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ABSTRACT
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1 Introduction and notations

Despite the success of Vasiliev equations [I], consistent deformation of Higher
Spin free Lagrangian [2] to full nonlinear interacting theory for any spacetime di-
mensions is still an open task.

After Metsaev’s light-cone classification of the cubic vertices for massive and
massless higher spin fields [3], recently the cubic vertices for totally symmetric mass-
less fields were constructed and classified in the covariant approach [4], generalizing
Noether procedure technic of [5]. The results are in full agreement with Metsaev’s
classification. The interactions of [3], [4] are unique for given spins and number of
derivatives, include all possibilities for parity preserving cubic interactions of higher
spin fields in Minkowski space of any dimension greater or equal to four. It was
shown in [6] that all of these vertices are realized in string theory. Then off-shell
generating functions of cubic interactions for both reducible [7] and irreducible sym-
metric [8] higher spin fields became available. For symmetric fields, the results of [7]
reproduced vertices, known from [9]. This recent development provided new insight
into earlier works [10]-[I8]. For more recent literature see [19]-[32] and references
therein. We present here general, but compact form for interactions between fields
of irreducible Fronsdal setting, using the results of [§].

To continue with this subject we introduce here briefly our notations (see for
example [33]). As usual, instead of symmetric tensors such as h,(i)m___us(z), we use
homogeneous polynomials in the vector a* of degree s at the base point z

h®) (2 a) Z Ha’“ umz e (2)- (1.1)
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Then we have for symmetrized gradient, trace and divergenceﬁ]
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and summation for repeating indices apply.

2 Free Lagrangian for all higher spin gauge fields

We introduce a generating function for HS gauge fields as
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To distinguish easily between ”a” and ”z” spaces we introduce the notation V,, for space-time
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where we assume that all terms in the generating function for higher spin gauge
fields (2.I]) have the same scaling dimension.
Lowest order linearized gauge transformation for this field reads as

68®(2;a) = (aV)A(2;a), (2.2)
68D, ®(z;a) = OA(z; a), (2.3)
88 0,P(z;a) = 2(VO,)A(2; a). (2.4)

where

A(z;a) = Z (s _1 1)!6(8_1)(23 a), (2.5)

is the generating function of the gauge parameters. Fronsdal’s constraint for the
gauge parameter reads as

s=1

O.A(z;a) =0, (2.6)
The Fronsdal constraint on the gauge field reads in these notations
020(z;a) = 0, (2.7)

We introduced the “de Donder” operator

1

Dg, = (02, Vi) — §(aivi)Da- (2.8)
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Now we can write the free Lagrangian for all gauge fields of any spin in the
following form

K
Lee(®(z)) = 3 exp[AzaalacQ]/ d(z1 — 2)0(29 — 2)
122 )\4
{(V1Va) = XDy, Dy, — 7 (V1V2)B0, 00, } 8215 01) (223 @2) lar=az=0  (2.9)
where \? compensates the scaling dimension of the operator in the exponent. In
the free Lagrangian (2.9) there is no mixing between gauge fields of different spin.
Hence this expression reproduces Fronsdal’s Lagrangians for gauge fields with any

spin. The parameter x is a constant which makes the action dimensionless.

3 Cubic Interactions

We are going to present a compact form of all HS gauge field interactions derived in
covariant form in [4]. First we rewrite the leading term of a general cubic interaction



of higher spin gauge fields with any spins s1, s9, Sg@

L (R (2), B0 (), hC9(2))
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where the number of derivatives is

A =81+ 89+ 83 — 2n, (3.

0 < n < min(sy, S2,S3) (3

w N
S~— ~—

As we can see, the minimal and maximal possible numbers of derivatives are

Apin = 81+ S2+ 83— 2min(sy, o, S3), (3.4)
Amax = 81+ S9 + S3. (35)

These interactions trivialize only if we have two equal spin values and the third
value is odd. In that case we should have a multiplet of fields, with at least two
charges, to couple to the odd spin field. In the case of odd spin selfinteraction, the
number of possible charges in the multiplet should be at least 3.

Now we can see that the following expression is a generating function for the
leading term of all interactions of HS gauge fields.

Ao(q)(z)) = / 5(2 - 21,2,3)f(W + 77) X (I)(Z1;@1)q)(22;02)q)(33§ a3) |a1=a2=a3=0 (3-6)

where f is an arbitrary smooth function and

W = 2((0,00,) (a5 V12) + (DO ) (0ay V33) + (D Oy ) (0 V)],
0 = 3[(905V12) + (90, Va3) + (00, V)], (3.7)
Joronn 0z = 2128) = [, . 8(z = 21)8(2 — 22)5(z — z) (3.8)

for brevity. Furthermore we will always assume this integration with delta functions,
without writing it explicitly. We assume that operator in the second row of (3.7)
does not need any dimensionful constant multiplier.

Taking gauge variation of A%, and performing Neother procedure one can find
generating functions for all other terms in the cubic Lagrangian. We will make
a shortcut, using the results of [8]. First we introduce new Grassmann-odd vari-
ables May, May s Nags TNags Nass Tas- Lhen we change expressions in the formula (3.6) in a
following way

1 1
(aaiaaj) - (8aiaaj) + Znainaj Ua; + Znajnailjaw (3.9)
(aaivjk) - (aaivjk) + naiﬁajDaj = Na; Nay Day, - (3.10)

W, =V, =V, Va0, = &%V‘QL, 0,0 = 8%% and analogously for others.
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So we can write

A(®(2)) = [ dNF (NayTar + NasTas + NasTlas + W + B0)
Xé(zl;al)é(ZQ;a'Q)@(z?);a'?)) |a1:a2:a3=0 (311)

d®n = dna, dija, ANy dTay ANy dia, (3.12)
W = 2[A2(0a, 003 + 3701705 Das + $Ma37ar Dar)][Oas Viz + MagTay Day — NagTag Das)
1IN0y 0 + 3105703 Dag + s Taz Dy )] [0y V23 + Ny Tas Das — Ty Ta Do)
$[A?(0u30a, + TMasTay Oay + 570173 Dag )] [Oas Va1 + NagTlas Dag — NagTlay Day) (3.13)
U = [Oay V12 + NasNay Day — MazTaz Das]
+10a, Va3 + Nay Tlay Day — May Tlas Das]
+[0ay V31 + NayTas Das — NagTay Day] (3.14)

and (3 is arbitrary coefficient. For coupling function f, with non-vanishing coeffi-
cients in the Taylor expansion to any order (like exponent of [6],[7],[8]), this operator
generates all terms in the cubic interaction of any three HS fields with any possible
number of derivatives A in the range A,;, < A < A,,4z. The leading term for this
interactions is (B.I). All interactions of HS gauge fields in flat space-time of any
dimensions d > 4 with any number of derivatives are unique and are generated by
the generating function (BIT]). It is possible to write this Generating Function in
another form, which is equivalent to this one due to partial integration and field
redefinition in free Lagrangian [§].

There is a subset of these cubic interaction vertices, which doesn’t mix with other
vertices in any order in flat space (assuming there is consistent nonlinear action).
These are minimal cubic selfinteractions of Higher Spin fields of [5]. Minimal cubic
selfinteraction for higher spin s field includes s derivatives in the cubic interaction,
and s — 1 derivatives in the first order on field gauge transformation. This kind of
selfinteraction is a straightforward generalization of Yang-Mills theory and linearized
gravity. The generating function ([B.I1]) (for § = 0) generates only this subset of
vertices. Note, that for 5 = 0, in the first order expansion of (B.IT) (for colored spin
one field), gives Yang-Mills cubic vertex, while in the second order - cubic vertex of
Einstein-Hilbert gravity (with appropriate field redefinition, discussed in [5]).

In fact, the exponential form of the generating function (B.I1]) in [8] is chosen
arbitrarily, motivated by string theoretical analysis of [6]. The relation between
cubic interactions of reducible [7] and irreducible [8] settings should be studied more
carefully.
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