in duality with respect to H.



4 L.A. Bianchi and F. Flandoli

2.2. Stochastic case, additive noise

Generalization of the result of existence of weak solutions to the stochastic case,
with different types of noise, are now well-known, see for instance [36], [34] and
references therein. Let us mention some elements in the case of additive noise. The
formal notation is

du+ (u · ∇u+∇p) dt = ∆udt+ dWt,

div u = 0.

Since space-time white noise is particularly attractive thanks to the outstanding
contributions of the theory of regularity structures and paracontrolled distributions,
let us first discuss this case, also because the general results existing in the literature,
for simpler nonlinearities, of regularization by noise (like [48], [24]) usually assume
W to be a space-time white noise, namely a formal expression of the form

Wt (x) =
∑

k∈Z3
0,α=1,2

βk,αt ek,α (x)

where the series converges in mean square in a distributional space. Here Z3
0 is

Z3\ {0} and (ek,α)k∈Z3
0,α=1,2 is a complete orthonormal system of H of the form

ek,α (x) = ak,αe
2πik·x k ∈ Z3

0, α = 1, 2

where ak,1, ak,2 is an orthonormal basis of the plane perpendicular to k in R3. Finally,(
βk,α

)
k∈Z3

0,α=1,2
is a family of complex Brownian motions defined as follows: we take

a family
(
W k,α

)
k∈Z3

0,α=1,2
of real independent Brownian motions, we partition Z3

0 in

two sets Z3
+ and Z3

− = −Z3
+, and for all k ∈ Z3

+ we set βk,αt = W k,α + iW−k,α; for

k ∈ Z3
− we set βk,αt = W−k,α − iW k,α.

However, the solution of a parabolic equation with space-time white noise is
expected to be a function, and not just a distribution, only when the spatial dimen-
sion is 1. In dimension 2 it is expected to be a distribution of Sobolev class H−ε.
This case was successfully investigated for Navier-Stokes equations by Da Prato and
Debussche in a seminal paper [23]; however, it is a 2D case, not competitive with
the deterministic theory (although striking from the stochastic viewpoint for several

reasons). In dimension 3 the solutions are expected to be distributions of class H
1
2
−ε.

A theorem of existence in such very singular regime has been proven in [62], but its
relevance in view of a full well posedness result is not clear. Thus we shall always
consider more regular noises, usually satisfying at least the property that Wt itself
is a stochastic process in H, an assumption achieved by requiring

Wt (x) =
∑

k∈Z3
0,α=1,2

σk,αβ
k,α
t ek,α (x) , (1)

where (σk,α)k∈Z3
0,α=1,2 are real numbers satisfying∑

k∈Z3
0,α=1,2

σ2
k,α <∞. (2)
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As said above, with this choice of noise, the equation was considered by several
authors, see for instance [36]. One can give a weak formulation as

〈u (t) , φ〉+ ν

∫ t

0
〈∇u (s) ,∇φ〉ds = 〈u0, φ〉+

∫ t

0
〈u (s) , u (s) · ∇φ〉 ds+ 〈Wt, φ〉 ,

asking that

u ∈ L2
F (Ω;H) ,

H := L2
(
0, T ;W 1,2

)
∩ Cw

(
0, T ;L2

)
,

namely that, on a probability space (Ω,A, P ) with a filtration F = (Ft)t≥0 and

Brownian motions βkt adapted to the filtration, u is a weakly continuous (Ft)-
adapted process in H, with paths also of class L2 (0, T ;V ), with suitable square
integrability properties (not needed here in detail), such that for all φ ∈ V the pre-
vious identity holds true uniformly in time, with probability one. When the tuple(
Ω,A, P, (Ft) ,

(
βkt
))

is not prescribed a priori, we say that a weak solution is a weak
martingale solution. The existence of weak martingale solutions, as said above, is
known1.

Several extensions of more sophisticated deterministic results have been proved
in this stochastic setting. Among them, let us recall a generalization of the theory
of Hausdorff dimension of the set of singular points, the theory of Caffarelli-Kohn-
Nirenberg. In the deterministic case, it claims that the set S of singular points in
time-space may have at most Hausdorff dimension 1, with 1-dimensional Hausdorff
measure equal to zero. A full generalization to the stochastic case has been obtained
in [43], with the following probabilistic improvement.

Theorem 1. For stationary solutions (deterministic or stochastic case), if St is the
random set of singularities at time t, then

P (St = ∅) = 1,

for all t ≥ 0.

2.2.1. Role of Kolmogorov equation for uniqueness in law. For stochastic equations,
uniqueness in law is the property stating that any two solutions, possibly constructed
on different probability spaces, have the same law. This property is weaker than path-
wise uniqueness, which is itself weaker than path by path uniqueness At the same
time, it is stronger than the uniqueness of the associated Fokker-Planck equation.
(We do not discuss these definitions here.)

How could one prove uniqueness in law by means of probabilistic arguments?
Girsanov theorem is the easiest method but it cannot work for Navier-Stokes equa-
tions, as Ferrario has shown in [33]. In general it seems that the Girsanov approach
has limitations that are too strong. The Kolmogorov approach, on the other hand,
is more flexible. The rough “principle” is that:

1When the tuple is arbitrarily given a priori, existence of solutions is called strong existence; strong

existence is open for the 3D Navier-Stokes equations with additive noise.
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i. If we control one derivative of Kolmogorov solution, we may try to prove unique-
ness in law.

ii. If we control two derivatives, and the first one is uniformly bounded, we may
try to prove pathwise uniqueness.

Let us see some details on this topic. Consider an abstract stochastic equation
in Hilbert space:

du = (Au+B (u)) dt+ dWt,

where A is a negative selfadjoint operator, B satisfies suitable assumptions, and W
is a Brownian motion in H with trace-class covariance Q (the noise (1) is of this form
when (2) holds). Consider the infinite-dimensional backward Kolmogorov equation

∂tU +
1

2
Tr
(
QD2U

)
+ 〈Au+B (u) , DU〉 = 0,

U |t=T = φ,

where for the time being we do not give precise definitions of the single objects2.
Heuristically, assume that the Kolmogorov equation has a sufficiently smooth solu-
tion and assume that u (t) is a solution of the stochastic equation. By Itô formula,
for 0 ≤ r ≤ t ≤ T ,

U (t, u (t))− U (r, u (r)) =

∫ t

r
〈DU (s, us) , dWs〉

+

∫ t

r

(
∂sU +

1

2
Tr
(
QD2U

)
+ 〈A ·+B (·) , DU〉

)
(s, u (s)) ds,

and thus, by the Kolmogorov equation,

U (t, u (t))− U (r, u (r)) =

∫ t

r
〈DU (s, us) , dWs〉 .

If DU is good enough to have

E
∫ T

0
‖DU (s, us)‖2H ds <∞, (3)

then E
∫ T

0 〈DU (s, us) , dWs〉 = 0 and we deduce, with r = 0 and t = T ,

Eφ (u (T )) = EU (0, u0) .

This, by the arbitrariness of φ, identifies the law of u (T ) (and T is arbitrary). With
more work, as explained for instance in [57], we identify the law of the process. Let us
remark that Giuseppe Da Prato was the main investigator of Kolmogorov equations
in infinite-dimensional spaces, see for instance his two books [22, 27].

2Just notice, with a certain degree of formality, that U = U (t, u) is a real function defined on

[0, T ] × H, with the notation u ∈ H; DU (t, u) is its differential in the H-variable, element of

H, 〈Au+B (u) , DU (t, u)〉 is its scalar product in H with the vector Au+B (u), D2U (t, u) is the

second differential, an operator on H, and Tr
(
QD2U (t, u)

)
is the trace of the operator QD2U (t, u);

finally φ is a real function on H.
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The classical idea to investigate Kolmogorov equations in infinite dimensions
is by perturbation. In order to describe it, let us reverse time by setting V (t) =
U (T − t); now we have to study the forward equation

∂tV =
1

2
Tr
(
QD2V

)
+ 〈Au+B (u) , DV 〉 ,

V |t=0 = φ.

Introducing the Gaussian semigroup solving

∂tStφ =
1

2
Tr
(
QD2Stφ

)
+ 〈Au,DStφ〉 ,

with S0φ = φ, one rewrites the equation in perturbative form

V (t) = Stφ+

∫ t

0
St−s 〈B (u) , DV (s)〉ds.

In order to apply a fixed point argument to this equation in suitable spaces, it is
necessary to have good gradient bounds on the Gaussian semigroup. Those usually
proved, under suitable assumptions on the pair (A,Q), have the form

‖DStφ‖0 ≤
C

tγ
‖φ‖0 , (4)

with γ ∈ (0, 1). Here ‖φ‖0 is the uniform norm of a function or a vector defined on
H. Unfortunately, a great limitation of this perturbative approach is that B has to
be bounded, see for instance [24, 25, 26]. Moreover, the assumptions on (A,Q) to
have the gradient bound (4) are far from those satisfied by the linear part of 3D
Navier-Stokes equations.

Da Prato and Debussche in [23] made a breakthrough on this topic in the direc-
tion of 3D Navier-Stokes equations: under suitable assumptions on the coefficients
σk (the idea behind the assumptions is that the coefficients cannot go to zero too
fast), they discovered a way to construct smooth solutions of the associated infinite-
dimensional Kolmogorov equation. Without pretending to explain in a sentence the
very elaborate procedure developed in [23], let us only mention that it starts with
the very innovative idea of introducing a penalized evolution operator R (s, t) in
place of the Gaussian semigroup:

U (t) = R (0, t)φ+

∫ t

0
R (s, t) (〈B (u) , DU (s)〉 − V (s)) ds.

Using this method it is possible to prove the existence of a smooth solution U (t, u).

The solution U is differentiable (in fact twice differentiable), but with bounds
on derivatives of the form

〈h,DU (t, u)〉 ≤ C (t) ‖h‖W 2,2 (1 + ‖u‖W 2,2) ,

namely depending on a Sobolev norm in the infinite-dimensional variable u, which
is quite demanding from the viewpoint of the regularity of solutions of 3D Navier-
Stokes equations. If we go back to the sufficient condition (3), we see that weak
solutions do not have sufficient regularity. In principle there could be several weaker
ways to proceed, which do not require directly (3), but no way has been found yet.
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Technically, Da Prato-Debussche [23] is one of the most advanced works on
stochastic 3D Navier-Stokes equations. Not only it constructs solutions to the Kol-
mogorov equation, but it also identifies two new properties: Markov selections and
strong Feller property, discussed below.

2.3. Small times versus large times

Let u0 ∈ L2 be an initial condition and u ∈ L2
F (Ω;H) be a (possibly non-unique)

weak solution. Using the properties of conditional expectation, let us decompose

E [φ (u (T ))] = E [E [φ (u (T )) |u (t0)]]

=

∫
H
E [φ (u (T )) |u (t0) = v]µt0 (dv) ,

where µt0 is the law of u (t0), and φ is a bounded continuous function on H, φ ∈
Cb (H). The hope is to propagate good properties, which hold for small times, to
large times.

Assume for every initial condition u0 we select a weak solution u (·;u0) ∈
L2
F (Ω;H). Uniqueness is not known, but we may make selections, following dif-

ferent criteria; the simplest one is measurable-in-u0 selection, but a more refined
one, following [57], is a Markov selection (see below). For each one of the selected
solutions we have the decomposition above

E [φ (u (T ;u0))] =

∫
L2

E [φ (u (T ;u0)) |u (t0;u0) = v]µt0,u0 (dv) , (5)

where µt0,u0 is the law of u (t0;u0). One can already notice the germ of a special
property: if u0 ∈ V and t0 is small enough, the law µt0,u0 (dv) is “ almost” indepen-
dent of the selection, since for u0 ∈ V the solution is locally unique. The limitation
“ almost” refers to the fact that “ locally”, in the stochastic case, means randomly
local, hence we know uniqueness up to time t0 only with large probability.

Assume un0 , u0 ∈ V are such that

un0
V→ u0.

In the deterministic case, one can find t0 small enough that unique solutions un, u
exist on [0, t0] with initial conditions un0 , u0 and un → u in C ([0, t0] ;V ). In the
stochastic case, a similar result holds with large probability [44]: for every ε > 0
there exists t0 > 0 such that solutions exist, and are pathwise unique, in C ([0, t0] ;V )
with probability greater than 1− ε; at the same time, un → u in C ([0, t0] ;V ) with
probability greater than 1 − ε. Forgetting about this ε for the sake of simplicity of
the heuristic explanation (the details are in [44]), we have

u (t0;un0 )
V→

a.s.
u (t0;u0) ,

and

lim
un0→u0

∫
ψ (v)µt0,un0 (dv) =

∫
ψ (v)µt0,u0 (dv) (6)

for a large class of continuous functions ψ.
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The previous result is only the stochastic analog of a deterministic property
of local well posedness. But in the stochastic case it is here that we have more.
Under strong assumptions on the noise (the same ones that allowed to solve the
Kolmogorov equation in [23]), strong Feller property holds at time t0 (again we
simplify the exposition forgetting about a small probability ε of having a different
property)

lim
un0→u0

µt0,un0 = µt0,u0 in total variation.

Convergence in total variation essentially means that (6) is extended to a large class
of measurable functions, something impossible in the deterministic case, where µt0,un0
and µt0,u0 are Dirac delta masses! Using the decomposition property (5), one can
prove:

Theorem 2. Assume E [φ (u (T ;u0)) |u (t0;u0) = v] is independent of u0, for every
φ ∈ Cb (H), and there exists a function gφ (T, t0, v), measurable in v, such that

gφ (T, t0, v) = E [φ (u (T ;u0)) |u (t0;u0) = v] .

Then E [φ (u (T ;un0 ))]→ E [φ (u (T ;u0))], namely continuous dependence propagates
to large times.

See [44] for related details. The assumption of the theorem, the existence of
gφ (T, t0, v), is essentially the Markov property. The question is: can we make a
selection which satisfies the Markov property?

Yes, following [23, 28, 44] we know:

Theorem 3. For 3D Navier-Stokes, Markov selections exist. If the noise is strong
enough, they are strong Feller, hence solutions depend continuously on the initial
conditions, also for large times, in the topology of V .

The previous theorem can be considered the most advanced innovative result of
the stochastic theory with respect to the deterministic one. Nothing like this theorem
is known in the deterministic case.

Can we do more? The following trick in semigroup theory is well known: if
A : D (A) ⊂ H → H generates a strongly continuous semigroup St, t ≥ 0, and u (t)
solves u′ (t) = Au (t), then

u (t) = Stu (0) .

Indeed,
d

ds
St−su (s) = −ASt−su (s) + St−sAu (s) = 0.

In other words: when we have a strongly continuous flow, all solutions coincide
with those of the flow. Such uniqueness result, however, holds in the framework of
semigroup theory; it is only heuristically a general principle. In the case described
above, we have something similar concerning the assumptions: we have a Markov,
strong Feller, selection. But, in spite of many attempts, we have not found a rigorous
way to deduce that it “incorporates” every weak solution.

The Markov strong Feller selection is a priori not unique and, based on results
proved in [57] in an easier context than the Navier-Stokes equations, we should
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expect uniqueness of Markov selections if and only if there is uniqueness of individual
solutions. It is however possible that some Markov selection carries more specific
information and may be elevated to a special role. Sufficient conditions for uniqueness
of Markov selections are given in [44, 56].

2.4. Multiplicative transport noise

Another noise received increasing attention in fluid mechanics problems. It is inspired
by the transport term u · ∇u and has the form (compare with (1))

∇u ◦ dW =
∑

k∈Z3
0,α=1,2

σk,α (ek,α · ∇u) ◦ dβk,αt .

The multiplication is understood in the Stratonovich sense, recognized to be the right
one throughout the literature on this subject (e.g. [49, 55, 53]). A short introduction
to this detail can be found in [41].

In a sense, the velocity field u which transports other quantities (like u itself in
u · ∇u, or terms like u · ∇T in heat transport) is replaced by u+W . The resulting
stochastic Navier-Stokes equations are

du+ (u · ∇u+∇p) dt = ∆udt+
∑

k∈Z3
0,α=1,2

σk,α (ek,α · ∇u) ◦ dβk,αt ,

div u = 0.

There is another, non-equivalent, way to introduce transport noise; it is at the level
of the equation for the vorticity ξ = curlu, which in the case of 3D deterministic
Navier-Stokes equations is

∂tξ + u · ∇ξ = ∆ξ + ξ · ∇u,

also written, using the Lie derivative Luξ = u · ∇ξ − ξ · ∇u, as

∂tξ + Luξ = ∆ξ.

The natural perturbation of this equation is

dξ + u · ∇ξdt = ∆ξdt+ ξ · ∇udt+
∑

k∈Z3
0,α=1,2

σk,α (ek,α · ∇ξ) ◦ dβk,αt

−
∑

k∈Z3
0,α=1,2

σk,α (ξ · ∇ek,α) ◦ dβk,αt

considered in [49, 21]: it corresponds to the replacement of u with u+W in the Lie
derivative (which corresponds to the same replacement at the Lagrangian level)

Luξdt→ Luξdt+ L◦dW ξ

:= Luξdt+
∑

k∈Z3
0,α=1,2

L
σk,αek,α◦dβk,αktt

ξ.

The nonlinearity is composed, at the vorticity level, of two terms: the transport of
vorticity u·∇ξ and the vortex stretching ξ ·∇u. Accordingly, in the previous equation
there is an additional stochastic transport and stochastic stretching. When vorticity
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is replaced by magnetic moment, this stochastic perturbation was considered in
the framework of the dynamo theory in [55]. Notice that in the 2D case stretching
cannot occur, since the vorticity is orthogonal to the plane of fluid motion, hence
the equation reduces to (see for instance [15])

dξ + u · ∇ξdt = ∆ξdt+
∑
k∈Z3

0

σk (ek · ∇ξ) ◦ dβkt .

It is worth noticing that it is not necessary anymore to sum over the index α = 1, 2
because the linear space orthogonal to k is now a line). Concerning motivations for
the model with transport noise, let us mention model reduction, see [53], in addition
to other motivations like [14], [54], and more recently [49].

Starting from 2010, several simpler models proved to be regularized by trans-
port noise, as already remarked in the Introduction: linear transport and advection
equations [37, 41, 42], special solutions of 2D Euler equations and 1D Vlasov-Poisson
system [38, 30], Leray-α model [3] and, as more extensively discussed below in Sec-
tion 3, dyadic models of turbulence [6], [12]. In all these cases the PDE is inviscid.
But it was recently understood that such a noise may have a regularizing effect
also on viscous problems, in particular the 3D Navier-Stokes equations because it
increases dissipation. Let us briefly summarize this result, from [40].

The first important remark is that it holds for a sort of artificial modification of
the noise above: we consider only the stochastic transport term - as in the 2D case
-, neglecting the stochastic stretching term, but maintaining the 3-dimensionality of
the equation. The precise model is

dξ + u · ∇ξdt = ∆ξdt+ ξ · ∇udt+
∑
k∈Z3

0
α=1,2

σk,αΠ (ek,α · ∇ξ) ◦ dβk,αt , (7)

where Π is the projection on divergence free fields, necessary since the sum of all
other terms is divergence free (notice that, on the contrary, the full noise L◦dW ξ does
not require projection since it is already divergence free). In [40] there is an attempt
to motivate this choice of noise, but it remains true that the full noise L◦dW ξ is much
more natural, while at the same time the latter spoils the result of regularization by
noise, as shown in [40]. This discrepancy will be the object of future investigation.

In order to understand the result in [40], let us recall the second open problem
presented in Section 2.1, restated here as follows:

when ξ0 ∈ H, is the probability

P

(
τ <∞, lim

t↑τ
‖ξ (t)‖H = +∞

)
(8)

equal to one, or at least large? We have discovered that transport noise may improve
the control of ‖ξ‖H . In the deterministic case, the norm ‖ξ‖2H can be controlled locally
from

∂tξ + u · ∇ξ − ξ · ∇u = ∆ξ
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by energy-type estimates:

1

2

d

dt
‖ξ‖2H + ‖∇ξ‖2H = 〈ξ · ∇u, ξ〉 .

The term 〈ξ · ∇u, ξ〉 describes the stretching of vorticity ξ produced by the defor-

mation tensor ∇u. This is the potential source of unboundedness of ‖ξ‖2H . Sobolev
and interpolation inequalities give us (up to constants):

〈ξ · ∇u, ξ〉 ≤ ‖ξ‖3L3 ≤ ‖ξ‖3W 1/2,2 ≤ ‖ξ‖3/2L2 ‖ξ‖
3/2
W 1,2 ≤ ‖ξ‖2W 1,2 + ‖ξ‖6L2

and this leads to
d

dt
‖ξ‖2H ≤ C ‖ξ‖

6
H

which provides only a local control. However the interval of existence depends on
the viscosity coefficient ν: if we consider

∂tξ + u · ∇ξ − ξ · ∇u = ν∆ξ,

the energy estimate becomes

1

2

d

dt
‖ξ‖2H + ν ‖∇ξ‖2H = 〈ξ · ∇u, ξ〉

≤ ‖ξ‖3/2
L2 ‖ξ‖

3/2
W 1,2

≤ ν ‖∇ξ‖2H +
C

ν3
‖ξ‖6H

leading in this case to
d

dt
‖ξ‖2H ≤

C

ν3
‖ξ‖6H .

The explosion is delayed for large ν. Not only that: beyond a threshold the solution
is global. This is the key for a regularization by noise: transport noise improves
dissipation, hence it delays blow-up.

Let us rewrite equation (7) In Itô form (see [41] for an easy introduction to this
operation):

dξ + u · ∇ξdt = ∆ξdt+ ξ · ∇udt+
∑

k∈Z3
0,α=1,2

σk,αΠ (ek,α · ∇ξ) dβk,αt

+
1

2

∑
k∈Z3

0,α=1,2

σ2
k,αΠ (ek,α · ∇Π (ek,α · ∇ξ)) dt,

where the stochastic term is now understood in Itô sense. The corrector is a pseudo-
differential operator of second order, quite complicated algebraically by the presence
of the projector Π. Under suitable technical conditions on the family of coefficients
σ = (σk,α)k∈Z3

0,α=1,2 (still quite general), the corrector turns out to be of the form

1

2

∑
k∈Z3

0,α=1,2

σ2
k,αΠ (ek,α · ∇Π (ek,α · ∇ξ)) = νσ∆ξ +Rσ (ξ) ,

where νσ > 0 is a coefficient depending on σ and Rσ (ξ) is a quite complicated non-
local second order differential operator. The decomposition of the RHS as νσ∆ξ +
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Rσ (ξ) is not purely artificial: the same corrector without the two projections Π
would be simply equal to νσ∆ξ; the remainder Rσ (ξ) is what is left due to the
presence of the projections.

Now the key point is to parametrize σ by a scaling parameter N :

σN =
(
σNk,α

)
k∈Z3

0,α=1,2

in such a way that the corresponding coefficient νσN is independent of N

νσN = ν

and (this is the most difficult technical part of the work [40])

lim
N→∞

RσN (ξ) = −2

5
ν∆ξ.

The solutions ξN of the corresponding equation

dξN +uN ·∇ξNdt = ∆ξNdt+ξN ·∇uNdt+
∑

k∈Z3
0,α=1,2

σNk,αΠ
(
ek,α · ∇ξN

)
◦dβk,αt (9)

will have the following properties, which are the main results of [40].

Theorem 4. Let ξ0 ∈ H and [0, T ] be given. In a suitable scaling limit N → ∞
corresponding to a sequence σN , ξN converges in probability to the solution of

∂tξ + Luξ =

(
1 +

5

3
ν

)
∆ξ.

It follows that for large N the norm
∥∥ξN (t)

∥∥2

H
is bounded on [0, T ], with high prob-

ability (implying well posedness of ξN ).

Theorem 5. Given R0, ε > 0, there exists N with the following property: for every
initial condition ξ0 ∈ H with ‖ξ0‖H ≤ R0, the stochastic 3D Navier-Stokes equations
(9) have a global unique solution, up to probability ε: if τ is the maximal time of
existence,

P (τ =∞ ) > 1− ε.

The theorem does not exclude that the probability (8) is positive, but at least
it states it is small, under a proper noise perturbation. This result is a regularization
by noise result because the viscosity in equation (9) is 1 and, as discussed above for
the deterministic equations, with such viscosity only very small initial conditions
lead to global existence.

The previous results are inspired by several sources, among which we quote
[1, 2, 3, 20, 39, 35, 45].
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3. Regularization by noise in dyadic models

Even though the regularization by noise techniques did not work for 3D Navier-
Stokes equation, there are other equations that proved to be more accessible with
this tool. One special case, still in the area of fluid-dynamics, is that of the dyadic
models of turbulence.

3.1. Dyadic models

Shell models were introduced by the Russian school in the 1970s, as a theoretical and
computational tool to study the cascade phenomenon in turbulent fluid dynamics.
This is a mechanism (not yet completely understood) that moves energy from one
lengthscale to another, thus sustaining turbulence. Richardson’s cascade, also called
direct energy cascade, moves the energy from larger scales to smaller ones, whereas
the inverse cascade moves energy from smaller to larger scales, and seems to appear
only in 2D turbulence.

The phenomenological idea behind the tree model proposed by Katz and Pav-
lović [50], and called KP model in the next pages, is the following: larger eddies
in the turbulent fluid split into smaller ones because of dynamical instabilities, and
the kinetic energy moves from the larger scales to the smaller ones. We simplify the
picture by assuming that eddies appear only at certain discrete scales, each the half
of the previous one. We also assume that the eddies fill the space, so that each eddy
contains 2d eddies of the next scale.

In this way we have a tree structure, where each node is an eddy. Following the
notation introduced in [4], if we denote by J the set of nodes, each node j has a set of
children Oj , representing the smaller eddies generated by instability from j. We call
generations the discrete scales where the eddies are, and denote the generation of
an eddy j by |j|. At level (or generation) 0 we have the single largest eddy, denoted
with ∅, at generation 1 the 2d eddies generated by the eddy at level 0 and so on.
Also, we denote the parent of a node j by .

Every node has a scalar quantity Xj attached to it, the intensity of the velocity
field, with the square of this intensity being the kinetic energy. In other words, the
energy is the square of the l2-norm: E(t) :=

∑
j X

2
j (t). The intensities are coupled

by the following differential rules:

Ẋj = −νc̃jXj + cjX
2
̄ −Xj

∑
k∈Oj

ckXk, (10)

where we consider the coefficients cj = dj2
α|j|, with α > 0 and dj > 0 for all j ∈ J

(and similarly for the c̃j = d̃j2
γ|j|), d∅ = 1, and X∅(t) ≡ f , that is the forcing acts

only on the largest eddy. Most results are independent of the choice of α, however
there are heuristic arguments that suggest α = d

2 + 1, which is the value usually
considered in the literature (see for example [50, 4]). In [10] it was proven that
α 6 5

2 for a Littlewood-Paley decomposition of 3D Euler dynamics.
In [50] and in [4], dj = 1 for all j ∈ J , but in [13], restricted to the inviscid

case (i.e. ν = 0) the coefficients dj are allowed to vary for different nodes, with the
assumption that | log dj | is bounded. Moreover a particular choice is introduced, the
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repeated coefficients models (or RCM), in which the same fixed 2d coefficients δω
appear in every set of siblings {dk : k ∈ Oj}. For the RCM it is possible to state
and prove more interesting and deep results, due to its simpler form.

Heuristically, we can think of this model as a (simplified) wavelet decomposition
of Navier-Stokes equations, see for example [50, 16, 13]. However, this is not a
rigorous derivation, as pointed out in [61]: the KP model is constructed in such
a way that it mimics Navier-Stokes (in particular with respect to the energy cascade
phenomenon).

If we choose to have only one intensity per shell, that is we consider all nodes in
a generation as collapsed into a single element, we get a “linear” dyadic model, that
turns out to be one of the first shell models, the one introduced by Desnianskii and
Novikov in 1974 [31]. For this reason we will call it DN model. Also in this case we can
give a heuristical interpretation of the model as a Littlewood-Paley decomposition:
see for example [50, 16, 51]). The step from the KP model to the DN one was first
done by Waleffe [61]. In the same paper, he also discussed a different model, the
aforementioned Obukhov model. All three of KP, DN and Obukhov models were
investigated by Kiselev and Zlatos [51], with particular focus on the question of
regularity and blow-up.

Let us now see the DN mode in some more detail: the differential rule coupling
the intensities associated to the different shells takes the following form,

Ẋj = −νl2jXj + cj−1X
2
j−1 − cjXjXj+1,

with cj = 2αj and lj = 2γj , with j taking value in J = N, so that ̄ = j − 1,
Oj = {j + 1}, and |j| ≡ j.

This model, though physically less appealing than the KP one, has a much
simpler structure. For this reason many results, in particular regarding uniqueness
and regularity of solutions, haven been proven first for the DN model and extended
to the KP model only later.

In order to talk about existence and uniqueness of solutions, we need to state
what notion of solution are we considering for such models. A componentwise solu-
tion of the KP model is a family (Xj)j∈J of differentiable functions such that (10)
is satisfied. If a componentwise solution is in L∞(R+, l

2(J)), it is called a Leray
solution. Analogous definitions hold for the DN model (actually, we just have to
consider J = N, and the other conventions written above).

Theorem 6. For the KP model (10), for any initial condition in l2, there exists a
Leray solution.

The argument for the proof is quite standard, using Galerkin approximations,
and can be found in [4, 11, 13]. A similar result holds for the DN model, and actually,
with some assumptions on the coefficients, solutions of the DN model can be lifted
to the KP model.

A natural question that can be raised at this point is the following: what about
more regular solutions? This question is in fact strongly tied to another interesting
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property of dyadic models, that of anomalous dissipation. As a matter of fact, ignor-
ing the dissipative term, one can show that for both KP and DN energy is formally
preserved. However, if we approach the issue rigorously, we see that this is only true
for solutions that are regular enough. However, it is possible to show that energy
actually dissipates, hence solutions cannot be that regular. This kind of argument
is presented in the aforementioned [8] for the DN model. The same is true also for
the KP model and the RCM, as it is shown in [4] and [13].

3.2. Uniqueness and Regularization by noise for dyadic models

For the DN model there is uniqueness if we restrict ourselves to non-negative solu-
tions but we lose it if we allow for solutions that change sign [5, 9]. For the KP model,
uniqueness for non-negative solutions is an open problem, but counterexamples to
uniqueness can be shown for solutions that are allowed to change sign.

In both cases, counterexamples can be constructed through self-similar solu-
tions, that is solutions of the form Xj(t) =

aj
t−t0 , for some t0 < 0, for all j ∈ J and

t > 0, with the coefficient aj satisfying some coupling conditions. Once we have such
solutions, we can use time reversal to have solutions that blow up in finite time,
that are in particular non Leray, hence showing non-uniqueness of componentwise
solutions.

For the RCM it is hard to prove results for general solutions, because they
are quite complicated to deal with. However if we focus on constant solutions, we
not only have an existence and uniqueness result of a (finite energy) forced solution
that dissipates energy, but we can also write such solution explicitly. In the case of
the RCM, this allows us to obtain some interesting results regarding the structure
function and the geometry of the anomalous dissipation. Existence and uniqueness
of constant solutions hold for the KP and the DN models as well [4, 18]. In the case
of the inviscid DN model, the constant solution is particularly interesting, because
it has been proven to be a global attractor [19]. A similar result holds for the viscous
model, too [17]. For the KP and the RCM the existence of such a global attractor
is still a conjecture.

For constant solutions we have a uniqueness result. However this is not the case
if we consider generic solution, as mentioned above. In order to recover some kind
of uniqueness, we resort to regularization by noise techniques.

It is true that we started with a PDE, but the model that we are considering is
now made of an infinite system of coupled ODEs. So it should not be surprising that
we can obtain regularization results by adding noise. Let us see some more details.
Notice that we focus only on the inviscid case.

In order to recover uniqueness of the solution, we want to define a stochastic
perturbation of the deterministic KP model: among the several options possible, we
choose a multiplicative term (so that the perturbation “scales” with the solution,
being neither irrelevant nor dominant) such that the total energy is (formally) P-
a.s. preserved
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dXj =

cjX2
̄ −Xj

∑
k∈Oj

ckXk

 dt+ cjX ◦ dWj −
∑
k∈Oj

ckXk ◦ dWk, (11)

with (Wj)j∈J a family of independent Brownian motions, together with deterministic
initial conditions X(0) = x = (xj)j∈J ∈ l2.

For this model (which we can also write in Itô formulation) we consider solutions
that are weak in the probabilistic sense. Of particular interest, for obvious physical
reasons, are energy controlled solutions, that is weak solutions that satisfy

P

∑
j∈J

X2
j (t) 6

∑
j∈J

x2
j

 = 1for all t > 0,

that is, the energy is almost surely bounded by the initial one.

Theorem 7. There exists an energy controlled solution to (11) in L∞(Ω× [0, T ]; l2)
for initial conditions X(0) = x = (xj)j∈J ∈ l2.

Moreover, there is uniqueness in law in the same class of energy controlled
solutions.

Both weak existence and weak uniqueness are achieved through Girsanov the-
orem, transforming the nonlinear SDEs in linear ones. However the first step is to
translate our model from the Stratonovich formulation (11) into Ito formulation,
which is easier to manipulate:

dXj =

cjX2
̄ −Xj

∑
k∈Oj

ckXk

 dt+ cjXdWj

−
∑
k∈Oj

ckXkdWk −
1

2

c2
j +

∑
k∈Oj

c2
k

Xjdt. (12)

Moreover, since we want to use Girsanov theorem, it makes sense to rewrite (12) in
the following form:

dXj = cjX̄(Xdt+ cjdWj)−
∑
k∈Oj

ckXk(Xjdt+ dWk)−
1

2

c2
j +

∑
k∈Oj

c2
k

Xjdt,

where we isolated the terms Xdt + cjdWj , which are (for all j ∈ J) Brownian

motions with respect to a new measure P̃ on (Ω,F∞). More precisely we can state:

Proposition 8. Given an energy controlled solution (Ω, (Ft)t,P,W,X) of (12) (or

equivalently (11)), we can define a measure P̃ as follows:

dP̃
dP

∣∣∣∣∣
Ft

= exp

−∑
j∈J

∫ t

0
X̄(s)dWj(s)−

1

2

∫ t

0

∑
j∈J

X2
̄ (s)ds

 .
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Then the processes

Bj(t) = Wj(t) +

∫ t

0
X̄(s)ds

are a J-indexed family of independent Brownian motions on (Ω, (Ft)t, P̃), and

(Ω, (Ft)t, P̃, B,X) satisfies the linear equations

dXj = cjX̄dBj(t)−
∑
k∈Oj

ckXkdBk(t)−
1

2

c2
j +

∑
k∈Oj

c2
k

Xjdt.

For this linear system we can easily prove, by Galerkin approximations, that
there exists a strong solution. The next step is to prove strong uniqueness for the
linear system.

To do so, we consider the second P̃-moments of the Xjs: for every solution X of

the (nonlinear) system (12), for every j ∈ J and t > 0, Ẽ[X2
j (t)] < ∞ and satisfies

the differential equation:

d

dt
Ẽ[X2

j (t)] = −

c2
j +

∑
k∈Oj

c2
k

 Ẽ[X2
j (t)] + c2

j Ẽ[X2
̄ (t)] +

∑
k∈Oj

c2
kẼ[X2

k(t)].

Now we have obtained a system of closed equations, with a very nice structure: if
we write it in matricial form, it is strongly reminiscent of the forward equations
of a Markov chain (even though it actually is not). Thanks to this link, we can
show uniqueness for the second moments and, hence, for the solution of the linear
system. This strong uniqueness result translates into uniqueness in law for the non-
linear system, as the two measures P and P̃ are not equivalent on F∞. More precise
statements, as well as detailed proofs, can be found in [12] and [11].

A similar result holds for the DN linear dyadic model, and was obtained earlier
in [6]. In this case the model has the following form:

dXj = (cjX
2
j−1 − cj+1XjXj+1)dt+ cjXj−1 ◦ dWj−1 − cj+1Xj+1 ◦ dWj ,

with (Wj)j∈J=N a sequence of independent Brownian motions, and the form of the
noise chosen to be formally energy preserving (almost surely). In this case, anomalous
dissipation has been shown in [7].

Of course one can deduce weak existence and uniqueness for DN from Theorem
7 for the KP model. It is interesting to notice that the different behaviour seen in
the deterministic case for non-negative and mixed-sign solutions is now absent, even
though this is not surprising, because the noise is causing sign changes.

In the end, regularization by noise techniques had at least a partial success in
the area of fluid dynamics. Even though the techniques used for dyadic models did
not immediately translate back to Navier-Stokes equations, there are also ideas born
in the study of shell models that trickled back to Navier-Stokes. In particular, in [58]
some ideas from previous works on dyadic models were used to show blow-up of an
averaged version of 3D Navier-Stokes, proving a meta-theorem: no technique that
does not distinguish the DN model from Navier-Stokes can show regularity for NSE.
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tions. Journal de Mathématiques Pures et Appliquées, 82(8):877–947, 2003.

[24] G. Da Prato and F. Flandoli. Pathwise uniqueness for a class of SDE in Hilbert spaces

and applications. Journal of Functional Analysis, 259(1):243–267, 2010.

[25] G. Da Prato, F. Flandoli, E. Priola, and M. Röckner. Strong uniqueness for stochastic
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