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Abstract
In this paper we introduce a measure of genuine quantum incompatibility in the estimation task of
multiple parameters, that has a geometric character and is backed by a clear operational
interpretation. This measure is then applied to some simple systems in order to track the effect of a
local depolarizing noise on the incompatibility of the estimation task. A semidefinite program is
described and used to numerically compute the figure of merit when the analytical tools are not
sufficient, among these we include an upper bound computable from the symmetric logarithmic
derivatives only. Finally we discuss how to obtain compatible models for a general unitary
encoding on a finite-dimensional probe.

1. Introduction

Quantum metrology [1–5] is a special branch of quantum information theory that focuses on the
possibility of using quantum effects for improving the accuracy of conventional estimation procedures.
Thanks to the huge variety of potential applications (which among other include the probing of delicate
biological systems [6], optical interferometry [7, 8], gravitational wave detection [9, 10], magnetometry
[11–15] and atomic clocks [16–18]), this research field is likely to play a fundamental role in the looming
quantum technology revolution. As evident from the seminal works of Holevo [19] and Helstrom [20], this
research field can be thought as a quantum counterpart of experimental design [21, 22]. Specifically the
main goal of quantum metrology is to efficiently plan different types of experiments by minimizing the
invested effort to overcome noisy fluctuations that originate by fabrication errors, external fields,
microscopic degrees of freedom that are only statistically taken into account, and intrinsic limitations
related to the formal structure of the quantum theory itself (e.g. the Heisenberg uncertainty principle). In
recent years many significant results have accumulated in the domain of multi-parameter quantum
metrology [23, 24], i.e. processes where an agent tries to recover two or more attributes of a physical system
(modeled by real numbers) via properly chosen measurements. The first studies that lit up the experimental
interest in this subject have been done on the joint estimation of phase and phase diffusion [25–29], on
quantum imaging [30–37], and on magnetometry [38, 39]. What makes the problem intriguing is that in a
purely quantum setting, due to constraints ultimately related to the incompatibility of non-commuting
observables [40], it could be that an efficient experiment for the determination of one specific parameter
leads to poor results in the precision of the others (while this may also be true in classical mechanics, since
here the phenomenon is related to the technological limits of the experimenter, there is no reason to believe
it to be fundamental). Aim of the present work is to quantify the genuine quantum incompatibility
associated with the estimation task of multiple parameters. The analysis is then applied to some simple
systems of qubits and qutrits in order to track the effect of a local depolarizing noise on the incompatibility
of the estimation task. A semidefinite program (SDP) is described and used to numerically compute the
figure of merit when the analytical tools are not sufficient. Finally we notice that the strategies that allow us
to codify information without incompatibility in the two-qubits scenario can be generalized to the case of a
general unitary encoding on a finite-dimensional probe. Before proceeding with the presentation, we add
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here a terminology clarification: with ‘quantum parameter’ estimation we denote the task of extracting a
parameter encoded on a certain given fixed state of a quantum system, while if we use ‘quantum metrology’
it means that we have the possibility of choosing the probe that will undergo the encoding process. In this
perspective the problem of parameter estimation is hence a sub-problem of quantum metrology. In this
paper we will take the probe to be fixed and therefore we will be dealing with parameter estimation.

An outlook of the manuscript follows. In section 2 we introduce the setting of quantum metrology, and
isolate the form of incompatibility that we will characterize later on. In section 3.1 the incompatibility
figure of merit for quantum estimation is defined and its well-definedness is proved in section 3.2. The
geometric interpretation of the figure of merit is presented in sections 3.3 and in 3.4 we express it in terms
of the Holevo–Cramér–Rao bound [19, 41], proved to be achievable thanks to the quantum central limit
theorem and the quantum local asymptotic normality [42–48]. This allows us to compute the
incompatibility via the SDP reported in appendix C, which is derived from the one presented in [49]. In
section 3.5 an analytic upper bound for the incompatibility is presented, and in section 3.6 a version of the
figure of merit for separable measurements is given. Section 4 is dedicated to some examples with systems
of qubits and qutrits subject to local depolarizing noise, here we put at work the linear program and some
peculiar behavior of the incompatibility is observed. In section 5 we describe three strategies to build a
compatible statistical model for a quantum metrological task involving D-dimensional probe states. The
mathematical environments definition, theorem, and corollary will be used to highlight the most important
concepts that we introduce.

2. Multiparameter quantum estimation

2.1. Setting and definitions
A prototypical example of multi-parameter quantum metrology is provided by magnetometry [11–15, 50]
where a spin particle is used as a probe for evaluating the three components of a magnetic field B :=(
Bx, By, Bz

)
. In the most basic scenario the evolution of the particle is given by the unitary transformation

UB := exp
[
i
(
BxSx + BySy + BzSz

)
t
]

where Si for i = x, y, z are the components of the spin. By measuring
the evolved state of the probe we can hence try infer the values of Bx, By, Bz, following the post-processing of
the measurements output. What makes this procedure truly quantum in nature is that, fixing the number of
experimental repetitions, due to the non-commuting nature of the generators Si, any attempt to improve
the estimation accuracy of one of the Cartesian components of B will have a negative impact on the
accuracies of the other two [51]. An exact formalization of this problem can be obtained by considering a
more general model where one is asked to determine d parameters θ := (θ1, θ2, . . . , θd) ∈ Θ (an open
subset of Rd) that have been encoded in the input state ρ of a probing quantum system via a mapping of the
form

ρ→ ρθ := Eθ (ρ) , (1)

where now Eθ is a completely positive, trace-preserving transformation [52] which parametrically depends
on θ and which, at variance with the simplified scenario detailed at the beginning of the section, might
include a noise disturbing the process. Given N copies of ρθ we can now try to recover the needed
information by performing on them some (possibly joint) positive operator valued measure (POVM)
MN := {E(N)

θ̂
}θ̂ whose elements are labeled by a classical outcome variable θ̂ that, without loss of generality

[53], can be assumed to belong to the same set Θ of θ. Accordingly MN can hence be thought as an
operation which, starting from ρ⊗N

θ , induces a measure on Θ, defined by the conditional probability
distribution

PMN (θ̂|θ) := Tr[E(N)

θ̂
ρ⊗N
θ ], (2)

with the stochastic outcome θ̂ := (θ̂1, θ̂2, . . . , θ̂d) ∈ Θ playing the role of the estimator of θ. The two most
important properties of the estimator θ̂ are the bias vector b(N) (θ) := (b1 (θ) , b2 (θ) , . . . bd (θ)), of
components

bi (θ) :=E[θ̂i] − θi, (3)

and the mean square error (MSE) d × d matrix Σ(N) (θ), of elements

Σ(N)
ij (θ) :=E[(θ̂i − θi)(θ̂j − θj)], (4)

with E representing the statistical average computed with the probability measure in (2). Ideally we would
like to deal with estimators that are unbiased, meaning that b(N )(θ) = 0 for all θ ∈ Θ, but this may not
always be possible. Accordingly in what follows we shall focus on sensing, i.e. we shall measure small
variations of the parameters θ around a known value and assume that we are allowed to employ locally
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unbiased POVMs at such special point, that is measurements which bias vector b(N )(θ) satisfy the following
conditions ⎧⎪⎪⎨⎪⎪⎩

b(N)(θ)
∣∣∣
θ=θ0

= 0,

∂

∂θj
b(N)(θ)

∣∣∣∣
θ=θ0

= 0 ∀ j = 1, . . . , d.
(5)

For these measurements the quantum Cramér–Rao (QCR) bound [3, 54] gives a limit on the precision of
the sensing task, formulated as a lower bound on the associated MSE matrix, i.e.

Σ(N)(θ) � F−1(θ)

N
. (6)

In this expression F(θ) is the so called quantum Fisher information (QFI) matrix which no longer depends
on the selected POVM MN and whose elements can be computed as

Fij(θ) :=
1

2
Tr

[
ρθ

(
Li(θ)Lj(θ) + Lj(θ)Li(θ)

)]
, (7)

with Li(θ) the symmetric logarithmic derivative (SLD) [54] associated to the ith component of the
parameter vector θ, i.e. the operator (possibly dependent on θ) fulfilling the identity

∂ρθ
∂θi

=
1

2
(ρθLi(θ) + Li(θ)ρθ) . (8)

For a pure state ρθ = |ψθ〉〈ψθ| the above equation admits as solution

Li(θ) = 2
∂ρθ
∂θi

, (9)

while in general a solution is [54]

Li(θ) = 2

∫ +∞

0
e−sρθ

∂ρθ
∂θi

e−sρθ ds. (10)

Throughout the paper we will assume the QFI to be limited (i.e. ‖ F(θ) ‖< ∞) and non-singular (i.e.
F(θ) > 0). In particular the last requirement imposes that the maximum value of d (the number of
parameters) we can allow in our study is upper bounded by D2 − 1 with D being the dimension of the
Hilbert space associated with the probing system (indeed values of d greater than such limit will necessarily
force a linear dependence between the SLD operators Li(θ), leading to a singular QFI matrix).

2.2. Achievability of the multi-parameter QCR bound
In general the multiparameter QCR bound (6) cannot be saturated, meaning that there is no locally
unbiased POVM MN with a Σ(N )(θ) matrix equal to F−1(θ)/N or, equivalently, which is capable of
saturating the inequality

Tr[G · Σ(N)(θ)] � 1

N
Tr[G · F−1(θ)] :=

CS (G, θ)

N
, (11)

for all choices of a positive weight matrix G � 0. This is the form of metrological incompatibility that will
be extensively studied in this paper. In order to better appreciate the meaning of this, suppose that we are
interested in the estimation of an analytic function f ∈ Cω (Θ) of the unknown parameters vector θ. The
function f will be evaluated on the estimator θ̂ extracted from the observations. By expanding to first order
the expectation value of f (θ̂) − f (θ) we get the expression for the error

ε :=E[(f (θ̂) − f (θ))2], (12)

�
∑

i,j

E[∂if (θ)(θ̂i − θi)∂jf (θ)(θ̂j − θj)]

=
∑

i,j

∂if (θ)∂jf (θ)E[(θ̂i − θi)(θ̂j − θj)], (13)

which can be equivalently written as:

ε = 〈∂f (θ)|Σ(N)(θ)|∂f (θ)〉 = Tr[G(θ) · Σ(N)(θ)], (14)

3
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where we introduced the rank-1 weight matrix Gij(θ) = ∂if(θ)∂jf(θ) = |∂f(θ)〉〈∂f(θ)|, with |∂f (θ)〉 ∈ R
3.

Written in this form we can now use (11) to cast a bound on the accuracy of the estimation of f (θ). As a
matter of fact a rank-1G can always be thought as the weight matrix of some function f(θ). We will see that
according to our definitions a rank-1G manifests no incompatibility, indeed we will see that the error
associated to a single tangent vector |∂f(θ)〉 on the statistical manifold can saturate the ultimate QFI (this
can be understood e.g. from the upper bound (28) discussed in section 3.5 below, which, for G rank-1,
collapses to CS (G, θ)). On the contrary the gap manifests itself when the weight matrix G is at least rank-2.
This situations arises as we try to estimate at the same time multiple functions of the parameters θ, named
f1(θ), f2(θ), . . . , fK(θ), which could also just be the components θ1, θ2, . . . , θd of the vector θ. To each of the
functions we associate a weight gi � 0, then the total error is the weighted sum of the errors for the
estimation of each fi (θ), i.e.

ε :=
K∑

i=1

gi Tr[|∂fi(θ)〉〈∂fi(θ)|Σ(N)] = Tr[G(θ) · Σ(N)], (15)

with G(θ) :=
∑K

i=1gi|∂fi(θ)〉〈∂fi(θ)| � 0.

3. Incompatibility measure

In this section we introduce a figure of merit to gauge the incompatibility of multi-parameter estimation
procedures, which is based on the assumption that the agent is allowed to perform on the probes arbitrary
locally unbiased POVMs. After showing its well-definedness we clarify its interpretation in the framework of
information geometry. We then provide a linear program to compute this incompatibility measure and an
analytical upper bound. The figure of merit is then generalized to separable measurements.

3.1. Definition of the figure of merit
Given the encoding (1) and a generic weight matrix G, from (11) it follows that a bona-fide evaluation of
the precision attainable with a locally unbiased POVM MN can be obtained by considering the ratio

rN (G, MN , θ) :=
N Tr

[
G · Σ(N)(θ)

]
Tr

[
G · F−1(θ)

] � 1, (16)

where Σ(N )(θ) is the MSE matrix (4) associated with MN. As indicated by the notation the quantity (16)
exhibits an explicitly functional dependence on G and MN which we remove by considering the term

Definition 3.1. (Incompatibility figure of merit for N probes)

rN (θ) := inf
MN∈M(LU)

N

sup
G�0

rN (G, MN , θ) , (17)

where now M(LU)
N indicates the set of locally unbiased POVM on N copies of the probes. For any given

elements MN of M(LU)
N the supG�0 selects the weight matrix that has the reachable precision

Tr
[
G · Σ(N)(θ)

]
as far away from the information content Tr

[
G · F−1(θ)

]
/N as possible. Then we

minimize on MN ∈ M(LU)
N to compute the best worst case scenario, as in a typical min-max definition [55].

The figure of merit rN(θ) quantifies the competition between optimal measurements for different
parameters, and has a clear operational meaning. Because of the QCR bound in (16) we have rN(θ) � 1 and
the N define a fully compatible model only when rN(θ) = 1. This is true if and only if ∃MN ∈ M(LU)

N

(possibly dependent on θ) for which in (16) equality holds ∀G. On the contrary rN(θ) > 1 indicates the
presence of incompatibility and happens if and only if ∀ MN ∈ M(LU)

N ∃G � 0 such that in (16) the strict
inequality holds. In the asymptotic scenario of infinitely many probes available we introduce

Definition 3.2. (Incompatibility figure of merit)

r(θ) := lim inf
N→∞

rN (θ), (18)

which always exists and from rN(θ) inherits the property r(θ) � 1. In particular in this case we have
r(θ) = 1 if and only if there exists a sequence of MN ∈ M(LU)

N , which, for all G � 0, allows us to saturate
the inequality (16) asymptotically in N. It is worth noticing that the incompatibility figure of merit could be
defined for locally asymptotic covariant measurements (LAC) [42, 48] as well, and it would be exactly equal
to r(θ), see appendix A for the details.
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3.2. Well-definedness of the figure of merit
We now briefly show that rN(θ) in (17) is invariant under reparametrization and therefore a well-defined
quantity. This translates to r(θ), which is therefore a well defined property of the statistical manifold (see
section 3.3). Consider a reparametrization θ = θ (η) having an invertible Jacobian Jij := ∂θi(η)

∂ηj
. Then the

MSE matrix for the parameters θ, defined in (4), can be written Σ(N )(θ) = JΣ(N )(η)J t, where
Σ(N)

ij (η) :=E[(η̂i − ηi)(η̂j − ηj)] is the MSE matrix for the parameters η. Similarly we write the inverse of

the QFI matrix as F−1(θ) = JF−1(η)J t, with F(η) computed from the SLDs Li(η), which differ from the
definition in (8) in the derivatives, which are taken with respect to ηi. Its now easy to show that
rN(θ) = rN(η). The action of the Jacobian matrix on the MSE matrix and on the QFI can be moved on G,
that becomes J tGJ both at numerator and at denominator of the ratio in (16), while multiplying respectively
Σ(N )(η) and F−1(η). Then we observe that the set of positive matrices is invariant under congruence for an
invertible matrix, i.e. J t{G � 0}J = {G � 0}, and therefore we get

rN (θ) = inf
MN∈M(LU)

N

sup
G�0

N Tr
[
G · Σ(N)(η)

]
Tr

[
G · F−1(η)

] := rN (η). (19)

It worth stressing that, by construction the quantity r(θ) only depends on the input probe state ρ, the
encoding Eθ, and the specific point of interest θ. It is an intrinsic property of the statistical manifold
defined by the trajectories (1). The need for a reparametrization invariant measure of incompatibility was
already pointed out in [56], in which the figure of merit r(θ) was independently discovered.

3.3. Geometric interpretation
The parameters θ ∈ Θ can be interpreted as coordinates defining via the map (1) a submanifold of the
space of states S (H), called the statistical manifold. The QFI matrix, being a positive semidefinite matrix
can be thought as a Riemannian metric on this manifold. This metric is generally non trivial as it explicitly
depends on the coordinates θ and may have intrinsic curvature. The QFI is said to be a distinguishability
metric [57, 58]: given two very near states ρθ and ρθ+dθ , their infinitesimal distance in the QFI metric is

ds2 :=
1

4
Fij(θ)dθi dθj = 2

(
1 −

√
F (ρθ, ρθ+dθ)

)
, (20)

which is negatively correlated with the fidelity F (ρθ, ρθ+dθ) between ρθ and ρθ+dθ, defined as

F (ρ,σ) :=
[
Tr

(√√
ρσ

√
ρ
)]2

[59]. In order to gain information about θ it is thus better to choose the
probe state ρ such that in the statistical manifold the codified state ρθ is highly distinguishable from its
neighbors ρθ+dθ , and has therefore the highest statistical distance from them as possible. This picture
clarifies why the inverse of the distinguishability metric, i.e. F−1(θ), gives the precision to which a single
point θ can be identified in Θ, given the quantum state ρθ. For ρ⊗N

θ the relevant metric is F−1(θ)/N. When

a measurement is performed and an estimator θ̂ is chosen there is a new Riemannian metric insisting on
the statistical manifold: the positive semidefinite Σ(N )(θ) matrix. The key question is if one can find a
POVM MN ∈ M(LU)

N with an MSE metric that fully adapts to the underling quantum metric F−1(θ)/N of
the manifold, i.e. if the inequality (6) can be saturated (at a certain point θ). In general this is not possible.
Let us introduce a representation of G as a sum of projectors |vi〉〈vi|, each weighted with gi � 0, i.e.
G :=

∑
i gi|vi〉〈vi|, where |vi〉 are vectors in the tangent plane of the statistical manifold at point θ, then

1

N
Tr[G · F−1(θ)] =

1

N

∑
i

gi〈vi|F−1(θ)|vi〉. (21)

According to the above expression, the information content is a weighted combination of the
distinguishability of the manifold in different directions defined by |vi〉, see figure 1 for a 2D representation.
This has to be compared with the experimental weighted distinguishability, i.e.

Tr[G · Σ(N)(θ)] =
∑

i

gi〈vi|Σ(N)(θ)|vi〉, (22)

given by a particular measurement. The whole point of the non commutative nature of the manifold is the
impossibility to saturate the distinguishability in more than one direction at the same time. By taking

sup
G�0

N Tr
[
G · Σ(N)(θ)

]
Tr

[
G · F−1(θ)

] = sup
gi�0,|vi〉

N
∑

i
gi〈vi|Σ(N)(θ)|vi〉∑

i
gi〈vi|F−1(θ)|vi〉

, (23)
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Figure 1. Representation of a 2D statistical manifold with its tangent space at a point θ and two directions |v1〉 and |v2〉 on this
plane.

we measure the worst case fitting of the Σ(N )(θ) matrix on the metric F−1(θ)/N at a point θ, spanning all
possible sets of tangent vectors and weights. Then we minimize on the classical metric (and hence on the
POVM) to find the most adapt one. By taking the asymptotic limit of infinitely many probes (through the
lim inf) we have completed the analysis of the definition (18) from the geometrical point of view. We sum
up everything and say that r(θ) measures, in the asymptotic scenario, the failure of finding a metric on the
statistical manifold, stemming from a measurement, which fully adapts to the underlying quantum metric
(in all directions) at a specific point θ.

3.4. Computation of the figure of merit
We would like to apply the existing results in local estimation theory to compute the incompatibility figure
of merit. This requires the exchange of the sup and the inf in (17). In appendix B we do that and show

r(θ) = sup
G�0

C(G, θ)

CS (G, θ)
, (24)

with CS (G, θ) defined in (11), and with the numerator given by the quantity

C(G, θ) := lim
n→∞

min
N�n

inf
MN∈M(LU)

N

N Tr[G · Σ(N)(θ)]. (25)

In [42] it has been proved that C(G, θ) = CH(G, θ), where CH(G, θ) is the Holevo–Cramér–Rao bound
functional CH(G, θ) [41, 60]. Exploiting this facts we can use (24) to deduce the following equality

r(θ) = sup
G�0

CH(G, θ)

CS (G, θ)
. (26)

In [61] the upper bound CH(G, θ) � 2CS(G, θ) is given, which implies r(θ) � 2. Because of this it makes
sense to introduce

Definition 3.3. (Incompatibility measure)

I(θ) := r(θ) − 1, (27)

as a proper quantifier of incompatibility: by construction it belongs to the interval [0, 1] with I(θ) = 0
indicating full compatibility, while I(θ) = 1 maximal incompatibility. The Holevo–Cramér–Rao bound
can be computed via the semidefinite linear program in [49], which can be adapted to compute I(θ), as
reported in appendix C.

3.5. Upper bound on r(θ)
In this section we propose an upper bound on r(θ) that relies only on the computation of the SLDs defined
in (8). It is essentially based on CZ (G, θ) [62], a well know upper bound on CH(G, θ), which reads

CH(G, θ) � CZ(G, θ) := Tr
[
GF−1(θ)

]
+ Tr Abs

[
GF−1(θ)A(θ)F−1(θ)

]
, (28)

where A(θ) contains the expectation values of the commutators of the SLDs:

Aij(θ) :=
1

2i
Tr

[
ρθ

[
Li(θ), Lj(θ)

]]
. (29)

6
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In writing (28) we used Tr Abs [G · R] := Tr |
√

GR
√

G|, with |X| :=
√

XX†. Combining (28) and (26) we
get

r(θ) � 1 + sup
G�0

Tr Abs
[
G · F−1(θ)A(θ)F−1(θ)

]
Tr

[
G · F−1(θ)

] := r
(θ). (30)

The above inequality shows that a sufficient condition to have compatibility is A(θ) = 0. In appendix D we
compute explicitly supG�0 in (30) and obtain

r
(θ) = 1 + ‖F− 1
2 (θ)A(θ)F− 1

2 (θ)‖, (31)

where ‖ · ‖ is the operator norm. This translates to an upper bound on I(θ), i.e.

Theorem 3.1. (Upper bound on the incompatibility measure)

I(θ) � I
(θ) := r
(θ) − 1 = ‖F− 1
2 (θ)A(θ)F− 1

2 (θ)‖. (32)

This strengthen the interpretation of A(θ) as a measure of incompatibility [51]. The upper bound I
(θ)
was first defined in [63] and called R. It has already been used as a measure of incompatibility and
‘quantumness’ and applied to qubits [56] and many-body systems [63, 64]. By defining I(θ) we offer a
more informative definition of incompatibility. It is noteworthy that for a D-invariant model [65] this
bound is saturated and I(θ) = I
(θ).

3.6. Incompatibility for separable measurements
We now go back to the first definition of a figure of merit presented in (18), but consider the minimization
in (17) to be performed only on the locally unbiased separable measurements subset M(LU−S)

N of M(LU)
N

which operate locally on ρ⊗N
θ . This brings to the definitions

rs
N (θ) := inf

MN∈M(LU−S)
N

sup
G�0

rN (G, M N , θ) , (33)

and

Definition 3.4. (Incompatibility figure of merit for separable measurements)

r s(θ) := lim inf
N→∞

rs
N (θ). (34)

Now we apply the result of [66], which gives us a lower bound on the precision of the estimation with N
probes when we use a measurement MN ∈ M(LU−S)

N . The bound reads

N Tr[G · Σ(N)(θ)] � 1

D − 1

(
Tr

√
F− 1

2 (θ)GF− 1
2 (θ)

)2

, (35)

where Σ(N )(θ) is the MSE matrix of MN and D is the size of the Hilbert space of the single probe ρθ. This
translates to a lower bound on rs

N (G, MN , θ)∀ N, i.e.

rs
N (G, MN , θ) �

(
Tr

√
F− 1

2 (θ)GF− 1
2 (θ)

)2

(D − 1) Tr
[

F− 1
2 (θ)GF− 1

2 (θ)
] , (36)

which propagates to the definition of rs(θ), giving

Theorem 3.2. (Lower bound for separable measurements)

rs(θ) � d

D − 1
, (37)

where we have compute explicitly supG�0 using the AM-QM inequality and its saturation. Observe that the
inequality (37) bares no reference to the details of the encoding process (1) and that it is non trivial only if
the number d of parameters we have to estimate is larger than or equal to D − 1. The manipulations of
appendix B are valid also for the class of measurements M(LU−S)

N , because only the local unbiasedness is
required in their proof. Therefore we can write

r s(θ) = sup
G�0

Cs (G, θ)

CS (G, θ)
, (38)

7
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where now
Cs(G, θ) := lim

n→∞
min
N�n

inf
MN∈M(LU−S)

N

N Tr[G · Σ(N)(θ)]. (39)

At least for the case of a qubit probe (D = 2) the above expression allows us to exactly compute r s(θ).
Indeed as shown in [60, 66] for this model one has

Cs(G, θ) =

(
Tr

√
F− 1

2 (θ)GF− 1
2 (θ)

)2

, (40)

leading to

Corollary 1.
D = 2 ⇒ rs(θ) = d, (41)

which shows that in the case of a single qubit, multi-parameter estimation always exhibit incompatibility for
separable locally unbiased measurements (remember that our analysis is explicitly restricted to the cases
where d � D2 − 1 = 3).

3.7. Hierarchy of incompatibility measures
Whether a certain estimation process is compatible or not depends on the set of measurements MN that we
are allowed to perform. Consider a hierarchy of POVM sets

M(1)
N ⊆ M(2)

N ⊆ . . . ⊆ M(k)
N ∀ N, (42)

we define the figure of merit r(i)
N (θ) as in (17), but taking M(i)

N as the domain of the infimum. By
construction the r(i)

N (θ) satisfy the following hierarchy of inequalities

r(1)
N (θ) � r(2)

N (θ) � . . . � r(k)
N (θ) ∀ N, (43)

which carries over to
r (1)(θ) � r (2)(θ) � . . . � r (k)(θ), (44)

when taking the proper N →∞ limits (18). For example the space of separable locally unbiased
measurement is a subset of the set of all locally unbiased measurements, i.e.

M(LU−S)
N ⊆ M(LU)

N , (45)

which means r s(θ) � r(θ).

4. Incompatibility of a noisy estimation task

In this section, by using the previously defined figures of merit r(θ) in (26) and r s(θ) in (34), we study the
incompatibility of the estimation process in a few simple cases concerning the sensing of two phases θ1 and
θ2 encoded by the unitary transformation

Uθ := exp
[
i
(
θ1σy + θ2σz

)]
, (46)

acting on individual qubits. The probes will be states of one and three qubits subject to local depolarizing
noise, which is given by the map

Λλ(ρ) :=λρ+ (1 − λ)
𝟙
2

, (47)

with λ ∈ [−1/3, 1] being a characteristic parameter of the model [67]. The transformation Λλ induces a
shrinking of the qubit Bloch vector by a factor given by the modulus |λ| which can be used to gauge the
intensity of the noise. In particular for λ = 1 the map (47) corresponds to the noiseless evolution, and for
λ = 0 to the complete depolarization process, while negative values of λ indicate the presence of an
inversion of the Bloch sphere with respect to the origin [68]. We are interested in investigating if the noise
can force the system to a more classical behavior and therefore ensure compatibility in the estimation
scenario, as it does for measurements [40]. We then turn to D-dimensional system, and with the opportune
generalizations of (46) and (47) we explore the upper bound I
(θ) in (27) for a generic system and the
incompatibility I(θ) in (32) for a qutrit. Notice that the chosen noise is covariant and therefore in all our
examples it could be applied before or after the encoding without changing the final output ρθ. Table 1
contains a recap of the improvements and observed phenomena in the following examples.
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Table 1. Recap of the examples of section 4 with the improvements we propose and/or the observed relevant phenomena.

System Known results Improvements/observed phenomena

1 qubit Computation of I(θ) (R) for qubit tomography and Computation of I(θ,λ) for two phase estimation with
two phase estimation with pure states [56] depolarizing noise. Incompatibility with separable measurements

3 qubit Computation of ‖ A(θ) ‖F and 1 − CH(𝟙)/CS(𝟙) [49] Efficient computation of I(θ,λ). Observation of gap
between I
(θ,λ) and I(θ,λ) and its behavior

1 D-dim — Asymmetry around λ = 0 of the upper bound I
(θ,λ)
1 qutrit — Asymmetry around λ = 0 of the incompatibility measure I(θ,λ)

4.1. Incompatibility for a one-qubit probe
First of all we analyze the case of a single qubit probe. The fact that the figure of merit is parameterization
invariant allows for an elegant exact solution of the qubit model for whatever probe state and encoded
phases under depolarization noise. In this example the measure I(θ) and its upper bound I
(θ) will
coincide. After the encoding by Uθ in (46), the probe undergoes the action of the noise map Λλ in (47), so
that its final state ρθ is described by the mapping (1) with Eθ given by

Eθ(ρ) :=Λλ(UθρU†
θ) = UθΛλ(ρ)U†

θ. (48)

The purity of the encoded state ρθ = Eθ (ρ) is independent on θ, this makes the statistical model
D-invariant [62, 65], and allows us to conclude that the Holevo–Cramér–Rao bound CH(G, θ) coincides
with CZ(G, θ) defined in (28), therefore the inequality (30) is saturated (I(θ) = I
(θ)), and the
incompatibility can be computed from the SLDs only. We consider an arbitrary qubit probe state
ρ := 1

2 (𝟙+ a · σ). Its Bloch vector is a :=
(
ax, ay, az

)
, with Tr ρ2 = 1

2 (1 + ‖a‖2). After the encoding the
Bloch vector of ρθ = Eθ (ρ) is aθ :=λ

(
ax(θ), ay(θ), az(θ)

)
. We can perform an implicitly defined change of

variables (θ1, θ2) → (α,β), that brings us to a(α,β) = λ
√

2 Tr ρ2 − 1(cos α cos β, cos α sin β, sin α). For
this model [69] we compute the matrices F(α,β) and the A(α,β), which are

F(α,β) =
√

2 Tr ρ2 − 1

(
λ2 0
0 λ2 cos2 α

)
,

A(α,β) =
√

2 Tr ρ2 − 1

(
0 −λ3 cos α

λ3 cos α 0

)
,

that substituted in (32) give

Theorem 4.1. (Incompatibility measure for a depolarized qubit two phase model)

I(θ,λ) = I(α,β,λ) =
√

2 Tr ρ2 − 1|λ| ∀ θ, ∀ ρ. (49)

Equation (49) reveals that the noise level intensity controls directly the compatibility. Indeed for fixed input
the value of I(θ,λ) reaches its maximum in the noiseless scenario (λ→ 1) providing full incompatibility
I(θ,λ) → 1 for pure input states. On the contrary as the noise sends ρθ to the completely mixed state
(λ→ 0) the codified information is dissipated and the compatibility increases, indeed I(θ,λ) → 0.
Fundamentally the same result was discover in [56] for qubit tomography. We finally remind the reader
that, as anticipated at the end of section 3.6, for a single qubit we get r s(θ) = d = 2 independently on the
noise. Again this result is valid ∀θ and for every input probe ρ.

4.2. Incompatibility for three entangled qubits
Consider now the scenario in which we have at disposal multiple copies of three entangled qubits and we
codify them through Uθ ⊗ Uθ ⊗ Uθ, with Uθ given in (46). This more complicate scenario gives us the
opportunity to compute I(θ,λ) with the SDP and show the presence of a gap between I(θ,λ) and
I
(θ,λ). In this example we will not be able to compute r(θ) for every probe state, therefore we will
concentrate on

|ψ〉 :=
|ψz〉+ |ψy〉√

2
, (50)

with

|ψz〉 :=
1√
2

(
|000〉+ |111〉

)
,

|ψy〉 :=
1√
2

(
|φ+φ+φ+〉+ |φ−φ−φ−〉

)
,

9
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Figure 2. The orange dashed curve is the upper bound I
(θ = 0), defined in (32), computed for the encoded three qubits state
(50) as a function of the local noise intensity λ. The blue solid curve is the figure of merit I(θ = 0) defined in (27) referred to the
same scenario and computed numerically as explained in appendix C. The curves are symmetric around λ = 0. The empty point
in λ = 0 indicates that at this point the information quantities are not defined.

where |φ+〉 and |φ−〉 are the eigenvectors of σy corresponding to the positive and negative eigenvalue
respectively. In [38] it is proved that the analogous state for the estimation of three phases with N entangled
qubits reaches Heisenberg scaling in the QFI in all the three parameters. At difference with the previous
example, here we are able to compute the figure of merit for the probe |ψ〉 only at the point θ = 0 through
numerical evaluations via the SDP reported in appendix C, these indicate a non-null I(θ = 0). We add a
local depolarization noise Λλ on each qubit and compute I(θ = 0,λ) and its upper bound I
(θ = 0,λ) as
functions of λ to see if the noise increases compatibility, the results are reported in figure 2. I(θ = 0,λ) and
I
(θ = 0,λ) have been computed for 100 values of λ uniformly distributed in

(
−1/3, 1

)
. The addition of

noise does not necessarily diminish the incompatibility, on the contrary I(θ = 0,λ) and I
(θ = 0,λ) both
display a non-monotonic behavior with respect to |λ|. This behavior of the incompatibility has already been
observed in [49]. We notice that as the noise destroys the information codified in ρθ both the compatibility
and its upper bound I
(θ,λ) go to 0, but this does not seem to be a universal behavior [56]. We confirm a
separation between I
(θ,λ) and I(θ,λ), that has been evidenced in [56], and we conjecture that
I(θ,λ) − I
(θ,λ) shrinks to zero as the amount of encoded information diminish, as it happens in this
example for λ→ 0. In this model also the relative gap (I(θ,λ) − I
(θ,λ))/I(θ,λ) shrinks to zero as
λ→ 0. For a generic noise this phenomenon depends on the behavior of A(θ,λ) as the disturbance is
increased. The figure of merit I(θ,λ) appears to be not correlated with the information quantities
F−1

11 (θ,λ) and F−1
22 (θ,λ) or with the purity of the encoded state, as these measures are all monotonic in the

noise λ. Also because of this we think of I(θ) as a genuine non trivial new property of the estimation
process. Notice that for λ = 0, the state is unable to codify information (F(θ) = 0).

4.3. Estimation on D-dimensional probes
In this section we study the incompatibility for a generic unitary encoding of d parameters on a
D-dimensional probe in S(H), i.e.

Uθ := exp

⎛⎝i
d∑

j=1

θjHj

⎞⎠ , (51)

where Hj are null-trace Hermitian operators acting on H. For the estimation around θ = 0, these operators
are the infinitesimal generators of the encoding. However for a generic point θ �= 0 this is not necessarily
true. As explained in appendix E, for a given probe state, the sensing procedure around a point θ �= 0 can
however be described in terms of an effective set of new generators Heff

j (θ). Accordingly, since the results of
the preset section are valid for estimations around θ = 0 for all possible choices of Hj, we can conclude that
they hold true also ∀θ encoded by (51). Finally as for the noise model we replace (47) with

Λλ(ρ) :=λρ+ (1 − λ)
𝟙
D

, (52)

which for λ ∈ [−1/(D2 − 1), 1] is a proper generalization of the depolarization channel for a
D-dimensional system [67, 68].

10
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4.4. Incompatibility for a D-dimensional probe
Let us consider a single-probe scenario where the state of the system is described by the density matrix

ρθ :=Λλ(Uθ|ψ〉〈ψ|U†
θ) = UθΛλ(|ψ〉〈ψ|)U†

θ = λ|ψθ〉〈ψθ|+ (1 − λ)
𝟙
D

, (53)

with |ψ〉 being the pure input state of the system, and with |ψθ〉 :=Uθ|ψ〉. If we now call Li(θ) the SLD
associated to the parameter θi in the absence of noise, i.e. the SLD of |ψθ〉, given in (9), then it can be seen
that for λ �= 1

Li(θ,λ) =
λD

2 + λ (D − 2)
Li(θ), (54)

is the SLD in the noisy scenario. We obtain this expression by substituting ρθ defined in (53) in (10). From
this result the QFI matrix F(θ,λ) and the commutator matrix A(θ,λ) are both found to be proportional to
their noiseless counterparts F(θ) and A(θ) computed from Li(θ), i.e.

F(θ,λ) =
λ2 D

2 + λ (D − 2)
F(θ), (55)

A(θ,λ) =
λ3D2

[2 + λ(D − 1)]2
A(θ). (56)

Replaced into (32) the above expressions lead to

I
(θ,λ) =
|λ|D

2 + λ(D − 2)
I
(θ), (57)

with I
(θ) being the upper bound on the noiseless incompatibility figure of merit defined in (32). Notice
that this expression is not symmetric around λ = 0, i.e. I
(θ,λ) �= I
(θ,−λ) for λ � 0. We define

Definition 4.1. (Asymmetry factor for I
(θ,λ))

κ
(λ) :=
|I
(θ,λ) − I
(θ,−λ)|

I
(θ,λ)
=

2|λ|(D − 2)

2 − λ(D − 2)
. (58)

The presence of an asymmetry in the properties of the D-dimensional depolarizing channel around λ = 0
was already pointed out in the context of communication in [68]. For a qubit model D = 2 ⇒ κ
(λ) = 0.
We show through a numerical example that this asymmetry exists not only for the upper bound I
(θ,λ)
but also for the actual figure of merit I(θ,λ). Consider the encoding of two near-zero phases (d = 2) on a
qutrit (D = 3) via the unitary operator (51) where the generators are chosen to be

H1 =

⎛⎝ 0 −i 0
+i 0 0
0 0 0

⎞⎠ , H2 =

⎛⎝1 0 0
0 −1 0
0 0 0

⎞⎠ , (59)

and the probe state is

|ψ〉 = 1√
2

⎛⎝ 1
−1
0

⎞⎠ .

As in section 4.2 the figure of merit has been computed with the SDP presented in appendix C, for 500
equally spaced values of λ in the allowed region. In figure 3 the plot of I(θ = 0,λ) is reported for
λ ∈

(
−1/8, 1

)
, with a zoom on λ ∈

(
−1/8, 1/8

)
. The dashed curve for λ < 0 reported in the insert is the

reflection of the curve for λ > 0. It has been plotted in order to highlight the presence of the asymmetry.
For this model, at the point θ = 0, the upper bound I
(θ = 0,λ) and the figure of merit I(θ = 0,λ)
coincide. While in this qutrit example there is no gap between I(θ,λ) and I
(θ,λ), in general for a
D-dimensional model this could be the case. From (57) we see that

lim
λ→0

I
 (θ,λ) = 0 ⇒ lim
λ→0

I (θ,λ) = 0, (60)

which means I
 (θ,λ) − I (θ,λ) → 0 for λ→ 0.

5. Design of compatible models for quantum metrology

The following section is somewhat disconnected from the previous discussions on the incompatibility
measure I(θ,λ). Here we want to analyze some strategies that have been proposed in the past and some
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Figure 3. This curve is the incompatibility figure of merit I defined in (27), for the asymptotic covariant measurements,
numerically computed for the qutrit example of section 4.4 for λ ∈

(
−1/8, 1

)
. The empty circle at λ = 0 indicates that at this

point the information quantities are not defined. The dashed curve in the small insert is the mirrored figure of merit for λ > 0.

generalizations that allow to produce a fully compatible statistical model in quantum metrology. We will
only need to asses the condition A(θ) = 0 to claim compatibility, according to the bound (32), and
therefore we will not need the linear program for I(θ). We first review what is already known for 2 qubits,
each codified via (46), and then generalize it for the D-dimensional encoding (51) when a couple of
D-dimensional systems are available.

5.1. Known results for a two-qubits probe
In this section we analyze the compatibility of three different two qubit encoding scenarios in the absence of
noise and for some special instances of the input states. We do not claim paternity of these results, they are
only reviewed here in order to be generalized in the next section. Consider first the ancilla-aided model, in
which only one of the two qubits is subject to the unitary encoding (46). This means that the total evolution
of the two qubits is 𝟙⊗ Uθ. As input state for the probes we take a Bell state, which is known in the
literature to be optimal for the estimation of SU(2) operations [70], for example

|ψ〉 :=
|00〉+ |11〉√

2
, (61)

where |0〉 and |1〉 are the eigenvectors of σz. From a direct computation we see that for this state
A(θ) = 0∀θ, which from (32) gives

I(θ) = 0, ∀ θ, (62)

leading to compatibility. This result was first reported in [70]. Interestingly enough compatibility can also
be obtained when operating on the maximally entangled state (61) with the encoding Uθ ⊗ Uθ. Indeed by
explicit computation we get again A(θ) = 0∀θ that leads once more to (62). Such result can be found in
[51]. We will see in section 5.2 that these effects are just a special instance of a more general trend since a
maximally entangled state of a finite-dimensional probe always gives full compatibility, both for one and
two uses of the encoding unitary channel.

We now give a last example, which we here name ‘anti-parallel spin strategy’ for future reference. Take
the input state going through the encoding Uθ ⊗ Uθ to be |+ n̂〉 ⊗ |− n̂〉, where |+ n̂〉 and |− n̂〉 have
opposite Bloch vectors +n̂ and −n̂. This state has the same QFI of the state of two parallel spins
|+ n̂〉 ⊗ |+ n̂〉, but has A(θ) = 0∀θ (in contrast to |+ n̂〉 ⊗ |+ n̂〉), which means that it is fully compatible
and a superior probe for the sensing task. This result can be obtained from direct computation or thanks to
the observation of section 5.3, where we generalize this ideas to finite-dimensional probes. The superiority
of the anti-parallel spin state was already observed by Gisin and Popescu in [71] and in the context of
parameter estimation in [72]. In all these three examples, being the encoded state pure, a measure entangled
across two qubits only is sufficient to get compatibility [73].

5.2. Compatibility of the maximally entangled states
In this subsection we will show that the results of section 5.1 are only a particular case of a general
observation, by proving that the use of an ancilla, maximally entangled with the probe, can completely
remove the incompatibility, leading to the identity

I(θ) = 0, ∀ θ. (63)
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Consider hence as input the following pure state

|ψ〉 :=
1√
D

d∑
i=1

|i〉 ⊗ |i〉 ∈ H ⊗H, (64)

on which the evolution 𝟙⊗ Uθ acts to produce the output state

|ψθ〉 := 𝟙⊗ Uθ|ψ〉, (65)

(i.e. the Choi–Jamiołkowski state of the channel Uθ [74, 75]). Following section 4.3 and appendix E, the
associated SLDs (9) of ρθ := |ψθ〉〈ψθ|, can be expressed as

Lk(θ) =
2i

D

∑
ij

|i〉〈j| ⊗
(
Heff

k (θ)|i〉〈j|− |i〉〈j|Heff
k (θ)

)
, (66)

which lead to the following expressions for the F(θ) and A(θ) matrices:

Flm(θ) = 2 Tr
(
{Heff

l (θ), Heff
m (θ)}

)
/D, (67)

Alm(θ) = −2i Tr
([

Heff
l (θ), Heff

m (θ)
])

/D = 0, (68)

where in the last identity we used the fact that
[
Heff

l (θ), Heff
m (θ)

]
is a traceless operator. Accordingly the

upper bound (32) imposes (63), hence the thesis: the addition of a sufficiently large ancilla permits to
remove entirely the quantum incompatibility for the LAC measurements.

A similar result holds true also when we let evolve the maximally entangled state (64) through Uθ ⊗ Uθ .
In this case (65) gets replaced by

|ψθ〉 :=Uθ ⊗ Uθ|ψ〉, (69)

which leads to

Flm(θ) = 8 Tr
(
{Heff

l (θ), Heff
m (θ)}

)
/D, (70)

Alm(θ) = −4i Tr
([

Heff
l (θ), Heff

m (θ)
])

/D = 0, (71)

which gives again the full compatibility condition (63).

5.3. Generalized anti-parallel spin strategy
Now we generalize the ‘anti-parallel spin’ strategy of section 5.1. Suppose that we only have two parameters
to estimate (d = 2) and we take for probe the separable input state |ψ1〉 ⊗ |ψ2〉 that evolves through the
mapping induced by Uθ ⊗ Uθ. The sufficient condition for compatibility A(θ) = 0 can be expanded as

〈ψ1|[Heff
1 (θ), Heff

2 (θ)]|ψ1〉+ 〈ψ2|[Heff
1 (θ), Heff

2 (θ)]|ψ2〉 = 0. (72)

The operator [Heff
1 (θ), Heff

2 (θ)] is skew-Hermitian and therefore is diagonalizable and has purely imaginary
eigenvalues ±iaj, where aj > 0, for j = 1, 2, . . . , �D/2�, each associated with an eigenvector |± iaj〉. If the
dimension D is odd, then we have an extra unique zero eigenvalue. Let us denote with V the unitary
operator that performs such diagonalization, i.e. V† [Heff

1 (θ), Heff
2 (θ)

]
V = diag (±ia1,±ia2, . . .). Let us

define S ⊆ {1, 2, . . . , �D/2�}, then a couple of states that guarantees compatibility is

|ψ1〉 :=
1

|S|
∑
j∈S

eiϕ1
j V|i(−1)sjaj〉, (73)

|ψ2〉 :=
1

|S|
∑
j∈S

eiϕ2
j V|− i(−1)sj aj〉, (74)

where ϕ1
j and ϕ2

j are arbitrary phases, sj ∈ {0, 1}, and |S| is the cardinality of S. Notice that we are also free
to add in the definition of whichever |ψ1〉 or |ψ2〉 the state V|0〉, with |0〉 being the eigenvector with null
eigenvalue (in case there is one). With the above choice of probes the compatibility condition (72) is
realized. Notice also that the QFI matrix of |ψ1〉 ⊗ |ψ2〉 is the sum of the QFIs of |ψ1〉 and |ψ2〉. This two
states taken individually manifest incompatibility, but when measured jointly they gain full compatibility.
This construction is the analogue of the ‘anti-parallel spin strategy’ of section 5.1. We observe that a state
|ψ〉, being an equal superposition of |ψ1〉 and |ψ2〉 is also fully compatible. The condition (72) justifies also
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the compatibility of |+ n̂〉 ⊗ |− n̂〉 ∀ θ in section 5.1. These two states are an orthogonal basis for the qubit
Hilbert space, therefore

〈+n̂|[Heff
1 (θ), Heff

2 (θ)]|+ n̂〉+ 〈−n̂|[Heff
1 (θ), Heff

2 (θ)]|− n̂〉 = Tr
(
[Heff

1 (θ), Heff
2 (θ)]

)
= 0,

hence condition (72) is satisfied and (63) holds. Incidentally we observe also that for a d-parameter
estimation, the state |ψ1〉 ⊗ |ψ2〉 ⊗ . . .⊗ |ψD〉 is compatible when {|ψi〉}D

i=1 is base for the Hilbert space H,
because then we would have

Aij(θ) ∝ Tr
([

Heff
i (θ), Heff

j (θ)
])

= 0. (75)

6. Conclusions

One of the defining properties of quantum mechanics is the intrinsic incompatibility between the possible
experiments that could be carried out on a quantum system. This causes the appearance of information
limits on the precision to which different characteristics of a certain quantum system can be known.
Formally, this comes always from the non-commutativity of quantum operations. The main role of this
paper is to give a theoretical foundation to the measure of incompatibility in the quantum estimation task.
For this purpose we define in section 3 a figure of merit having a well defined operational and geometrical
meaning. The figure of merit r(θ) in (18) is built to be easily liked to the asymptotic results of estimation
theory [42]. This allows us to easily compute it, as explained in appendix C, and to give the upper bound in
section 3.5. The definition of incompatibility depends on the operations that we are able to perform, which
is our level of control over the system. If we are only able to perform separable measurements on the probes
then the relevant incompatibility measure is r s(θ) defined in (34). In section 4 the estimation is studied in
the scenario where a depolarizing noise acts, this is a form of disturbance which is often used to model the
decoherence dynamics in metrology [76, 77]. We observed some interesting phenomena like the asymmetry
of the incompatibility for inversion in the space of states in section 4.3. In section 5 we discuss some
strategies able to produce compatible models for quantum metrology with generic D-dimension systems,
which are for example the use of maximally entangled states. As a further development it would be
interesting to determine which state gives the maximum and minimum incompatibility for a certain
encoding at a fixed point θ. This optimization is hard because the figure of merit is a complicated non
linear function of the state. In a sense the probe that maximizes incompatibility is the one which captures at
most the quantum properties of the encoding process. Finally we would like to look for a link between the
incompatibility and the Heisenberg scaling. In this context the only relevant measures are the one that
assume no constraints on the separability of the input, because a single giant entangled probe would be
used.
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Appendix A. Figure of merit for LAC measurements

In this appendix we will define a version of the incompatibility figure of merit for local asymptotic covariant
(LAC) measurements [42, 48]. Consider the sequences of POVMs (Mk)k∈N0

∈ M(LAC)
C that satisfy local

asymptotic covariance (LAC) at the point θ ∈ Θ, as defined in [42, 48]. The kth measurement Mk of a
sequence in M(LAC)

C acts on k probes and has Σ(k)(θ) as associated MSE matrix. Because of the definition of
LAC, (Mk)k∈N0

∈ M(LAC)
C admits a limiting MSE matrix, i.e. limk→∞kΣ(k)(θ) :=Σ(θ) (we also ask

‖ Σ(θ) ‖< ∞). The new figure of merit is hence defined as

r(θ) := inf
M(LAC)

C

sup
G�0

Tr [G · Σ(θ)]

Tr
[
G · F−1(θ)

] . (A.1)
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In [48] the authors have proven the validity of the Holevo bound for the LAC measurements and its
achievability in the same class (for a full rank ρθ with non degenerate spectrum), that is

inf
M(LAC)

C

Tr [G · Σ(θ)] = CH (G, θ) . (A.2)

We now prove that th inf and sup of (A.1) can be commuted. It is easy to prove that the set M(LAC)
C is

convex. The set of POVMs acting on S
(
H⊗N

)
and having θ as outcome set can be thought as a convex

subset of a certain dual vector space V′ [78]. The set containing the infinite sequences of V′ is a vector
space, and the set of sequences thereof that are sequences of POVMs is convex. Furthermore the defining
properties of LAC [48] is stable under convex combination of two measurement sequences. In the Minimax
theorem of [79] the both spaces are required to be be locally convex. Banach spaces like G and V′ ⊃ MN

are locally convex, and the countable infinite product space of multiple V′ (which is the space of sequences)
is also a locally convex space. Furthermore given Σ1(θ) and Σ2(θ) the limiting MSE matrices of two
sequences

(
M1

k

)
k∈N0

and
(
M2

k

)
k∈N0

, the asymptotic MSE of the convex combination(
αM1

k + (1 − α) M2
k

)
k∈N0

is Σ(θ) = αΣ1(θ) + (1 − α)Σ2(θ). Consequently, just like in appendix B, the

Minimax theorem of Kneser [79, 80] can be applied to swap the order of inf over M(LAC)
C and supG�0. It is

understood that the argument of (A.1) can be cast into the same form of (B.6), from which the linearity in
(Mk)k∈N0

and G, and the continuity in G easily follow. We arrive therefore at

r(θ) = sup
G�0

inf
M(LAC)

C

Tr [G · Σ(θ)]

Tr
[
G · F−1(θ)

] = sup
G�0

CH(G, θ)

CS(G, θ)
= r(θ). (A.3)

Appendix B. Exchanging sup and inf in the figure of merit definition

We will arrive at (24) through a series of lemmas.

Lemma 1. The function rN (G, MN , θ) is continuous in G ∈ G at fixed MN ∈ M(LU)
N .

The denominator of rN (G, MN , θ) can be bounden as Tr[G · F(θ)−1] � λmin

(
F(θ)−1

)
=

λmax(F(θ))−1 = 1/‖F(θ)‖, this means

rN (G, MN , θ) � N‖F(θ)‖ Tr[G · Σ(N)(θ)], (B.1)

it follows
|rN (G1, MN , θ) − rN (G2, MN , θ) | � N‖F(θ)‖‖Σ(N)(θ)‖‖G1 − G2‖.

Its important to assume that the set MN ∈ M(LU)
N contains only measurements with bounded MSE

matrices, i.e. ‖ Σ(N )(θ) ‖� C. Therefore we have

|rN (G1, MN , θ) − rN (G2, MN , θ) | � NC‖F(θ)‖‖G1 − G2‖, (B.2)

which means the function rN (G, MN , θ) is Lipschitz continuous with constant NC ‖ F(θ) ‖ and therefore

continuous. It will be useful in the latter to notice that rN (F(θ)
1
2 GF(θ)

1
2 , MN , θ) =

N Tr[G · F(θ)
1
2 Σ(N)(θ)F(θ)

1
2 ] is also continuous in G ∈ G, because is the composition of the continuous

functions rN(G, MN, θ) and G → F(θ)
1
2 GF(θ)

1
2 .

In this paper only the upper semicontinuity of rN(G, MN, θ) is actually used.

Lemma 2. The figure of merit rN(θ) defined in (17) can be equivalently expressed as

rN (θ) = sup
G�0

inf
MN∈M(LU)

N

rN (G, MN , θ) . (B.3)

This lemma is based on the application of the Minimax theorem of Kneser [79, 80]. First of all we need to
cast rN(θ) in a suitable form. We start from the observation that the set of positive weight matrices G is
invariant under congruence for the positive matrix F(θ)

1
2 , i.e.

{G � 0} = F(θ)
1
2 {G � 0}F(θ)

1
2 = {F(θ)

1
2 GF(θ)

1
2 � 0}. (B.4)

This means that the sup can be taken on the matrices F(θ)
1
2 GF(θ)

1
2 � 0 without changing rN(θ), so we have

rN (θ) = inf
MN∈M(LU)

N

sup

F(θ)
1
2 GF(θ)

1
2 �0

N Tr
[

F(θ)
1
2 GF(θ)

1
2 · Σ(N)(θ)

]
Tr

[
F(θ)

1
2 GF(θ)

1
2 · F(θ)−1

] , (B.5)
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= inf
MN∈M(LU)

N

sup
G�0

N Tr
[

G · F(θ)
1
2 Σ(N)(θ)F(θ)

1
2

]
Tr[G]

= inf
MN∈M(LU)

N

sup
G∈G

N Tr
[

G · F(θ)
1
2 Σ(N)(θ)F(θ)

1
2

]
. (B.6)

In the second line, in the domain of the supremum, we have again used that every F(θ)
1
2 GF(θ)

1
2 � 0

corresponds to a G � 0. In the last equation the sup is restricted to the set G = {G � 0, Tr G = 1}, which is
compact and convex. The set of locally unbiased measurements MN ∈ M(LU)

N can be thought as a
(non-empty) subset of a dual vector space [78, 81], which is a convex set because the locally unbiased
measurements are stable under convex combination. The function N Tr[G · F(θ)

1
2 Σ(N)(θ)F(θ)

1
2 ] is linear

in both its arguments. The linearity in G is self evident, so we only show linearity in the measurement.
Suppose that we are given two POVMs denoted by M1 and M2, characterized respectively by the effects E1

θ̂

and E2
θ̂

associated to the outcome θ̂. We have dropped for simplicity the subscript N in M1 and M2 and we
will also drop the superscript (N) in the MSE matrix Σ(θ). Consider the POVM being the linear
combination M :=λM1 + (1 − λ) M2. By definition its effects are

Eθ̂ :=λE1
θ̂
+ (1 − λ) E2

θ̂
. (B.7)

The Σ(θ) matrix associated to M is computed as expectation value on the probability distribution

p(θ̂) := Tr(ρθEθ̂)

= α Tr(ρθE1
θ̂

) + (1 − α) Tr(ρθE2
θ̂
)

= αp1(θ̂) + (1 − α)p2(θ̂). (B.8)

The linearity of p(θ̂) translates to the linearity of Σ(θ), i.e.

Σij(θ) = αΣ1
ij(θ) + (1 − α)Σ2

ij(θ). (B.9)

This means that the whole argument of the inf sup in (B.6) is linear in the POVM, and it is additionally
upper semicontinuous in G at fixed MN (In lemma 1 we proved continuity, which implies upper
semicontinuity). We have now proved all the required hypothesis for the Minimax theorem of Kneser [79,
80], which allows us to write

rN (θ) = sup
G�0

inf
MN∈M(LU)

N

N Tr
[
G · Σ(N)(θ)

]
Tr

[
G · F(θ)−1

] . (B.10)

It is worth stressing that without such argument the quantity

r(↓)
N (θ) := sup

G�0
inf

MN∈M(LU)
N

N Tr
[
G · Σ(N)(θ)

]
Tr

[
G · F(θ)−1

] , (B.11)

is by construction always smaller than or equal to

r(↑)
N (θ) := inf

MN∈M(LU)
N

sup
G�0

N Tr
[
G · Σ(N)(θ)

]
Tr

[
G · F(θ)−1

] , (B.12)

i.e. r(↓)
N (θ) � r(↑)

N (θ).

Lemma 3.
rN1 (θ) � rN1N2 (θ). (B.13)

Let N :=N1N2 with N1, N2 integers. Given N copies of the probe we can organize them into N2 distinct
subgroups, each of them containing N1 probes. We now perform exactly the same measurement MN1 on
each group and use the N2 outcomes to estimate θ by taking their arithmetic mean. Calling this
measurement M


N it follows that its MSE matrix Σ

N (θ) corresponds to ΣN1 (θ)/N2, being ΣN1(θ) the MSE

matrix of MN1 . This holds true because the estimators are unbiased at θ. Therefore we have

rN (G, M

N , θ) =

N Tr
[
G · Σ


N (θ)
]

Tr
[
G · F(θ)−1

] , (B.14)
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=
N Tr

[
G · ΣN1(θ)

]
N2 Tr

[
G · F(θ)−1

] , (B.15)

=
N1 Tr

[
G · ΣN1(θ)

]
Tr

[
G · F(θ)−1

] , (B.16)

= rN1 (G, MN1 , θ). (B.17)

We now need to introduce a new quantity:

rN (G, θ) := inf
MN∈M(LU)

N

rN (G, MN , θ), (B.18)

where the supremum on G � 0 has been removed. We can always take Mε
N1

such that

rN1 (G, Mε
N1

, θ) � inf
MN1∈M

(LU)
N1

rN1 (G, M1, θ) + ε, (B.19)

with ε > 0. Then we have

rN (G, θ) � rN (G, M

N , θ) = rN1 (G, Mε

N1
, θ) � inf

MN1∈M
(LU)
N1

rN1

(
G, MN1 , θ

)
+ ε = rN1 (G, θ) + ε,

where rN(G, θ) has been defined in (B.18). Because of the arbitrariness of ε we have rN (G, θ) � rN1 (G, θ).
Taking supG�0 on both the members of this inequality gives finally the thesis.

Lemma 4.
r(θ) = inf

N�1
rN (θ) = lim

n→∞
min
N�n

rN (θ). (B.20)

Recall the definition of r(θ) in (18), it can be expressed as r(θ) = limn→∞ rn(θ), where

rn(θ) := inf
N�n

rN (θ), (B.21)

which is by construction non-decreasing in n, i.e.

rm(θ) � rn(θ) ∀ m � n. (B.22)

Our goal is to show that due to lemma 3, the inequality in the above expression is always saturated, or
equivalently that

rm(θ) = r1(θ) = inf
N�1

rN (θ) ∀m � 1, (B.23)

which will lead automatically to r(θ) = r1(θ) = infN�1 rN (θ). We can prove (B.23) by contradiction:
assume that there exists m such that rm(θ) > r1(θ). This implies that there must exist k < m integer such
that

r1(θ) = rk(θ) < rm(θ). (B.24)

This however cannot be true because thanks to lemma 3 we must have

rk(θ) � rmk(θ) � inf
N�m

rN (θ) = rm(θ). (B.25)

For the second equality in (B.20) it is easy to notice that the sequence defined by

r(<)
n (θ) :=min

N�n
rN (θ), (B.26)

is explicitly decreasing, i.e.
r (<)

n+1(θ) � r(<)
n (θ), (B.27)

therefore its limit exists and it is easy to show it coincides with inf N�1rN(θ) as we see in the following. Take
ε > 0, then ∃Nε such that

rNε(θ) � inf
N�1

rN (θ) + ε, (B.28)

therefore ∀ε, ∃nε :=Nε such that

r (<)
nε (θ) � rNε(θ) � inf

N�1
rN (θ) + ε, (B.29)
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furthermore
r (<)

n (θ) � inf
N�1

rN (θ), (B.30)

because in r (<)
n (θ) the domain of minimization is smaller. Together (B.29) and (B.30) mean

lim
n→∞

r(<)
n (θ) = inf

N�1
rN (θ) = r1(θ). (B.31)

Before proceeding further let us make yet another observation: the above construction can be applied even
in the absence of the optimization over G. Specifically, for all G � 0 and N ∈ N0, we define the the
quantities

rn(G, θ) := inf
N�n

rN (G, θ), (B.32)

r (<)
n (G, θ) :=min

N�n
rN (G, θ), (B.33)

with rN(G, θ) defined in (B.18). By construction, for all given G, rn(G, θ) is explicitly non-decreasing, while
r (<)

n (G, θ) is explicitly non-increasing, i.e.

rn+1(G, θ) � rn(G, θ), (B.34)

r (<)
n+1(G, θ) � r (<)

n (G, θ). (B.35)

Moreover following the same arguments presented in lemma 4 it turns out that rn(G, θ) is indeed constant,
i.e.

rn(G, θ) = r1(G, θ) ∀ n, (B.36)

and

r1(G, θ) = inf
N�1

rN (G, θ), (B.37)

= lim
n→∞

min
N�n

rN (G, θ), (B.38)

= lim
n→∞

r (<)
n (G, θ). (B.39)

Lemma 5. The function rN (G, θ) is upper semicontinuous in G ∈ G ∀ N.

The function rN (G, MN , θ), defined in (16), is continuous in G ∈ G for fixed MN because of lemma 1,
and in particular upper semicontinuous. The function rN(G, θ) defined in (B.18) is upper semicontinuous
in G ∈ G because the infimum of a family of upper semicontinuous functions (here labeled by the
measurement MN) is upper semicontinuous.

Consider next the supremum over G of r1(G, θ), this can be evaluated as

sup
G�0

r1(G, θ) = sup
G�0

inf
N�1

rN (G, θ), (B.40)

= sup
G�0

inf
N�1

inf
MN∈M(LU)

N

rN (G, MN , θ)

= inf
N�1

inf
MN∈M(LU)

N

sup
G�0

rN (G, MN , θ)

= inf
N�1

rN (θ) = r1(θ) = r(θ). (B.41)

Going from (B.40) to (B.41) requires the application of two different versions of the Minimax theorem.
First of all we need to commute inf N�1 and supG�0 (supG). This can be accomplished with the Ky Fan
Minimax theorem [80, 82]. In order to use this result it must be proved that rN (G, θ) =
inf

MN∈M(LU)
N

rN (G, MN , θ) is Ky Fan concave-convex on G × N0. This condition is equivalent to having Ky

Fan concavity in G for every fixed N and Ky Fan convexity in N for every fixed G. Let us fix an arbitrary
N ∈ N0. Given the combination Gα :=αG1 + (1 − α) G2 with α ∈ [0, 1], ∀ ε ∃Mε

N such that

rN (Gα, θ) = inf
MN∈M(LU)

N

rN (Gα, MN , θ) , (B.42)

� rN

(
Gα, Mε

N , θ
)
− ε. (B.43)
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By expanding Gα in rN

(
Gα, Mε

N , θ
)

we have

rN

(
Gα, Mε

N , θ
)
= α rN

(
G1, Mε

N , θ
)
+ (1 − α) rN

(
G2, Mε

N , θ
)

, (B.44)

which thanks to the definition of inf
MN∈M(LU)

N
becomes

rN

(
Gα, Mε

N , θ
)

� α inf
MN∈M(LU)

N

rN (G1, MN , θ) + (1 − α) inf
MN∈M(LU)

N

rN (G2, MN , θ),

finally, substituting rN(G, θ), we get

rN

(
Gα, Mε

N , θ
)

� αrN (G1, θ) + (1 − α) rN (G2, θ) . (B.45)

Putting together (B.43) and (B.45) gives

rN (Gα, θ) � αrN (G1, θ) + (1 − α) rN (G2, θ) − ε, (B.46)

which for ε→ 0 is the (Ky Fan) concavity condition for rN (G, θ). Let us now prove the Ky Fan convexity in
N. Consider N1, N2 ∈ N0 and an arbitrary G ∈ G, we have

rN1N2 (G, θ) � α rN1 (G, θ) + (1 − α)rN2 (G, θ) ∀ α ∈ [0, 1] . (B.47)

This is true because thanks to lemma 3 we have rN1N2 (G, θ) � rN1 (G, θ) and rN1N2(G, θ) � rN2 (G, θ).
Lemma 5 proves that rN (G, θ) is upper semicontinuous in G for every fixed N, this concludes the
hypothesis check for the application of the Ky Fan Minimax theorem, according to which

sup
G

inf
N�1

rN (G, θ) = inf
N�1

sup
G

rN (G, θ) . (B.48)

In order to get (B.41) from (B.40) we still need

sup
G

inf
MN∈M(LU)

N

rN (G, MN , θ) = inf
MN∈M(LU)

N

sup
G

rN (G, MN , θ) . (B.49)

This is the content of lemma 2. By putting together (B.39) and (B.41) we get the expression

r(θ) = sup
G�0

lim
n→∞

r (<)
n (G, θ). (B.50)

Expanding this expression we arrive at (24), with C(G, θ) defined in (25).

Appendix C. Formulation of the semidefinite program

We start from (26) and write

r(θ) = sup
G�0

CH (G, θ)

Tr
[
G · F(θ)−1

] = sup
G∈G

CH

(
F(θ)

1
2 GF(θ)

1
2 , θ

)
. (C.1)

The SDP for CH (G, θ) reported in [49] is

CH (G, θ) = minimize
V∈Sn,X∈Rd̃×n

Tr[G · V] subject to

(
V XT R†

θ

RθX 𝟙r̃

)
� 0, XT ∂sθ

∂θ
= 𝟙n. (C.2)

See the work [49] for the definitions of all the objects appearing in this program, it is not necessary to
understand them in order to follow our derivation. equation (C.1) becomes

r(θ) = sup
G∈G

minimize
V∈Sn,X∈Rd̃×n

Tr
[

F(θ)
1
2 GF(θ)

1
2 · V

]
subject to

(
V XT R†

θ

RθX 𝟙r̃

)
� 0, XT ∂sθ

∂θ
= 𝟙n. (C.3)

The objective function Tr[F(θ)
1
2 GF(θ)

1
2 · V] is linear and continuous in both G and V. The domain of the

sup and the min are both convex, with G being compact. We can therefore apply again the Mimimax
theorem of [79] as done in appendix B. Having supG∈G as the innermost operation we can solve it and write

sup
G∈G

Tr
[

F(θ)
1
2 GF(θ)

1
2 · V

]
= ‖F(θ)

1
2 VF(θ)

1
2 ‖. (C.4)
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Now the objective of the minimization is the spectral norm of F
1
2 (θ)VF

1
2 (θ). We can introduce a dummy

variable t and write the program as

r(θ) = minimize
V∈Sn,X∈Rd̃×n

t subject to ‖F(θ)
1
2 VF(θ)

1
2 ‖ � t,

(
V XT R†

θ

RθX 𝟙r̃

)
� 0, XT ∂sθ

∂θ
= 𝟙n. (C.5)

The condition on ‖F(θ)
1
2 VF(θ)

1
2 ‖ can be written as

λmax(F(θ)
1
2 VF(θ)VF(θ)

1
2 ) � t2 ⇒ F(θ)

1
2 VF(θ)VF(θ)

1
2 � t2𝟙 ⇒

t𝟙− F(θ)
1
2 VF(θ)

1
2 (t𝟙)−1F(θ)

1
2 VF(θ)

1
2 � 0.

Because of the Schur complement condition for the positive semidefinite matrices [83] the optimization
becomes

r(θ) = minimize
V∈Sn,

X∈Rd̃×n

t subject to

(
t𝟙 F(θ)

1
2 VF(θ)

1
2

F(θ)
1
2 VF(θ)

1
2 t𝟙

)
� 0,

(
V XTR†

θ

RθX 𝟙r̃

)
� 0, XT ∂sθ

∂θ
= 𝟙n.

(C.6)
From which we compute I(θ) according to (27). This SDP is solved by means of the modeling system CVX
developed on Matlab [84].

Appendix D. Explicit computation of r�(θ)

In this section we prove that supG�0 in the definition (30) of r
(θ) can be computed exactly and we obtain

the explicit expression for r
(θ) in (31). First of all we define A′(θ) := F(θ)−
1
2 A(θ)F(θ)−

1
2 . This means we

can write (30) as

r
(θ) − 1 = sup
G∈G

Tr Abs
[
G · A′(θ)

]
= sup

G∈G
Tr |

√
GA′(θ)

√
G|

= sup
G∈G

Tr

[√√
G (−A′(θ)GA′(θ))

√
G

]
, (D.1)

with the sup taken on G. Because A(θ)† = −A(θ) it holds that −A(θ)
′
GA(θ)′ � 0. The trace in (D.1) can

be associated to the definition of the (squared) fidelity between the states identified by the matrices G and
−A(θ)′GA(θ)′. Notice that this last state must be normalized. Therefore we write

r
(θ) − 1 = sup
G∈G

√
F
(
G,−A(θ)′GA(θ)′

)
, (D.2)

=
√

Tr [−A(θ)′GA(θ)′] · sup
G∈G

√
F
(

G,
−A(θ)′GA(θ)′

Tr [−A(θ)′GA(θ)′]

)
. (D.3)

We will prove that there is a choice of G that gives both the maximum of Tr
[
−A(θ)′GA(θ)′

]
and of the

squared fidelity. Let us write A(θ)′ in the form A(θ)′ = QMQT where M is a block diagonal matrix having
2 × 2 blocks

Mi :=

(
0 λi

−λi 0

)
,

with 0 � λi+1 � λi ∈ R. If A′(θ) is of odd size the matrix M has the last row and column full of 0. We have
Tr

[
−A(θ)′GA(θ)′

]
= Tr[−MG̃M], with G̃ = QTGQ, which explicitly reads

Tr[−MG̃M] = λ2
1

(
G̃11 + G̃22

)
+ λ2

2

(
G̃33 + G̃44

)
+ λ2

3

(
G̃55 + G̃66

)
+ · · · .

The maximum of the above expression is λ2
1, realized for a G̃ having G̃11 + G̃22 = 1 and all the other matrix

elements null. Notice that ‖F− 1
2 A(θ)F− 1

2 ‖ = ‖A(θ)′‖ = λ1. For the square fidelity to reach its maximum
(
√
F = 1) it must be

G = − A(θ)′GA(θ)′

Tr [−A(θ)′GA(θ)′]
, (D.4)

this is realized for G̃11 = G̃22 = 1
2 . Therefore we have build implicitly a matrix G that saturates the sup and

gives (31).
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Appendix E. Effective generators for θ �= 0

Consider the single qubit encoding given in (46), in order to compute the relevant metrological quantities,
for example the QFI and the Holevo–Cramér–Rao bound, it is necessary to take the derivatives of this

evolution, evaluated at θ, i.e. ∂Uθ
∂θ

∣∣∣
θ

. If we are sensing small deviations of the phases around θ = 0, then

these expressions are fairly easily computable, they are indeed ∂Uθ
∂θ1

∣∣∣
θ
= iσy, and ∂Uθ

∂θ2

∣∣∣
θ
= iσz . But if the base

point of the sensing process is θ �= 0, then these derivatives became cumbersome, and can hinder the
derivation of simple analytical results. To overcome this issue we show in this section that the metrological
properties of the estimation at a point θ �= 0 are equivalent to that of a sensing process around zero, where
the encoding has the effective generators Heff

1 (θ) and Heff
2 (θ), which are null-trace Hermitian operators

depending on the non null point θ and are in general not simply σy and σz. We write explicitly the small
variations δθ from the base point θ in the encoding (46), i.e.

Uθ+δθ := exp
(
i[(θ1 + δθ1)σy + (θ2 + δθ2)σz]

)
, (E.1)

:= exp (iH + iδH) . (E.2)

The variables δθ are now the unknown parameters, while θ is known and fixed. The Hamiltonians
H := θ1σy + θ2σz and δH := δθ1σy + δθ2σz have been defined. We expand the expression for Uθ+δθ in
terms of H and δH with the Baker–Campbell–Hausdorff formula, and keep only the first order terms in the
infinitesimal variation δθ, obtaining

Uθ+δθ � Uθ exp

(
iδH − 1

2
[iH, iδH] +

1

6
[iH, [iH, iδH]] + . . .

)
. (E.3)

Now, the idea is to perform the rotation U−θ on the probe after the encoding with Uθ+δθ, in such way we
compensate for the know component of the rotation Uθ+δθ and leave only a term depending on the new
unknown variables δθ.

U−θUθ+δθ � exp

(
iδH − 1

2
[iH, iδH] +

1

6
[iH, [iH, iδH]] + . . .

)
, (E.4)

= exp
(
i
[
δθ1Heff

1 (θ) + δθ2Heff
2 (θ)

])
. (E.5)

In the last expression we have collected the terms multiplied by θ1 and θ2 respectively, which have been
named Heff

1 (θ) and Heff
2 (θ). Notice that the commutator of two skew-Hermitian operators like iH and iδH is

again skew-Hermitian, this applies to all the elements of the exponentiated sum in (E.4), and means that the
right-hand side of (E.4) is a unitary operator even if we have neglected higher order terms in δθ. The
exponentiated sum is either equal to iδθ1Heff

1 (θ) or to iδθ2Heff
2 (θ) when we set either δθ2 = 0 or δθ1 = 0,

therefore the effective generators are also Hermitian operators. Consider a probe ρ codified by Uθ+δθ, i.e.
ρθ+δθ � Uθ+δθρU†

θ+δθ . All the informational quantities remain the same if a known unitary is applied to
the state, indeed its effects can be always absorbed at the measurement stage (if the selected measurements
set allows to do so). By choosing U−θ to be this unitary we get U−θUθ+δθρU†

θ+δθU†
−θ = UδθρU†

δθ, with
Uδθ :=U−θUθ+δθ. We observe that the traces of Heff

1 (θ) and Heff
1 (θ) can be neglected without consequences,

indeed they contribute only to a global phase. Also if the gate Uθ is used multiple times on an entangled
state, so that the encoding is Uθ ⊗ Uθ ⊗ · · · ⊗ Uθ, the traces of the generators only give an irrelevant global
phase. We now further manipulate the encoding and look for a parameterization in which the generators
are orthogonal. Two qubits operators H1 and H2 are said to be orthogonal if {H1, H2} = 0. As null-trace
Hermitian operators on a qubit Heff

1 (θ) and Heff
2 (θ) can be written

Heff
1 (θ) = α1(θ)σx + β1(θ)σy + γ1(θ)σz , (E.6)

Heff
2 (θ) = α2(θ)σx + β2(θ)σy + γ2(θ)σz , (E.7)

with α(θ) := (α1(θ),α2(θ),α3(θ)) ∈ R
3 and β(θ) := (β1(θ),β2(θ),β3(θ)) ∈ R

3. The orthogonality
condition is then {Heff

1 (θ), Heff
2 (θ)} = 2α(θ) · β(θ)𝟙. We can decompose Heff

2 (θ) in a term proportional to
Heff

1 (θ) and one orthogonal as following

Heff
2 (θ) :=

α(θ) · β(θ)

‖α(θ)‖2
Heff

1 (θ) + H⊥eff
2 (θ), (E.8)
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this is the definition of H⊥eff
2 (θ), which satisfies {Heff

1 (θ), H⊥eff
2 (θ)} = 0. We define x(θ) :=α(θ) · β(θ)/

‖ α(θ) ‖2 for ease of notation and substitute (E.8) in (E.5), thus getting

Uδθ = exp
(
i[(δθ1 + x(θ)δθ2)H⊥eff

1 (θ) + δθ2H⊥eff
2 (θ)]

)
, (E.9)

where Heff
1 (θ) has been renamed H⊥eff

1 (θ). The final step is to normalize the generators, thus defining
H̃⊥eff

1 (θ) :=H⊥eff
1 (θ)/Tr

[
H⊥eff

1 (θ)2
]
, and H̃⊥eff

1 (θ) :=H⊥eff
2 (θ)/Tr

[
H⊥eff

2 (θ)2
]
. Going from Heff

i (θ) to

H̃⊥eff
i (θ) corresponds to the following reparametrization⎧⎨⎩δθ′1 = Tr

[
H⊥eff

2 (θ)2
]

(δθ1 + x(θ)δθ2),

δθ′2 = Tr
[
H⊥eff

2 (θ)2
]
δθ2.

(E.10)

A rotation of the reference system can align H̃⊥eff
i (θ) with σy and σz, remember thought that the probe state

must also be transformed. Let us introduce the unitary Vθ such that VθH̃⊥eff
1 (θ)V†

θ = σy and VθH̃⊥eff
2 (θ)V†

θ

= σz , then VθUδθV†
θ = ei(δθ′1σy+δθ′2σz), while the probe state becomes VθρV†

θ .
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