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MAXIMAL FUNCTIONS WITH POLYNOMIAL DENSITIES
IN LACUNARY DIRECTIONS

KATHRYN HARE AND FULVIO RICCI

Abstract. Given a real polynomial p(t) in one variable such that p(0) = 0,
we consider the maximal operator in R2,

Mpf(x1, x2) = sup
h>0 , i,j∈Z

1

h

∫ h

0

∣∣f(x1 − 2ip(t), x2 − 2jp(t)
)∣∣ dt .

We prove that Mp is bounded on Lq(R2) for q > 1 with bounds that only
depend on the degree of p.

1. Introduction

Maximal operators on the real line of the form

(1.1) f(x) 7−→ sup
h>0

1
h

∫ h

0

∣∣f(x− p(t))∣∣ dt ,
where p is a real polynomial with p(0) = 0, were considered in [CRW1], and it was
shown that they satisfy weak-type 1-1 estimates that are uniform over all polyno-
mials of fixed degree. Natural extensions of these operators to higher dimensions
are discussed in [CRW2], in connection with Rn-valued polynomials defined on Rm.

We consider here a different kind of multi-dimensional analogue of (1.1), which is
modelled on the maximal function in lacunary directions introduced in [NSW]. For
simplicity, we restrict ourselves to two dimensions and to dyadic lacunary directions,
i.e., determined by the vectors vk = (1, 2k) with k ∈ Z. In addition, we allow dyadic
scaling along each of these directions.

To be precise, given a real polynomial p(t) in one variable such that p(0) = 0,
we define

Mpf(x1, x2) = sup
h>0 , i,k∈Z

1
h

∫ h

0

∣∣f(x− 2ip(t)vk
)∣∣ dt

= sup
h>0 , i,j∈Z

1
h

∫ h

0

∣∣f(x1 − 2ip(t), x2 − 2jp(t)
)∣∣ dt .(1.2)

We prove the following result.

Theorem 1. Mp is bounded on Lq(R2) for q > 1 with bounds that only depend on
the degree of p.
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It is easy to check that Mp cannot satisfy a weak-type 1-1 estimate.
The proof of Theorem 1 is based on the analysis of a general class of two-

parameter maximal operators in the plane defined by compactly supported mea-
sures, subject to a decay assumption on their Fourier transforms. This result is in
the spirit of [DR] and [RS], but here we consider the possibility that the Fourier
transform of the measure has no decay within an angle that does not contain the
coordinate axes.

Theorem 2. For a probability measure µ supported on the unit square, let µi,j be
the measure such that∫

f dµi,j =
∫
f(2ix1, 2jx2) dµ(x1, x2) .

Assume that
(i) there are constants C, δ > 0 and s > 1 such that

(1.3)
∣∣µ̂(ξ)

∣∣ ≤ C(1 + |ξ|
)−δ

away from the set where s−1 < |ξ1|
|ξ2| < s;

(ii) the one-parameter maximal operator

(1.4) M0
µf(x) = sup

i∈Z
|f ∗ µi,i(x)|

is bounded on Lq(R2) for q > 1.
Then also, the two-parameter maximal operator,

(1.5) Mµf(x) = sup
i,j∈Z

|f ∗ µi,j(x)| ,

is bounded on Lq(R2) for q > 1, with bounds that only depend on s, the constants
C, δ in (1.3) and the norm of M0

µ.

We start with the proof of Theorem 2, which combines methods from [NSW],
[C] and [RS]. This is done in Section 2. Theorem 1 is proved in Section 3.

We thank both W. Beckner and the referee for useful comments on a first version
of this paper.

2. Proof of Theorem 2

Let σ1 and σ2 be the measures on the line defined by∫
R
f(t) dσj(t) =

∫
R2
f(xj) dµ(x) .

Then σ̂1(τ) = µ̂(τ, 0) and σ̂2(τ) = µ̂(0, τ), so that

(2.1) |σ̂j(τ)| ≤ C
(
1 + |τ |

)−δ
.

Let ϕ be a nonnegative smooth function on the line, supported on [−1, 1] and
with integral equal to 1. Define

ν = µ− σ1 ⊗ ϕ− ϕ⊗ σ2 + ϕ⊗ ϕ .

Clearly, ν̂ satisfies (1.3), is supported on the unit square and

(2.2) ν̂(ξ1, 0) = ν̂(0, ξ2) = 0 .

Since
Mµf ≤Mνf +Mσ1⊗ϕf +Mϕ⊗σ2f +Mϕ⊗ϕ ,
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we can discuss each of the maximal functions on the right-hand side separately.
The last term is controlled by the two-parameter strong maximal operator of

Jessen, Marcinkiewicz and Zygmund. The Lq-boundedness of the two intermediate
terms follows from Theorem 3.2 in [RS], once we observe that, by (2.1),∣∣σ̂1 ⊗ ϕ(ξ)

∣∣ ≤ C′(1 + |ξ|
)−δ

,

and similarly for ϕ⊗ σ2. (Alternatively, one can argue that Mσ1⊗ϕ is controlled by
the composition of the Hardy-Littlewood maximal operator in the x2-variable with
the one-parameter operator Mσ1 in the x1-variable; to this operator one can apply
Theorem A in [DR].)

Thus it remains to estimate Mνf . Due to the cancellations of ν that are implicit
in (2.2), it is convenient to introduce appropriate square functions. Given a measure
σ, we shall need two types of such functions:

Sσf(x) =
( ∑
i,j∈Z

∣∣f ∗ σi,j(x)
∣∣2) 1

2

,(2.3.a)

S̃σf(x) =
(∑
k∈Z

(
sup
i∈Z

∣∣f ∗ σi,i+k(x)
∣∣)2
) 1

2

.(2.3.b)

Clearly, Mσf ≤ S̃σf ≤ Sσf . We shall also assume that q is finite, because there
is nothing to prove for q =∞.

Let η`(x) = 22`η(2`x), ` ≥ 0, be a smooth approximate identity in R2, with η
supported on the unit disk. We set ψ0 = η0, and ψ` = η` − η`−1 for ` ≥ 1. Then

ν =
∞∑
`=0

ν ∗ ψ`

and

Sνf ≤
∞∑
`=0

Sν∗ψ`f .

Lemma 2.1. For every ε > 0 and 1 < q <∞, ‖Sν∗ψ`f‖q ≤ A22`ε‖f‖q, where the
constant A depends only on ε and q.

Proof. By the standard randomization argument, we can estimate the Lq-operator
norm of the singular integral operators

f 7−→
∑
i,j

±(ν ∗ ψ`)i,j ∗ f .

We apply Lemma 2.3 in [RS]. Thus, it is necessary to prove that

sup
0<|h2|<2

|h2|−ε
∫ (

sup
0<|h1|<2

|h1|−ε
∫ ∣∣∆1

h1
∆2
h2

(ν ∗ ψ`)(x)
∣∣ dx1

)
dx2 ≤ C22`ε ,

where

∆1
h1
f(x1, x2) = f(x1 + h1, x2)− f(x1, x2) ,

∆2
h2
f(x1, x2) = f(x1, x2 + h2)− f(x1, x2) .

We observe that
∆1
h1

∆2
h2

(ν ∗ ψ`) = ν ∗ (∆1
h1

∆2
h2
ψ`)
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and that ∆1
h1

∆2
h2
ψ`(x) is smaller than a constant times 2(2+2ε)`|h1|ε|h2|ε, and it is

supported, for each x, h1, h2, on a set that is the union of four disks of radius 2−`.
Therefore,∫ ∣∣∆1

h1
∆2
h2

(ν ∗ ψ`)(x)
∣∣ dx1 ≤

∫
R2

(∫ ∣∣∆1
h1

∆2
h2
ψ`(x− y)

∣∣ dx1

)
d|ν|(y)

≤ C2(1+2ε)`|h1|ε|h2|ε
∫
R2
χy,h2(x2) d|ν|(y) ,

where χy,h2 is the characteristic function of a set of measure 2−` depending on y
and h2.

This concludes the proof. �

In order to obtain better estimates, we introduce a spectral decomposition of
ν. Let Φ(ξ) be homogeneous of degree 0, smooth away from the origin, identically
equal to 1 inside the angle Γ1 =

{
ξ : s−1 < |ξ1|/|ξ2| < s

}
, and identically equal to

0 outside of the angle Γ2 =
{
ξ : (2s)−1 < |ξ1|/|ξ2| < 2s

}
.

We then define the “bad part” νb of ν as the distribution such that

ν̂b(ξ) = ν̂(ξ)Φ(ξ) ,

and the “good part” νg as νg = ν − νb.
The square functions Sνbf , Sνb∗ψ`f , etc. are defined as in (2.3.a) and (2.3.b) for

Schwartz functions f .
We show first that each part of ν shares the good properties of ν given by Lemma

2.1.

Lemma 2.2. The conclusion of Lemma 2.1 remains valid if we replace ν by νb or
νg.

Proof. For k ∈ Z, let Pkf = F−1
(
Φ(ξ1, 2−kξ2)f̂(ξ)

)
. Because of the finite overlap-

ping of the supports of the multipliers Φ(ξ1, 2−kξ2), we have the Littlewood-Paley
estimate

(2.4)
∥∥∥∥(∑

k∈Z
|Pkf |2

) 1
2
∥∥∥∥
q

∼ ‖f‖q ,

for 1 < q <∞. Also, observe that

(νb)i,j ∗ f = νi,j ∗ (Pi−jf) , (νb ∗ ψ`)i,j ∗ f = (ν ∗ ψ`)i,j ∗ (Pi−jf) .

Therefore,

Sνb∗ψ`f =
( ∑
i,j∈Z

∣∣(ν ∗ ψ`)i,j ∗ (Pi−jf)(x)
∣∣2) 1

2

≤
( ∑
i,j,k∈Z

∣∣(ν ∗ ψ`)i,j ∗ (Pkf)(x)
∣∣2) 1

2

.

The last quantity equals the L2-norm on [0, 1]3 of the function

(t, u, v) 7−→
∑

i,j,k∈Z
(ν ∗ ψ`)i,j ∗ (Pkf)(x)ri(t)rj(u)rk(v) ,
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where rn is the nth Rademacher function. By the properties of Rademacher func-
tions, the L2-norm is equivalent to the Lq-norm. Therefore,

‖Sνb∗ψ`f‖qq ≤ C
∫
R2

∫
[0,1]3

∣∣∣∣ ∑
i,j,k∈Z

(ν ∗ ψ`)i,j ∗ (Pkf)(x)ri(t)rj(u)rk(v)
∣∣∣∣q dt du dv dx .

We denote

Kt,u =
∑
i,j

ri(t)rj(u)(ν ∗ ψ`)i,j , fv =
∑
k

rk(v)Pkf .

Changing the order of integration, we have

‖Sνb∗ψ`f‖qq ≤ C
∫

[0,1]3
‖Kt,u ∗ fv‖qq dt du dv .

The proof of Lemma 2.1 shows that the Lq-operator norms of the Kt,u are
uniformly bounded by a constant times 22`ε. Hence,

‖Sνb∗ψ`f‖qq ≤ C22`ε

∫
[0,1]

‖fv‖qq dv .

Changing the order of integration again, replacing the Lq-norm on [0, 1] with the
L2-norm, and using (2.4), we obtain the conclusion for νb.

For νg it is sufficient to observe that Sνg∗ψ`f ≤ Sν∗ψ`f + Sνb∗ψ`f . �

We shall now improve the estimate on Sνg∗ψ` , using the uniform decay of ν̂g(ξ)
as ξ goes to infinity. In fact, as we already observed, ν̂ satisfies (1.3); hence,

(2.5) |ν̂g(ξ)| ≤ C
(
1 + |ξ|)−δ .

We shall assume, w.l.o.g., that δ < 1.

Lemma 2.3. ‖Sνg∗ψ`f‖2 ≤ A2−`δ/4‖f‖2, with A depending only on δ and C.

Proof. By the Plancherel formula, we have to prove that

(2.6)
∑
i,j∈Z

∣∣ν̂g(2iξ1, 2jξ2)
∣∣2∣∣ψ̂`(2iξ1, 2jξ2)

∣∣2 ≤ A2−`δ/2 .

By (2.2),

ν̂(ξ) =
∫

(e−ix1ξ1 − 1)(e−ix2ξ2 − 1) dν(ξ) .

Since ν is supported on the unit square,

|ν̂(ξ)| ≤ C|ξ1||ξ2| .
Combining this with (2.5), we obtain that, if 0 < ε < 1,

|ν̂g(ξ)| ≤ C
|ξ1|ε|ξ2|ε

(1 + |ξ|)δ(1−ε) .

If ` ≥ 1, then
|ψ̂`(ξ)| = |ψ̂1(2−(`−1)ξ)| ≤ C2−`ε|ξ|ε ,

because ψ̂1(0) = 0. Hence,

|ν̂g(ξ)ψ̂`(ξ)| ≤ C2−`ε
|ξ1|ε|ξ2|ε

(1 + |ξ|)δ(1−ε)−ε .
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We can assume that |ξ1| ∼ |ξ2| ∼ 1 in (2.6). Then we simply have to observe
that, taking ε = δ/4, the exponent in the denominator is bigger than δ/2 = 2ε, and
that the series ∑

i,j∈Z

22εi22εj

(1 + 2i + 2j)2α

is convergent for α > 2ε. �

Interpolating between the L2-estimate in Lemma 2.3 and the Lq-estimate in
Lemma 2.2 for Sνg∗ψ` , we obtain that for every q ∈ (1,∞) there is an εq > 0 such
that ‖Sνg∗ψ`f‖q ≤ A2−`εq‖f‖q. Therefore,

Proposition 2.4. Sνg is bounded on Lq for 1 < q ≤ 2.

In order to complete the proof of Theorem 2, we may just observe that we are in
the hypotheses of Theorem B in [C] (attributed to M. Christ). We give, however,
an independent proof, based on the extrapolation argument in [NSW], adapted to
S̃νb .

End of the proof of Theorem 2. The starting point is that S̃νb is bounded on L2. In
fact, assumption (ii) implies that M0

ν0,k
is uniformly bounded on Lq independently

of k. Therefore, ∫
S̃νbf(x)2 dx =

∑
k∈Z

∫
sup
i∈Z

∣∣νi,i+k ∗ Pkf(x)|2 dx

=
∑
k∈Z

∫ (
M0
ν0,k

Pkf(x)
)2
dx

≤ C
∑
k∈Z

∫ (
Pkf(x)

)2
dx

= C‖f‖22 .

In general, the boundedness of S̃νb on some Lq implies, by Proposition 2.4, the
boundedness of Mν on the same Lq, and hence that of Mµ.

Assume now that Mµ is bounded on some Lq, and consider the inequality

(2.7)
∥∥∥∥(∑

k∈Z
M0
µ0,k

fk(x)r
)1/r∥∥∥∥

s

≤ C
∥∥∥∥(∑

k∈Z
|fk(x)|r

)1/r∥∥∥∥
s

.

This is equivalent to saying that the linear operator

T : {fk} 7−→ {µi,i+k ∗ fk}

is bounded from Ls(`r) to Ls
(
`r(`∞)

)
.

Since µ is a positive measure and we are assuming that Mµ is bounded on Lq,
(2.7) is verified for r =∞ and s = q. In addition, it is verified for r = s > 1 by the
uniform boundedness of M0

µ0,k
. Hence, T is bounded from Lq(`∞) to Lq

(
`∞(`∞)

)
and from Lr(`r) to Lr

(
`r(`∞)

)
for r > 1. By interpolation, (2.7) holds for r = 2

and 1
q <

1
s <

1
2

(
1 + 1

q

)
.
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The same inequality holds with µ replaced by σ⊗ϕ, ϕ⊗σ and ϕ⊗ϕ, and hence
with µ replaced by ν.

Taking fk = Pkf , this implies that S̃νb is bounded on the same spaces Ls. Since
each q ∈ (1, 2) can be reached by iteration in a finite number of steps, we conclude
that Mµ is bounded on Lq for every q > 1. �

3. Proof of Theorem 1

The starting point for the proof of Theorem 1 is Lemma 2.5 in [CRW1]. We give
a slightly different (and less complete) formulation of it.

Lemma 3.1. For every n there are constants A(n) ≥ 1 and B = B(n) with the
following property: if p(t) is a monic real polynomial of degree n such that p(0) = 0,
A ≥ A(n), and m ∈ Z is such that no complex zero of p lies in the strip

{z : Am−1 ≤ |z| ≤ Am+2},
then the following properties hold:

(i) p has constant sign and is strictly monotonic on Im = [Am, Am+1];
(ii) |p(t)| ≤ Bt|p′(t)| for t ∈ Im;
(iii) maxt∈Im |p(t)| ≤ Bmint∈Im |p(t)|.

Observe that we are allowed to replace the polynomial p(t) in (1.2), when con-
venient, by p̃(t) = bp(at), with a, b > 0. In fact, the identity

Mp̃f(x) = Mpfb

(
x

b

)
,

where fb(x) = f(bx), implies that Mp and Mp̃ have the same operator norm. In
particular, we can assume that p is monic.

Also, the maximal function Mp can be replaced by

M̃pf(x1, x2) = sup
m∈Z

M̃p,mf(x1, x2)

where

(3.1) M̃p,mf(x1, x2) = sup
i,j∈Z

A−m
∫
Im

∣∣f(x1 − 2ip(t), x2 − 2jp(t)
)∣∣ dt .

Let Im be one of the “good” dyadic intervals satisfying properties (i)–(iii) in
Lemma 3.1. Making the change of variable u = p(t), we have

A−m
∫
Im

∣∣f(x1 − 2ip(t),x2 − 2jp(t)
)∣∣ dt

≤ A
∫ Am+1

Am

∣∣f(x1 − 2ip(t), x2 − 2jp(t)
)∣∣ dt

t

≤ AB
∫
Im

∣∣f(x1 − 2ip(t), x2 − 2jp(t)
)∣∣ |p′(t)|
|p(t)| dt

= AB

∫
p(Im)

∣∣f(x1 − 2iu, x2 − 2ju
)∣∣ du
|u| .

By (i) and (iii), the interval p(Im) is contained in an interval of the form
±[αm, Bαm], with αm > 0. Therefore, assuming w.l.o.g. that p is positive on
Im,
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A−m
∫
Im

∣∣f(x1 − 2ip(t),x2 − 2jp(t)
)∣∣ dt ≤ AB ∫ Bαm

αm

∣∣f(x1 − 2iu, x2 − 2ju
)∣∣ du

u

≤ AB

αm

∫ Bαm

αm

∣∣f(x1 − 2iu, x2 − 2ju
)∣∣ du

≤ AB2

Bαm

∫ Bαm

0

∣∣f(x1 − 2iu, x2 − 2ju
)∣∣ du .

This shows that the contribution to M̃pf given by the “good” intervals is con-
trolled by the maximal function in lacunary directions

Mf(x1, x2) = sup
h>0 , k∈Z

1
h

∫ h

0

∣∣f(x1 − t, x2 − 2kt
)∣∣ dt

of [NSW]. Since M is bounded on Lq for q > 1 [NSW], it remains to consider the
contribution from the “bad” intervals. Since there are at most 3n of these intervals,
it is enough to prove that M̃p,m acts on Lq for q > 1, with operator norm bounded
independently of the polynomial p and integer m.

We claim it suffices to show that there exists a constant Cq,n such that

sup
m∈Z
‖M̃p,mf‖q ≤ Cq,n‖f‖q

for every f ∈ Lq and monic polynomial p of degree n satisfying p(0) = 0 and

(3.2) A−n ≤ max
t∈Im

|p(t)| ≤ 1.

To see this, suppose p is an arbitrary monic polynomial with p(0) = 0, and choose
k ∈ Z such that

A−n ≤ max
t∈Im

A−kn|p(t)| ≤ 1.

Let p
∼

(t) = A−knp(Akt). Since

A−n ≤ max
t∈Im−k

|p
∼

(t)| ≤ 1,

the (Lq, Lq) operator norm of M̃p
∼
,m−k is at most Cq,n. Since

M̃p,mf(x) = M̃p
∼
,m−kfAk(A−kx),

M̃p,m also acts on Lq with bounds that are independent of m and p.
Consequently, we need to investigate the measure µ given by∫

fdµ = A−m
∫
Im

f(p(t), p(t))dt

where p satisfies (3.2). This measure is supported on the segment {(u, u) : −1 ≤
u ≤ 1} and, up to a factor depending on A, is a probability measure.

The proof of Theorem 1 will be complete once we show that the operator Mµ

is bounded on Lq for q > 1 with bounds that depend only on n and q. We apply
Theorem 2.

The Fourier transform of µ is

(3.3) µ̂(ξ1, ξ2) = A−m
∫
Im

e−i(ξ1+ξ2)p(t) dt .
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Lemma 3.2. There is an integer k ∈ {1, 2, . . . , n} such that, if A is large enough
(depending on n), then∣∣µ̂(ξ1, ξ2)

∣∣ ≤ CAn(1 + |ξ1 + ξ2|
)−1/k

,

with C independent of p and m.

Proof. Let t1 = 0, t2, . . . , tn be the zeroes of p, ordered so that 0 ≤ |t2| ≤ · · · ≤ |tn|.
Let m′ be the smallest integer greater than m such that Im′ does not contain any
of the |tj |. Then m′ ≤ m + n, so that Am

′
is comparable with Am. Also let k be

such that |tj | < Am
′

for j ≤ k and |tj | > Am
′+1 for j > k.

The kth derivative of p equals

p(k)(t) =
n∏

j=k+1

(t− tj) + r(t) ,

where r(t) is a sum where each term is a product of n − k factors t − tj , with at
least one of the j less than or equal to k.

If t ∈ Im, |t − tj | < 2Am
′

for j ≤ k, and |t − tj | > (1 − A−1)|tj | > (A − 1)Am
′

for j > k. Therefore, if A is large enough,∣∣p(k)(t)
∣∣ ≥ C n∏

j=k+1

|tj | ,

for t ∈ Im.
By van der Corput’s lemma,

A−m
∣∣∣∣ ∫

Im

e−iλp(t) dt

∣∣∣∣ ≤ CA−m( n∏
j=k+1

|tj |
)−1/k

|λ|−1/k .

If t̄ ∈ Im is such that |p(t̄)| ≥ A−n, we have

A−n ≤
∣∣p(t̄)∣∣ ≤ 2nAkm

′
n∏

j=k+1

|tj | .

Therefore,
∏n
j=k+1 |tj | ≥ CA−nA−km, so that

A−m
∣∣∣∣ ∫
Im

e−iλp(t) dt

∣∣∣∣ ≤ C|λ|−1/kAn ,

with C independent of p and m. Since the left-hand side is trivially bounded by 1,
this concludes the proof. �

Thus, µ̂ clearly satisfies hypothesis (i) of Theorem 2. It remains to prove that
the one-parameter maximal operator M0

µ in (1.4) is bounded on Lq for q > 1 with
bounds that only depend on n and q. This follows from a transference argument:
because µ is supported on a line, it is sufficient to consider the maximal operator
on R,

Mµ̃g(x) = sup
i∈Z
|g ∗ µ̃i(x)| ,

where ∫
R
g dµ̃ = A−m

∫
Im

g
(
p(t)

)
dt .

By Lemma 3.2,
∣∣̂̃µ(η)

∣∣ ≤ C(1 + |η|
)−1/k, with 1 ≤ k ≤ n and C depending only

on n. The conclusion follows from Theorem A in [DR].
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Remark. In [CRW1] the authors show that the “supermaximal function” on the
real line

f(x) 7−→ sup
h>0

deg p≤k , p(0)=0

1
h

∫ h

0

∣∣f(x− p(t))∣∣ dt
is of restricted weak type k − k and hence of strong type q − q for q > k.

The proof can be adapted to show that the operator

Mkf(x) = sup
deg p≤k , p(0)=0

Mpf(x)

= sup
h>0 , j∈Z

deg p≤k , p(0)=0

1
h

∫ h

0

∣∣f(x1 − p(t), x2 − 2jp(t)
)∣∣ dt

is bounded on Lq(R2) for q > k.
In fact, if f is the characteristic function of a measurable set in the plane, the

same proof as in [CRW1] gives the pointwise domination

Mkf(x) ≤ C
(
M∗fk(x)

)1/k
,

where M∗ is the maximal function in dyadic direction of [NSW]. This implies that
Mk is of restricted weak type q − q for q > k, and hence of strong type.
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