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We propose a spatial analog of the Berry’s phase mechanism for the coherent manipulation of states of
nonrelativistic massive particles moving in a two-dimensional landscape. In our construction the temporal
modulation of the system Hamiltonian is replaced by a modulation of the confining potential along the
transverse direction of the particle propagation. By properly tuning the model parameters the resulting
scattering input-output relations exhibit a Wilczek-Zee non-Abelian phase shift contribution that is
intrinsically geometrical, hence insensitive to the specific details of the potential landscape. A theoretical
derivation of the effect is provided together with practical examples.
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In recent years a strong demand for developing quantum
engineering [1–3] procedures has been fostered by the huge
technological development requiring faster and more effi-
cient circuits and transistors, but also by the first prototypes
of quantum computers. As the main resource for quantum
supremacy is ultimately embodied by the amount of
quantum coherence one can store on a system, the ability
to design control schemes that allow for its manipulation
becomes of paramount importance [4]. A possibility in this
direction is presented by applications of the non-Abelian
generalization [5] of the Berry phase mechanism [6]. In
these approaches [7–17] a target (state-independent)
transformation is implemented by driving the system
Hamiltonian along a closed path in the control parameter
space either adiabatically, as in the original proposal [6], or
nonadiabatically [18]. The resulting operation (typically
referred to as holonomy) has an intrinsic geometrical
character [19,20] that makes it resilient to local fluctuations
[21,22], hence offering an attractive alternative to quantum
error-correction techniques [23,24].
Inspired by the above approaches we present here a

proposal for the coherent manipulation of a nonrelativistic
massive particle A through holonomies obtained by prop-
erly engineering the potential landscape it experiences
when traveling through a scattering region. Although the
scheme can be in principle applied to arbitrary spatial
configurations, we shall focus on 2D geometries (see
Fig. 1) where desired potential profiles with a high degree
of accuracy and low numbers of impurities can be easily
achieved in semiconductor platforms, either by direct
nanofabrication [25–29] or via external gate potential
techniques. As a further simplification, the kinetic energy
of the incoming particle will be taken to be the largest of the
model. While not being essential, this assumption allows us
to isolate in the solution of the Schrödinger equation the

geometric term (the holonomy) from an irrelevant dynami-
cal phase.
Model.—Let A be a nonrelativistic particle of mass m,

propagating in the xy plane, under the action of a scattering
potential Vðx̂; ŷÞ, so that the resulting Hamiltonian is
Ĥ ≔ p̂2

x=2mþ p̂2
y=2mþ Vðx̂; ŷÞ. As shown in Fig. 1, we

assume A to enter the setup with assigned energy E
corresponding to an input state that, far away from the
scattering center in the negative y direction, is described
by an impinging plane wave with assigned momentum
p0 > 0 which sets the largest energy scale in the system
[i.e., Ekin ≔ p2

0=ð2mÞ ≃ E]: adopting the scattering formal-
ism, we analyze the dynamics of the particle by looking
for solutions of the time-independent Schrödinger equation
ĤjψEi ¼ EjψEi that are compatible with the chosen

FIG. 1. Pictorial representation of a 2D potential landscape. As
the particle A is moving forward along the longitudinal y axis, it
sees a varying potential along the transverse axis x defined by the
scattering potential Vðx̂; ŷÞ.
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boundary conditions. Moving to a representation with
respect to the y coordinate, we hence cast this equation
in the form

−
ℏ2

2m
∂2
yjψEðyÞi þ ĥyðx̂ÞjψEðyÞi ¼ EjψEðyÞi; ð1Þ

with jψEðyÞi ≔ hyjψEi being the transverse wave vector
component for fixed longitudinal position (jyi being the
eigenstate of the position operator ŷ). In Eq. (1) the self-
adjoint operator ĥyðx̂Þ ≔ p̂2

x=2mþ Vyðx̂Þ is the transverse
Hamiltonian, where Vyðx̂Þ ≔ Vðx̂; yÞ is obtained by replac-
ing in Vðx̂; ŷÞ the operator ŷ with its eigenvalue y.
Therefore, from now on y will be treated as a real variable,
while x̂ is still an operator. Without loss of generality, in
what follows we shall assume the parametric dependence
upon y of Vyðx̂Þ to be mediated via a collection of (real)
control functions, which we represent collectively as

components of the vector R⃗y ≔ ðRð1Þ
y ; Rð2Þ

y ;…Þ, i.e.,

Vyðx̂Þ ¼ V0ðx̂; R⃗yÞ: ð2Þ

For the sake of simplicity, we shall then assume ĥyðx̂Þ to
have discrete spectrum, for instance, forcing the potential
Vyðx̂Þ to induce local transverse confinement for all values
of y. Thus, for fixed y, we identify the eigenvectors of ĥyðx̂Þ
with the discrete orthonormal set fjϕðlÞ

y i;l ¼ 0; 1; 2;…g,
the associated eigenvalues being the quantities EðlÞ

y ≔
ðℏ2=2mÞϵðlÞy , which we assume to be in increasing order
with respect to the index l. Decomposing hence jψEðyÞi as
jψEðyÞi ¼

P
l C

ðlÞ
y jϕðlÞ

y i with CðlÞ
y being complex ampli-

tudes, and introducing the rescaled energy ϵ ≔ ð2m=ℏ2ÞE,
without any approximations, as shown in Sec. II of
Supplemental Material (SM) [30], we can recast Eq. (1) as

ð∂y þ KyÞ2Cy þ ðϵ −ΩyÞCy ¼ 0; ð3Þ

where Cy is the column vector of components ðCð0Þ
y ;

Cð1Þ
y ; Cð2Þ

y ;…Þ and Ωy is a Hermitian matrix with elements

½Ωy�ll0 ≔ ϵðlÞy δll0 , δll0 being the Kronecker delta. In the
above expression Ky ¼ −K†

y is a real anti-Hermitian matrix
which ultimately triggers the coupling among the various
components of Cy with an intensity that scales with the

inverse of the gaps of the associated local energies EðlÞ
y , i.e.,

½Ky�ll0 ¼ hϕðlÞ
y j∂yϕ

ðl0Þ
y i¼ hϕðlÞ

y jð∂yVyðx̂ÞÞjϕðl0Þ
y i

Eðl0Þ
y −EðlÞ

y

ð1−δll0 Þ;

ð4Þ

see Secs. I and II of the SM for details [30]. As in Refs. [31–
34], the presence of Ky can be thought as arising via

minimal coupling from a non-Abelian vector potential:
accordingly it can be gauged away through the action of the
unitary mapping induced by the path-ordered exponential
UY0→y ≔ P exp½− R y

Y0
Ky0dy0�, Y0 being the longitudinal

coordinate defining the beginning of the scattering region.
Specifically, by setting Cy ¼ UY0→yC̃y we can rewrite
Eq. (3) as the following spinor 1D Schrödinger equation,

∂2
yC̃y þ ðϵ − Ω̃yÞC̃y ¼ 0; ð5Þ

with Ω̃y ≔ U†
Y0→yΩyUY0→y holding the same spectrum of

Ωy and playing the role of an effective potential. For
sufficiently smooth potential modulations and assuming ϵ
(hence the rescaled kinetic component of the incoming
particle Ekin) to be the largest energy scale in the system,
Eq. (5) admits solutions which, according to the Wentzel-
Kramers-Brillouin (WKB) approximation method [35],

read C̃y ¼ WðþÞ
y AþWð−Þ

y B, with the vectors A, B being
determined by the boundary conditions of the problem and

with the matricesWð�Þ
y describing, respectively, the left-to-

right and right-to-left propagations of the particle in the
sample; see Sec. III of the SM for details [30]. In particular,

in the very large ϵ limit, i.e., ϵ ≫ ϵðlÞy for all y and for all the

energy levels ϵðlÞy involved in the process, we can safely

conclude that all ϵðlÞy will yield approximately the same
phase whose leading contribution can be expressed as

Wð�Þ
y ≃ e�i

ffiffi
ϵ

p ðy−Y0Þ. In other words, Wð�Þ
y will explicitly

depend upon the length of the integration domain, and as it
will be clarified in the next section, contribute to the final
solution with an irrelevant global phase [see Eq. (6)].
Holonomy.—Consider now the case where the particle A

propagates from left to right in a scattering region located in
the spatial domain I ≔ ½Y0; Y�. Setting A ¼ CY0

, B ¼ 0

we can then express the solution of Eq. (3) at y ¼ Y as

CY ¼ UY0→YW
ðþÞ
Y CY0

; ð6Þ

which, excluding the presence of the counterpropagating

contributionWð−Þ
Y , formally accounts for neglecting reflec-

tion effects induced by the scattering region (a regime we
can always achieve for large enough values of ϵ). The term
UY0→Y has a purely holonomic character, introducing a
geometrical non-Abelian phase shift in the model. To see
this explicitly, notice that from Eq. (2) it follows that the y

functional dependence of the vectors jϕðlÞ
y i is fully medi-

ated by the vector R⃗y, i.e.,

jϕðlÞ
y i ¼ jϕðlÞ

R⃗y
i: ð7Þ

Hence the matrix Ky can be equivalently expressed as
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Ky ¼ K⃗ðR⃗yÞ ·∂yR⃗y; ½K⃗ðR⃗Þ�ll0 ≔ hϕðlÞ
R⃗
j∇⃗R⃗ϕ

ðl0Þ
R⃗

i; ð8Þ

which formally represents the Berry connection of the
model [6]. Assume hence that the trajectory R ≔
fR⃗ygy∈½Y0;Y� followed by the vector R⃗y in the control

parameter’s space forms a closed curve (i.e., R⃗Y ¼ R⃗Y0
).

We can then use Eq. (8) to write UY0→Y as a path-ordered

integral of the vector field K⃗ðR⃗Þ along R, i.e.,

UY0→Y ¼ UðRÞ ≔ P exp

�
−
I
R
dR⃗ · K⃗ðR⃗Þ

�
; ð9Þ

which no longer depends upon the “speed” ∂yR⃗ of the
longitudinal variation of the potential, making manifest the
geometrical nature of the resulting operation. Notice that
invoking the non-Abelian version of the Stokes theorem
[36], the above expression can also be cast into a surface
integral associated with the curvature tensor of K⃗ðR⃗Þ; see
Ref. [37], and references therein. The resulting formula,
while being more evocative, is possibly less informative,
and we report it only in Sec. IV of the SM [30].
Two-dimensional models.—To be more quantitative we

now focus on the case where the dynamics can be reduced
to a twofold Hilbert subspace spanned, say, only by the
eigenstates jϕð0Þ

y i, jϕð1Þ
y i of the transverse Hamiltonian

ĥyðx̂Þ. From Eqs. (3) and (4) this is guaranteed provided

that two conditions are satisfied: (i) Δy ≔ ϵð1Þy − ϵð0Þy is the
smallest energy gap for all y, such that ½Ky�ll0 results
negligible for all the other choices of l;l0, and (ii) Vyðx̂Þ is
a sufficiently slowly varying function of y so as to avoid
unwanted couplings with other energy levels (a condition
which is in agreement with the WKB approximation we
already assumed). Accordingly, we can now write
Ωy ≔ ωyI − Δyσ3=2, where I is the 2 × 2 identity matrix
while

σ3 ≔
�
1

0

0

−1
�
;

and where ωy ≔ ðϵð1Þy þ ϵð0Þy Þ=2. Most importantly, Ky

reduces to a 2 × 2 matrix proportional to the second
Pauli matrix

σ2 ≔
�
0

i
−i
0

�
;

i.e.,

Ky ¼ iλyσ2; λy ¼ λ�y ≔ hϕð0Þ
y j∂yϕ

ð1Þ
y i; ð10Þ

which produces trivial autocommutators ½Ky; Ky0 � ¼ 0 for
all y, y0. Accordingly, the expression for UY0→y simplifies to
the following SU(2) rotation, UY0→y ¼ exp½−iαyσ2�, where

αy ≔
R y
Y0
dy0λy0 . In particular, for y ¼ Y, this allows us to

write Eq. (9) as

UðRÞ ¼ e−iασ2 ; ð11Þ
with

α ≔
I
R
dR⃗ · λ⃗ðR⃗Þ ¼

Z
S
dS⃗ · ½∇⃗R⃗ × λ⃗ðR⃗Þ�; ð12Þ

where exploiting Eq. (7) we write λ⃗ðR⃗Þ ≔ hϕðl0Þ
R⃗

j∇⃗R⃗jϕðl1Þ
R⃗

i,
and where in the second identity, following from the
standard (Abelian) version of the Stokes theorem
[37,38], the integration is performed on a regular surface
S of the control parameter space which admits R as
bounding curve. Inserting this into Eq. (5) finally gives

∂2
yC̃y þ ½ðϵ − ωyÞI þ Δyσ̃3=2�C̃y ¼ 0; ð13Þ

with σ̃3 ¼ eiαyσ2σ3e−iαyσ2 . Assuming now, as for the
general case discussed in the previous section, ϵ to be
the largest energy scale in the system, i.e., imposing
ϵ ≫ jωyj, jΔyj, the above equation can be integrated under

WKB approximation yielding Wð�Þ
Y ≃ e

�i
R

Y

Y0

ffiffiffiffiffiffiffiffiffi
ϵ−ωy0

p
dy0
,

which, although constituting a refinement of the solution

Wð�Þ
Y ≃ e�i

ffiffi
ϵ

p ðY−Y0Þ, still acts on CY0
as an irrelevant global

phase shift. Accordingly, from Eq. (6) we can conclude that
when emerging from the scattering region the transverse
component of the wave function of A gets modified via the
holonomic rotation (11), resulting in the following one-
qubit gate transformation:

jψEðY0Þi ¼ ajϕð0Þ
y i þ bjϕð1Þ

y i

→ jψEðYÞi ≃ e
i
R

Y

Y0

ffiffiffiffiffiffiffiffiffi
ϵ−ωy0

p
dy0 ½ða cos α − b sin αÞjϕð0Þ

y i
þ ðb cos αþ a sin αÞjϕð1Þ

y i�; ð14Þ

a and b being arbitrary complex amplitudes. As a final
remark, notice that, since α does not bear any functional
dependence upon the input energy ϵ, the effect can be easily
generalized to the cases where the longitudinal component
of the incoming wave function of A is a wave packet given
by the superposition of plane waves involving different
kinetic energies, as long as the latter are much larger than
the energy gap between the two levels on which the
holonomy acts.
As already observed, having ½Ky;Ky0 � ¼ 0 greatly sim-

plifies the calculations. The drawback is that under this
condition all the generated holonomy will commute, hence
allowing us only to span an Abelian subgroup of all
possible unitaries of the system. As discussed explicitly
in Sec. V of the SM [30], this limitation however can be
overcome by concatenating in series different modulation
regions where the spatial potential selectively couples
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different pairs of energy levels, e.g., first ϵð0Þy and ϵð1Þy then

ϵð0Þy and ϵð2Þy etc., introducing hence extra generators for the
holonomy which do not commute.
Example.—To test the construction described in the

previous section, we consider the case of a structured
infinite potential well VyðxÞ ¼ VR⃗y

ðxÞ characterized by a
two-dimensional control vector R⃗y with Cartesian compo-

nents Rð1Þ
y ≔ LðyÞ and Rð2Þ

y ≔ wðyÞ associated with two
positive spatial parameters. Specifically, we assume the
width of the infinite well to be variable and expressed as
DðyÞ ¼ aþ LðyÞ þ wðyÞ, with a being a fixed constant.
Inside the well we also assume to add a finite potential
barrier of width LðyÞ having constant hight V0 ≔
ð9π2ℏ2Þ=2ma2 and located at distance a=2 from the left-
most infinite wall; see Fig. 2(a). For wðyÞ ¼ 0, VyðxÞ
corresponds to a stretchable potential [39] exhibiting a third
energy level eigenvalue constantly equal to V0 which does
not depend upon the selected value of LðyÞ. The energy
landscape associated with the first three levels obtained by
solving Eq. (1) is reported in Fig. 2(b) as a function of the

control parameters. We notice that as long as we prevent the
ratio wðyÞ=a to be above ∼0.05 the energy gap between
the first two levels is much smaller than the one between
these levels and the third, so that we are ensured that the
matrix elements ½Ky�ll0 are negligible for l;l0 > 2; see
Fig. 3. Moreover, in this region the energy gap between the
ground state and the first excited level is also very small,
ensuring that under WKB approximation the dynamical
contribution to the system evolution will not add extra
coupling terms that compete with the holomony. Therefore,
following the analysis of the previous section, we can
safely consider the Hilbert space as twofold and compute
the holonomy as in Eq. (14). We also observe that for the
selected model, the second component of the vector λ⃗ðR⃗Þ
entering Eq. (12) is always identically null, yielding

λ⃗ðR⃗Þ ¼ ðhϕð0Þ
R⃗
j∂Lϕ

ð1Þ
R⃗
i; 0Þ. Indeed we have hϕð0Þ

R⃗
j∂wϕ

ð1Þ
R⃗
i ¼

0 as it depends on the variation of the wave functions at the
extremal point x ¼ aþ Lþ w where the boundary con-
ditions force both the wave functions to be exactly null.
Moreover, in Sec. VI of SM [30] we have shown that the
only nonzero component of λ⃗ðR⃗Þ can be expressed as

hϕð0Þ
R⃗
j∂Lϕ

ð1Þ
R⃗
i ¼ −

9π2

a2
ϕ�ð0Þ
R⃗

ða
2
þ LÞϕð1Þ

R⃗
ða
2
þ LÞ

ϵð1Þ
R⃗

− ϵð0Þ
R⃗

; ð15Þ

(a)

(b)

FIG. 2. (a) Sketch of the structured infinite well potential
VyðxÞ ¼ VR⃗y

ðxÞ discussed in the text. The model is characterized

by a two-dimensional control vector R⃗y ¼ (LðyÞ; wðyÞ) with the
positive quantities LðyÞ and wðyÞ carrying the y dependence. For
assigned R⃗, VR⃗ðxÞ exhibit a potential step of constant height
V0 ¼ 9π2ℏ2=ð2ma2Þ and width L located at fixed distance a=2
from the left border of an infinite well that contains it. The total
length of the infinite well is also variable and equal to
D ¼ aþ Lþ w. (b) Plot of the first three energy levels E0,
E1, and E2 of the model [see Eq. (1)] as a function of L and w for
fixed a. Here the energies are measured in unit of ℏ2=ð2ma2Þ
while the controls are in units of a.

FIG. 3. Plot of jhϕðlÞ
R⃗
j∂Lϕ

ðl0Þ
R⃗

ija2 in the control plane ðL;wÞ:
ðl;l0Þ ¼ ð0; 1Þ (yellow surface) and (1,2),(0,2) (blue surface, the
differences between the two being not observable). Inset: Plot of
the matrix elements jKll0 j when moving along a rectangular path
R with R⃗in ¼ ð0.35a; 0Þ and R⃗fin ¼ ð0.5a; 0.02aÞ, see inset of
Fig. 4, s being the length of the path along the trajectory
expressed in unit of a. When w is changed, all the matrix
elements are null, corresponding to the intervals ½0; 1=4� and
½1=2; 3=4�, while as L is changed (corresponding to the intervals
½1=4; 1=2�; ½3=4; 1�), we can observe how ½K�01 is always far
larger than ½K�12 and ½K�02.
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where for l ¼ 0, 1, ϕðlÞ
R⃗
ðxÞ and ϵðlÞ

R⃗
represent the lth

eigenfunction and the associated (rescaled) eigenenergy
of the Hamiltonian p̂2

x=2mþ VR⃗ðx̂Þ. Hence the geometric
phase (12) computed along the rectangular paths shown in
the inset of Fig. 4 can be expressed as α ¼ θðwfinÞ − θðwinÞ,
with θðwÞ being the line integral defined as θðwÞ ≔ ð9π2=
a2Þ R Lfin

Lin
dLϕ�ð0Þ

R⃗
ða=2þ LÞϕð1Þ

R⃗
ða=2þ LÞ=ðϵð1Þ

R⃗
− ϵð0Þ

R⃗
Þ. As

shown in Fig. 4, though moving in a small region of
parameters space, we are able nonetheless to obtain a wide
range of values of α.
Conclusions and outlook.—Exploiting the spatial analog

of Berry phase we have shown how it is possible through
spatial potential engineering to induce a geometrical phase
on the internal state of a traveling particle. In our analysis
we assume that the kinetic energy of the particle is much
larger than the relevant energy levels of the system and the
energy scale associated with the potential modulation. This
allows us to separate two main contributions in the solution
of the time-independent Schrödinger equation: one which
has a purely holonomic character, and a dynamical one
which amounts to an irrelevant global phase. The proposed
scheme might be envisioned as a useful resource in the
context of solid-state devices quantum computing, where
potential profiles engineering has nowadays reached a
sufficient level of precision needed for such applications.
On the theoretical side it would be interesting to investigate
how the presence of dissipation and particle interactions
influence the appearance of a geometrical phase.
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