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ABSTRACT

A resolution-independent data-driven subgrid-scale model in coarsened fluid descriptions is proposed. The method enables the inclusion of
high-fidelity data into the coarsened flow model, thereby enabling accurate simulations also with the coarser representation. The small-scale
model is introduced at the level of the Fourier coefficients of the coarsened numerical solution. It is designed to reproduce the kinetic energy
spectra observed in high-fidelity data of the same system. The approach is based on a control feedback term reminiscent of continuous data
assimilation implemented using nudging (Newtonian relaxation). The method relies solely on the availability of high-fidelity data from a sta-
tistically steady state. No assumptions are made regarding the adopted discretization method or the selected coarser resolution. The perfor-
mance of the method is assessed for the two-dimensional Euler equations on the sphere for coarsening factors of 8 and 16 times. Applying
the method at these significantly coarser resolutions yields good results for the mean and variance of the Fourier coefficients and leads to
improvements in the empirical probability density functions of the attained vorticity values. Stable and accurate large-scale dynamics can be
simulated over long integration times and are illustrated by capturing long-time vortex trajectories.

VC 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0156942

I. INTRODUCTION

Two-dimensional incompressible hydrodynamics models are
fundamental for studying physical phenomena in atmospheric and
oceanic flows. Typical examples include the two-dimensional Euler
equations, quasi-geostrophic (QG) equations, and (rotating) shallow
water equations. A characteristic feature of these flows is the formation
of both large vorticity structures through the inverse energy cascade
and small-scale vorticity filaments through the enstrophy cascade.1 In
the absence of large-scale dissipation, energy accumulates in the lowest
wavenumbers, which leads to large-scale energy condensates.2 An
understanding of such large-scale structures finds meaningful applica-
tions in geophysical flows, which are often dominated by large vorti-
ces.3 This leads to an energy spectrum with two scaling laws, where
the large scales follow a scaling steeper than l�5=3 often observed in
two-dimensional turbulence3 and the small-scale energy is distributed
following an l�1 scaling.2 These energy spectra are often compared to

the Nastrom–Gage kinetic energy spectrum at the atmospheric meso-
scale.4 In realistic conditions, the energy spectrum extends over several
orders of magnitude, making it computationally infeasible to fully
resolve all scales that are present in the flow. Simplifications are
required, either by reducing the complexity of the underlying mathe-
matical model5 or by reducing the spatial or temporal resolution with
which the dynamics are resolved.6 In this paper, we will focus on high-
fidelity coarsening of the two-dimensional Euler equations on the
sphere by applying an online/offline approach to obtain accurate
coarse-grained numerical solutions of statistically steady states. In par-
ticular, explicit information on well-resolved dynamics is obtained
from high-resolution simulations in the offline phase, which is applied
in an online control feedback model for accurate coarse-grained
simulations.

There is considerable interest in achieving accurate numerical
solutions of fluid flows at reduced computational costs.7 This forms
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the main challenge of large eddy simulation (LES), which aims to pro-
vide skillful large-scale predictions of complex flows by numerically
solving spatially filtered momentum equations. The filter may be
defined explicitly by the user, typically by imposing a filter width D
that decomposes the prognostic variables into filtered large-scale and
residual small-scale components. The filter can also be defined implic-
itly by applying discrete operators on coarse computational grids.8,9

Often, a model term is included to compensate for unresolved dynam-
ics due to coarsening to retain a sufficiently detailed description of tur-
bulent flows at high Reynolds numbers.10–14 Coarsening can also
implicitly provide this model term, which is embraced in implicit
LES.15,16 Implicit LES aims for high-fidelity coarsening by using the
truncation error of the numerical approximations, in the form of
numerical dissipation, in place of an explicitly defined turbulence
model. Recent studies have shown that under-resolved model-free
simulations yield good numerical results at reduced computational
costs in, e.g., turbulent boundary layers17 and industrial flow prob-
lems,18 and are supported by analysis of the dispersion and diffusion
effects owing to the underlying discretization.19,20

The growing availability of computational resources has facili-
tated the use of high-resolution direct numerical simulations (DNS) as
a source of data from which coarse-grid fluid models may be derived.21

Data-driven LES methods have successfully been developed in recent
years, for example, by using neural networks to compute a variable
eddy viscosity8 to approximate a reference kinetic energy spectrum22

or to model subgrid scale-scale forces.23 Other approaches have
focused on learning subgrid-scale models using as few tunable param-
eters as possible,24 leading to accurate models for selected quantities of
interest. Alternatively, approaches based on interpolation of small
high-resolution patches of the spatial domain25–27 and data-driven
residual modeling via global basis functions28 have also shown compu-
tational efficiency and accuracy in coarse-grained numerical solutions.

Data assimilation provides an alternative method to achieve
accurate coarse-grained results by combining predictions with real-
time observations. In continuous data assimilation (CDA), observa-
tional data are incorporated into the prediction, while the numerical
model is being integrated in time.29–31 Specifically, the difference
between the numerical prediction and the corresponding observation
determines a nudging term that is added to the governing equations.
Studies on nudging of dissipative fluid models have shown that a range
of nudging strengths may be chosen that all yield an accurate coarse-
grained representation of the true solution.29,32,33 Adaptive nudging
strengths based on energy balance have also been proposed34 resulting
in faster convergence toward the reference compared to a simulation
that exploits a constant nudging strength. Data assimilation methods
also benefit from reduced computational costs of forecasting geophysi-
cal quantities. This can be achieved, for example, by forecasting time
series using long short-term memory neural networks.35 In this paper,
we achieve computational cost reduction by combining coarse numer-
ical discretization with a data-driven model term to compensate for
coarsening effects, inspired by data assimilation algorithms. Since data
assimilation methods often rely on observational data to achieve high-
fidelity coarsened solutions, the uncertainty originating from measure-
ment errors has to be taken into account, as well as possible accumula-
tion of discretization errors.36

Models of geophysical fluid flows often employ stochasticity as a
means to model uncertainty inherent to flows.37 Uncertainty arises

predominantly from differences in initial conditions, errors in mea-
surements, and model incompleteness. Low-dimensional models
describing qualitative features of geophysical fluid flows often serve as
a test bed for stochastic forcing. For example, stochastic forcing based
on subgrid data in the two-scale Lorenz ’96 system resulted in
improved forecasting skill compared to deterministic parametriza-
tions.38 The use of stochasticity also extends to describing experimen-
tal findings. For example, evidence has been provided that the
large-scale motion in fully developed turbulent swirling flow can be
accurately described by a low-dimensional stochastic system.39

Similarly, a recent study40 uses a low-dimensional system with sto-
chastically perturbed dynamics to represent the processes underlying
laboratory earthquake experiments. In these studies, the inclusion of
stochasticity allowed for recovering quantitative properties of the
observed systems. Ultimately, the exact way in which stochasticity is
included in numerical simulations remains a modeling choice and
may lead to qualitatively different effects on the dynamics.41

These approaches have also been applied successfully to more
complete geophysical models. Examples include the modeling of
uncertainty through Casimir-preserving stochastic forcing for the two-
dimensional Euler equations42–45 and energy-preserving stochastic
forcing in the quasi-geostrophic equations46 and rotating shallow
water equations.47 An alternative approach is based on statistics of
subgrid data that lead to a stochastic forcing and eddy viscosity, which
has been applied to the barotropic vorticity equation on the sphere.48

This approach was found to accurately model uncertainty and produce
energy spectra on coarse computational grids that closely match refer-
ence high-fidelity simulations at much higher resolutions.

In this paper, we propose an online data-driven standalone sto-
chastic model for coarse numerical simulations of statistically steady
states of the two-dimensional Euler equations on the sphere. Data of a
statistical equilibrium are extracted from an offline high-resolution
precursor simulation in the form of statistics of coefficients of spherical
harmonic modes and are included as a stochastic forcing term follow-
ing the formulation of the continuous-time limit of the 3D-Var algo-
rithm49 as presented in Ref. 50. Here, however, the parameters of the
forcing are determined heuristically and solely from the high-
resolution data and do not require additional explicit tuning, hence
leading to a data-driven model that requires few tunable parameters.
The parameter values do not follow from a minimization problem;
therefore, the proposed method does not constitute a variational data
assimilation method. Rather, a modeling term is added to the coars-
ened numerical simulation based on these a priori collected data, simi-
lar to data-driven LES. This term models the unresolved interactions
between the modes as a linear stochastic process for each spherical
harmonic coefficient separately and is designed to reproduce the
energy spectrum of the high-resolution simulation. Like CDA, the
model term is included as a feedback control term. This term nudges
the coarse grid solution toward an a priorimeasured statistically steady
state, leading to a standalone model that does not require additional
measurements during a simulation. We opt for the nudging strength
to be equal to the inverse of the characteristic timescale of the corre-
sponding spherical harmonic mode. This choice has the benefit that it
mimics the measured temporal correlation. The nudging procedure is
performed via a prediction–correction scheme in which we first fully
complete a time integration step involving all true fluxes and subse-
quently we apply the nudge as a correction to the predicted solution.
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This results in straightforward implementation in existing computa-
tional methods and leads to a numerical scheme of the same form as
the diagonal Fourier domain Kalman filter51,52 with prescribed gain.
Striking features of the high-fidelity reference solution were captured
in the coarser model using this stochastic model.

The paper is structured as follows. The two-dimensional Euler
equations and the adopted numerical method are introduced in Sec.
II. In Sec. III, we describe the model and focus, in particular, on how
the model parameters are specified. In Sec. IV, we define the reference
solution and apply the model at two coarse resolutions. The results are
assessed qualitatively and by means of statistics of Fourier coefficients.
Subsequently, we show that the model is capable of reproducing large-
scale vortex dynamics of the reference solution. Section V concludes
the paper and suggests directions for further research.

II. GOVERNING EQUATIONS AND NUMERICAL
METHODS

The model that will be studied in this work is given by the two-
dimensional Euler equations on the unit sphere S

2. These equations
arise as the two-dimensional Navier–Stokes equations in the inviscid
limit and describe vortex dynamics.1 In fact, the Euler equations
belong to a larger family of two-dimensional geophysical fluid models
that may be derived from a variational point of view.5,53 Starting from
the rotating shallow water equations, the quasi-geostrophic (QG)
equations and the Euler equations can be derived from a sequence of
simplifying assumptions. The QG equations are derived in a regime
where a balance between rotation and pressure exists.54 The Euler
equations instead follow by discarding effects induced by rotation and
the free surface. In addition, the Euler equations do not allow for inho-
mogeneous effects in the vertical direction. The dynamics are given in
streamfunction-vorticity formulation by

_x ¼ w;xf g ¼ 1
cos/

@w
@/

@x
@h
� @w
@h

@x
@/

� �
;

Dw ¼ x:
(1)

Here, x is the vorticity, w is the streamfunction, and �; �f g is the
Poisson bracket. The latitude is denoted by / and ranges from p=2 at
the north pole to�p=2 at the south pole, and the longitude is denoted
by h and ranges from 0 to 2p. The vorticity and the streamfunction
are related via the Laplace operator D. The vorticity relates to the fluid
velocity v via x ¼ curl v. These equations are part of a larger family of
geophysical fluid models that can be derived from a variational princi-
ple and inherently reflect particular conservation laws.53 The govern-
ing equation (1) form a Lie–Poisson system55 with a Hamiltonian H
and an infinite number of conserved quantities, known as Casimirs
C k, given by

H ðxÞ ¼ � 1
2

ð
xw; (2)

C kðxÞ ¼
ð

xk; k ¼ 1; 2;…; (3)

where the integral is taken over the spatial domain.
A discrete system with a similar Lie–Poisson structure is

obtained after so-called geometric quantization. This structure-
preserving discretization is based on a finite truncation of the
Poisson bracket, as proposed in Refs. 56 and 57, and rests on the

theory of quantization.58–60 First, an N > 1 is chosen, which can be
thought of as the numerical resolution. Subsequently, a total of
NðNþ1Þ

2 � 1 global basis functions are determined explicitly before
carrying out a simulation. These functions serve to construct the
discrete vorticity representation W. A finite-dimensional approxi-
mation of the system (1) is obtained as

_W ¼ P;W½ �;
DNP ¼W:

(4)

Here, W is the vorticity matrix, P is the stream matrix, and
W; P 2 suðNÞ, that is, skew-Hermitian, traceless N�Nmatrices.

The discrete system (4) is interpreted as follows. A continuous
vorticity field x on the sphere can be expanded in a spherical har-
monic basis fYlmg as x ¼

P
l;m clmYlm. The spherical harmonic coef-

ficients clm are used to construct the matrixW. Namely,

W ¼
XN�1
l¼0

Xl
m¼0

clmT
N
lm: (5)

Here, fTN
lmg is the so-called quantized spherical harmonic basis,61

which provides a particular discrete approximation to the spherical
harmonic basis fYlmg. The quantized system is obtained by applying a
projection PN from the smooth functions on the sphere to the skew-
Hermitian N�N matrices.61 The projection is constructed such that
for N !1 and two smooth functions f, g, the following properties
hold:

PNf �PNg ! 0 implies f ¼ g; (6)

PN f ; gf g ¼ N3=2ffiffiffiffiffiffiffiffi
16p
p PNf ;PNg½ � þ O 1=N2

� �
: (7)

That is, this provides a second-order accurate discretization of the
dynamics. In fact, the quantized representation enables the
structure-preserving discretization.57,62 The basis element TN

lm is a
sparse skew-Hermitian traceless matrix, nonzero only on the mth
sub- and superdiagonal. We refer to Ref. 61 for a detailed descrip-
tion of the quantized basis. The quantized Laplacian DN can be
derived as a complicated expression, given in Ref. 63. The matrix P
then follows by applying the inverse quantized Laplacian to W.
The bracket ½P;W� ¼ PW �WP is the standard matrix commuta-
tor. In the limit of N !1, the structure constants of the Lie alge-
bra suðNÞ converge to those of C1ðS2Þ expressed in terms of
spherical harmonics. This convergence implies that smooth func-
tions on the sphere can be approximated by finite-dimensional
matrices by means of Eq. (5).61

The discrete system is a Lie–Poisson system with a Hamiltonian
H and N conserved quantities Ck,

HðWÞ ¼ 1
2
Tr PWð Þ; (8)

CkðWÞ ¼ Tr Wkð Þ; k ¼ 1;…;N: (9)

Equation (4) is solved numerically using the second-order isospectral
midpoint rule,64,65 using the parallelized implementation described in
Ref. 61. This is a Lie–Poisson integrator, conserving the N discrete
Casimir functions exactly. Given a time step size h, a time integration
step proceeds as follows:
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Wn ¼ I � h
2
D�1N

~W

� �
~W I þ h

2
D�1N

~W

� �
;

Wnþ1 ¼ I þ h
2
D�1N

~W

� �
~W I � h

2
D�1N

~W

� �
;

(10)

i.e., givenWn the intermediate solution ~W is obtained first, after which
Wnþ1 is determined to complete a time step.

An example of the Euler equations integrated at high resolu-
tion using (10) is given in Fig. 1. This figure shows the vorticity
fields as Hammer projections in order to display the entire spheri-
cal domain. The different stages of the vorticity evolution of a
high-resolution numerical simulation are shown before reaching a
statistically steady state. From a smooth initial condition where
energy is distributed only in large-scale modes (top left panel), the
vorticity field undergoes a period of vorticity mixing (top right and
bottom left panels) where energy is distributed across the available
spatial scales. Finally, it reaches a statistically steady state (bottom
right panel) in which the energy spectrum does not undergo any
qualitative changes and the large-scale vorticity structures persist.
The flow dynamics reveal that large-scale low-dimensional struc-
tures are present in the vorticity field at late times.66 This motivates
the use of coarse computational grids to capture the dynamics in
the asymptotic time regime.

To compare numerical solutions at different resolutions, we
define a fine-to-coarse filter. Throughout the paper, the applied filter is
a spectral cutoff filter, setting all coefficients corresponding to a wave-
number larger than a specified wavenumber to zero. In the following,
we consistently choose a cutoff wavenumber defined by the coarse-
grid resolution, which yields a filtered solution containing only spatial
scales resolvable on the corresponding coarse grid.

Significantly decreasing the resolution yields a qualitatively differ-
ent statistically steady state, as shown in Fig. 2. Illustrated is a snapshot
of the fine-grid solution (N¼ 512), a filtered version thereof (only the
components up to N¼ 64 are shown), and a snapshot of a coarse-grid
solution (N¼ 64) using the algorithm as outlined in (10). These
simulations are initialized using the smooth vorticity field in Fig. 1.
High-frequency components are visible in the snapshot of the high-
resolution numerical solution, which develop as a result of the enstro-
phy cascade. By applying a spectral cutoff filter to the fine numerical
solution, we obtain a smooth vorticity field. By definition of the filter,
this field can be fully resolved using the coarse resolution. Since the fil-
tered fine solution is an orthogonal projection onto the coarse-
resolvable subspace of solutions, it defines the best attainable result on
the coarse grid and the result is a description of the large-scale compo-
nents of the flow, influenced by all fine-grid resolvable scales.

A clear qualitative difference exists between the filtered high-
resolution vorticity and the vorticity obtained at a lower resolution,
which is best explained by analyzing the energy spectra. Two-
dimensional systems without large-scale dissipation allow for energy
accumulation in the lowest wavenumbers, leading to large-scale vortic-
ity structures.3 These so-called condensates contain most of the energy
of the system and result in an energy spectrum steeper than the l�5=3

scaling typically observed in the large scales of two-dimensional turbu-
lence. Here, we observe a scaling of roughly l�9=4 following from the
randomly chosen initial condition. The energy in the small scales is
distributed according to a l�1 scaling also observed in other studies.2,66

The energy spectrum of the coarse numerical solution deviates from
the spectrum of the fine numerical solution at the smallest resolvable
scales. Nonetheless, the energy in the large scales is captured well.
Additionally, the energy decay at large wavenumbers follows the same

FIG. 1. Snapshots of a high-resolution (N¼ 512) numerical simulation of system (4). The vorticity field is initialized as a random large-scale field (top left), after which it under-
goes a period of vorticity mixing (top right, bottom left) before reaching a statistically steady state in which large-scale vorticity structures dominate the solution (bottom right).
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decay of l�1 as observed in the high-resolution result, where l is the
wavenumber. Despite this agreement, the instantaneous vorticity
field at the coarse resolution differs significantly from the high-
resolution result. The increased energy in high-frequency modes of
the coarse numerical solution causes the small scales to dominate
the vorticity field observed in Fig. 2. We note that the energy spec-
trum of the filtered reference solution exactly coincides with the
spectrum of the reference solution until the cutoff frequency at
wavenumber 64, by definition of the filter. The discrepancy
between the energy levels of the coarse numerical solution and the
filtered reference may, therefore, be reduced by an appropriate
forcing term. In Sec. III, we introduce a data-driven forcing term
that yields the desired energy level at each frequency and thus reg-
ularizes the numerical solution.

III. DATA-DRIVEN SPECTRUM-PRESERVING FORCING

In Sec. II, we observed that a qualitative difference exists between
the statistical steady states obtained at low and high resolutions. One
of the defining features of a statistically steady state is its kinetic energy
spectrum. The corresponding energy spectra of the solutions reveal a
considerable difference between the energy levels of the small scales
present in the flow. The discrepancy between the spectra may be
reduced by introducing an appropriate forcing or correction term to
the coarse numerical simulations. In a statistically steady state, the
spectrum is fully described using the mean and variance of the magni-
tude of the spectral coefficients in the statistically steady state.
Therefore, the goal of the model is to reproduce these quantities accu-
rately and, in doing so, recover the reference kinetic energy spectrum.
In this section, we describe a forcing that achieves this goal, particu-
larly in situations where the number of modes is kept low. For this
purpose, we opt for a model that aims to match the mean and variance

of the coefficient magnitudes to reference values. This approach is
based on reference data corresponding to independently obtained
highly resolved direct numerical simulations aiming to combine com-
putational feasibility with accurate flow predictions. The model deriva-
tion consists of three steps, being the modal expansion of the
dynamics, the formulation of the forcing term, and the definition of
the forcing parameters.

A. Modal expansion of the dynamics

To define the spectral forcing, we first expand the vorticity in the
spherical harmonics basis functions. We provide these details for the
continuous system and the quantized system.

In the continuous system, the basis coefficients clm are obtained
by projecting the vorticity x on the basis coefficients using the inner
product of the sphere. For two smooth functions g, h, we define the
inner product hg; hi as

hg; hi ¼
ðp=2

/¼�p=2

ð2p
h¼0

gð/; hÞhð/; hÞ� cos/ dhd/; (11)

where � denotes the complex conjugate. The spherical harmonic coef-
ficients and their evolution are consequently defined as

clm ¼ hx;Ylmi; (12)

_clm ¼ h _x;Ylmi ¼ h w;xf g;Ylmi: (13)

The quantized system relies on discrete representations TN
lm of

the spherical harmonics. These are skew-symmetric matrices, and
therefore, we adopt the Frobenius inner product for projection onto
the quantized basis. Given two skew-Hermitian matrices G, H, we
define

FIG. 2. Snapshots of the fine vorticity field (top left), a filtered version thereof (top right), and a coarse vorticity field (bottom left) after reaching a statistically steady state. The
energy spectra of the fine and coarse fields are shown in the bottom right panel.
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hG;HiF ¼ Tr G�Hð Þ; (14)

where � denotes the conjugate transpose. We compute the basis coeffi-
cients and their evolution via

clm ¼ hW;TN
lmiF ; (15)

_clm ¼ h _W ;TN
lmiF ¼ h P;W½ �;TN

lmiF :¼ Lðc; l;mÞ: (16)

Further expanding (13) and (16) leads to complicated expressions
and is, in fact, not necessary. Instead, only the projections (12) and
(15) are required, as well as the reconstruction of the vorticity field
from the basis coefficients via a linear combination. We note that
other choices of basis functions are also possible for the projection
and subsequent forcing, e.g., proper orthogonal decomposition
(POD) modes may be adopted for this purpose.67 In what follows,
we consider the quantized system and the corresponding projec-
tion onto the basis fTN

lmg.
Having defined the basis coefficients, we expand the vorticity

matrix in the quantized spherical harmonic basis TN
lm

� �
,

WðtÞ ¼
XN�1
l¼0

Xl
m¼0

clmðtÞTN
lm: (17)

The energy in solution components at index l is then defined as

ElðtÞ ¼
1
2

Xl
m¼0
jclmðtÞj2: (18)

The index l will also be referred to as “wavenumber” following the
analogy with an expansion in spherical harmonics and plane waves.68

We denote the evolution of the basis coefficients by L, where c is the
vector containing all basis coefficients. In particular, the evolution of
the magnitude of clm will be expressed as Lrðc; l;mÞ. A special feature
of our approach is that the time stepping acts on W, while the model
is applied in spectral space. In the actual algorithm, the mapping (15)
between elements of suðNÞ and their representation as quantized
spherical harmonic coefficients is needed for this purpose. Therefore,
the operators L and Lr are not required to be explicitly defined or eval-
uated but serve only to simplify notation.

B. Model formulation and implementation

The kinetic energy spectrum in a statistically stationary state
is fully defined by the mean and variance of the magnitudes of the
spherical harmonic coefficients. Thus, these values are imposed by
adding a mean-reverting forcing to the evolution of the coefficient
magnitudes. Forcing the magnitudes of the basis coefficients is
pragmatic since these are stationary if the solution is in a statisti-
cally steady state, implying few tunable parameters. Mean rever-
sion is realized by adding an Ornstein–Uhlenbeck (OU) process to
the evolution of the coefficient magnitude. This way, the reference
spectrum can be reproduced in a coarse numerical simulation. It
has been shown50 that the OU process arises in the governing
equations as the continuous-time limit of the 3D-var data assimila-
tion algorithm.49 We, thus, propose

djclmj ¼ Lrðc; l;mÞdt þ
1

slm
llm � jclmjð Þdt þ rlmdB

t
lm; (19)

where the last two terms constitute the data-driven forcing. The values
of llm;rlm; and slm follow from high-resolution data obtained from a
separate off-line simulation. Here, llm and slm are means and correla-
tion times. From a sequence of solution snapshots, time series is
obtained for each of the basis magnitudes jclmj, of which llm is the
mean value, and slm is the characteristic timescale. The relaxation of
the forcing is determined by the timescale slm. Deviations of jclmj from
the mean llm are nudged back in order to reduce the differences.
Randomness is introduced via the term dBt

lm, in which Bt
lm is a general

random process, defined for each pair l, m separately, and serves to
obtain a specified variance. The random process can be tailored to fit
the measurement data,43 though the common choice is to let dBt

lm be
normally distributed with a variance depending on the time step
size.69 We choose the latter in what follows and include the variance
scaling in rlm. The value of rlm depends on the sample variance of the
time series, on slm and on the adopted time step size, and will be speci-
fied later in this section.

In the discrete setting, we apply the forcing defined by the OU
process in (19) as a correction after time step is completed. This alters
a time-advancement step as follows. Starting from the vorticity Wn at
time level tn, a prediction �Wnþ1 of the vorticity at the next time level is
obtained by integrating Eq. (4) over one time step using the algorithm
(10). This prediction is, then, projected onto the basis of spherical har-
monics to obtain the corresponding basis coefficients f�cnþ1lm g. Finally,
a correction is applied to these coefficients using (19) to obtain fcnþ1lm g,
which are then used to construct the vorticity field Wnþ1 at the new
time level. We note that the correction is only applied to the magni-
tude of the basis coefficients.

The correction procedure (19) will be referred to as nudging. We
distinguish between deterministic nudging, using only the deterministic
component of the forcing, and stochastic nudging, using both the
deterministic and the stochastic component. The former is described
as

jcnþ1lm j ¼ j�cnþ1lm j þ
Dt
slm

llm;det � j�cnþ1lm j
	 


: (20)

The stochastic nudge is defined as

jcnþ1lm j ¼ j�cnþ1lm j þ
Dt
slm

llm;stoch � j�cnþ1lm j
	 


þ rlmDBn
lm; (21)

where DBn
lm is drawn from a standard normal distribution for each l,

m, and n independently.

C. Forcing parameters

The parameter definitions in the implementation of Eqs. (20)
and (21) will now be described. The nudging procedures in Eqs. (20)
and (21) can be characterized as a steady-state Kalman–Bucy filter70

with prescribed gain Dt=slm. The value of slm is chosen to be constant,
similar to steady-state filters. At each time step, the “observation” con-
sists of coefficients for each spherical harmonic mode separately. The
deterministic nudging procedure assumes the observation is a fixed
value llm;det, whereas the stochastic approach adopts observations as
distributed samples. Here, we useN ðllm;stoch; r

2
lmÞ as distribution and

draw independent samples for each l, m, n separately. Thus, the unre-
solved interactions between different spherical harmonic modes
are modeled as linear stochastic processes, independent for each
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value of l, m. This approach has been introduced as Fourier domain
Kalman filtering.52 For low-dimensional systems, it was analyzed in
Fourier space51,71 and also shown to be feasible for filtering high-
dimensional systems. No covariance matrices have to be computed
from the data since the unresolved interactions are treated as indepen-
dent processes, and additionally, the parameters are determined heu-
ristically, which leads to a simple model with few parameters. The
model is found to be stable since each coefficient is independently
nudged toward a known mean value.

In the continuous formulation (19), slm can take on any positive
value. In the discrete form (20), (21), slm can take on values in the
interval of ½Dt;1Þ. For slm ¼ Dt, the forcing ensures that the magni-
tude jclmj of the corresponding coefficient becomes constant in the
case of deterministic nudging. In the case of stochastic nudging, this
value of slm ensures that jclmj evolves as Gaussian noise with the speci-
fied mean and variance. In the limit of large slm, the forcing
approaches zero and the unforced dynamics is retained.

The nudging procedures in Eqs. (20) and (21) are treated as first-
order autoregressive models with drift coefficient ð1� Dt=slmÞ and
mean llm;stoch, which is a discretization of the OU process (19). The
value of slm is found by fitting the autocovariance function of the OU
process to the sample autocovariance as obtained from the reference
high-resolution simulation. The value of slm is expected to decrease as
larger wavenumbers l are considered. This increases the contribution
of the model term to the dynamics of the coefficients clm at those
wavenumbers. Therefore, with increasing spatial resolution, one will
resolve finer lengthscales associated with larger l, whose contributions
correspond closer and closer to the direct observations. This is in
accordance with theoretical results for filter performance.52

The values of rlm; llm;stoch, and llm;det are chosen so that the ref-
erence energy spectrum is reproduced when the model is applied.
Treating jclmj as a stochastic variable, we observe that Eðjclmj2Þ is the
expected energy content of the basis element TN

lm. Through the defini-
tion of the variance, we find that

Eðjclmj2Þ ¼ varðjclmjÞ þEðjclmjÞ2: (22)

We define rlm so that variance of the autoregressive model coincides
with the sample variance s2lm of the reference time series, i.e.,

rlm ¼ slm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 1� Dt

slm

� �2
s

; (23)

where slm is the sample standard deviation of jclmj as obtained from
the high-resolution simulation. To obtain the desired energy content,
llm;stoch is subsequently chosen as EðjclmjÞ. In the case of deterministic
nudging, the variance of jclmj vanishes when slm ¼ Dt. To obtain the

desired energy content in this limit, llm;det is chosen as
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eðjclmj2Þ

q
.

The mean, variance, and correlation time are estimated using standard
unbiased estimators of which the mean squared error decreases line-
arly with the number of used samples. It is assumed that the mean and
variance are constant in time, therefore requiring that the flow is in a
statistically steady state.

For each basis function, only three parameters need to be mea-
sured: the mean, the variance, and the correlation time. This outlines
the simplicity of the model. These parameters are inferred from the
data, do not require additional tuning, and are defined up to the

resolution of the reference solution. Furthermore, the basis of spherical
harmonics is resolution-independent. Therefore, the forcing parame-
ters only depend on the reference data and not on the choice of the
coarse-grid resolution or time step size, implying that the model is
self-consistent.72 This is further corroborated in Sec. IVB of the paper
by applying the model at various low resolutions.

IV. NUMERICAL EXPERIMENTS

In this section, we apply the forcing proposed in Sec. III to coarse
numerical simulations. We describe the reference solution and intro-
duce the measured variables that constitute the model data. The forc-
ing is applied at different coarse computational grids using several
model configurations. The model results are compared to the reference
solution and the no-model coarse numerical solution and are assessed
in terms of statistical quantities of the resulting time series of the basis
coefficients, in terms of attained vorticity values in physical space, and
in terms of inter-scale energy transfer. Finally, we illustrate that the
application of the model yields accurate long-time solutions on coarse
computational grids.

A. Description of reference solution

The reference solution is acquired from the discretized equations
described in Sec. II and adopts a resolution N¼ 512. The initial condi-
tion is the smooth vorticity field as shown in the left panel of Fig. 3,
which is also adopted in later numerical simulations using lower reso-
lutions. This initial condition is randomly generated and contains only
large scales of motion. The initial condition is well resolved on the
coarse computational grids, ensuring that any difference with respect
to the reference in the obtained solutions is due to coarsening effects
and not due to a difference in the initial condition. The vorticity is
evolved until t¼ 6500, shown on the right panel of Fig. 3, at which a
statistically steady state is reached. This was verified by averaging the
kinetic energy spectrum over several time durations. Large-scale struc-
tures dominate the statistically steady state due to the formation of
energy condensates in the absence of large-scale dissipation.2 High-
resolution snapshots are collected every time unit after reaching this
state. A total of 1000 snapshots is collected to ensure that estimates of
the mean, variance, and correlation times are sufficiently accurate.

By projecting the snapshots onto the basis fTN
lmg, a time series

of coefficients for each spherical harmonic mode is obtained.
These coefficients are complex-valued; however, in what follows,
we will only consider the time series of the corresponding
magnitudes since these are the quantities that the proposed model
acts on.

The forcing parameters are shown in Fig. 4, sorted per basis coef-
ficient. Here, we show the measured means, standard deviations, and
correlation times that are used in the model. On a grid of resolution N,
a total of NðN þ 1Þ=2� 1 basis functions TN

lm is available, which can
be sorted in ascending order of l and m. Here, only the first 2079 val-
ues are shown, corresponding to all resolvable modes for N¼ 64, a
coarse resolution that will be investigated momentarily. A decreasing
mean value and variance are observed as the scale size is decreased.
This is seen until basis functions with l¼ 23 are considered, at the
275th basis coefficient, after which the mean and variance remain
roughly constant. This corresponds to the wavenumber at which the
reference energy spectrum follows the l�1 decay. The measured corre-
lation time slm becomes smaller as larger wavenumbers are considered,
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which indicates that the smaller scales in the flow behave in an increas-
ingly dynamic manner. The small values of slm result in a relatively
larger contribution from the model term to the dynamics of the small-
est resolvable scales.

B. Coarse-grid flow simulations

In this subsection, the performance of the model is tested in
coarse-grid numerical simulations of the flow. In particular, the
model is applied at resolutions N¼ 64 and N¼ 32 to show that
the forcing parameters are applicable at different coarse resolu-
tions. The chosen levels of coarsening provide a significant reduc-
tion in computational costs. At the same time, the dominant flow
patterns can be accurately resolved, as shown in Sec. II. Four dif-
ferent settings for the model are studied by varying the minimal
wavenumber at which the model is activated and by either
enabling or disabling the stochastic model term. The scales at
which the model is applied are l � 1 and l � 8 for resolutions
N¼ 64 and N¼ 32, in order to capture the same flow complexity
at different resolutions. The choice of l � 1 corresponds to apply-
ing the model at all available scales, whereas l � 8 only applies to
small-scale flow features. For each resolution, we illustrate the
need for modeling by providing snapshots of the filtered reference
solution and the no-model coarse-grid solution. From these fig-
ures, the qualitative features of the solution at different resolutions
become apparent.

We first consider the results at resolution N¼ 64. A qualita-
tive comparison of the different numerical solutions is provided in
Fig. 5. The top left panel shows a snapshot of the reference solution
at the statistically steady state, where the high-frequency compo-
nents have been filtered from the solution. As before, the applied
filter is a spectral cutoff filter where the cutoff wavenumber is
defined by the coarse-grid resolution. Coherent large-scale vortic-
ity structures that are resolvable on the coarse grid are visible in
this snapshot. The merit of the forcing can be observed through
the differences between the coarse numerical simulation results.
The top middle panel shows the no-model coarse solution, which
shows clear qualitative differences with the reference result. The
top right panel and the bottom row show forced coarse numerical
solutions at statistically steady states, using the different forcing
settings. Evidently, the latter snapshots reveal a smoother vorticity
field and a more accurate representation of the reference vorticity,
compared to the coarse no-model simulation. In particular, a qual-
itative agreement in terms of large-scale vortex structures may be
observed. In this specific case, a large connected positive vorticity
structure (in red) and two smaller negative vorticity structures (in
blue) are reproduced when applying the model. Interestingly, the
proposed nudging concentrates some additional positive vorticity
in the tail of the coherent structure (in red), whereas no such
behavior is observed for the negative vorticity.

The qualitative differences are reflected in the energy spectra,
visualized in Fig. 6, showing the energy spectra using the forcing for

FIG. 3. Left: initial vorticity field used in the numerical simulations performed throughout the paper. Right: snapshot of the vorticity field after reaching a statistically steady
state.

FIG. 4. Left: measured means and standard deviations of the absolute value of each basis coefficient of the reference solution. Right: estimated correlation time for each basis
coefficient of the reference solution.
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l � 1 and l � 8 in the two panels. By construction, nudging reduces
the energy content in the small scales of the flow. Accurate energy lev-
els are observed for both the deterministic and stochastic nudging pro-
cedures. These results are observed for both choices of scales at which
the forcing is applied. A good agreement in the energy at the large
scales is observed for all performed simulations. Particularly, the
energy spectra demonstrate a striking agreement at the smallest
resolved scales when the model is applied. This suggests that the choice
of parameters for the deterministic and stochastic forcing is well suited
for reproducing the energy spectra at these scales.

A quantitative comparison of the statistics of the solutions is
given in Fig. 7. For each basis coefficient, the mean, standard deviation,
and estimated correlation time are shown. The mean and the standard

deviations of the time series display similar qualitative behavior
regardless of the minimal wavenumber at which the forcing is applied.
For these quantities, both the deterministic nudging and the stochastic
nudging lead to significant improvement compared to the no-model
results. Including the stochastic component of the forcing, based on
the high-resolution reference data, leads to an increased agreement at
the smaller scales of the flow, indicating that the inclusion of addi-
tional variance in the forcing of the small scales leads to a truthful
reproduction of these statistical quantities.

The estimated correlation times of the large-scale modes ðl � 8Þ
in Fig. 7 show that deterministic nudging of all modes yields an
improved correlation time compared to the no-model case. However,
the stochastic nudging procedure for l � 1 leads to smaller correlation

FIG. 5. Snapshots of numerical solutions at a statistically steady state. Top left: filtered reference solution, displaying only modes resolvable for N¼ 64. Top middle: no-model
coarse numerical solution. Top right and bottom row: coarse numerical solution with forcing applied, using the full model term or only the deterministic part, with varying minimal
wavenumber at which the forcing is applied.

FIG. 6. Average energy spectra for forced coarse solutions, using N¼ 64, compared to the energy spectra of the reference solution and the no-model coarse solution. The
forcing is applied at wavenumbers l � 1 (left) and wavenumbers l � 8 (right).
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times compared to the coarse no-model simulation, implying that
the stochastic component of the forcing is too strong. A qualitative
improvement is observed when applying the model to wavenum-
bers l � 8, for both deterministic and stochastic nudging. These
results suggest that the evolution of large scales in the flow benefits
from an accurate statistical description of the evolution of small
scales. This coincides with a basic premise underlying large-eddy
simulation.

A comparison between the different outcomes in physical space
is carried out to gain insight into the predictions of the phases of the
basis coefficients. For this purpose, we compare empirical probability
distribution functions (pdfs) of attained vorticity values in physical
space throughout the simulation. The pdfs are shown in Fig. 8, com-
paring the nudging procedures applied at wavenumbers l � 1 and
l � 8 to the reference and no-model simulation at resolution N¼ 64.
A distribution with two distinct peaks is obtained from the reference,

FIG. 7. Statistics of the basis coefficient time series of the reference solution, no-model coarse solution, and coarse solution with the model applied for N¼ 64. Shown here
are the results when applying the model at wavenumbers l � 1 (top row) and l � 8 (bottom row). The mean value (left) and standard deviation (middle) are shown for all
wavenumbers. The correlation time (right) is shown for the large-scale components, with wavenumbers l � 8.

FIG. 8. Probability density functions (pdfs) of the vorticity values. The pdfs of the reference and the no-model coarse (N¼ 64) numerical simulation are compared to coarse
numerical simulations where deterministic and stochastic nudging are applied at wavenumbers l � 1 (left) and l � 8 (right).
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where the peaks stem from the large-scale vorticity structures observed
in Fig. 5. Despite the no-model simulation yielding a markedly differ-
ent pdf than the reference, including the deterministic nudging at all
wavenumbers leads to an accurate pdf. Stochastic nudging at all wave-
numbers leads to a qualitatively different pdf where the peaks distinct
peaks are no longer observed. This is attributed to the breakup of the
large-scale vorticity structures and indicates that stochastic forcing of
the largest scales is undesirable. Notably, an accurate energy spectrum
is obtained, but the discrepancy in attained vorticity values implies
that phase errors are present. Applying the nudging procedure to
wavenumbers l � 8 leads to an improvement in the pdf for both the
deterministic and the stochastic approaches. These results suggest that
reducing the energy level in the small-scale components of the flow
already leads to qualitatively accurate results, which we attribute to the
dominance of the large-scale structures in the reference.

The numerical experiment is repeated at a resolution N¼ 32 to
demonstrate that the proposed model yields forcing parameters that
can be efficiently applied at different coarse resolutions. At this resolu-
tion, large spatial structures in the flow may still be resolved with
acceptable accuracy. The forcing will be applied at wavenumbers l � 1
and l � 8, where the model affects all scales of motion in the former
and only the small scales in the latter.

A qualitative comparison of the statistically steady states is given
in Fig. 9. It may be seen that the model effectively produces a smooth
vorticity field with qualitatively similar features as the reference solu-
tion. This is reflected by the decrease in energy in the smallest resolv-
able scales compared to the no-model formulation, as shown in the
energy spectra in Fig. 10. As previously observed, all coarse-grid
numerical simulations accurately capture the energy in the largest
scales of motion. Applying the model also leads to a notable agreement
with the reference solution in the average energy levels of the smallest
resolvable scales.

A comparison of the mean value, standard deviation, and esti-
mated correlation times of the time series of the basis coefficients
is given in Fig. 11. Applying the model leads to a clear

improvement in the mean and variance of the coefficients, regard-
less of the choice of length scales at which the forcing is applied.
Employing the deterministic forcing at all lengthscales yields a
good agreement in the correlation times, whereas the stochastic
forcing reduces the measured correlation times and yields no
improvement. The correlation times are also found to improve
when applying the deterministic model only to components with
wavenumber l � 8. The stochastic forcing displays no significant
improvement when applied at these wavenumbers.

The pdfs of the attained vorticity values in physical space at reso-
lution N¼ 32 are shown in Fig. 12. These results are qualitatively simi-
lar to those presented earlier at resolution N¼ 64. A good agreement
with the reference is observed when applying deterministic nudging at
all wavelengths, whereas stochastic nudging leads to notably different
pdf. The latter is attributed to the breakup of large-scale vortices and
indicates phase errors in the solution. Both deterministic and stochas-
tic nudging at wavelengths l � 8 lead to a considerable improvement
in the pdfs when compared to the coarse no-model simulation.

C. Average inter-scale energy transfer

The truncation of resolvable scales in coarse numerical simula-
tions often leads to incorrect inter-scale energy transfers.73 The energy
rate of change per wavenumber can be explicitly computed via

dEl
dt
¼ 1

2

d
Xl
m¼0

clmc
�
lm

 !

dt
¼ Re

Xm
l¼0

clm _c�lm

 !
; (24)

where � denotes the complex conjugate, and _clm follows from Eq. (16).
This energy rate of change depends both on the magnitudes of the
basis coefficients and the phases due to the complex conjugation, in
contrast to the energy itself which depends solely on the former.
Hence, the energy rate of change is not explicitly enforced in the pro-
posed subgrid-scale model. The average rates of change per

FIG. 9. Snapshots of numerical solutions at a statistically steady state. Top left: filtered reference solution, displaying only modes resolvable for N¼ 32. Top middle: no-model
coarse numerical solution. Top right and bottom row: coarse numerical solution with forcing applied, using the full model term or only the deterministic part, with varying minimal
wavenumber at which the forcing is applied.
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wavenumber are shown in Fig. 13 when applying the nudging proce-
dure at wavenumbers l � 8 at resolutions N¼ 64 and N¼ 32. An
improvement in the energy transfer in the smallest resolvable scales
observed for N¼ 32 is attributed to a significant improvement in the
energy levels at these scales, compared to the no-model results. This
improvement is marginal for N¼ 64. No improvement in the energy

transfers at the large scales is observed. These results underpin that
imposing additional statistics, such as the energy transfer, may
lead to more accurate coarse numerical simulations. Possible ways
to achieve this are via a variable forcing strength or constraints on
the phases of the basis coefficients, but these fall outside the scope
of this paper.

FIG. 10. Average energy spectra for forced coarse solutions, using N¼ 32, compared to the energy spectra of the reference solution and the no-model coarse solution. The
forcing is applied at wavenumbers l � 1 (left) and wavenumbers l � 8 (right).

FIG. 11. Statistics of the basis coefficient time series of the reference solution, no-model coarse solution, and coarse solution with the model applied for N¼ 32. Shown here
are the results when applying the model at wavenumbers l � 1 (top row) and l � 8 (bottom row). The mean value (left) and standard deviation (middle) are shown for all
wavenumbers. The correlation time (right) is shown for the large-scale components, with wavenumbers l � 8.
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D. Large-scale vortex dynamics at statistically steady
states

The qualitative predictions of coarse-grained modeled
dynamics can be analyzed by means of the vortex trajectories over
long integration times. Here, the vortex movement is tracked by
locating the maximum and minimum attained vorticity value at
each solution snapshot. High-resolution numerical experiments
indicate that the ratio between the angular momentum and enstro-
phy governs the number of large-scale vortex structures in the final
statistically steady state.65 This ratio is determined by the initial
condition and remains constant throughout the no-model numeri-
cal simulations since the angular momentum and the enstrophy
are conserved quantities in the discretized system. Additionally,
the vortex trajectories are found to be stable. Thus, the long-term
qualitative behavior of the coarse numerical solutions can be
assessed by measuring the number of large-scale vortices and their

trajectories. As we previously observed, the coarse-grained mod-
eled vorticity fields show qualitative agreement in terms of the
number of vortices. Here, we demonstrate the capability of the
model to accurately yield stable long-time vortex dynamics by
tracking vortex movement over long simulation times.

The long-time vortex trajectories for various numerical realiza-
tions are shown in Fig. 14. The reference trajectories are obtained
from the high-resolution simulation as used in Sec. IVA. The model
results at resolutions N¼ 32 and N¼ 64 are obtained by applying the
model to wavenumbers l � 8. The reference trajectories display stable
movement along clearly defined trajectories about a fixed axis.
Such behavior is not observed for the coarse no-model results, where
instead the extreme values of the vorticity move in a seemingly unor-
ganized fashion without distinct trajectories. Applying the model to
either of the presented resolutions yields a noticeable qualitative
improvement in the measured vortex movement. In particular, we

FIG. 12. Probability density functions (pdfs) of the vorticity values. The pdfs of the reference and the no-model coarse (N¼ 32) numerical simulation are compared to coarse
numerical simulations where deterministic and stochastic nudging are applied at wavenumbers l � 1 (left) and l � 8 (right).

FIG. 13. Average energy rate of change per wavenumber. The reference and coarse no-model simulations are compared to deterministic nudging and stochastic nudging at
resolutions N¼ 64 (left) and N¼ 32 (right). The results in this figure are obtained when nudging at wavenumbers l � 8.
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identify trajectories about the same fixed axis as the reference trajecto-
ries, but the model trajectories exhibit perturbations. The perturba-
tions appear stronger when stochastic nudging is applied and when
coarser grids are considered.

V. CONCLUSIONS AND OUTLOOK

In this paper, we have proposed and assessed a standalone data-
driven model for the coarsening of the Euler equations on the sphere.
High-resolution simulation snapshots were used as a reference. These
data were decomposed into spherical harmonic modes, and corre-
sponding time series of coefficients were determined. A stochastic
model was introduced to compensate for shortcomings introduced by
severe coarsening. The model parameters were obtained from statistics
of the spherical harmonic coefficients time series. In particular, the
proposed model was designed to reproduce the kinetic energy spec-
trum of the reference data in statistically steady states by adopting a
nudging strategy similar to continuous data assimilation.

The model is imposed using a prediction–correction scheme
leading to a formulation similar to a steady-state Fourier domain
Kalman filter. We opted for a separate nudging strength for each of
the forced lengthscales, dependent on the corresponding measured
characteristic timescale, and demonstrated that this approach accu-
rately recovers the energy levels in small resolved spatial scales and
leads to stable long-time solutions. Moreover, no assumptions about

the employed resolution are used in the derivation model. This was
demonstrated by first measuring the forcing parameters and subse-
quently applying the model on several coarse computational grids.
The proposed stochastic and deterministic models were not found to
differ much in terms of results in spectral space. Both approaches
yielded accurate kinetic energy spectra at strong coarsening. In addi-
tion, the deterministic model yielded accurate correlation times of the
magnitudes of the spherical harmonic basis coefficients, indicating
accurate evolution of the large-scale flow features. Observations in
physical space revealed that the stochastic forcing of large scales
yielded phase errors in the solution.

The results in this paper show that the decomposition of a high-
resolution reference signal into spatial global basis functions and
temporal coefficients can be employed efficiently to obtain resolution-
independent forcing parameters to be used in models for coarse
numerical simulations. The proposed model relies on several simplify-
ing assumptions, which will be scrutinized in future work. In particu-
lar, the robustness of the model in terms of stability and accuracy with
respect to varying nudging strengths will be assessed and constraints
based on inter-scale energy transfers may be imposed. The connection
to data assimilation algorithms and Kalman filtering theory may help
to extend the model and weaken underlying assumptions, for example
by including estimated covariance between different spherical har-
monic modes in the model.

FIG. 14. Trajectories of large-scale vortices for various numerical solutions. The red and blue lines denote the trajectories of the maximum and minimum vorticity values,
respectively. Shown are the measured trajectories of the reference solution (top left). The coarse no-model numerical solution and the coarse solution with the model at resolu-
tion N¼ 32 are displayed on the top row. Both the deterministic and the stochastic models are applied to wavenumbers l � 8 at this resolution. The bottom row shows the
realizations at resolution N¼ 64, where the model is applied to wavenumbers l � 8.
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The approach presented here is general for flows in statistically sta-
tionary states and is not restricted to the two-dimensional Euler equa-
tions or the use of spherical harmonic modes as a global basis. Different
flow settings may be considered by adopting, for example, a Fourier
basis for periodic domains74 or, more generally, proper orthogonal
decomposition (POD) modes when boundaries are present in the
domain.67 Extensions to spatially and temporally correlated forcing can
be considered as well using spectral POD (SPOD).75–77 Further work
will be dedicated to extending the proposed model to different sophisti-
cated flow settings, such as Kraichnan turbulence, two-dimensional
Rayleigh–B�enard convection, the rotating Euler equations on the sphere,
or the quasi-geostrophic equations on the sphere.
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