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Concentration on minimal submanifolds for a singularly

perturbed Neumann problem

Fethi MAHMOUDI and Andrea MALCHIODI 1

Sissa, Via Beirut 2-4, 34014 Trieste, Italy

abstract. We consider the equation −ε2∆u+u = up in Ω ⊆ R
N , where Ω is open, smooth and

bounded, and we prove concentration of solutions along k-dimensional minimal submanifolds of
∂Ω, for N ≥ 3 and for k ∈ {1, . . . , N − 2}. We impose Neumann boundary conditions, assuming
1 < p < N−k+2

N−k−2 and ε → 0+. This result settles in full generality a phenomenon previously
considered only in the particular case N = 3 and k = 1.
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Fourier Analysis.
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1 Introduction

In this paper we study concentration phenomena for the problem

(Pε)











−ε2∆u+ u = up in Ω,
∂u
∂ν

= 0 on ∂Ω,

u > 0 in Ω,

where Ω is a smooth bounded domain of RN , p > 1, and where ν denotes the unit normal to
∂Ω. Given a smooth embedded non-degenerate minimal submanifold K of ∂Ω, of dimension
k ∈ {1, . . . , N − 2}, we prove existence of solutions of (Pε) concentrating along K. Since the
solutions we find have a specific asymptotic profile, which is described below, a natural restriction
on p is imposed, depending on the dimension N and k, namely p < N−k+2

N−k−2 .

Problem (Pε) or some of its variants (including the presence of non-homogeneous terms,
different boundary conditions, etc.) arise in several contexts, as the Nonlinear Schrödinger
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Equation or from modeling reaction-diffusion systems, see for example [3], [22], [46] and refer-
ences therein. A typical phenomenon one observes is the existence of solutions which are sharply
concentrated near some subsets of their domain.

Concerning reaction-diffusion systems, this phenomenon is related to the so-called Turing’s
instability, [55]. According to this principle, reaction-diffusion systems whose reactants have
very different diffusivities might generate stable non-trivial patterns. This is indeed more likely
to happen when more reactants are present since, as shown in [12], [42], scalar reaction-diffusion
equations in a convex domain admit only constant stable equilibria.

A well-know system is the following one

(GM)











Ut = d1∆U − U + Up

Vq in Ω× (0,+∞),

Vt = d2∆V − V + Ur

Vs in Ω× (0,+∞),
∂U
∂ν

= ∂V
∂ν

= 0 on ∂Ω× (0,+∞),

introduced in [25] to describe some biological experiment. The functions U and V represent
the densities of some chemical substances, the numbers p, q, r, s are non-negative and such that
0 < p−1

q
< r

s+1 , and it is assumed that the diffusivities d1 and d2 satisfy d1 ≪ 1 ≪ d2. In
the stationary case of (GM ), as explained in [46], [49], when d2 → +∞ the function V is close
to a constant (being nearly harmonic and with zero normal derivative at the boundary), and
therefore the equation satisfied by U is similar to (Pε), with ε

2 = d1.

The typical concentration behavior of solutions uε to (Pε) is via a scaling of the variables

in the form uε(x) ∼ u0

(

x−Q
ε

)

, where Q is some point of Ω, and where u0 is a solution of the

problem

(1) −∆u0 + u0 = u
p
0 in R

N (or in R
N
+ = {(x1, . . . , xN ) ∈ R

N : xN > 0}),

the domain depending on whether Q lies in the interior of Ω or at the boundary; in the latter
case Neumann conditions are imposed.

When p < N+2
N−2 (and indeed only if this inequality is satisfied), problem (1) admits positive

radial solutions which decay to zero at infinity. Solutions of (Pε) with this profile are called spike-
layers, since they are highly concentrated near some point of Ω. There is an extensive literature
regarding this type of solutions, beginning from the papers [35], [47], [48]. Indeed their structure
is very rich, and there are also solutions with multiple peaks, both at the boundary and at the
interior of Ω. We refer for example to the papers [14], [19], [26], [27], [28], [29], [33], [34], [58].

In recent years, some new types of solutions have been constructed: they indeed concentrate
at sets of positive dimension and their profile consists of solutions of (1) which do not decay to
zero at infinity. In [39], [40] it has been shown that given any smooth bounded domain Ω ⊆ R

N ,
N ≥ 2, and any p > 1, there exists a sequence εj → 0 such that (Pεj ) possesses solutions
concentrating at ∂Ω along this sequence. Their profile is a solution of (1) (for N = 1) on the
half real line which tends to zero at infinity and which satisfies the condition u′0(0) = 0. This
function can also be trivially extended as a cylindrical solution to (1) on the whole R

N
+ .

Later in [38] it has been proved that, if Ω is a smooth bounded set of R3, if p > 1 and if
h is a closed, simple non-degenerate geodesic on ∂Ω, then there exists again a sequence (εj)j
converging to zero such that (Pεj ) admits solutions uεj concentrating along h as j tends to
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infinity. In this case the profile of uεj is a decaying solution of (1) in R
2
+, again extended to a

cylindrical solution in higher dimension.
These are examples of a phenomenon which has been conjectured to hold in more general

cases: in fact it is expected that, under generic assumptions, if Ω ⊆ R
N and if k is an integer

between 1 and N − 1, there exist solutions of (Pε) concentrating along k-dimensional sets when
ε tends to zero. While the case k = N −1 has been tackled in [40], the goal of the present paper
is to consider k ≤ N − 2, and to prove this conjecture under rather mild assumptions on the
limit set. Before stating our main theorem we introduce some preliminary notation.

Given a smooth k-dimensional manifold K of ∂Ω, and given any q ∈ K we can choose a
system of coordinates (y, ζ) in Ω orthonormal at q and such that (y, 0) are coordinates on K,
and with the property that

(2)
∂

∂ya
|q ∈ TqK, a = 1, . . . , k;

∂

∂ζi
|q ∈ Tq∂Ω, i = 1, . . . , n;

∂

∂ζn+1
|q = ν(q),

where we have set n = N − k − 1. Our main theorem is the following: we refer to Section 2 for
the geometric terminology.

Theorem 1.1 Let Ω ⊆ R
N , N ≥ 3, be a smooth and bounded domain, and let K ⊆ ∂Ω be a

compact embedded non-degenerate minimal submanifold of dimension k ∈ {1, . . . , N −2}. Then,

if p ∈
(

1, N−k+2
N−k−2

)

, there exists a sequence εj → 0 such that (Pεj ) admits positive solutions uεj
concentrating along K as j → ∞. Precisely there exists a positive constant C, depending on

Ω,K and p such that for any x ∈ Ω uεj(x) ≤ Ce
−

dist(x,K)
Cεj ; moreover for any q ∈ K, in a system

of coordinates (y, ζ) satisfying (2), for any integer m one has uεj (0, εj ·)
Cm

loc(R
n+1
+ )

−→ w0(·), where
w0 : R

n+1
+ → R is the unique radial solution of

(3)











−∆u+ u = up in R
n+1
+ ,

∂u
∂ν

= 0 on ∂Rn+1
+ ,

u > 0, u ∈ H1(Rn+1
+ ).

Remarks 1.2 (a) Differently from the previous papers concerning the case N = 3 and k = 1,
or concentration at the whole ∂Ω, we require an upper bound on p depending on N and k. This
condition is rather natural, since (3) is solvable if and only if p < N−k+2

N−k−2 , see [10], [51], [54]
and in this case the solution is radial and unique (up to a translation), see [23], [31]. In any
case, our assumptions allow supercritical exponents as well.

(b) As for the results in [38], [39] and [40], existence is proved only along a sequence εj → 0
(actually with our proof it can be obtained for ε in a sequence of intervals (aj , bj) approaching
zero, but not for any small ε). This is caused by a resonance phenomenon we are going to
discuss below, explaining the ideas of the proof. This resonance is peculiar of multidimensional
spike-layers, see also [20], and other geometric problems, see [37], [43]. In some cases, when
some symmetry is present, it is possible to get rid of this resonance phenomenon working in
spaces of invariant functions. We refer for example to the papers [4, 5, 7, 8, 15, 16, 41, 45].
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We can describe the resonance phenomenon, which causes the main difficulty in proving Theorem
1.1, in the following way. By the change of variables x 7→ εx, we are reduced to consider the
problem

(P̃ε)











−∆u+ u = up in Ωε,
∂u
∂ν

= 0 on ∂Ωε,

u > 0 in Ωε,

where Ωε = 1
ε
Ω. As for (2), given q̂ ∈ Kε := 1

ε
K, we can choose scaled coordinates (y, ζ)

on Ωε such that ∂ya |q̂ ∈ Tq̂Kε, ∂ζi |q̂ ∈ Tq̂∂Ωε and ∂ζn+1 |q̂ = ν(q̂). Then, letting ũε denote
the scaling of uε to Ωε, we have that, in a plane through q̂ normal to Kε, ũε behaves like
ũε(0, ζ) = uε(0, εζ) ≃ w0(ζ). This amounts to the fact that ũε(x) ≃ w0 (dist(x,Kε)), x ∈ Ωε,
and therefore ũε has a fixed profile in the directions perpendicular to the expanding domain Kε.
Since the function w0 (dist(x,Kε)) can be considered as an approximate solution to (P̃ε), it is
natural to use local inversion arguments near this function in order to find true solutions. For this
purpose it is necessary to understand the spectrum of the linearization of (P̃ε) at approximate
solutions.

For simplicity, let us assume for the moment that K is (N − 2)-dimensional, namely that its
codimension in ∂Ω is equal to 1, as in [38]. Then, letting ν̃ denote the normal to K in ∂Ω, we
can parameterize naturally a neighborhood of Kε as a product of the form Kε ×

(

− δ
ε
, δ
ε

)

, where
δ is a small positive number, via the exponential map in ∂Ωε

(4) (y, s) 7→ exp∂Ωε
y (sν̃); (y, s) ∈ Kε ×

(

−δ
ε
,
δ

ε

)

.

Similarly, if ν(y, s) is the inner unit normal to ∂Ωε at the image of (y, s) under the above map,
we can parameterize a neighborhood of Kε in Ωε with a product Kε ×

(

− δ
ε
, δ
ε

)

×
(

0, δ
ε

)

by

(y, s, t) 7→ exp∂Ωε
y (sν̃) + tν(y, s); (y, s, t) ∈ Kε ×

(

−δ
ε
,
δ

ε

)

×
(

0,
δ

ε

)

.

When ε tends to zero, the standard Euclidean metric of Ωε becomes closer and closer (on the
above set) to the product of the metric of Kε and that of R2 (parameterized by the variables
s and t as cartesian coordinates). Therefore, since the set

(

− δ
ε
, δ
ε

)

×
(

0, δ
ε

)

converges to R
2
+ =

{

(s, t) ∈ R
2 : t > 0

}

, in a first approximation we get that the linearization of (P̃ε) at ũε is

(5)

{

−∆Kεu− ∂2ssu− ∂2ttu+ u− pw0(ζ)u = 0 in Kε × R
2
+,

∂u
∂ν

= 0 on Kε × ∂R2
+.

The spectrum of this linear operator can be evaluated almost explicitly. Referring to Section 4
for details (see also [38], Proposition 2.9 for the case N = 3), here we just give some qualitative
description of its properties.

Given an arbitrary function u ∈ H1(Kε ×R
2
+), we can decompose it in Fourier modes in the

variables ζ = (s, t) as

u(y, ζ) =
∑

j

φj(εy)uj(ζ).

Here φj are the eigenfunctions of the Laplace-Beltrami operator on K, namely −∆Kφj = ρjφj ,
j = 0, 1, 2, . . . , where the eigenvalues (ρj)j are counted with their multiplicities.
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If u is an eigenfunction (with respect to the duality induced by the space H1(Kε × R
2
+)) of

the linear operator in (5) with corresponding eigenvalue λ, then it can be shown (see Section 4
for details) that the functions uj satisfy the equation

(6)

{

(1− λ) [−∆uj + (1 + α)uj ]− pw
p−1
0 uj = 0 in R

2
+,

∂uj

∂t
= 0 on ∂R2

+,

where α = ε2ρj . It is known that when α = 0 the latter problem admits a negative eigenvalue
η0 (with eigenfunction w0), a zero eigenvalue σ0 (with eigenfunction ∂sw0), while all the other
eigenvalues are positive. This structure is due to the fact that w0 is a mountain-pass solution of
(3) (so its Morse index is at most 1), and the presence of a kernel derives from the fact that this
equation is invariant by translation in the s variable. When α is positive instead, it turns out
that the first eigenvalue ηα of (6) and the second one σα are strictly increasing functions of α
with positive derivative, and tend to 1 as α→ +∞; moreover, the eigenfunctions corresponding
to ηα (resp. σα) are radial (resp. odd in s) for every value of α. In particular, there exists α > 0
such that ηα = 0, so when ε2ρj is close to α we obtain some small eigenvalues of the original
linearized problem (5).

From the monotonicity in α and from the Weyl’s asymptotic formula for ρj , it follows that

the eigenvalues of the operator in (5) are, roughly, either of the form η0+ε
2j

2
N−2 for some j ∈ N,

or of the form ε2l
2

N−2 for some l ∈ N, or have a uniform positive bound from below.
In the case of general codimension it is not possible to decompose a neighborhood of K

(in ∂Ω) as for (4), but instead one has to model it on the normal bundle of Kε in Ωε, see
Subsection 4.2 for details. Considering the corresponding approximate linearized operator, one
can prove that its eigenvalues are now, roughly either of the form ηε2ρj ≃ η0 + ε2j

2
k , or of the

form σε2ωl
≃ ε2l

2
k , j, l ∈ N, or, again, have a uniform positive bound from below. Here (ρj)j

still represent the eigenvalues of the Laplace-Beltrami operator on K, while the numbers (ωl)l
stand for the eigenvalues of the normal Laplacian of K (considered as a submanifold of ∂Ω), see
Section 2 for its definition and the corresponding Weyl’s asymptotic formula. We are interested
in particular in the following two features of the spectrum:

1) resonances: there are two kinds of eigenvalues which can approach zero. First of

all, those of the form ηα when α is close to α. This happens when ε2j
2
k ≃ α, namely when

j ≃ ε−k; furthermore, the average distance between two consecutive such eigenvalues is of order
ε2j

2
k
−1 ≃ j−1 ≃ εk. The other resonant eigenvalues are of the form σα ≃ α for α close to zero,

namely when α = ε2l
2
k and l is sufficiently small (compared to, say, some negative power of ε).

Hence the distance from zero of the smallest eigenvalues of this type is of order ε2. Indeed, an
accurate expansion in ε, see Subsection 5.2, yields that this distance is bounded from below by
a multiple of ε2 when K is a non-degenerate minimal submanifold.

2) eigenfunctions: as for the case of codimension 1, it turns out that the eigenfunctions
corresponding to the ηα’s are of the form φj(εy)uj(ζ), where uj is radial in the variable ζ (ζ
represent here some orthonormal coordinates in the normal bundle of Kε). The function φj
instead oscillates faster and faster as ε tends to zero, since j is of order ε−k. On the other hand
it is possible to show, see Subsection 4.2, that the eigenfunctions corresponding to the σα’s are
products vl(|ζ|)〈ζ, ϕl〉N , where 〈·, ·〉N is the scalar product in NK, and where ϕl is a section of
the normal bundle NKε, and precisely an eigenfunction (scaled in ε) of the normal Laplacian
of K. Since the resonant modes correspond to low indices l, ϕl does not oscillate as fast as the
resonant φj’s.
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So far we considered an approximate operator, because in (5) we assumed a splitting of the
metric into a product. Since we expect to deal with small eigenvalues, a careful analysis of
the approximate solutions is needed (to apply local inversion arguments), and also a refined
understanding of the small eigenvalues with the corresponding eigenfunctions.

Therefore we first try to obtain approximate solutions as accurate as possible. For doing
this, as in [38, 39, 40], one can introduce suitable coordinates on Ωε near Kε, expand formally
(P̃ε) in powers of ε, and solve it term by term using functions of the form
(7)
uI,ε(y, ζ) =

[

w0 + εw1 + · · ·+ εIwI

]

(εy, ζ ′+Φ0(εy)+ · · ·+εI−2ΦI−2(εy), ζn+1); ζ = (ζ ′, ζn+1).

Here Φ0, . . . ,ΦI−2 represent smooth sections of the normal bundle NK, and the functions (wi)i
are determined implicitly via equations of the type

(8)

{

−∆wi + wi − pw0(ζ)wi = Fi(εy,w0, . . . , wi−1,Φ0, . . . ,Φi−2) in R
n+1
+ ,

∂wi

∂ν
= 0 on ∂Rn+1

+ .

Notice that the operator acting on wi is nothing but the linearization of (3) at w0 (shifted
in ζ ′ by Φ0 + · · · + εI−2ΦI−2), which has an n-dimensional kernel due to the invariance by
translation in ζ ′. The functions Φi are chosen in order to obtain orthogonality of Fi to the
kernel, and to guarantee solvability in wi. In doing this, the non-degeneracy condition on K

comes into play, since the Φi’s solve equations of the form JΦi = Gi(y). J denotes the Jacobi
operator of K, related to the second variation of the volume functional, which is invertible by
the non-degeneracy assumption on the minimal submanifold. Notice also that we wrote the
variable y with a factor ε on the front. This is in order to emphasize the slow dependence in y of
these functions. In fact, recalling that (in the model problem described above) resonance occurs
mostly when dealing with highly oscillating eigenfunctions, if we require slow dependence in y
then there is no obstruction in solving (P̃ε) up to an arbitrary order εI .

Next one linearizes (P̃ε) near the approximate solutions just found. Compared to the above
model problem, the eigenvalues will be perturbed by some amount, due to the presence of the
corrections (wi)i and to the geometry of the problem. In fact the amount will be in general
of order ε, since this is the size of the corrections (from the wi’s and the expansions of the
metric coefficients, see Lemma 3.2). This prevents a direct control of the small eigenvalues of
the linearized operator (at uI,ε) since, as discussed above, the characteristic size of the spectral
gaps at resonance are of order ε2 or εk.

To overcome this problem, we look at the eigenvalues as functions of ε. The counterparts of
the numbers σε2ωl

can be again obtained via a Taylor’s expansion in ε, and they turn out to be
constant multiples of ε2 times the eigenvalues of J (up to an error of order o(ε2)), so they are
never zero. On the other hand, the counterparts of the ηε2ρj ’s could vanish for some values of ε

but, recalling the expansion ηε2ρj ≃ η0 + ε2j
2
k , one can hope that generically in ε none of these

eigenvalues will be zero.
This is indeed shown using a classical theorem due to T. Kato, see [30], pag. 445, which allows

us to estimate the derivatives of the eigenvalues with respect to ε. To apply this result one needs
some control not only on the initial eigenvalues but also on the corresponding eigenfunctions,
and this is what basically the last sections are devoted to. There we prove that if λ = o(ε2)
is an eigenvalue of the linearized operator, the eigenfunctions (up to a small error) are linear
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combinations of products like φj(εy)uj(ζ), for j ≃ ε−k and for suitable functions uj radial in ζ.
Then we deduce that ∂λ

∂ε
is close to a number depending on ε,N, p andK only. As a consequence,

the spectral gaps near zero will shift, as ε varies, almost without squeezing, yielding invertibility
for suitable values of the parameter. This method also provides estimates on the norm of the
inverse operator, which blows-up with rate max{ε−k, ε−2} when ε tends to zero, see Remark 6.8.

Finally, a straightforward application of the implicit function theorem gives the desired result.
To fix the ideas, when p ≤ N+2

N−2 , solutions of (P̃ε) can be found as critical points of the following
functional

(9) Jε(u) =
1

2

∫

Ωε

(

|∇u|2 + u2
)

− 1

p+ 1

∫

Ωε

|u|p+1, u ∈ H1(Ωε).

One proves that ‖J ′
ε(uI,ε)‖H1(Ωε) ≤ CI,kε

I+1− k
2 for ε small. Even if the norm of the inverse

linear operator blows-up when ε tends to zero, choosing I sufficiently large (depending only on
k and p), one can find a solution using the contraction mapping theorem near uI,ε.

The general strategy of this proof, and especially Kato’s theorem, has been used in [38],
[39] and [40], so throughout the paper we will be sketchy in the parts where simple adaptations
apply. However the present setting requires some new ingredients: we are going to explain next
what are the differences with respect to these and to some other related papers. First of all,
compared to [39], [40], where the case k = N − 1 was treated, here we need to characterize the
limit set among all the possible ones, since the codimension is higher, and this reflects in the
fact that the limit problem (3) is degenerate. This requires to introduce the normal sections
Φ0, . . . ,ΦI−2 in (7), and to use the non-degeneracy condition on K.

The localization of the limit set has been indeed also faced in [38]. Here, apart from in-
cluding that result as a particular case, allowing higher dimensions and codimensions, we need
a more geometric approach. The main issue, as we already remarked, is that we cannot use
parameterizations with product sets as in (4), since the normal bundle of K is not trivial in
general. At this point some interplay between the analytic and geometric features of the prob-
lem is needed. In particular the first and second eigenfunctions of the linearization of (3) (the
profile of ũε at every point q of K) can be viewed of scalar or vectorial nature. More precisely,
the eigenfunction corresponding to the first eigenvalue is radial and unique up to a scalar mul-
tiple. On the other hand the eigenfunctions corresponding to the second eigenvalue have the
symmetry of the first spherical harmonics in the unit sphere of NqK, and they are in one-to-one
correspondence with the vectors of NqK. The same holds true for the eigenfunctions of problem
(6) when α ≥ 0. When q varies over the limit set, these eigenfunctions (which are the resonant
ones), depending on their symmetry determine respectively a scalar function on K or a section
of the normal bundle NK, on which the Laplace-Beltrami operator or the normal Laplacian act
naturally, see in particular Section 4. Apart from these considerations some other difficulties
arise, more technical in nature, due to the more general character of the present result compared
to that in [38]. Heavier computations are involved, especially since the curvature tensors have
more components, and some extra terms appear. Anyway, some of the arguments have been
simplified.

Finally, we should point out the differences with respect to the papers [20], [37], [43], where
also special solutions of the Nonlinear Schrödinger equation or constant mean curvature surfaces
are found. In [20] and [43] the spectral gaps are relatively big, and the eigenvalues can be located
using direct comparison arguments, so there is no need to invoke Kato’s theorem. In [37]
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arbitrarily small spectral gaps are allowed, but while there one has to study a partial differential
equation on a surface only, here we need to analyze the equation on the whole space, which
takes some extra work. Also, the Riemannian manifold we consider here, ∂Ω, has an extrinsic
curvature as a subset of RN , and therefore some error terms turn out to be of order ε, and not
ε2, see Remark 3.4 (a). Nevertheless, we take great advantage of the geometric construction in
[37], especially in their choice of coordinates near the limit set. We believe that our method
could adapt to study concentration at general manifolds for the Nonlinear Schrödinger equation
as well, as conjectured in [4].

The paper is organized in the following way. We first introduce some notations and conven-
tions. In Section 2 we collect some notions in differential geometry, like the Fermi coordinates
near a minimal submanifold, the normal Laplacian, the Laplace-Beltrami and the Jacobi oper-
ators as well as the asymptotics of their eigenvalues. In Section 3 we construct the approximate
solution uI,ε. In Section 4 we study some spectral properties for the limit problem (3) (with
some extension) and we then derive a model for the linearized operator at uI,ε. In Section 5
we turn then to the real linearized operator: we construct some approximate eigenfunctions
which allow us to split our functional space as direct sum of subspaces for which the linearized
operator is almost diagonal. In Section 6, using this splitting we characterize the eigenfunctions
corresponding to resonant eigenvalues. From these estimates we can obtain invertibility, via
Kato’s theorem, and prove our main result Theorem 1.1.
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Notation and conventions

- Dealing with coordinates, Greek letters like α, β, . . . , will denote indices varying between 1
and N − 1, while capital letters like A,B, . . . will vary between 1 and N ; Roman letters like a
or b will run from 1 to k, while indices like i, j, . . . will run between 1 and n := N − k − 1.

- ζ1, . . . , ζn, ζn+1 will denote coordinates in R
n+1 = R

N−k, and they will also be written as
ζ ′ = (ζ1, . . . , ζn), ζ = (ζ ′, ζn+1).

- The manifoldK will be parameterized with coordinates y = (y1, . . . , yk). Its dilation Kε :=
1
ε
K

will be parameterized by coordinates (y1, . . . , yk) related to the y’s simply by y = εy.

- Derivatives with respect to the variables y, y or ζ will be denoted by ∂y, ∂y, ∂ζ , and for brevity
sometimes we might use the symbols ∂a and ∂i for ∂ya and ∂ζi respectively.

- In a local system of coordinates, (gαβ)αβ are the components of the metric on ∂Ω naturally

induced by R
N . Similarly, (gAB)AB are the entries of the metric on Ω in a neighborhood of the

boundary. (Hαβ)αβ will denote the components of the mean curvature operator of ∂Ω into R
N .
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Below, for simplicity, the constant C is allowed to vary from one formula to another, also within
the same line, and will assume larger and lager values. It is always understood that C depends
on Ω, the dimension N and the exponent p. It will be explicitly written Cl, Cδ, . . . , if the
constant C depends also on other quantities, like an integer l, a parameter δ, etc. Similarly, the
positive constant γ will assume smaller and smaller values.

For a real positive variable r and an integer m, O(rm) (resp. o(rm)) will denote a function

for which
∣

∣

∣

O(rm)
rm

∣

∣

∣ remains bounded (resp.
∣

∣

∣

o(rm)
rm

∣

∣

∣ tends to zero) when r tends to zero. We might

also write oε(1) for a quantity which tends to zero as ε tends to zero. With O(rm) we denote
functions which depend on the above variables (y, ζ), which are of order rm, and whose partial
derivatives of any order, with respect to the vector fields ∂α, r ∂i, are bounded by a constant
times rm.

Li will stand in general for a differential operator of order at most i in both the variables y
and ζ (unless differently specified), whose coefficients are assumed to be smooth in y.

For summations, we might use the notation
∑d

c to indicate that the sum is taken over an
integer index varying from [c] to [d] (the integer parts of c and d respectively). We might use
the same convention when we make an integer index vary between c and d. We also use the
standard convention of summing terms where repeated indices appear.

We will assume throughout the paper that the exponent p is at most critical, namely that
p ≤ N+2

N−2 , so that problem (Pε) is variational in H1(Ω). We will indicate at the end what are
the arguments necessary to deal with the general case.

2 Geometric background

In this section we list some preliminary notions in differential geometry. First of all we introduce
Fermi coordinates near a submanifold of ∂Ω, recall the definition of minimal submanifold, and
introduce the Laplace-Beltrami and the Jacobi operators, together with some of their spectral
properties. We refer for example to [6] and [53] as basic references in differential geometry.

2.1 Fermi coordinates on ∂Ω near K

Let K be a k-dimensional submanifold of (∂Ω, g) (1 ≤ k ≤ N−1) and set n = N−k−1 (see our
notation). We choose along K a local orthonormal frame field ((Ea)a=1,···k, (Ei)i=1,··· ,n) which is
oriented. At points of K, T∂Ω splits naturally as TK ⊕NK, where TK is the tangent space to
K and NK represents the normal bundle, which are spanned respectively by (Ea)a and (Ej)j .

Denote by ∇ the connection induced by the metric g and by ∇N the corresponding normal
connection on the normal bundle. Given q ∈ K, we use some geodesic coordinates y centered
at q. We also assume that at q the normal vectors (Ei)i, i = 1, . . . , n, are transported parallely
(with respect to ∇N ) through geodesics from q, so in particular

(10) g (∇EaEj , Ei) = 0 at q, i, j = 1, . . . , n, a = 1, . . . , k.

In a neighborhood of q, we choose Fermi coordinates (y, ζ) on ∂Ω defined by

(11) (y, ζ) −→ exp∂Ωy (

n
∑

i=1

ζiEi); (y, ζ) = ((ya)a, (ζi)i) ,
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where exp∂Ωy is the exponential map at y in ∂Ω.
By our choice of coordinates, on K the metric g splits in the following way

(12) g(q) = gab(q) dya ⊗ dyb + gij(q) dζi ⊗ dζj; q ∈ K.

We denote by Γb
a(·) the 1-forms defined on the normal bundle of K by

(13) Γb
a(Ei) = g(∇EaEb, Ei).

We will also denote by Rαβγδ the components of the curvature tensor with lowered indices, which
are obtained by means of the usual ones Rσ

βγδ by

Rαβγδ = gασ R
σ
βγδ.

When we consider the metric coefficients in a neighborhood of K, we obtain a deviation from
formula (12), which is expressed by the next lemma, see Proposition 2.1 in [37] for the proof.
Denote by r the distance function from K.

Lemma 2.1 In the above coordinates (y, ζ), for any a = 1, ..., k and any i, j = 1, ..., n, we have

gij(0, ζ) = δij +
1
3 Ristj ζs ζt + O(r3);

gaj(0, ζ) = O(r2);

gab(0, ζ) = δab − 2Γb
a(Ei) ζi +

[

Rsabl + Γc
a(Es) Γ

b
c(El)

]

ζsζl +O(r3).

Here Ristj are computed at the point q of K parameterized by (0, 0).

2.2 Normal Laplacian, Laplace-Beltrami and Jacobi operators

In this subsection we recall some basic definitions and spectral properties of differential operators
associated to minimal submanifolds. We first recall some notions about the Laplace-Beltrami
operator, the normal connection and the normal Laplacian.
If (M,g) is an m-dimensional Riemannian manifold, the Laplace-Beltrami operator on M is
defined in local coordinates by

(14) ∆g =
1√
det g

∂A(
√

det g gAB ∂B ),

where the indices A and B runs in 1, . . . ,m, and where gAB denote the components of the inverse
of the matrix gAB .

Let K ⊆ M be a k-dimensional submanifold, k ≤ m − 1. The normal connection ∇N on a
normal vector field V is defined as the projection of the connection ∇V onto NK. Moreover,
one has the following formula regarding the horizontal derivative of the product 〈·, ·〉N in the
normal bundle (see [53], Volume 4, Chapter 7.C, for further details)

X〈V,W 〉N = 〈∇N
XV,W 〉+ 〈V,∇N

XW 〉,

for any smooth sections V and W in NK. If we choose an orthonormal frame (Ei)i for NK
along K, we can write

∇N
∂a
Ej = βlj (∂a)El,
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for some differential forms βlj (we recall our notation ∂a = ∂
∂ya

). Since the normal fields (Ei)i
are chosen to be orthonormal, it follows that for any horizontal vector field X there holds
X〈Ei, Ej〉N = 0, and hence one has

(15) βlj (∂a) = −βjl (∂a) ∀ l, j = 1, . . . , n := m− k.

This holds true, in particular, if we choose Fermi coordinates. Since indeed the normal fields are
extended via (normal) parallel transport from q to some neighborhood through the exponential
map, it follows that βij(∂a)(0, 0, . . . , ya, 0, . . . , 0) = 0, and hence

(16) βlj (∂a) = 0 at q ∀ a = 1, . . . , k, and ∀ l, j = 1, . . . , n;

(17) ∂a

(

βlj (∂a)
)

= 0 at q ∀ a = 1, . . . , k, and ∀ l, j = 1, . . . , n.

Recalling these facts, we can derive the expression of the normal Laplacian in Fermi coordinates
in the following way: given a normal vector field V = V jEj , there holds

∇N
∂a
V = ∂aV

j Ej + V jβlj (∂a)El.

For any two normal vector fields V and W we have, by the definition of ∆N
K

∫

K

〈∇NV,∇NW 〉N dVg = −
∫

K

〈∆N
KV,W 〉N dVg.

We compute now the expression of ∆N
K evaluating the left-hand side and integrating by parts

∫

K

〈∇NV,∇NW 〉NdVg =

∫

K

〈

∂aV
jEj + V jβlj (∂a)El, ∂bW

iEi +W iβhi
(

∂b
)

〉

N
gab
√

det g

=

∫

K

[

∂aV
i ∂bW

i + ∂aV
jW iβ

j
i

(

∂b
)

+ V jβij (∂a) ∂bW
i

+ V jW iβlj (∂a) β
l
i

(

∂b
)

]

gab
√

det g

This quantity, for any V andW , has to coincide with −
∫

K
(∆N

KV )iW i
√
det g, so we deduce that

(∆N
KV )i = ∆K(V i) +

1√
det g

∂b

(

V jβij (∂a) g
ab
√

det g
)

− gab
(

∂aV
jβ

j
i

(

∂b
)

+W jβlj (∂a) β
l
i

(

∂b
)

)

√

det g.(18)

In Fermi coordinates at q, which is parameterized by (0, 0), we have that

(19) gab = δab, ∂cgab = 0 and ∂c
√

det g = 0,

and we also have (16)-(17). Hence the last formula simplifies in the following way

(20) (∆N
KV )i = ∆K(V i) at q.
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Let C∞(NK) be the space of smooth normal vector fields on K. For Φ ∈ C∞(NK), we can
define the one-parameter family of submanifolds t 7→ Kt,Φ by

(21) Kt,Φ := {exp∂Ωy (tΦ(y)) : y ∈ K}.

The first variation formula of the volume is the equation

(22)
d

dt

∣

∣

∣

∣

t=0

Vol(Kt,Φ) =

∫

K

〈Φ,h〉N dVK ,

where h is the mean curvature (vector) of K in ∂Ω, 〈·, ·〉N denotes the restriction of g to NK,
and dVK the volume element of K.

The submanifold K is said to be minimal if it is a critical point for the volume functional,
namely if

(23)
d

dt

∣

∣

∣

∣

t=0

Vol(Kt,Φ) = 0 for any Φ ∈ C∞(NK)

or, equivalently by (22), if the mean curvature h is identically zero on K. It is possible to prove
that, if Γb

a(Ei) is as in (13), then

(24) K is minimal ⇔ Γa
a(Ei) = 0 for any i = 1, . . . n.

We point out that in the last formula we are summing over the index a, which is repeated.

The Jacobi operator J appears in the expression of the second variation of the volume functional
for a minimal submanifold K

(25)
d2

dt2

∣

∣

∣

∣

t=0

Vol(Kt,Φ) = −
∫

K

〈JΦ,Φ〉N dVK ; Φ ∈ C∞(NK),

and is given by

(26) JΦ := −∆N
KΦ+RNΦ−BNΦ,

where RN ,BN : NK → NK are defined as

RNΦ = (R(Ea,Φ)Ea)
N ; g(BNΦ, nK) := Γa

b (Φ)Γ
b
a(nK),

for any unit normal vector nK to K. The operator ∆N
K is the normal Laplacian on K defined

in (20).

A submanifoldK is said to be non-degenerate if the Jacobi operator J is invertible, or equivalently
if the equation JΦ = 0 has only the trivial solution among the sections in NK.

We recall now some Weyl asymptotic formulas, referring for example to [13], or to [32] and [44]
for further details. Let (M,g) be a compact closed Riemannian manifold of dimension m, and

12



let ∆g be the Laplace-Beltrami operator. Letting (ρi)i, i = 0, 1, . . . , denote the eigenvalues of
−∆g (ordered to be non-decreasing in i and counted with their multiplicity), we have that

(27) ρi ∼ Cm

(

i

V ol(M)

)
2
m

as i→ ∞,

where V ol(M) is the volume of (M,g) and Cm is a constant depending only on the dimension
m (the Weyl constant). A similar estimate, which can be proved using (18) and (27), holds
for the normal Laplacian ∆N

K on a k-dimensional submanifold K ⊆ M . In fact, letting (ωj)j ,
j = 0, 1, . . . , denote the eigenvalues of −∆N

K (still chosen to be non-decreasing in j and counted
with multiplicity), one has

(28) ωj ∼ Cm,k

(

j

V ol(K)

) 2
k

as j → ∞,

where Cm,k depends on the dimensions m and k only.
Considering the Jacobi operator J for a minimal submanifold K, it is easy to see from (26)

that, since J differs from −∆N
K only by a bounded quantity, we have the same asymptotic formula

for its eigenvalues (µl)l, and thereby

(29) µl ∼ Cm,k

(

l

V ol(K)

) 2
k

as l → ∞.

In the following, we let (φi)i (resp. (ϕj)j , (ψl)l) denote a base of eigenfunctions of −∆K (resp.
of −∆N

K , J), normalized in L2(K) (resp. in L2(K;NK)), namely the set of functions (resp.
normal sections of K) satisfying

−∆Kφi = ρiφi; −∆N
Kϕj = ωjϕj ; Jψl = µlψl, i, j, l = 1, 2, . . . .

Finally, using the eigenvalues (ρj)j and (µl)l, one can express the L2 norms, or the Sobolev
norms of linear combinations of the φj ’s and the ψl’s. In particular, if f =

∑

j αjφj , and if

g =
∑

l βlψl are an L2 function and an L2 normal section of K, and if L1 =
∑

α cα(y)∂
α
y ,

L2 =
∑

α c̃α(y)(∇N
y )α are differential operators of order d with smooth coefficients acting on

functions and normal sections respectively, then one has

(30) ‖L1f‖2L2(K) ≤ CL1

∑

j

(1 + ρdj )α
2
j ; ‖L2g‖2L2(K;NK) ≤ CL2

∑

l

(1 + |µl|d)β2l .

An estimate similar to the latter one in (30) holds by replacing the µl’s by the ωj’s, namely if
g′ =

∑

j β
′
jϕj , then ‖L2g

′‖2
L2(K;NK) ≤ CL2

∑

j(1 + |ωj |d)(β′j)2.

3 Approximate solutions to (P̃ε)

In this section, given any positive integer I, we construct functions uI,ε which solve (P̃ε) up to
an error of order εI . We will find approximate solutions of (P̃ε) in the following form

(31) χε(|ζ|)
(

w0

(

ζ ′ +Φ(εy), ζn+1

)

+εw1(εy, ζ
′+Φ(εy), ζn+1)+· · ·+εIwI(εy, ζ

′+Φ(εy), ζn+1)

)

,
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where Φ(εy) = Φ0(εy) + · · · + εI−2ΦI−2(εy) and where the cutoff function χε satisfies the
properties

(32)







χε(t) = 1 for t ∈ [0, 12ε
−γ ],

χε(t) = 0 for t ∈ [34ε
−γ , ε−γ ],

|χ(l)
ε (t)| ≤ Cl ε

lγ , l ∈ N.

Here Φ0, . . . ,ΦI−2 are smooth vector fields from K into NK, while w1, . . . , wI are suitable
functions determined recursively by an iteration procedure. For doing this we choose a system
of coordinates in a neighborhood of ∂Ωε for which the new metric coefficients can be expanded
in powers of ε, see Lemma 3.2 below. In this way we can also expand (P̃ε) formally in powers
of ε and solve it term by term. The functions (wi)i will be obtained as solutions of an equation
arising from the linearization of (3) at w0, while the normal sections (Φi)i will be determined
using the invertibility of the Jacobi operator. Notice that, by the translation invariance of
(3), the linearized operator possesses a non-trivial kernel, which turns out to be spanned by
{∂ζ1w0, . . . , ∂ζnw0}. The role of Φ0, . . .ΦI−2 is to obtain at every step orthogonality to this
kernel and to solve the equation using Fredholm’s alternative.

The method here is similar in spirit to the one used in [38] except for the fact that, working
in higher dimensions and codimensions, more geometric tools are needed. Therefore, we will
mainly focus on the new and geometric aspects of the construction, omitting some details about
the rigorous estimates on the error terms, which can be handled as in [38].

3.1 Choice of coordinates near ∂Ωε and properties of approximate solutions

Let Υ0 : U → ∂Ω, where U = U1 × U2 ⊆ R
k × R

n is a neighborhood of 0 in R
N−1, be a

parametrization of ∂Ω near some point q ∈ K through the Fermi coordinates (y, ζ) described
before.

Let γ ∈ (0, 1) be a small number which, we recall, is allowed to assume smaller and smaller
values throughout the paper. Then for ε > 0 we set

Bε,γ =
{

x ∈ R
n+1
+ : |x| < ε−γ

}

.

Next we introduce a parametrization of a neighborhood (in Ωε) of
q
ε
∈ ∂Ωε though the map Υε

given by

(33) Υε(y, ζ
′, ζn+1) =

1

ε
Υ0(εy, εζ

′) + ζn+1ν(εy, εζ
′), x = (y, ζ ′, ζn+1) ∈

1

ε
U1 ×Bε,γ ,

where εy = y and where ν(εy, εζ ′) is the inner unit normal to ∂Ω at Υ0(εy, εζ
′). We have

∂Υε

∂ya
=
∂Υ0

∂ya
(εy, εζ ′) + εζn+1

∂ν

∂ya
(εy, εζ ′);

∂Υε

∂ζi
=
∂Υ0

∂ζi
(εy, εζ ′) + εζn+1

∂ν

∂ζi
(εy, εζ ′).

Using the equation

(34) dνx[v] = H(x)[v],

we find
(35)
∂Υε

∂ya
=
[

Id+ εζn+1H(εy, εζ ′)
] ∂Υ0

∂ya
(εy, εζ ′);

∂Υε

∂ζi
=
[

Id+ εζn+1H(εy, εζ ′)
] ∂Υ0

∂ζi
(εy, εζ ′).
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Differentiating Υε with respect to ζn+1 we also get

(36)
∂Υε

∂ζn+1
= ν(εy, εζ ′).

Hence, letting gAB be the coefficients of the flat metric g = gε (we are emphasizing the role of
the parameter ε in the entries, which is due to the dependence in ε of the map Υε) of R

N in the
coordinates (y, ζ ′, ζn+1), with easy computations we deduce that
(37)
gαβ(ỹ, ζn+1) = gαβ(εỹ)+εζn+1

(

Hαδgδβ +Hβδgδα
)

(εỹ)+ε2ζn+1
2HαδHσβgδσ(εỹ), ỹ = (y, ζ ′);

gαN ≡ 0; gNN ≡ 1.(38)

Using the parametrization in (33), a solution u of (P̃ε) satisfies the equation

(39) − 1√
det g

[

∂B

(

gAB
√

det g
)]

∂Au− gAB∂2ABu+ u− up = 0 in
1

ε
U1 ×Bε,γ

with Neumann boundary conditions on {ζn+1 = 0}. Looking at the term of order εi in this
equation, we will determine recursively the functions (wi)i and (Φi−2)i (defined in (31)) for
i = 1, . . . , I. The specific choice of the integer I, which will be determined later, will depend on
the dimension N of Ω, the dimension k of K, and the exponent p. For the moment we let it
denote just an arbitrary integer. The main result of this section is the following one.

Proposition 3.1 Consider the Euler functional Jε defined in (9) and associated to problem
(P̃ε) (for p ≤ n+k+2

n+k−2). Then for any I ∈ N there exists a function uI,ε : Ωε → R with the
following properties

(40) ‖J ′
ε(uI,ε)‖H1(Ωε) ≤ CIε

I+1− k
2 ; uI,ε ≥ 0 in Ωε;

∂uI,ε

∂ν
= 0 on ∂Ωε,

where CI depends only on Ω, K, p and I. Moreover in the above coordinates there holds

(41)



























∣

∣

∣
∇(m)

y uI,ε(y, ζ)
∣

∣

∣
≤ Cm,Iε

me−|ζ|PI(ζ),
∥

∥

∥
∇(m)

y ∇ζuI,ε(y, ζ)
∥

∥

∥
≤ Cm,Iε

me−|ζ|PI(ζ),
∥

∥

∥
∇(m)

y ∇2
ζuI,ε(y, ζ)

∥

∥

∥
≤ Cm,Iε

me−|ζ|PI(ζ),

y ∈ 1

ε
U1, ζ ∈ Bγ,ε,m = 0, 1, . . . ,

where ∇(m)
y (resp. ∇(i)

ζ ) is any derivative of order m with respect to the y variables (resp. of
order i with respect to the ζ variables), where Cm,I is a constant depending only on Ω, K, p and
m, and where PI(ζ) are suitable polynomials in ζ.

In the next subsection we show how to construct the approximate solution uI,ε and we give
some general ideas for the derivation of the estimates in (41). We refer to [38] for rigorous and
detailed proofs.

3.2 Proof of Proposition 3.1

This subsection is devoted to the explicit construction of uI,ε. First of all we expand the Laplace-
Beltrami operator (applied to an arbitrary function u) in Fermi coordinates, and then by means
of this expansion we define implicity and recursively the functions (wi)i and the normal sections
(Φi)i.
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3.2.1 Expansion of ∆gεu in Fermi coordinates

We first provide a Taylor expansion of the coefficients of the metric g = gε. From Lemma 2.1
and formula (37) we have immediately the following result.

Lemma 3.2 For the (Euclidean) metric gε in the above coordinates we have the expansions

gij = δij + 2εζn+1Hij +
1

3
ε2Ristj ζs ζt + ε2ζn+1

2(H2)ij + O(ε3|ζ|3);

gaj = 2εζn+1Haj +O(ε2|ζ|2);

gab = δab − 2εΓb
a(Ei)ζi + 2εζn+1Hab + ε2

[

Rsabl + Γc
a(Es)Γ

b
c(El)

]

ζsζl + ε2ζn+1
2(H2)ab +O(ε3|ζ|3);

gαN ≡ 0; gNN ≡ 1.

Using these formulas, we are interested in expanding ∆gεu in powers of ε for a function u of the
form

u(y, ζ) = u(εy, ζ).

Such a function represents indeed an ansatz for each term of the sum in (31).
We recall that, when differentiating functions with respect to the variables y, ζ, we will mean

that ∂a = ∂ya and ∂i = ∂ζi . When dealing with the scaled variables y we will write explicitly
∂ya , so that, if u is as above, we have ∂au(εy, ζ) = ε∂yau(y, ζ).

Lemma 3.3 Given any positive integer I and a function u : 1
ε
U1 × Bε,γ → R of the form

u(εy, ζ), we have

∆gεu = ∂2iiu+ ∂2ζn+1ζn+1
u+ ε

[

Hα
α∂ζn+1u− 2ζn+1Hij∂

2
iju
]

+ ε2 [L2,1u+ L2,2u+ L2,3u] +

I
∑

i=3

εiLiu+ εI+1L̃I+1u,(42)

where
L2,1u = ∂2yayau− 4ζn+1Hia∂

2
ζiya

u;

L2,2u = 3ζn+1
2(H2)ij∂

2
ζiζj

u+ 2ζn+1HabΓ
a
b (Ei)∂iu− 2ζn+1tr(H

2)∂ζn+1u;

L2,3u =

(

Riaal +
1

3
Rihhl

)

ζl∂iu− 1

3
Rmijlζmζl∂

2
ζiζj

u− 1

3
Rmijiζm∂ζju

− ζjΓ
b
a(Ei)Γ

a
b (Ej)∂ζiu+ 2ζiHabΓ

a
b (Ei)∂ζn+1u,

and where the Li’s are linear operators of order 1 and 2 acting on the variables y and ζ whose
coefficients are polynomials (of order at most i) in ζ uniformly bounded (and smooth) in y.
The operator L̃I+1 is still linear and satisfying the same properties of the Li’s, except that its
coefficients are not polynomials in ζ, although they are bounded by polynomials in ζ.
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Proof. The proof is simply based on a Taylor expansion of the metric coefficients in terms
of the geometric properties of ∂Ω and K, as in Lemma 3.2. Recall that the Laplace-Beltrami
operator is given by

∆gε =
1√

det gε
∂A(

√

det gε gε
AB ∂B ) ,

where indices A and B run between 1 and N . We can write

∆gε = gε
AB ∂2AB +

(

∂A gε
AB
)

∂B +
1

2
∂A( log det gε ) gε

AB ∂B .

Using the expansions of Lemma 3.3, we easily see that

gε
AB ∂2ABu = ∂2ζiζiu+ ∂2ζn+1ζn+1

u− 2 εζn+1Hij∂
2
ζiζj

u

+ε2
{

∂2yaya +
(

3ζn+1
2(H2)ij − 1

3 Rmijlζmζl
)

∂2ζiζiu− 4 ζn+1Hia∂
2
ζiya

u
}

+O(ε3|ζ|3).

We can also prove

√

det gε = 1 + εζn+1H
α
α +

1

6
ε2Rmiilζmζl +

1

2
ε2
(

Rmaal + Γc
a(Em)Γa

c (El)

)

ζmζl

+ ε2
{

1

2
ζn+1

2(Hα
α )

2 − ζn+1tr(H
2) + 2ζn+1ζiHabΓ

a
b (Ei)− ζiζjΓ

b
a(Ei)Γ

a
b (Ej)

}

+ O(ε3|ζ|3),

which gives

log
√
det gε = εζn+1H

α
α + ε2

{

2ζn+1ζiHabΓ
a
b (Ei)− ζn+1

2 tr(H2)− ζiζjΓ
b
a(Ei)Γ

a
b (Ej)

}

+1
6ε

2Rmiilζmζl +
1
2ε

2

(

Rmaal + Γc
a(Em)Γa

c (El)

)

ζmζl +O(ε3|ζ|3).

Hence, we obtain

∂A
(

log
√
det gε

)

gAB∂B = ε2
{

2ζn+1HabΓ
a
b (Ei)− ζjΓ

b
a(Ei)Γ

a
b (Ej) +

1
3Rmhhlζl +Riaalζl

}

∂iu

+εHα
α∂ζn+1u+ ε2

{

2ζlHabΓ
a
b (El)− 2ζn+1tr(H

2)

}

∂ζn+1u+O(ε3|ζ|3).

Collecting these formulas together, we obtain the desired result.

Remarks 3.4 (a) The term of order ε in the expansion of ∆gu in (42) depends on the fact that
∂Ω has an extrinsic curvature in R

N . Such a term does not appear in the analogous expansion
for the mean curvature of tubes condensing on minimal subvarieties of an abstract manifold, see
Proposition 4.1 in [37] (where the small parameter ρ is the counterpart of our parameter ε).

(b) For later purposes, see for example Lemma 6.1, it is convenient to analyze in further
detail the operator L3 in (42), and in particular the coefficients of the second derivatives in the
y variables. It follows from the above expansions that the coefficient of ∂2yayb in L3 is given by

2
(

ζiΓ
b
a(Ei)− ζn+1Hab

)

.
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3.2.2 Construction of the approximate solution

We show now how to construct the approximate solutions of (P̃ε) via an iterative method. Given
I − 2 smooth vector fields Φ0, . . . ,ΦI−2 we define first the following function ûI,ε on K ×R

n+1,
see (31)

ûI,ε(y, ζ) = w0(ζ
′ +Φ(y), ζn+1) + εw1(y, ζ

′ +Φ(y), ζn+1) + · · · + εIwI(y, ζ
′ +Φ(y), ζn+1),

where Φ = Φ0+εΦ1+· · ·+εI−2ΦI−2. In the following, with an abuse of notation, we will consider
ûI,ε (and w0, . . . , wI) as functions of the variables y and ζ through the change of coordinates
y = εy.

To define the functions (wj)j and (Φj)j we expand equation (39) formally in powers of ε
for u = ûI,ε (using mostly Lemma 3.3) and we analyze each term separately. Looking at the
coefficient of ε in the expansion we will determine w1, while looking at the coefficient of εj we
will determine wj and Φj−2, for j = 2, . . . , I. In this procedure we use crucially the invertibility
of the Jacobi operator (recall that we are assuming K to be non-degenerate) and the spectral
properties of the linearization of (3) at w0.

• Step 1: Construction of w1

We begin by taking I = 1 and Φ = 0. From Lemma 3.3 we get formally

−∆gεû1,ε + û1,ε − û
p
1,ε = −∆Rn+1w0 + w0 − w

p
0 + ε

(

−∆Rn+1w1 +w1 − pw
p−1
0 w1

)

− ε
[

Hα
α∂ζn+1w0 − 2ζn+1Hij∂

2
ijw0

]

+O(ε2).

The term of order 1 (in the power expansion in ε) vanishes trivially since w0 solves (3), and in
order to make the coefficient of ε vanish, w1 must satisfy the following equation

(43) L0w1 = Hα
α∂ζn+1w0 − 2ζn+1Hij∂

2
ijw0,

where L0 is the linearization of (3) at w0, namely

{

−∆w1 + w1 − pw
p−1
0 w1 = Hα

α∂ζn+1w0 − 2ζn+1Hij∂
2
ijw0, in R

n+1
+ ,

∂w1
∂ζn+1

= 0, on {ζn+1 = 0}.

Since L0 is self-adjoint and Fredholm on H1(Rn+1
+ ), the equation is solvable if and only if the

right-hand side is orthogonal to the kernel of L0, namely if and only if the L2 product of the
right-hand side with ∂w0

∂ζi
vanishes for i = 1, . . . , n, see Proposition 4.1 below. This is clearly

satisfied in our case since both ∂ζn+1w0 and ∂2ijw0 are even in ζ ′, while the ∂w0
∂ζi

’s are odd in

ζ ′ for every i. Besides the existence of w1, from elliptic regularity estimates we can prove its
exponential decay in ζ and its smoothness in y (see for example Lemma 3.4 in [38]). Precisely,
there exists a positive constant C1 (depending only on Ω,K and p) such that for any integer ℓ
there holds

(44) |∇(ℓ)
y w1(y, ζ)| ≤ C1Cl(1 + |ζ|)C1e−|ζ|; (y, ζ) ∈ K × R

n+1,

where Cl depends only on l, p, K and Ω.

18



• Step 2: Expansion at an arbitrary order

We consider next the coefficient of εĨ for an integer Ĩ between 2 and I, and we assume that the
functions w1, . . . , wĨ−1 and the vector fields Φ0, . . . ,ΦĨ−3 have been determined by induction in

Ĩ. The couple (wĨ ,ΦĨ−2) will be found reasoning as for w1: in particular an equation for ΦĨ−2
(solvable by the invertibility of J) is obtained by imposing orthogonality of some expression to
the kernel of L0, and then wĨ is found again with Fredholm’s alternative.

Expanding (39) with u = ûI,ε, we easily see that (formally), in the coefficient of εĨ , the
function wĨ appears as solution of the equation

(45)

{

LΦwĨ = FĨ(y, ζ, w0, w1, . . . , wĨ−1,Φ0, . . . ,ΦĨ−2) in R
n+1
+ ;

∂w
Ĩ

∂ζn+1
= 0 on {ζn+1 = 0},

where LΦ is defined by

LΦu = −∆u+ u− pw
p−1
0 (ζ ′ +Φ(y), ζn+1)u,

and where FĨ is some smooth function of its arguments (which we are assuming determined by
induction). Our next goal is to understand the role of ΦĨ−2 in the orthogonality condition on
FĨ (to the kernel of LΦ). In order to do this, we notice that, using Lemma 3.3 for u = ûI,ε, the
function Φ (precisely its derivatives in y) appears through the chain rule when we differentiate
u with respect to the y variables. Moreover, for testing the orthogonality of the right-hand
side in (45) to the kernel of LΦ, we have to multiply it by the functions ∂w0

∂ζi
(ζ ′ + Φ(y), ζn+1),

i = 1, . . . , n, so this condition will yield an equation for Φ (and in particular for ΦĨ−2) through
a change of variables of the form ζ ′ 7→ ζ ′ +Φ(y).

Therefore, in the expansion of ∆gûI,ε, we focus only on the terms (of order εĨ) containing
either derivatives with respect to the y variables, which we collected in L2,1, or containing
explicitly the variables ζ ′, which are listed in L2,3. In particular, none of these terms appear in
the first line of (42).

Denoting the components of Φ by (Φj)j (in the basis (Ej)j of NK), there holds

∂ya
(

u(y, ζ ′ +Φ(y), ζn+1)
)

= ∂yau(y, ζ
′ +Φ, ζn+1) +

∂Φj

∂ya

∂u

∂ζj
(y, ζ ′ +Φ(y), ζn+1);

∂2yaya

(

u(y, ζ ′ +Φ(y), ζn+1)
)

= ∂2yayau(y, ζ
′ +Φ, ζn+1) + 2

∂Φj

∂ya
∂2yaζju(y, ζ

′ +Φ, ζn+1)

+
∂2Φj

∂yaya

∂u

∂ζj
(y, ζ ′ +Φ(y), ζn+1) +

∂Φj

∂ya

∂Φl

∂ya

∂2u

∂ζj∂ζl
(y, ζ ′ +Φ(y), ζn+1);

∂2

∂ζl∂ya

(

u(y, ζ ′ +Φ(y), ζn+1)
)

= ∂2∂ζl∂yau(y, ζ
′ +Φ, ζn+1) +

∂Φj

∂ya

∂2u

∂ζj∂ζl
(y, ζ ′ +Φ(y), ζn+1).
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Therefore, recalling the definition of ûI,ε, since ∂yaw0 = 0 we find that

L2,1ûI,ε =
∂2Φj

∂2yaya

∂w0

∂ζj
+
∂Φj

∂ya

∂Φl

∂ya

∂2w0

∂ζj∂ζl
− 4ζn+1Hla

∂Φj

∂ya

∂2w0

∂ζj∂ζl

+
Ĩ
∑

i=1

εi

{

∂2yayawi + 2
∂Φj

∂ya
∂2yaζjwi +

∂2Φj

∂2yaya

∂wi

∂ζj
+
∂Φj

∂ya

∂Φl

∂ya

∂2wi

∂ζj∂ζl

− 4ζn+1Hla

(

∂2ζlyawi +
∂Φj

∂ya

∂2wi

∂ζj∂ζl

)}

.

• Step 3: Determining wĨ and ΦĨ−2 for Ĩ ≥ 2

When we look at the coefficient of εĨ in ε2L2,1ûI,ε, the terms containing ΦĨ−2 are given by

∂2Φj

∂2yaya

∂w0

∂ζj
− 4ζn+1Hla

∂Φj

∂ya

∂2w0

∂ζj∂ζl

(

+
∂Φj

∂ya

∂Φl

∂ya

∂2w0

∂ζj∂ζl
if Ĩ = 2

)

.

When we project ∆gε ûI,ε − ûI,ε + û
p
I,ε onto the kernel of LΦ, namely when we multiply this

expression by ∂w0
∂ζs

(ζ ′ + Φ(y), ζn+1), s = 1, . . . , n, considering the terms of order εĨ involving
ΦĨ−2, we have no contribution from the first line and from L2,2 in (42) (with u = ûI,ε), as

explained in Step 2. Also, in (42), the factors of εi for i ≥ 3, multiplied by εĨ−2ΦĨ−2 will give
higher order terms. In conclusion, we only need to pay attention to L2,1 and L2,3.

When we multiply ε2L2,3w0(ζ
′ + Φ, ζn+1) by

∂w0
∂ζs

(ζ ′ + Φ, ζn+1), s = 1, . . . , n, we can obtain

the coefficient of εĨΦh
Ĩ−2

in the following way.

Looking for example at the first term in ε2L2,3 we get

ε2
∫

R
n+1
+

(

Riaal +
1

3
Rihhl

)

ζl∂iw0(ζ
′ +Φ, ζn+1)∂sw0(ζ

′ +Φ, ζn+1)dζ

= ε2
∫

R
n+1
+

(

Riaal +
1

3
Rihhl

)

(ζl −Φl)∂iw0(ζ
′, ζn+1)∂sw0(ζ

′, ζn+1)dζ

= ε2
∫

R
n+1
+

(

Riaal +
1

3
Rihhl

)

ζl∂iw0(ζ
′, ζn+1)∂sw0(ζ

′, ζn+1)dζ

− ε2
I−2
∑

j=0

εjΦl
j

∫

R
n+1
+

(

Riaal +
1

3
Rihhl

)

∂iw0(ζ
′, ζn+1)∂sw0(ζ

′, ζn+1)dζ.

Since w0 is even in ζ ′, it follows by symmetry that the term of order εĨ containing ΦĨ−2 in the
last expression is given by

(46) − C0

(

Rsaal +
1

3
Rshhl

)

Φl
Ĩ−2

,

where we have set

(47) C0 =

∫

R
n+1
+

(∂1w0)
2.
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From similar arguments, the third and the fourth terms in L2,3w0 give respectively

(48)
1

3
RlisiC0Φ

l
Ĩ−2

,

and
C0Γ

b
a(Es)Γ

a
b (El)Φ

l
Ĩ−2

.

The last term in L2,3w0 gives no contribution since the coefficient of ΦĨ−2 vanishes by oddness,
so it remains to consider the second term. Integrating by parts we find

2

3
RmijlΦ

l
Ĩ−2

∫

R
n+1
+

ζm∂ζsw0∂
2
ζiζj

w0dζ

(

+∂2ζiyaΦ
m
Ĩ−2

∂2ζjyaΦ
l
Ĩ−2

∫

R
n+1
+

∂2ζiζjw0∂ζsw0dζ if Ĩ = 2

)

.

In case Ĩ = 2 the quantity within round brackets cancels by oddness, therefore in any case we
only need to estimate the first one. Still by oddness in ζ ′, the first integral is non-zero only if,
either i = j and m = s, or i = s and j = m, or i = m and j = s.

In the latter case we have vanishing by the antisymmetry of the curvature tensor in the first
two indices. Therefore the only terms left to consider are

∑

i

2

3
RsiilΦ

l
Ĩ−2

∫

R
n+1
+

ζs∂ζsw0∂
2
ζiζi

w0dζ +
∑

i

2

3
RisilΦ

l
Ĩ−2

∫

R
n+1
+

ζi∂ζsw0∂
2
ζsζi

w0dζ.

Observe that, integrating by parts, when s 6= i there holds
∫

R
n+1
+

ζs∂ζsw0∂
2
ζiζi

w0dζ = −
∫

R
n+1
+

ζi∂ζsw0∂
2
ζsζi

w0dζ.

Hence, still by the antisymmetry of the curvature tensor we are left with

−
∑

i

4

3
RsiilΦ

l
Ĩ−2

∫

R
n+1
+

ζi∂ζsw0∂
2
ζsζi

w0dζ.

The last integral can be computed with a further integration by parts and is equal to −1
2C0, so

we get
2

3
RsiilC0Φ

l
Ĩ−2

.

This quantity cancels exactly with the second term in (46) and with (48).
When we multiply ε2L2,1w0(ζ

′+Φ, ζn+1) by
∂w0
∂ζs

(ζ ′+Φ, ζn+1), s = 1, . . . , n, the terms containing

εĨΦh
Ĩ−2

are given by

∫

R
n+1
+

∂2Φj

Ĩ−2

∂2yaya
∂ζjw0∂ζsw0dζ − 4

∫

R
n+1
+

ζn+1Hla

∂Φj

Ĩ−2

∂ya
∂2ζjζlw0∂ζsw0dζ



+

∫

R
n+1
+

∂Φj

Ĩ−2

∂ya

∂Φl
Ĩ−2

∂ya
∂2ζjζlw0 ∂ζsw0dζ if Ĩ = 2



 ,

which give by oddness

C0

∂2Φj

Ĩ−2

∂2yaya
.
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Collecting the above computations, we conclude that FĨ(y, ζ, w0, w1, . . . , wĨ−1,Φ0, . . . ,ΦĨ−2),
the right-hand side of (45), is L2-orthogonal to the kernel of LΦ if and only if ΦĨ−2 satisfies an
equation of the form

C0

(

∂2Φs
Ĩ−2

∂yaya
−RsaalΦ

l
Ĩ−2

+ Γb
a(Es)Γ

a
b (El)Φ

l
Ĩ−2

)

= GĨ−2(y, ζ, w0, w1, . . . , wĨ−1,Φ0, . . . ,ΦĨ−3),

for some expression GĨ−2. This equation can indeed be solved in ΦĨ−2. In fact, observe that
the operator acting on ΦĨ−2 in the left hand side is nothing but the Jacobi operator, which is
invertible by the non-degeneracy condition on K.
Having defined ΦĨ−2 in this way, we turn to the construction of wĨ which, we recall, satisfies
equation (45). Having imposed the orthogonality condition, we get again solvability and, as for
w1, one can prove the following estimates

(49) |∇(ℓ)
y wĨ(y, ζ)| ≤ CĨCl(1 + |ζ|)CĨ e−|ζ|; (y, ζ) ∈ K × R

n+1,

where Cl depends only on l, p, K and Ω.

As already mentioned, we limit ourselves to the formal construction of the functions uI,ε,
omitting the details about the rigorous estimates of the error terms, which can be obtained
reasoning as in [38]. We only mention that the number γ has to be chosen sufficiently small to
obtain the positivity of uI,ε, after we multiply ûI,ε by the cutoff function χε, see (31) and (32).

4 A model linear problem

In this section we consider a model for the linearized equation at approximate solutions which,
for p ≤ N+2

N−2 (as we are assuming until the last subsection), corresponds to J ′′
ε (uI,ε). We first

study a one-parameter family of eigenvalue problems, which include the linearization at w0 of
(3). Then we turn to the model for J ′′

ε (uI,ε), which can be studied, roughly, using separation of
variables.

4.1 Some spectral analysis in R
n+1
+

In this subsection we consider a class of eigenvalue problems, being mainly interested in the
symmetries of the corresponding eigenfunctions. We denote points of Rn+1 by (n + 1)-tuples
ζ1, ζ2, . . . , ζn, ζn+1 = (ζ ′, ζn+1), and we let

R
n+1
+ =

{

(ζ1, ζ2, . . . , ζn, ζn+1) ∈ R
n+1 : ζn+1 > 0

}

.

For p ∈
(

1, n+3
n−1

)

(n+3
n−1 is the critical exponent in R

n+1) we consider problem (3) which, we

recall, is










−∆u+ u = up in R
n+1
+ ,

∂u
∂ν

= 0 on ∂Rn+1
+ ,

u > 0, u ∈ H1(Rn+1
+ ).
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It is well-known, see e.g. [31], that this problem possesses a radial solution w0(r), r
2 =

∑n+1
i=1 ζ

2
i ,

which satisfies the properties

(50)

{

w′
0(r) < 0, for every r > 0,

limr→∞ err
n
2w0(r) = αn,p > 0, limr→∞

w′
0(r)

w0(r)
= −1,

where αn,p is a positive constant depending only on n and p. Moreover, it turns out that all the
solutions of (3) coincide with w0 up to a translation in the ζ ′ variables, see [23], [24].

Solutions of (3) can be found as critical points of the functional J defined by

(51) J(u) =
1

2

∫

R
n+1
+

(

|∇u|2 + u2
)

− 1

p+ 1

∫

R
n+1
+

|u|p+1; u ∈ H1(Rn+1
+ ).

We have the following non-degeneracy result, see e.g. [50].

Proposition 4.1 The kernel of J
′′
(w0) is generated by the functions ∂w0

∂ζ1
, . . . , ∂w0

∂ζn
. More pre-

cisely, there holds
J
′′
(w0)[w0, w0] = −(p− 1)‖w0‖2H1(Rn+1

+ )
,

and
J
′′
(w0)[v, v] ≥ C−1‖v‖2

H1(Rn+1
+ )

, ∀v ∈ H1(Rn+1
+ ), v ⊥ w0, ∂ζ1w0, . . . , ∂ζnw0

for some positive constant C. In particular, we have η < 0, σ = 0 and τ > 0, where η, σ
and τ are respectively the first, the second and the third eigenvalue of J

′′
(w0). Furthermore the

eigenvalue η is simple while σ has multiplicity n.

Notice that, writing the eigenvalue equation J
′′
(w0)[u] = λu in H1(Rn+1

+ ), taking the scalar
product with an arbitrary test function and integrating by parts one finds that u satisfies

{

−∆u+ u− pw
p−1
0 u = λ(−∆u+ u) in R

n+1
+ ,

∂u
∂ζn+1

= 0 on ∂Rn+1
+ .

The goal of this subsection (the motivation will become clear in the next one) is to study a more
general version of this eigenvalue problem, namely

{

−∆u+ (1 + α)u− pw
p−1
0 u = λ (−∆u+ (1 + α)u) in R

n+1
+ ,

∂u
∂ν

= 0 on ∂Rn+1
+ ,

(52)

where α ≥ 0. It is convenient to introduce the Hilbert space (which coincides H1(Rn+1
+ ), but

endowed with an equivalent norm)

Hα =

{

u ∈ H1(Rn+1
+ ) : ‖u‖2α =

∫

R
n+1
+

(|∇u|2 + (1 + α)u2)

}

,

with corresponding scalar product (·, ·)α. We also let Tα : Hα → Hα be defined by duality in
the following way

(53) (Tαu, v)Hα =

∫

R
n+1
+

((∇u · ∇v) + (1 + α)uv)− p

∫

R
n+1
+

w
p−1
0 uv; u, v ∈ Hα.

When α = 0, the operator T0 is nothing but J
′′
(w0). For α ≥ 0, the eigenfunctions of Tα satisfy

(52). We want to study the first three eigenvalues of Tα depending on the parameter α.
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Proposition 4.2 Let ηα, σα and τα denote the first three eigenvalues of Tα. Then ηα, σα and
τα are non-decreasing in α. For every value of α, ηα is simple and there holds

∂ηα

∂α
> 0; lim

α→+∞
ηα = 1.

The eigenvalue σα has multiplicity n and for α small it satisfies ∂σα

∂α
> 0. The eigenfunction uα

corresponding to ηα is radial in ζ and radially decreasing, while the eigenfunctions corresponding
to σα are spanned by functions vα,i of the form vα,i(ζ) = v̂α(|ζ|) ζi

|ζ| , i = 1, . . . , n, for some radial

function v̂α(|ζ|). If uα and vα are normalized so that ‖uα‖α = ‖vα,i‖α = 1, then they depend
smoothly on α. Moreover we have

|∇(l)uα(x)|+ |∇(l)(vα,i)(x)| ≤ Cle
− |x|

Cl ,

provided α stays in a fixed bounded set of R.

Before proving the proposition we state a preliminary lemma.

Lemma 4.3 Let τ denote the third eigenvalue of J
′′
(w0). Then, for α ≥ 0, every eigenfunction

corresponding to an eigenvalue λ ≤ τ
2 of (52) is either radial and corresponds to the least

eigenvalue, or is a radial function times a first-order spherical harmonic (in the angular variable
θ = ζ

|ζ|) with zero coefficient in ζ ′, and correspond to the second eigenvalue.

Proof. First of all we notice that, extending evenly across ∂Rn+1
+ any function u ∈ H1(Rn+1

+ )

which is a solution of (52), we obtain a smooth entire solution of −∆u+ (1 + α)u− pw
p−1
0 u =

λ (−∆u+ (1 + α)u). Next, we decompose u in spherical harmonics in the angular variable θ (we
are using only spherical harmonics which are even in ζn+1)

u =

∞
∑

i=0

ui(|ζ|)Yi,e(θ); ζ ∈ R
n+1, θ =

ζ

|ζ| ∈ S
n.

Here Yi,e is the j−th eigenfunction of −∆Sn (which is even in ζn+1), namely it satisfies ∆SnYi,e =
λS

n

i,e Yi,e, where we have denoted by λS
n

i,e the i-th eigenvalue of −∆Sn on the space of even functions

in ζn+1. In particular, the function Y0,e is constant on Sn and correspond to λS
n

1,e = 0, while

λS
n

2,e = n has multiplicity n. The eigenfunctions corresponding to λS
n

2,e are (up to a constant

multiple) the restrictions, from R
n+1 to Sn, of the linear functions in ζ ′.

The laplace equation in polar coordinates writes as

∆Rn+1u = ∆ru+
1

r2
∆Snu,

where ∆r = d2

dr2
+ n

r
d
dr
. Therefore, if u =

∑∞
i=0 ui(|ζ|)Yi,e(θ) is a solution of (52), then every

radial component ui satisfies the equation

(54)







(1− λ)

(

−v′′ − n
r
v′ +

(

1 + α+
λSn

i,e

r2

)

v

)

− pw
p−1
0 v = 0 in R+;

v′(0) = 0.
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We also notice that, since the space of functions {v(r)Yi,e(θ)} (for a fixed i) is sent into itself by
the Laplace operator, every Fourier component (in the angular variables) of an eigenfunction of
(52) is still an eigenfunction.

We call λα,i,j the j-th eigenvalue of (54). From Proposition 4.1 it follows that λ0,1,1 =

−(p − 1) < 0 and that λ0,1,j > τ for j ≥ 2. In fact, a radial eigenfunction of J
′′
(w0) which is

not (a multiple of) w0 itself must correspond to an eigenvalue greater or equal than τ , which
is positive. On the other hand, it follows from Proposition 4.1 that λ0,2,1 = 0, and also that
λ0,2,j ≥ τ > 0 for j ≥ 2. Finally, since λ0,i,1 ≥ τ > 0 for i ≥ 3, we have in addition λ0,i,j ≥ τ for
every i ≥ 3 and for every j ≥ 1.

After these considerations, we turn to the case α > 0, for which similar arguments will apply.
Solutions of (54) can be found as extrema (minima, for example) of the Rayleigh quotient

(55)

∫

R+
rn
[

(v′)2 +

(

1 + α+
λSn

i,e

r2

)

v2
]

− p
∫

R+
rnw

p−1
0 v2

∫

R+
rn
[

(v′)2 +

(

1 + α+
λSn

i,e

r2

)

v2
]

from a standard min-max procedure. Using elementary inequalities it is easy to see that the
above quotient is non-decreasing in α. Therefore it follows that λα,1,j > 0 for j ≥ 2, that
λα,2,j ≥ τ > 0 for j ≥ 2 and that λα,i,j ≥ τ for every i ≥ 3 and for every j ≥ 1. This concludes
the proof.

Proof of Proposition 4.2 The simplicity of ηα can be proved as in [39], Section 3, using
spherical rearrangements and the maximum principle. The weak monotonicity in α of the
eigenvalues can be easily shown using the Rayleigh quotient in the space Hα, as for (55).

The smoothness of α 7→ ηα and of α 7→ uα can be deduced in the following way. Since the two
spaces H1(Rn+1

+ ) and Hα coincide, and since the eigenvalues of an operator do not depend on
the choice of the (equivalent) norms, we can consider Tα acting on H1(Rn+1

+ ) endowed with its
standard norm (independent of α). Having fixed the space, we notice that the explicit expression
of Tα is given by

(56) Tαu = [−∆+ 1]−1
(

−∆u+ (1 + α)u− pw
p−1
0 u

)

.

In fact, letting Tαu = q ∈ H1(Rn+1
+ ), taking the scalar product with any v ∈ H1(Rn+1

+ ) and
using (53) we find

∫

R
n+1
+

[(∇q · ∇v) + qv] =

∫

R
n+1
+

[(∇u · ∇v) + (1 + α)uv] − p

∫

R
n+1
+

w
p−1
0 uv,

which leads to (56) by the arbitrarity of v. It is clear that the operator in (56) depends smoothly
on α and therefore, being ηα simple, the smooth dependence on α of ηα and uα follows.

We now compute the derivative of ηα with respect to α. The function uα satisfies

(57)

{

(1− ηα) (−∆uα + (1 + α)uα) = pw
p−1
0 uα in R

n+1
+ ,

∂uα

∂ν
= 0 on ∂Rn+1

+ .
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Differentiating with respect to α the equation ‖uα‖2α = 1, we find

(58)
d

dα
‖uα‖2α = 0 ⇒

(

duα

dα
, uα

)

α

= −
∫

R
n+1
+

u2α.

On the other hand, differentiating (57), we obtain
(59)
{

−dηα
dα

(−∆uα + (1 + α)uα) + (1− ηα)
(

−∆
(

duα

dα

)

+ (1 + α)duα

dα
+ uα

)

= pw
p−1
0

duα

dα
in R

n+1
+ ,

∂
∂ν

(

duα

dα

)

= 0 on ∂Rn+1
+ .

Multiplying (59) by uα, integrating by parts and using (58), one gets

(60)
dηα

dα
= (1− ηα)

∫

R
n+1
+

u2α > 0.

Indeed, since Tα ≤ IdH1(Rn+1
+ ), every eigenvalue of Tα is strictly less than 1, and in particular

(1 − ηα) > 0. We now consider the second eigenvalue σα. For any α ≥ 0 it is possible to make
a separation of variables, finding eigenfunctions of (52) of the form Yi,ev̂α,i, where Yi,e = ζi

|ζ| ,

i = 1, . . . , n, correspond to λS
n

2,e. Also, from Lemma 4.3 we know that for α close to 0 (indeed, as
long as σα < τ) every eigenfunction corresponding to σα is of this form, for some i ∈ {1, . . . , n}.
Therefore, if we restrict ourselves to the space of functions of the form v̂(|ζ|) ζi

|z| for a fixed

i ∈ {1, . . . , n}, the first eigenvalue for (52) becomes simple, so we can reason as before, obtaining
smoothness in α and the strict monotonicity of σα.

We prove next that the eigenvalue ηα converges to 1 as α→ +∞. There holds

ηα = inf
u∈Hα

∫

R
n+1
+

[

|∇u|2 + (1 + α)u2 − pw
p−1
0 u2

]

∫

R
n+1
+

[|∇u|2 + (1 + α)u2]
.

Fixing any δ > 0, it is sufficient to notice that

|∇u|2 +
(

(1 + α)− pw
p−1
0

)

u2 ≥ (1− δ)
[

|∇u|2 + (1 + α)u2
]

for every u,

provided α is sufficiently large. This concludes the proof of the claim.
The decay on uα, vα,i and their derivatives is standard and can be shown as in [39], so we

do not give details here.

Remark 4.4 Proposition 4.2 implies in particular that there is a unique α > 0 such that ηα = 0.
Moreover, we have also

u0 = C̃0w0; vh0 = C0∂hw0,

for some positive constants C̃0 and C0.

We also need to introduce a variant of the eigenvalue problem (52), for which we impose vanishing
of the eigenfunctions outside a certain set. For ε > 0 and for γ ∈ (0, 1) we define

(61) Bε,γ =
{

x ∈ R
n+1
+ : |x| < ε−γ

}

,
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and let
H1

ε =
{

u ∈ H1(Bε,γ) : u(x) = 0 for |x| = ε−γ
}

.

We let Hα,ε denote the space H1
ε endowed with the norm

‖u‖2α,ε =
∫

Bε,γ

[

|∇u|2 + (1 + α)u2
]

; u ∈ H1
ε ,

and the corresponding scalar product (·, ·)α,ε. Similarly, we define Tα,ε by

(Tα,εu, v)α,ε =

∫

Bε,γ

[

(∇u · ∇v) + (1 + α)uv − pw
p−1
0 uv

]

; u, v ∈ Hα,ε.

The operator Tα,ε satisfies properties analogous to Tα. We list them in the next Proposition,
which also gives a comparison between the first eigenvalues and eigenfunctions of Tα and Tα,ε.

Proposition 4.5 There exists ε0 > 0 such that for ε ∈ (0, ε0) the following properties hold
true. Let ηα,ε, σα,ε and τα,ε denote the first three eigenvalues of Tα,ε. Then ηα,ε, σα,ε and τα,ε
are non-decreasing in α. For every value of α, ηα,ε is simple and

∂ηα,ε

∂α
> 0. For α sufficiently

small, σα,ε has multiplicity n and
∂σα,ε

∂α
> 0. The eigenfunction uα,ε corresponding to ηα,ε is

radial in ζ and radially decreasing, while the eigenfunctions corresponding to σα,ε are spanned by

functions vα,ε,i of the form vα,ε,i(ζ) = v̂α,ε(|ζ|) ζi
|ζ| , i = 1, . . . , n, for some radial function v̂α,ε(|ζ|).

The eigenvector uα,ε (resp. vα,ε,i), normalized with ‖uα,ε‖Hα,ε = 1 (resp. ‖vα,ε,i‖Hα,ε,i
= 1)

corresponding to ηα,ε (resp. σα,ε for α small) depend smoothly on α. Moreover for some fixed
C > 0 there holds

|∇(l)uα,ε(ζ)|+ |∇(l)vα,ε,i(ζ)| ≤ Cle
− |ζ|

Cl , for i = 0, . . . , n;(62)

(63) |ηα − ηα,ε|+ ‖uα − uα,ε‖H1(Rn+1
+ ) + |σα − σα,ε|+ ‖vα,i − vα,ε,i‖H1(Rn+1

+ ) ≤ Ce−
ε−γ

C ,

provided α stays in a fixed bounded set of R. The functions ua,ε and vα,ε,i in this formula have
been set identically 0 outside Bε,γ. Furthermore, τα,ε ≥ τα ≥ τ for every value of α and ε.

The proof follows that of Proposition 2.3 in [40], and hence we omit it here. It is still based on
some elementary inequalities and on the Rayleigh quotient. The quantitative estimates in (63)
can be deduced using cutoff functions and the Green’s representation formula for the operator
−∆+ (1 + α) in R

n+1
+ .

As a consequence of this proposition (taking α = 0) we obtain that, if (for ε small) u ∈ H1
ε

has no Fourier components (in θ) with indices less or equal to n, then (T0,εu, u)0,ε ≥ τ
2 (u, u)0,ε.

Equivalently, there holds
(64)

p

∫

Bε,γ

w
p−1
0 (|ζ|)u2 ≤

(

1− τ

2

)

∫

Bε,γ

(−∆u+ u)udζ for any u =

∞
∑

i=n+1

uj(|ζ|)Yi,e(θ), u ∈ H1
ε .
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4.2 A model for J ′′
ε (uI,ε)

In this subsection, using the analysis of the previous one, we construct a model operator which,
up to some extent, mimics the properties of J ′′

ε (uI,ε), and for which we can give an explicit
description of the spectrum. Although the related construction in [38] is a particular case of the
one made here, the general spirit is quite different, and is more geometric in nature.

First of all, we choose an orthonormal frame (Ei)i as before, and we define a metric ĝ on NK
as follows. For v ∈ NK, a tangent vector V ∈ TvNK can be identified with the velocity of a
curve v(t) in NK which is equal to v at time t = 0. The same holds true for another tangent
vector W ∈ TvNK. Then the metric ĝ on NK is defined on the couple (V,W ) in the following
way (see [21], pag. 79)

ĝ(V,W ) = g (π∗V, π∗W ) +

〈

DNv

dt
|t=0,

DNw

dt
|t=0

〉

N

.

In this formula π denotes the natural projection fromNK ontoK, and DNv
dt

denotes the (normal)
covariant derivative of the vector field v(t) along the curve π v(t). In the notation of Subsection
2.2 we have that, if v(t) = vj(t)Ej(t), then

DNv

dt
=
dvj(t)

dt
Ej(t) + vj(t)βlj

(

π∗
dv(t)

dt

)

El.

Therefore, if we choose a system of coordinates y on K and then a system of coordinates on
NK defined by

(y, ζ) ∈ R
k × R

n 7→ ζ
j
Ej(y),

we get that

ĝab(y, ζ) = gab(y) + ζ
i
ζ
j
〈

∇N
∂a
Ei,∇N

∂b
Ej

〉

N
= gab(y) + ζ

i
ζ
j
βli (∂a) β

l
j

(

∂b
)

,

and
ĝai(y, ζ) = ζ

j
βij (∂a) ; ĝij(y, ζ) = δij,

where we have set ∂i =
∂

∂ζi
. We notice also that the following co-area type formula holds, for

any smooth compactly supported function f : NK → R

(65)

∫

NK

fdVĝ =

∫

K

(

∫

NyK

f(ζ)dζ

)

dVg(y).

This follows immediately from the fact that det ĝ = det g, which in turn can be verified by
expressing ĝ as a product of three matrices like

(

Id ζβ

0 Id

)(

g 0
0 Id

)(

Id 0
ζβ Id

)

,

the first and the third having determinant equal to 1.
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Having defined the metric ĝ, we express the Laplacian of a function u defined on NK with
respect to this metric. In Fermi coordinates centered at some point q ∈ K, using (16), (17) and
(19), it turns out that (for y = 0)

(66) ∆ĝu = ∂2aau+ ∂2
ii
u.

Next we define the set Sε as

Sε =
{

(v, ζn+1) ∈ NKε × R+ :
(

|v|2 + ζn+1
2
)

1
2 ≤ ε−γ

}

, R+ = {ζn+1 : ζn+1 > 0} ,

where NKε stands for the normal bundle of Kε (in Ωε). We next endow Sε with a natural
metric, inherited by ĝ through a scaling. If Rε denotes the dilation x 7→ εx in R

N (extended
naturally to its subsets), we define a metric g̃ε on Sε by

g̃ε =
1

ε2
[(Rε)∗ĝ]⊗ dζn+1

2.

In particular, choosing coordinates (y, ζ ′) on NKε via the scaling (y, ζ) = ε(y, ζ ′), one easily
checks that the components of g̃ε are given by

(g̃ε)ab(y, v) = (g)ab(εy) + ε2vivjβli (∂a) (εy)β
l
j

(

∂b
)

(εy),

(g̃ε)ai(y, v) = εvjβij (∂a) (εy); (g̃ε)ij(y, v) = δij ,

and also
(g̃ε)NN ≡ 1; (g̃ε)Nα ≡ 0.

Therefore, if u is a smooth function in Sε, it follows that in the above coordinates (y, ζ ′, ζn+1)
(at y = 0)

(67) ∆g̃εu = ∂2aau+ ∂2iiu+ ∂2ζn+1ζn+1
u.

In the following, to emphasize a slow dependence of a function u in the variables y, we will
often write u(y, ζ) = u(εy, ζ) (where, we recall, ζ = (ζ ′, ζn+1)), identifying with an abuse of
notation the variable y parameterizing Kε with y, parameterizing K. In this case we have that
(at the origin of the Fermi coordinates)

(68) ∆g̃εu = ε2∂2aau+ ∂2iiu+ ∂2ζn+1ζn+1
u.

For later purposes, we evaluate ∆g̃ε on functions with a special structure. In particular, if
we deal with a function u of the form u(y, ζ) = φ(y)v(|ζ|), we have that

(69) ∆g̃εu = ε2(∆Kφ(y))v(|ζ|) + φ(y)∆ζv,

and if instead u(y, ζ) = v(|ζ|)ψh(y) ζh|ζ| for some smooth normal section ψ = ψhEh, then we find

(70) ∆g̃εu = ε2(∆N
Kψ)

h(y)
ζh

|ζ|v(|ζ|) + ψh(y)∆ζ

(

v(|ζ|) ζh|ζ|

)

.
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Now we introduce the function space HSε defined as the family of functions in H1(Sε) which
vanish on {|v|2 + ζn+1

2 = ε−2γ}, endowed with the scalar product

(71) (u, v)HSε
=

∫

Sε

(∇g̃εu · ∇g̃εv + uv) dVg̃ε .

We consider next the operator TSε : HSε → HSε defined by duality as

(72) (TSεu, v)HSε
=

∫

Sε

(

∇g̃εu · ∇g̃εv + uv − pw
p−1
0 (|ζ|)uv

)

dVg̃ε ,

for arbitrary u, v ∈ HSε . Our goal is to characterize some of the eigenvalues of TSε , with the
corresponding eigenfunctions.

For simplicity, if uα,ε, vα,ε,i, ηα,ε and σα,ε are given by Proposition 4.5, recalling our notation
from Subsection 2.2, we also set

(73) uj,ε = uε2ρj ,ε; vl,ε,i = vε2ωl,ε,i
; ηj,ε = ηε2ρj ,ε; σl,ε = σε2ωl,ε

.

We also assume that these functions are normalized so that

(74)







‖uj,ε‖2ε2ρj ,ε =
∫

Bγ,ε

(

|∇uj,ε|2 + (1 + ε2ρj)u
2
j,ε

)

= 1;

‖vl,ε,i‖2ε2ωl,ε
=
∫

Bγ,ε

(

|∇vl,ε,i|2 + (1 + ε2ωl)v
2
l,ε,i

)

= 1.

After these preliminaries, we can state our result.

Proposition 4.6 Let ε0, ε be as in Proposition 4.5. Let λ < τ
4 be an eigenvalue of TSε . Then

either λ = ηj,ε for some j, or λ = σl,ε for some index l. The corresponding eigenfunctions u are
of the form

(75) u(y, ζ) =
∑

{j : ηj,ε=λ}

αjφj(εy)uj,ε(ζ) +
∑

{l : σl,ε=λ}

βlϕ
i
l(εy)vl,ε,i(ζ),

where (y, ζ) denote the above coordinates on Sε, and where (αj)j , (βl)l are arbitrary constants.
Viceversa, every function of the form (75) is an eigenfunction of TSε with eigenvalue λ. In
particular the eigenvalues of TSε which are smaller than τ

4 coincide with the numbers (ηj,ε)j or
(σl,ε)l which are smaller than τ

4 .

Proof. The proof is based on separation of variables and the spectral analysis of Proposition
4.5. Integrating by parts, one can check that the eigenfunction u of TSε satisfies the following
equation

(76)

{

(1− λ) (−∆g̃εu+ u)− pw
p−1
0 (ζ)u = 0 in Sε,

∂u
∂ζn+1

= 0 on {ζn+1 = 0}.

As before, we can extend u evenly in ζn+1, to obtain a smooth solution of the differential equation

in (76) in the set {(v, ζn+1) ∈ NKε ×R : (|v|2 + ζn+1
2)

1
2 ≤ ε−γ}. Hence, fixing y ∈ Kε, we can

use Fourier decomposition in the angular variable of ζ, and we can write

u(y, ζ) =

∞
∑

l=0

ul(y, |ζ|)Yl,e(θ),
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where θ = ζ
|ζ| ∈ Sn, and where Yl,e is the l-th spherical harmonic function which is even in ζn+1.

We now decompose u further in a convenient way as

(77) u = u0 + u1 + u2,

where

u0 =
1

√

|Sn|
u0(y, |ζ|); u1 =

∑

l=1,...,n

ul(y, |ζ|)Yl,e(θ); u2 =
∑

l≥n+1

ul(y, |ζ|)Yl,e(θ).

Integrating by parts, the last formula, together with (65), (69) and (70) (recall that Yl,e for

l = 1, . . . , n are linear combinations of ζh
|ζ| on S

n, h = 1, . . . , n) easily imply that (ui, uj)HSε
= 0

for i 6= j and that (TSεui, uj)HSε
= 0 for i 6= j, namely that TSε diagonalizes with respect to the

above decomposition (77).
We begin by considering the action of TSε on u0. Using a Fourier decomposition of u0(y, |ζ|)

through the eigenfunctions (φj)j of the Laplace-Beltrami operator on Kε we set

u0(y, |ζ|) =
∞
∑

j=0

φj(εy)ũj(|ζ|).

By (69) we get immediately that for any j

∆g̃ε(φj(εy)ũj(|ζ|)) = (ε2∆g +∆ζ)(φj(εy)ũj(|ζ|)) = (∆ζ − ε2ρj)φj(εy)ũj(|ζ|).

As a consequence we find that u0 ∈ H1
ε satisfies the following partial differential equation in

Bε,γ, with Neumann boundary conditions on {ζn+1 = 0}

−∆g̃εu0 + u0 − pw
p−1
0 (|ζ|)u0 =

∞
∑

j=0

φj(εy)
(

−∆ζ ũj(|ζ|) + (1 + ε2ρj)ũj(|ζ|)− pw
p−1
0 (|ζ|)ũj(|ζ|)

)

.

From this formula it follows that if TSεu = λu for some λ, then by the orthogonality to u1, u2
we have also TSεu0 = λu0, and each of the components ũj (which are radial in ζ) satisfies the
eigenvalue equation Tε2ρj ,εũj = λũj in Hε2ρj ,ε with the same value of λ, where we are using the
notation of Subsection 4.1. Using the same terminology, we can further decompose ũj as

ũj(|ζ|) = αjuj,ε + uj,ε with αj ∈ R and with (uj,ε, uj,ε)ε2ρj ,ε = 0.

From the spectral analysis carried out in the previous subsection it follows that if λ < τ
4 (and ε

is sufficiently small), then uj,ε = 0 for every j, and λ = ηj,ε for some set of indices j.

We now turn to the evaluation of TSε on u1. Similarly as before, expanding with respect to the
eigenfunctions of the normal Laplacian we can decompose u1 in the following way

u1(y, ζ) =
∑

l≥0

n
∑

i=1

ṽl(|ζ|)ϕl,i(εy)
ζi

|ζ| ,
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and from (70) we deduce that

∆g̃ε

(

n
∑

i=1

ṽl(|ζ|)ϕl,i(εy)
ζi

|ζ|

)

=
n
∑

i=1

(ε2∆N
Kϕl)

i ζi

|ζ|vl(|ζ|) +
n
∑

i=1

ϕl,i(εy)∆ζ

(

ṽl(|ζ|)
ζi

|ζ|

)

= (∆ζ − ε2ωl)

(

n
∑

i=1

ṽl(|ζ|)ϕl,i(εy)
ζi

|ζ|

)

.

As a consequence we find that also

−∆g̃εu1 + u1 − pw
p−1
0 (|ζ|)u1

=
∑

l≥0

n
∑

i=1

ϕl,i(εy)

[

−∆ζ

(

ṽl(|ζ|)
ζi

|ζ|

)

+ (1 + ε2ωl)ṽl(|ζ|)
ζi

|ζ| − pw
p−1
0 (|ζ|)ṽl(|ζ|)

ζi

|ζ|

]

.

Hence, by the spectral analysis of the previous subsection, reasoning as for u0 we deduce that
if u1 satisfies TSeu1 = λu1 with λ < τ

4 , then ṽl(|ζ|)
ζi
|ζ| = vl,ε,i, and hence it follows that λ = σl,ε

for some set of indices l.
Finally, we turn to u2. Proceeding as for the definition of the metric ĝ (and using the same

notation), we can introduce a bilinear form g (semi-positive definite) on T NK defined by

g(V,W ) =

〈

DNv

dt
|t=0,

DNw

dt
|t=0

〉

N

.

Using again a scaling in ε, we can also introduce the following bilinear form on Sε

gε =
1

ε2
(Rε)∗g⊗ dζn+1

2.

The components of this form in the above coordinates (y, ζ) are given by

(gε)ab(y, v) = ε2vivjβli (∂a) (εy)β
l
j

(

∂b
)

(εy); (gε)ai(y, v) = εvjβij (∂a) (εy);

(gε)ij(y, v) = δij ; (gε)NN ≡ 1; (gε)Nα ≡ 0.

We then define by duality the operator Tε through the formula

(Tεu, u)HSε
:=

∫

Sε

[

gε(∇g̃εu,∇g̃εu) + u2 − pw
p−1
0 (|ζ|)u2

]

dVg̃ε .

Moreover, computing the pointwise action of Tε integrating by parts, reasoning as for the deriva-
tion of (68), and using (65), one finds that

(78) (Tεu, u)HSε
=

∫

Kε

[

∫

Sy,ε

(

−u∆ζu+ u2 − pw0(|ζ|)p−1
)

dζ

]

dVgε(y), u ∈ HSε ,

where we have set gε =
1
ε2
(Rε)∗g and Sy,ε =

{

(v, ζn+1) ∈ NyKε × R+ :
(

|v|2 + ζn+1
2
)

1
2 ≤ ε−γ

}

.

Hence, using (65) (with the scaled metric g̃ε), (64) with u = u2 and (78) we find

p

∫

Sε

w
p−1
0 u22dVg̃ε = p

∫

Kε

(

∫

Sy,ε

w
p−1
0 u22

)

dVgε(y) ≤
(

1− τ

2

)

∫

Kε

[

∫

Sy,ε

(

−u2 ∆ζu2 + u22
)

]

dVgε(y).
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Since τ < 1 (being an eigenvalue of J
′′
(w0) ≤ Id

H1(Rn+1
+ )), we deduce that

(TSεu, u)HSε
= (Tεu, u)HSε

+

∫

Sε

[

(ĝε − gε)(∇g̃εu,∇g̃εu) + u2
]

dVg̃ε

≥ τ

2

∫

Sε

[

gε(∇g̃εu,∇g̃εu) + u2
]

dVg̃ε +

∫

Sε

[

(ĝε − gε)(∇g̃εu,∇g̃εu) + u2
]

dVg̃ε

≥ τ

2
‖u‖2HSε

.

If follows that there are no eigenvectors of the form u2 corresponding to eigenvalues smaller than
τ
2 . This concludes the proof.

Remark 4.7 For later purposes, it is convenient to consider a splitting of the functions in HSε

which is slightly different from the one in (77). If u0, u1 and u2 are as above, with

u0 =
∑

j≥0

φj(εy)ũj(|ζ|); u1 =
∑

l≥0

n
∑

i=1

ṽl(|ζ|)ϕl,i(εy)
ζi

|ζ| ,

for some real sequences (αj)j , (βl)l, we can write

ũj(|ζ|) = αjuj,ε(|ζ|) + uj,ε(|ζ|), with (uj,ε, uj,ε)ε2ρj ,ε = 0;

ṽl(|ζ|)
ζi

|ζ| = βlvl,ε,i(ζ) + vl,ε(|ζ|)
ζi

|ζ| := βlvl,ε,i(ζ) + vl,ε,i(ζ), with (vl,ε,i, vl,ε,i)ε2ωl,ε
= 0.

Now we set u = u0 + u1 + u2, where

u0 =

∞
∑

j=0

αjuj,ε(|ζ|)φj(εy); u1 =

∞
∑

l=0

βlvl,ε,i(ζ)ϕ
i
l(εy);

u2 =

∞
∑

j=0

uj,ε(|ζ|)φj(εy) +
∞
∑

l=0

vl,ε,i(ζ)ϕ
i
l(εy) + u2.

Then by (74) one can check that (ui, uj)HSε
= 0 for i 6= j, and that

(79) ‖u‖2HSε
= ‖u0‖2HSε

+ ‖u1‖2HSε
+ ‖u2‖2HSε

=
1

εk

∞
∑

j=0

α2
j +

1

εk

∞
∑

l=0

β2l + ‖u2‖2HSε
;

(80) (TSεu, u)HSε
=

∞
∑

j=0

ηj,εα
2
j +

∞
∑

l=0

σl,εβ
2
l + (TSεu2, u2)HSε

; (TSεu2, u2)HSε
≥ C‖u2‖2HSε

,

for some fixed positive constant C.

From the last proposition we deduce the following corollary, regarding the Morse index of TSε .
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Corollary 4.8 Let γ ∈ (0, 1), and let TSε : HSε → HSε be defined as before. Then, as ε tends
to zero, the Morse index of TSε satisfies the estimate

M.I.(TSε) ≃
(

α

Ck

) k
2

V ol(K)ε−k,

where α is the unique real number for which ηα = 0 (see Remark 4.4).

Proof. From Proposition 4.6 we have that the Morse index of TSε is equal to the number
of negative ηj,ε’s. By the estimate in (63), this number is asymptotic to the number of j’s for
which ηε2ρj is negative. Therefore it is sufficient to count the number of eigenvalues ρj for which

ε2ρj is less than α. By the Weyl’s asymptotic formula, see [32], we have that ρj ≃ Ck

(

j
V ol(K)

)
k
2

so the conclusion follows immediately.

5 Accurate analysis of the linearized operator

In this section we first compare J ′′
ε (uI,ε) to the model operator introduced in the previous one.

A naive direct comparison will give errors of order ε, see Lemma 5.1 and Corollary 5.3, but
sometimes we will need estimates of order ε2. Therefore we will expand at a higher order the
eigenvalues (of the linearized operator at uI,ε) close to zero with the corresponding eigenfunc-
tions, to get sufficient control on the errors. Finally, using these expansions, we will define
a suitable decomposition of the functional space for which the linearized operator is almost
diagonal.

5.1 Comparison of J ′′
ε (uI,ε) and TSε

We define first a bijection Υ̃ε from Sε into a neighborhood of Kε in Ωε in the following way.
Given the section Φ = Φ0 + εΦ1 + · · · + εI−2ΦI−2 in NK constructed in Section 3, for any
(v, ζn+1) ∈ Sε, v ∈ NyKε, ζn+1 ∈ R+, we set

Υ̃ε(v, ζn+1) = exp∂Ωε
y (v +Φ(εy)) + ζn+1ν

(

exp∂Ωε
y (v +Φ(εy))

)

.

Then we define the set Σε ⊆ Ωε to be

Σε = Υ̃ε(Sε),

endowed with the standard Euclidean metric induced from R
N . For u ∈ HSε , we define the

function ũ : Σε → R by

ũ(z) = u
(

Υ̃−1
ε (z)

)

, z ∈ Σε,

and letting Λε to be the map u 7→ ũ, we define

HΣε = Λε(HSε).

HΣε has a natural structure of Hilbert (Sobolev) space inherited by H1(Ωε), and we denote by
(·, ·)HΣε

, ‖ · ‖HΣε
the corresponding scalar product and norm. More precisely, we can identify

the space HΣε with the family of functions in H1(Ωε) which vanish identically in Ωε \ Σε.
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We introduce next the operator TΣε : HΣε → HΣε defined as the restriction toHΣε of J
′′
ε (uI,ε)

which, using the duality in HΣε , has the following expression

(81) (TΣεu, v)HΣε
=

∫

Σε

(∇u · ∇v + uv)− p

∫

Σε

u
p−1
I,ε uv = (u, v)HΣε

− p

∫

Σε

u
p−1
I,ε uv.

Fixing these notations and definitions, following the arguments at the beginning of Section
4 in [38] one can easily prove the following result.

Lemma 5.1 Identifying the functions in HSε with the corresponding ones in HΣε via the map
Λε, for ε sufficiently small one has

(u, v)HΣε
= (u, v)HSε

+O(ε1−γ)‖u‖HSε
‖v‖HSε

;

(TΣεu, v)HΣε
= (TSεu, v)HSε

+O(ε1−γ)‖u‖HSε
‖v‖HSε

.

with error O(ε1−γ) independent of u, v ∈ HΣε.

We introduced the operator TΣε because it represents an accurate model for J ′′
ε (uI,ε). In

fact, since most of the functions we consider have an exponential decay away from Kε, it is
reasonable to expect that the spectrum of J ′′

ε (uI,ε) will be affected only by negligible quantities
if we work in HΣε instead of H1(Ωε). More precisely, one has the following result (we recall the
definition of τ from the previous section).

Lemma 5.2 There exists a fixed constant C, depending on Ω, K and p such that the eigenvalues
of J ′′

ε (uI,ε) and TΣε satisfy

∣

∣λj(J
′′
ε (uI,ε))− λj(TΣε)

∣

∣ ≤ Ce
− 1

Cε−γ , provided λj(J
′′
ε (uI,ε)) ≤

τ

2
.

Here we are indexing the eigenvalues in non-decreasing order, counted with multiplicity.

We omit the proof of this result because it is very similar in spirit to that of Lemma 5.5 in [39].
This is based on the fact that the number of the eigenvalues of TSε which are less or equal than
3
4τ is bounded by ε−D for some D > 0 (see Proposition 4.6 and the Weyl’s asymptotic formulas
in Subsection 2.2), together with the exponential decay of the eigenfunctions of J ′′

ε (uI,ε), which
can be shown as in [39], Lemma 5.1.

As a consequence of Lemmas 5.1 and 5.2 we obtain the following result.

Corollary 5.3 In the above notation, for ε small one has that

(82)
∣

∣λj(J
′′
ε (uI,ε))− λj(TSε)

∣

∣ ≤ Cε1−γ , provided λj(J
′′
ε (uI,ε)) ≤

τ

2
.

Using Proposition 4.6 and Corollary 5.3, it is possible to obtain some qualitative information
about the spectrum of the linearized operator J ′′

ε (uI,ε). However, this kind of estimate is not
sufficiently precise by the following considerations. First of all, since the eigenvalues of TSε

can approach zero at a rate min{ε2, εk}, the estimate (82) need to be improved if we want to
guarantee the invertibility of J ′′

ε (uI,ε). Furthermore, it would be natural to expect that the
Jacobi operator (and its invertibility) plays some role in the expansion of the eigenvalues, and
this is not apparent here.

On the other hand, Lemma 5.2 gives an accurate estimate on the eigenvalues of J ′′
ε (uI,ε) in

terms of those of TΣε , so it will be convenient to analyze TΣε directly.
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5.2 Approximate eigenfunctions of TΣε

In this subsection we construct approximate eigenfunctions to the linearized operator at the
approximate solutions uI,ε. By the reasons explained at the end of the previous subsection,
we need a refined expansion of the small eigenvalues of TΣε , and in particular here we want to
understand how the σl,ε’s change when we pass from TSε to TΣε .

It is sufficient here to take I = 2, because the terms of order higher than ε2 do not affect
the expansions below. As for the construction of the approximate solutions uI,ε, we proceed by
expanding the eigenvalue equation formally in powers of ε. By the construction of u2,ε, formally
the following equation holds

−∆gεu2,ε + u2,ε − u
p
2,ε = O(ε3).

Using Fermi coordinates as in Section 3 and differentiating with respect to ζh, we get

(83) − ∂h(∆gεu2,ε) + ∂hu2,ε − pu
p−1
2,ε ∂hu2,ε = O(ε3).

From the general expression of the Laplace-Beltrami operator, see formula (14), we can easily
see that

∂h(∆gεu) = ∆gε(∂hu) + ∂hg
AB
ε ∂ABu+ ∂h(∂Ag

AB
ε )∂Bu

+
1

2
gAB
ε ∂2hA (log(det gε)) ∂Bu+

1

2
∂A (log(det gε)) (∂hg

AB
ε )∂Bu.(84)

Let us now consider the second term on the right-hand side of (84): dividing the indices this is
equivalent to

∂hg
ij
ε ∂

2
iju+ 2∂hg

ib
ε ∂

2
ibu+ ∂hg

ab
ε ∂abu+ 2∂hg

AN
ε ∂A∂ζn+1u.

From Lemma 3.2, and using the fact that we get an ε factor each time we differentiate u with
respect to ya, yb, . . . , we find that

∂hg
AB
ε ∂2ABu = −2

3
ε2Rihtjζt∂

2
iju+O(ε3).

Similarly we get

∂h∂Ag
AB
ε ∂Bu =

1

3
ε2Rhiij∂ju+O(ε3);

1

2
gAB
ε ∂2hA (log(det gε)) ∂Bu = ε2

(

1

3
Rillh +Riaah − Γb

a(Ei)Γ
a
b (Eh)

)

∂iu

+ 2HabΓ
b
a(Eh)∂ζn+1u+O(ε3),

and
1

2
∂A (log(det gε)) (∂hg

AB
ε )∂Bu = O(ε3).

Putting together all these terms we deduce that

(85) ∂h(∆gεu) = ∆gε(∂hu)−
2

3
ε2Rihtjζt∂iju+ε

2

(

2

3
Rillh +Riaah − Γb

a(Ei)Γ
a
b (Eh)

)

∂iu+O(ε3).
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To construct the approximate eigenfunctions vε and the approximate eigenvalues µ, we make an
ansatz of the type

vε =
(

ψh(y)∂hu2,ε(y, ζ
′ +Φ(y), ζn+1) + ε2z2(y, ζ)

)

+O(ε3); µ = ε2µ+O(ε3),

where the normal section ψ = (ψh)h, the function z2 and the real number µ have to be deter-
mined.

We notice that the eigenvalue equation J ′′
ε (u2,ε)v = λv in H1(Ωε), with an integration by parts

becomes
−∆gεv + v − p (u2,ε)

p−1 v = λ (−∆gεv + v) ,

see also the derivation of (57).
For v = vε and λ = µ, we have the following expansion

− ∆gε

(

ψh(y)∂hu2,ε + ε2z2(y, ζ)
)

+ ψh(y)∂hu2,ε + ε2z2(y, ζ)− p (u2,ε)
p−1

(

ψh(y)∂hu2,ε + ε2z2(y, ζ)
)

= ε2µ
[

−∆gε

(

ψh(y)∂hu2,ε + ε2z2(y, ζ)
)

+
(

ψh(y)∂hu2,ε + ε2z2(y, ζ)
)]

= ε2µ
[

ψh(y) (−∆gε∂hw0 + ∂hw0)
]

+O(ε3)

= ε2µpψh(y)wp−1
0 ∂hw0 +O(ε3).

From (85) we can expand the Laplacian in the last formula as

−∆gε

(

ψh(y)∂hu2,ε

)

= −ε2∂2yayaψ
h∂hw0 − 2ε2∂aψ

h∂2jhw0∂yaΦ
j
0 − ψh∆gε(∂hu2,ε)

+ 4ε2ζn+1Haj∂yaψ
h∂2jhw0 +O(ε3)

= −ε2∂2yayaψ
h∂hw0 − 2ε2∂aψ

h∂2jhw0∂yaΦ
j
0 − ψh∂h(∆gεu2,ε)

+ 4ε2ζn+1Haj∂yaψ
h∂2jhw0 +

2

3
ε2ψhRihtjζt∂ijw0

− ε2ψh

(

2

3
Rillh +Riaah − Γb

a(Ei)Γ
a
b (Eh)

)

∂iw0 +O(ε3).

Using (83) jointly with the last equality, and recalling our previous notation (from Section 3)

LΦu = −∆u+ u− pw
p−1
0 (ζ ′ +Φ(εy), ζn+1),

we obtain the following condition on z2

LΦz2 = ∂2yayaψ
h∂hw0 + 2∂yaψ

h∂2jhw0∂yaΦ
j
0 −

2

3
ψhRihtjζt∂

2
ijw0

+ ψh

(

2

3
Rillh +Riaah − Γb

a(Ei)Γ
a
b (Eh)

)

∂iw0 + pµψhw
p−1
0 ∂hw0(86)

− 2HabΓ
b
a(Eh)∂ζn+1w0 − 4ζn+1Haj∂yaψ

m∂2jmw0 +O(ε).
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In order to get solvability of this equation (in z2), we need to impose that the right-hand side
is orthogonal to the kernel of LΦ namely that, multiplying it by ∂sw0 and integrating in ζ,
s = 1, . . . , n, we must get zero. If we do this, reasoning as at the end of Subsection 3.2.1, we
obtain the following condition on ψ

C0Jψ = C1µψ, where C1 = p

∫

R
n+1
+

w
p−1
0 (∂1w0)

2dζ,

and where C0 is given in (47). With the choices

µ =
C0

C1
µl; ψ = ψl,

where µl is an eigenvalues of J with eigenfunction ψl, the right-hand side of (86) is perpendicular
to the kernel of LΦ, and we get solvability in z2. Using the eigenvalue equation for ψl, (86) can
be simplified as

LΦz2 = µlψ
h
l ∂hw0

(

p
C0

C1
w

p−1
0 − 1

)

+ 2∂yaψ
h
l

(

∂yaΦ
j
0 − 2ζn+1Haj

)

∂2jhw0

+
2

3
ψh
l

(

Rijjh∂iw0 −Rihtjζt∂
2
ijw0 − 3HabΓ

b
a(Eh)∂ζn+1w0

)

.

Next, we set

gh0 (y, ζ) = L−1
Φ

[

∂hw0

(

p
C0

C1
w

p−1
0 − 1

)]

; gh1 (y, ζ) = 2L−1
Φ

[(

∂yaΦ
j
0 − 2ζn+1Haj

)

∂2jhw0

]

;

gh2 (y, ζ) =
2

3
L−1
Φ

[(

Rillh∂iw0 −Rihtjζt∂
2
ijw0 − 3HabΓ

b
a(Eh)∂ζn+1w0

)]

+ ∂hw2(y, ζ
′ +Φ(y), ζn+1),

and
gh3 (y, ζ) = ∂hw1(y, ζ

′ +Φ(y), ζn+1).

We notice that, by the definitions of C0, C1, the computations in Subsection 3.2.2 and by oddness,
the arguments of L−1

Φ in the definitions of gh0 , g
h
1 and gh2 are all perpendicular to the kernel of

LΦ, and therefore g0, g1 and g2 are well defined.

Finally, with this notation, we define the approximate eigenfunction Ψl as vε times a suitable
cut-off function of ζ, namely
(87)

Ψl(y, ζ) = χε(|ζ|)
{

ψh
l (y)

[

∂hw0 + εgh3 (y, ζ) + ε2gh2 (y, ζ)
]

+ε2µlψ
h
l (y)g

h
0 (y, ζ)+ε

2∂yaψ
h
l (y)g

h
1 (y, ζ)

}

,

where χε is as in (32), and, as usual, y = εy.
A more accurate analysis, which we omit, shows that the above error terms not only are of

order ε3, but they decay exponentially to zero as |ζ| tends to infinity. Moreover, as we already
remarked, in the above estimates one can replace u2,ε with uI,ε. Precisely, one can prove the
following result.

Lemma 5.4 If Ψl is given in (87), then there exist a polynomial P (ζ) and a sequence of positive
constants (Cl)l, depending on Ω, K, p and I such that

∣

∣

∣

∣

−∆gεΨl +Ψl − pu
p−1
I,ε Ψl − ε2

C0

C1
µl(−∆gεΨl +Ψl)

∣

∣

∣

∣

≤ Clε
3P (ζ)e−|ζ|.
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5.3 A splitting of the functional space

In the previous subsection we expanded in ε some of the eigenvalues of TΣε , precisely those
which are the counterparts of the σl,ε’s for TSε . Actually, TSε possesses another type of resonant
eigenvalues, namely the ηj,ε’s for suitable values of j, which in principle could approach zero even
faster. One of the differences between these two families of eigenvalues is that the eigenfunctions
corresponding to the resonant σl,ε’s oscillate slowly along ∂Ωε, and this allowed us to perform
the above expansion. On the contrary, the eigenfunctions related to the ηj,ε’s possess only high
Fourier modes, and therefore such an expansion is not possible anymore. Nevertheless, we can
deal with the counterparts of these eigenvalues applying Kato’s theorem, which on the other
hand requires to characterize the corresponding eigenfunctions up to some extent.

The purpose of the present subsection is to identify appropriate subspaces ofHΣε with respect
to which TΣε is approximately in block form. Recalling the definitions in Proposition 4.5, in
(73) and in (87) (and also our convention about the range of an integer index), for δ ∈ (0, k),
C ∈ (0, 1), we define the following subspaces

(88) H1 = span {φi(εy)ui,ε(ζ), i = 0, . . . ,∞} ;

(89)

Ĥ2 = span
{

Ψl, l = 0, . . . , ε−δ
}

; H̃2 = span

{

ψm
j (εy)v̂j,ε(|ζ|)

ζm

|ζ| , j = ε−δ + 1, . . . , Cε−k

}

;

(90) H2 = Ĥ2 ⊕ H̃2; H3 = (H1 ⊕H2)
⊥ ,

where X⊥ denotes the orthogonal complement to the subspace X with respect to the scalar
product in HΣε . We have the following result, which is the counterpart of Proposition 4.2
in [38]. The proof follows the same arguments, but for the reader’s convenience we prefer to
give details since the notation and the estimates are affected by the different dimensions and
codimensions we are dealing with.

Proposition 5.5 There exists a small value of the constant C > 0 in (89), depending on Ω, K
and p, such that the following property holds. For ε sufficiently small and choosing δ ∈

(

k
2 , k
)

in (89), every function u ∈ HΣε decomposes uniquely as

u = u1 + u2 + u3, with u1 ∈ H1, u2 ∈ H2, u3 ∈ H3.

Moreover there exists a positive constant C, also depending on Ω, K and p such that

(TΣεu3, u3) ≥
1

CC
2
k

‖u3‖2HΣε
.

The proof requires some preliminary Lemmas. Before stating them, we recall our convention
about the symbol

∑d
c , for two positive real values c and d.

Lemma 5.6 Let ũ2 =
∑Cε−k

j=ε−δ+1 βjψ
m
j (εy)v̂j,ε(|ζ|) ζm|ζ| ∈ H̃2. Then

(91) ‖ũ2‖2HΣε
= (1 +O(ε1−γ))

1

εk

Cε−k
∑

j=ε−δ

β2j .
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Proof. By Lemma 5.1, it is sufficient to estimate ‖ũ2‖2HSε
. We notice that by (26) there holds

−∆N
Kψj = Jψj + (B−R)ψj = µlψj + ((B−R)ψ)j .

Integrating by parts, using (70) and the last formula one finds that ‖ũ2‖2HSε
becomes

−
∫

Sε

Cε−k
∑

j,l=ε−δ+1

∆g̃ε

( n
∑

m=1

βjψ
m
j (εy)v̂j,ε(|ζ|)

ζm

|ζ|

)

·
( n
∑

h=1

βlψ
h
l (εy)v̂l,ε(|ζ|)

ζh

|ζ|

)

+

∫

Sε

Cε−k
∑

j,l=ε−δ+1

( n
∑

m=1

βjψ
m
j (εy)v̂j,ε(|ζ|)

ζm

|ζ|

)

·
( n
∑

h=1

βlψ
h
l (εy)v̂j,ε(|ζ|)

ζh

|ζ|

)

= A1 +A2,(92)

where

A1 =

∫

Sε

Cε−k
∑

j,l=ε−δ+1

[

(

−∆ζ + (1 + ε2µj)
)

( n
∑

m=1

βjψ
m
j (εy)v̂j,ε(|ζ|)

ζm

|ζ|

)

]

·
( n
∑

h=1

βlψ
h
l (εy)v̂j,ε(|ζ|)

ζh

|ζ|

)

;

A2 = ε2
∫

Sε

Cε−k
∑

j,l=ε−δ+1

( n
∑

m=1

βj ((B−R)ψj)
m (εy)v̂j,ε(|ζ|)

ζm

|ζ|

)

·
( n
∑

h=1

βlψ
h
l (εy)v̂j,ε(|ζ|)

ζh

|ζ|

)

.

Looking at A1, the integral over any fiber NyKε is non zero if and only if m = h (and by
symmetry, when computing the integral we can assume both the indices to be 1). Then, from
(65) and from the orthogonality among different ψl’s (which now are scaled in ε), recalling that
v̂j,ε(|ζ|) ζm|ζ| = vj,ε,m, A1 becomes

1

εk

Cε−k
∑

j=ε−δ+1

β2j ‖vj,ε,1‖2ε2ηj ,ε =
1

εk

Cε−k
∑

j=ε−δ+1

β2j

[

∫

R
n+1
+

(

|∇vj,ε,1|2 + (1 + ε2µj)v
2
j,ε,1

)

]

.

Recalling the normalization (74) and the fact that ηj = ωj + O(1) (independently of j), see
Subsection 2.2, we obtain that

(93) A1 =
1

εk

Cε−k
∑

j=ε−δ+1

(1 +O(ε2))β2j .

We turn now to the estimate of A2. By the orthogonality of the ψl’s, using again (65) and (74)
one finds

∫

Sε

ũ22dVg̃ε =
1

εk

Cε−k
∑

j=ε−δ+1

β2j ‖vj,ε,1‖2L2(Rn+1
+ )

≤ 1

εk

Cε−k
∑

j=ε−δ+1

β2j .

Working in a local system of coordinates (y, z) as in Subsection 4.2, it is also convenient to write
ũ2 as

ũ2(y, ζ) =

n
∑

m=1

fm(y, |ζ|)ζm, where fm(y, |ζ|) =
Cε−k
∑

j=ε−δ+1

βjψ
m
j (εy)

v̂j,ε(|ζ|)
|ζ| .
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If U is a neighborhood of some point q inK, where the coordinates y are defined, letting Uε =
1
ε
U ,

one has
∫

NUε

ũ22dVg̃ε =

n
∑

m=1

∫

Uε

(

∫

R
n+1
+

f2m(y, |ζ|)ζ21dζ
)

dVgε(y),

so it follows that

(94)

m
∑

m=1

∫

Uε

(

∫

R
n+1
+

f2m(y, |ζ|)ζ21dζ
)

dVgε(y) ≤
∫

Sε

ũ22dVg̃ε ≤
1

εk

Cε−k
∑

j=ε−δ+1

β2j .

Now, we can write

A2 = ε2
∫

Sε

ũ2ũ2dVg̃ε , where ũ2 =

Cε−k
∑

j=ε−δ+1

βj ((B−R)ψj)
m (εy)v̂j,ε(|ζ|)

ζm

|ζ| .

As for ũ2, we can write ũ2 =
∑n

m=1 fm(y, |ζ|)ζm, where fm =
∑Cε−k

j=ε−δ+1(B−R)mjfj(y, |ζ|), and
compute

∫

NUε

ũ22dVg̃ε =

n
∑

m=1

∫

Uε

(

∫

R
n+1
+

f2m(y, |ζ|)ζ21dζ
)

dVgε(y).

In conclusion, from the Hölder inequality, from (94), covering Kε with finitely-many Uε’s we
derive

(95) |A2| ≤ ε2
(∫

Sε

ũ22dVg̃ε

) 1
2
(∫

Sε

ũ22dVg̃ε

) 1
2

≤ Cε2
1

εk
‖B−R‖L∞

Cε−k
∑

j=ε−δ+1

β2j .

Then the conclusion follows from (93) and (95).

In order to estimate the norm ‖û2‖HΣε
, it is convenient to introduce an abstract result.

Lemma 5.7 For j ∈ {0, . . . , ε−δ}, and for a sequence (βj)j , let us consider a function u : Sε →
R of the form

u(y, ζ) =

ε−δ
∑

j=0

n
∑

m=1

βj(Ld,yψ
m
j )(y)gm(ζ),

where y = εy, where Ld,y is a linear differential operator of order d with smooth coefficients in
y, and where the functions gm(ζ) are also smooth and have an exponential decay at infinity.

Then there exists a positive constant C, independent of ε, δ and (βj)j such that

‖u‖2L2(Sε)
≤ C

1

εk

ε−δ
∑

j=0

(

1 + ε2d|µj|d
)

β2j .

Proof. The proof is similar in spirit to that of Lemma 5.6, but here we take advantage of
the fact that the profile gm(ζ) is independent of the index j (this lemma applies in particular to
each of the summands in the definition of Ψl, see (87)).
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Using local coordinates, (65) and the exponential decay of the gm’s, after integration in ζ

we find

‖u‖2L2(Sε)
=

ε−δ
∑

j,l=0

n
∑

m,h=1

βjβlcmh

∫

Uε

(Ld,yψ
m
j )(y)(Ld,yψ

h
l )(y)dVg,

for some bounded coefficients (cmh). As for (95) then we find ‖u‖L2(Sε) ≤ C‖ψ‖Hd(Kε,NKε) and

the last quantity, with a change of variables and by (30), can be estimated with C
εk

∑ε−δ

j=0(1 +

ε2d|µj|d)β2j . This concludes the proof.

Lemma 5.8 Let u2 = û2 + ũ2 =
ε−δ
∑

j=0
βjΨj(εy, ζ) +

Cε−k
∑

j=ε−δ+1

βjψ
m
j (εy)v̂j,ε(|ζ|) ζm|ζ| ∈ H2. Then,

choosing δ ∈
(

k
2 , k
)

in (89), one has

(96) ‖u2‖2HΣε
=

1

εk
(1 +O(ε1−γ + ε2−

2δ
k ))





ε−δ
∑

j=0

β2j ‖∂1w0‖H1(Rn+1
+ ) +

Cε−k
∑

j=ε−δ+1

β2j



 .

Proof. We first claim that the following formula holds

(97) ‖û2‖2HSε
=

1

εk

ε−δ
∑

j=0

β2j

(

1 +O(ε2−2γ + ε2−
2δ
k )
)

‖∂1w0‖2H1(Rn+1
+ )

.

Proof of (97). We write

û2 = û2,1 + û2,2 :=

ε−δ
∑

j=0

βjψ
m
j (εy)∂mw0(ζ)χε(|ζ|) +

ε−δ
∑

j=0

βjΨj(εy, ζ).

where Ψj is the term of order ε (and higher) in Ψj. Reasoning as in the proof of Lemma 5.6 we
get

‖û2,1‖2HSε
=

1

εk

ε−δ
∑

j=0

β2j (1 + ε2µj +O(ε2))‖∂mw0χε‖2H1(Rn+1
+ )

=
1

εk

ε−δ
∑

j=0

β2j

(

1 +O(ε2−
2δ
k )
)

‖∂1w0‖2H1(Rn+1
+ )

,(98)

where the last equality follows from the Weyl’s asymptotic formula (29).
On the other hand, using Lemma 5.7, the Weyl’s formula and some computations, one also

finds

εk‖û2,2‖2HSε
≤ Cε2

ε−δ
∑

j=0

β2j
(

1 + ε2|µj |
)

+ Cε4
ε−δ
∑

j=0

β2jµ
2
j

(

1 + ε2|µj|
)

+ Cε4
ε−δ
∑

j=0

β2j
(

1 + |µj |+ ε2|µj |3
)

≤ C
(

ε2 + ε4−
4δ
k + ε6−

6δ
k

)

ε−δ
∑

j=0

β2j .
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By our choice of δ, the last formula reads

(99) ‖û2,2‖2HSε
≤ C

εk
ε4−

4δ
k

ε−δ
∑

j=0

β2j .

Finally, from (98) and (99) we also obtain

(û2,1, û2,2)HSε
≤ C

εk

ε−δ
∑

j=0

β2j

(

ε+O(ε2−
2δ
k )
)

,

which concludes the proof of (97).

Proof of (96). We write again û2 = û2,1 + û2,2. Then, by the orthogonality relations among
the ψj ’s, reasoning as in the proof of Lemma 5.6, we get that (ũ2, û2,1)HSε

becomes

ε2
Cε−k
∑

j=ε−δ+1

ε−δ
∑

l=0

∫

Sε

( n
∑

m=1

βj ((B−R)ψj)
m (εy)v̂j,ε(|ζ|)

ζm

|ζ|

)

·
(

χε(|ζ|)
n
∑

h=1

βlψ
h
l (εy)∂hw0

)

.

As above, with some computations we find

(ũ2, û2,1)HSε
= O(ε2)‖ũ2‖HSε

‖û2,1‖HSε
= O(ε2)

1

εk

Cε−k
∑

j=0

β2j .

From Lemma 5.6 and (99) we also find

(ũ2, û2,1)HSε
≤ C

1

εk





Cε−k
∑

j=0

(1 +O(ε1−γ)β2j )





1
2

ε2−
2δ
k (

Cε−k
∑

j=0

β2j )
1
2 .

The result follows from the last two formulas.

Remark 5.9 From the proof of (96) it also follows that every function u2 ∈ H2 can be written
uniquely as u2 = û2 + ũ2, with û2 ∈ Ĥ2 and ũ2 ∈ H̃2.

Proof of Proposition 5.5. In order to prove the uniqueness of the decomposition it is
sufficient to show that, for ε small

(100) (u1, u2)HΣε
= oε(1)‖u1‖HΣε

‖u2‖HΣε
, u1 ∈ H1, u2 ∈ H2,

where oε(1) → 0 as ε→ 0. Indeed, by Lemma 5.1 we have

(u1, u2)HΣε
= (u1, u2)HSε

+O(ε1−γ)‖u1‖HΣε
‖u2‖HΣε

,

and since the functions ∂hw0, g
h
0 , g

h
3 and vl,ε,i are odd in ζ ′ (and so also ũ2 and û2,1), we get

(u1, u2)HSε
= (u1, û2,2)HSε

,
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where we have used the notation in the proof of Lemma 5.8. Hence from the last three formulas,
(99) and form (96) we deduce

(101) (u1, u2)HΣε
≤ C(ε1−γ + ε2−2 δ

k )‖u1‖HΣε
‖u2‖HΣε

,

which implies (100), since δ ∈ (k2 , k).

To prove the second statement, it is sufficient to show that

(102) (u3, v)HSε
≤ 1

2
‖u3‖HSε

‖v‖HSε
; as ε→ 0,

for all u3 ∈ H3 and for all the functions v of the form

v =

1
2
Cε−k

∑

l=0

β̃lϕ
m
l (εy)vl,ε,m(ζ).

In fact, if we write u3 = u3,0+u3,1+u3,2 as in Remark 4.7 (with an obvious change of notation),

u3,0 =
∞
∑

j=0

αjuj,ε(|ζ|)φj(εy); u3,1 =
∞
∑

l=0

βlvl,ε,i(ζ)ϕ
i
l(εy),

from (79) we find

(103) ‖u3‖2Sε
=

1

εk

∞
∑

l=0

(

α2
l + β2l

)

+ ‖u3,2‖2HSε
.

From (79), from Lemma 5.1 and from the fact that u3 is perpendicular in HΣε to u3,0 ∈ H1, we
deduce

1

εk

∞
∑

l=0

α2
l = (u3,0, u3,0)HSε

= (u3,0, u3)HSε
= O(ε1−γ)‖u3‖HSε

‖u3,0‖HSε
≤ Cε1−γ‖u3‖2HSε

.

Moreover from (102), choosing v =
∑

1
2
Cε−k

l=0 βlϕ
m
l (εy)vl,ε,m(ζ), and using (103) we get

1

εk

∑

l≤ 1
2
Cε−k

β2l = (u3, v)HSε
≤ 1

2
‖u3‖2Sε

.

The last two formulas and (103) then imply

(104) ‖u3‖2HSε
≤ C







∑

l> 1
2
Cε−k

β2l + ‖u3,2‖2HSε






,

for some fixed constant C.
On the other hand, by (80) we also have

(TSεu3, u3)Sε ≥
1

εk

∑

l> 1
2
Cε−k+1

σl,εβ
2
l +

1

C
‖u3,2‖2HSε

.
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Using the fact that σi,ε ∼ σε2wi,ε ∼ ε2i
2
k by Proposition 4.5, from (104) and the last formula it

follows that

(TSεu3, u3)Sε ≥
1

εk
1

CC
2
k

∑

i> 1
2
Cε−k+1

β2l +
1

C
‖u3,2‖2HSε

≥ 1

CC
2
k

‖u3‖2HSε
.

This yields our conclusion, hence we are reduced to prove (102).

Proof of (102). By the form of v and by (79), we have

(105) ‖v‖2HSε
=

1

εk

1
2
Cε−k

∑

l=0

β̃2l .

Using the L2 basis (ψl)l of eigenfunctions of J, we define the function ϕ and the coefficients
{βl}l=1,...,∞ as

ϕ(y) =

1
2
Cε−k

∑

l=0

β̃lϕl(y) =

∞
∑

l=0

βlψl(y) :=

∞
∑

l=0

βlψ
h
l (y)Eh(y),

so we have

(106) ‖ϕ‖2L2(K;NK) =

1
2
Cε−k

∑

l=0

β̃2l =

∞
∑

l=0

β2l .

Using these new coefficients βj , we set (see (73))

ṽ(y, ζ) = C0

ε−δ
∑

j=0

βjΨj(εy, ζ) +
Cε−k
∑

j=ε−δ+1

βjψ
h
j (εy)v̂j,ε(|ζ|)

ζh

|ζ| ∈ H2.

where C0 is given in Remark 4.4. Hence we can write

v − ṽ = A1 +A2 +A3 +A4 +A5,

with

A1 =

1
2
Cε−k

∑

l=0

β̃lϕ
m
l (εy) [vl,ε,m(ζ)− v0,ε,m(ζ)] ; A2 =

∞
∑

l=Cε−k+1

βlψ
h
l (εy)v0,ε,h(ζ);

A3 = −C0

ε−δ
∑

j=0

βjΨj(εy, ζ); A4 =

Cε−k
∑

l=ε−δ+1

βlψ
h
l (εy) (v0,ε,h − vl,ε,h) ;

A5 =

ε−δ
∑

l=0

βlψ
h
l

(

v0,ε,h − C0χε(|ζ|)∂hw0

)

,

and where Ψj is defined in the proof of Lemma 5.8. Since u3 is orthogonal to H2, we get
(u2, ṽ)HΣε

= 0, and so

(107) (u3, v)HΣε
= (u3, A1)HΣε

+ (u3, A2)HΣε
+ (u3, A3)HΣε

+ (u3, A4)HΣε
+ (u3, A5)HΣε

.
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We prove now that ‖Ai‖HSε
is small for every i = 1, . . . , 5. From (65), the proof of Proposition

4.6, Proposition 4.5 and (105) there holds

‖A1‖2HSε
=

1

εk

1
2
Cε−k

∑

l=0

β̃2l ‖vl,ε,1 − v0,ε,1‖2l,ε ≤ CC
2
(1 + C

2
)‖v‖2HSε

<
1

16
‖v‖2HSε

,

provided C is sufficiently small.
To estimate A2 we can use Lemma 5.7 and some computations to find

(108) ‖A2‖2HSε
≤ C

1

εk

∞
∑

l=Cε−k+1

β2l (1 + ε2|µl|).

We now set ϕ̃ =
∑∞

l=Cε−k+1 βlψl. Since J = −∆N
K +O(1), for any integer m one finds

(Jmϕ̃, ϕ̃)L2(K;NK) ≤ (Jmϕ,ϕ)L2(K)

≤ ((−∆N
K)mϕ,ϕ)L2(K;NK) + Cm

[

((−∆N
K)m−1ϕ,ϕ)L2(K;NK) + (ϕ,ϕ)L2(K;NK)

]

.

Since ϕ =
∑

1
2
Cε−k

l=0 β̃lϕl, from (106) we deduce that

(Jmϕ̃, ϕ̃)L2(K;NK) ≤
(

C

2

)

2m
k

ε−2m‖ϕ‖2L2(K;NK) +O(ε−2(m−1))‖ϕ‖2L2(K;NK)

≤





(

C

2

)

2m
k

ε−2m +O(ε−2(m−1))









1
2
Cε−k

∑

l=0

β̃2l



 .(109)

On the other hand, since in the basis (ψl)l, the function ϕ̃ has non zero components only when
l ≥ Cε−k, by the Weyl’s asymptotic formula we have also that

(110) (Jmϕ̃, ϕ̃)L2(K;NK) ≥











∑∞
l=Cε−k+1 µ

m
l β

2
l ;

CC
2m
k ε−2m

∑∞
l=Cε−k+1 β

2
l .

Using (109) and the first inequality in (110) with m = 1 we get

ε2
∞
∑

l=Cε−k+1

µlβ
2
l ≤

(

CC
2
k + oε(1)

)

1
2
Cε−k

∑

l=0

β̃2l .

Moreover, using (109) and the second inequality in (110) with m arbitrary one also finds

∞
∑

l=Cε−k+1

β2l ≤
(

(

1

2

) 2m
k

+ oε(1)

) 1
2
Cε−k

∑

l=0

β̃2l .

Using (105), (108) and the last two inequalities (for the second one we take m large enough),
for sufficiently small C we find ‖A2‖HSε

< 1
16‖v‖HSε

.
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Now we estimate ‖A3‖HSε
. Reasoning as for (99), from (105) and (106) we get

‖A3‖2HSε
≤ C

1

εk
ε4−4 δ

k

ε−δ
∑

0

β2j ≤ Cε4−4 δ
k ‖v‖2HSε

.

Next, similarly to the estimate of A1, for small C we find

‖A4‖2HSε
≤ 1

εk
C

Cε−k
∑

l=ε−δ+1

β2l ‖v̂0,ε,1 − vl,ε,1‖2l,ε ≤ CC
2
(1 + C

2
)‖v‖2HSε

<
1

16
‖v‖2HSε

.

Finally, from Proposition 4.5 and reasoning as for A2, we obtain also

‖A5‖2HSε
≤ 1

εk
Ce−C−1ε−γ

ε−δ
∑

l=0

β2l (1 + ε2ωl)Cε
−kl−

2l
k ≤ Cε−ke−C−1ε−γ‖v‖2HSε

.

Taking (107) into account, this concludes the proof of (102), provided we choose C and ε

sufficiently small.

6 Diagonalization of TΣε
and applications

In this section we study how the operator TΣε behaves with respect to the above splitting of
HΣε in the three subspaces H1,H2 and H3. We prove that its form is almost diagonal and we
apply this analysis to study its invertibility for suitable values of ε.

6.1 Diagonalization

Integrating by parts, we can evaluate the operator TΣε multiplying a test function by the fol-
lowing quantity

(111) Sε(u) =
√

det g
(

−∆gu+ u− pu
p−1
I,ε u

)

and integrating in the variables y and ζ (using (65)). In Lemma 5.4 we studied Sε acting on
the functions Ψl, for any l fixed. In that lemma, our estimates depend on the value of the index
l, and in general one can expect that they become worse and worse as l increases. The goal
of this subsection is to derive estimates in terms of both ε and l and, evaluating Sε(u) on the
functions û2 ∈ Ĥ2, we will keep track also of the terms of order ε3 and higher.

In the following, we will sometimes omit the factor χε appearing in (87) since this will only
produce error terms exponentially small in ε, which are negligible for our purposes.

Lemma 6.1 There exist linear differential operators L1, L2, L3 (acting on the variables y) of
order 1, 2 and 3 respectively, whose coefficients (independent of l) are smooth and satisfy the
bounds

(112) cα(Li) ≤ C(1 + |ζ|C)e−
|ζ|
C ,
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and such that in local coordinates we have the following expression for Sε(Ψl)

Sε(Ψl) = ε2
C0

C1
µlw

p−1
0 ∂hw0ψ

h
l

− 2ε3
(

ζiΓ
b
a(Ei)− ζn+1Hab + ζn+1H

α
αδab

)

(∂2yaybψ
h
l )∂hw0 − ε3(∂2yayaψ

h
l )∂hw1

+ ε3ζn+1H
α
αµlψ

h
l g

h
0 (1− pw

p−1
0 )− ε3p(p− 1)wp−2

0 w1µlψ
h
l g

h
0 − ε4µl(∂

2
yaya

ψh
l )g

h
0(113)

+ ε3L1ψl + ε4L3ψl + ε4µlL1ψl + ε5µlL2ψl,

where C0, C1 are as in Subsection 5.2.

Proof. As for the construction of the approximate solutions uI,ε, we can expand formally
Sε(Ψl) in powers of ε and check carefully all the error terms, paying particular attention to
the ones involving derivatives in the variables ya, which produce larger and larger terms (as l
increases) in the Fourier modes. When we differentiate with respect to the variables ζ, the quan-
tities appearing will be considered as coefficients (depending smoothly on ζ, with exponential
decay) of the functions ψl or their derivatives in y.

We recall that the functions w0 and (gi)i in (87) are shifted in the ζ ′ variable by the (smooth)
normal section Φ(y). Hence, when differentiating with respect to y, the derivatives of Φ might
appear through the chain rule, see also Subsection 3.2. This fact will be assumed understood,
and it will not be mentioned anymore since it does not create any serious difficulty, or any
difference in the estimates.

By our construction of Ψl, all the terms multiplying powers of ε less or equal than 2 reduce to
ε2C0

C1
µl
(

−∆ζ(ψ
h
l ∂hw0) + ψh

l ∂hw0

)

= ε2pC0
C1
µlw

p−1
0 ∂hw0ψ

h
l , so we are left to consider the powers

(of ε) of order 3 and higher. In the remainder of the proof, we use the symbol A2(ε) to denote
terms of order 1, ε or ε2: since they all generate a single term, we do not need to compute them
separately.

We begin by considering the terms where derivatives in y appear. Since Sε is linear in u,
we can deal with each summand in Ψl separately. Looking at −√

det g∆g(ψ
h
l (y)∂hw0), second

derivatives in y appear only in the expression −√
det ggabuab, so from Lemma 3.3 and Remark

3.4 (b) we find that

−
√

det g ∆g(ψ
h
l (y)∂hw0) = A2(ε)− 2ε3

(

ζiΓ
b
a(Ei)− ζn+1Hab + ζn+1H

α
α

)

(∂2yaybψ
h
l )∂hw0

+ ε3L1ψl + ε4L2ψl,

where L1, L2 are as in the statement of the lemma.
Similarly one finds

−
√

det g ∆g(εψ
h
l (y)g

h
3 (y, ζ)) = A2(ε) − ε3∂2yayaψ

h
l ∂hw1 + ε3L1ψl + ε4L2ψl;

−
√

det g ∆g(ε
2ψh

l (y)g
h
2 (y, ζ)) = A2(ε) + ε4L2ψl + ε3L1ψl;

−
√

det g ∆g(ε
2µlψ

h
l (y)g

h
0 (y, ζ)) = A2(ε)− ε4(∂2yayaψ

h
l )g0 + ε4µlL1ψl + ε5µlL2ψl.

−
√

det g ∆g(ε
2(∂yaψ

h
l (y))g

h
1 (y, ζ)) = A2(ε) + ε4L3ψl.
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At this point we are left with the terms (of order ε3 and higher) which do not involve
derivatives of ψl in y: these will appear as multiplicators of the summands in the expression of
Ψl. The ones involving ∂hw0, g1, g2 and g3 are included in the expression ε3L1ψl, so it remains
to consider ε2µlψ

h
l g

h
0 . Recalling that

√
det g = 1+ εζnH

α
α +O(ε2) (see the proof of Lemma 3.3),

and expanding −pup−1
I,ε as

− p

[

w
p−1
0 + ε(p − 1)wp−2

0 w1 + ε2(p− 1)wp−2
0 w2 +

1

2
ε2(p− 1)(p − 2)wp−3

0 w2
1

]

+O(ε3),

we obtain

√

det g(1− pu
p−1
I,ε )ε2µlψ

h
l g

h
0 = A2(ε) + ε3ζn+1H

α
αµlψ

h
l g

h
0 (1− pw

p−1
0 )

− ε3p(p− 1)wp−2
0 w1µlψ

h
l g

h
0 + ε4µlL0ψl,

where L0 is a multiplication operator with coefficients also satisfy (112). This concludes the
proof of the lemma.

Next, using the above characterization, if û2 is a suitable linear combination of the Ψl’s, we
can estimate the scalar products of TΣε û2 (in HΣε) with some other elements belonging to the
subspaces H1, Ĥ2, H̃2 and H3, see (88)-(90).

Lemma 6.2 For some arbitrary real coefficients (αl)l and (βl)l, we consider functions u1 ∈ H1,
û2 ∈ Ĥ2 and ũ2 ∈ H̃2 of the form

u1 =

∞
∑

j=0

αjφj(εy)uj,ε(|ζ|); û2 =

ε−δ
∑

l=0

βlΨl; ũ2 =

Cε−k
∑

ε−δ+1

βlψ
m
l (εy)v̂l,ε,m(ζ).

We also let u3 ∈ H3. Then, for δ ∈
(

k
2 + γ, 23k − γ

)

and γ sufficiently small, we have the
following relations

(114) (TΣε û2, u1)HΣε
= o(ε2)





1

εk

ε−δ
∑

l=0

|µl|β2l





1
2

‖u1‖HΣε
;

(115) (TΣε û2, û2)HΣε
= C0(1 + oε(1))

1

εk

ε−δ
∑

l=0

ε2µlβ
2
l ;

(116)

(TΣε û2, ũ2)HΣε
= O(ε3)

1

εk





ε−δ
∑

l=0

(µ2l + ε2µ4l )β
2
l





1
2




Cε−k
∑

l=ε−δ+1

β2l





1
2

= o(ε
4
3 )‖û2‖HΣε

‖ũ2‖HΣε
;

(117) (TΣε û2, u3)HΣε
= O(1)‖u3‖HΣε





1

εk

ε−δ
∑

l=0

(

ε6µ2l + ε8µ4l
)

β2l





1
2

.
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Proof. We recall that, by Lemma 5.1, (79), (91) and (97) there holds

‖u1‖2HΣε
=

1 + oε(1)

εk

∞
∑

j=0

α2
j ; ‖û2‖2HSε

=
1 + oε(1)

εk
‖∂1w0‖2H1(Rn+1

+ )

ε−δ
∑

l=0

β2l ;

(118)

‖ũ2‖2HSε
=

1 + oε(1)

εk

Cε−k
∑

l=ε−δ+1

β2l .

We show first (114). Since u1 is even in ζ ′, when we use the expression of Sε(Ψl) in (113)
we have to consider only −2ε3ζiΓ

b
a(Ei)∂

2
yayb

ψh
l ∂jw0 = ε3L2ψl and the errors εsLtψl, since the

products of all the others terms with u1 will vanish by oddness. Therefore we leave this term as
it is, and we estimate the error terms only. So we get

(TΣε û2, u1)HΣε
=

1

εk

∑

j,l

αjβl

∫

K

∫

R
n+1
+

uj,ε(|ζ|)φj(y)
(

ε3L2ψl + ε4L3ψl + ε4µlL1ψl + ε5µlL2ψl

)

dydζ.

Reasoning as in Lemma 5.7 (avoiding the scaling in ε, which has been already taken care of)
one can show that, for any integer m

(119)

∫

K

∫

R
n+1
+





ε−δ
∑

l=0

βlLmψl





2

≤ C

ε−δ
∑

l=0

(1 + |µl|mβ2l ).

From the Hölder inequality and the last three formulas we deduce that

(TΣε û2, u1)HΣε
≤ C‖u1‖HΣε





1

εk

ε−δ
∑

l=0

(

ε6(1 + |µl|2) + ε8|µl|3 + ε10|µl|4
)

β2l





1
2

.

Now, from the Weyl’s asymptotic formula and from the fact that δ ∈
(

k
2 + γ, 23k − γ

)

, one finds
that for l ≤ ε−δ there holds ε2|µl|2 = oε(1)|µl|, that ε4|µl|3 = oε(1) and that ε6|µl|4 = oε(1), so
(114) follows.

We turn now to (115). It is convenient first to evaluate some L2 norms. Writing Sε(Ψl) =
ε2pC0

C1
µlw

p−1
0 ∂hw0ψ

h
l +S̃ε(Ψl), and Ψl = χε(|ζ|)ψh

l ∂hw0+Ψl, from (119) we find (l runs between

0 and ε−δ)

(120)
∥

∥

∥

∑

βlΨl

∥

∥

∥

2

L2
,
∥

∥

∥

∑

βlψ
h
l ∂hw0

∥

∥

∥

2

L2
≤ C

εk

∑

l

(

1 + ε2 + ε4|µl|2
)

β2l ≤ C

εk

∑

l

β2l ;

(121)
∥

∥

∥

∑

βlΨl

∥

∥

∥

2

L2
≤ C

εk

∑

l

(

ε2 + ε4|µl|2
)

β2l ≤ C

εk
ε2
∑

l

(1 + ε2µ2l )β
2
l ;

(122)
∥

∥

∥

∑

βlSε(Ψl)
∥

∥

∥

2

L2
≤ C

εk

∑

l

(

ε4|µl|2 + ε6|µl|2 + ε8|µl|4 + ε10|µl|4
)

β2l ≤ C

εk
ε4
∑

l

µ2l β
2
l ;
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(123)
∥

∥

∥

∑

βlS̃ε(Ψl)
∥

∥

∥

2

L2
≤ C

εk

∑

l

(

ε6|µl|2 + ε8|µl|4 + ε10|µl|4
)

β2l ≤ C

εk
ε6
∑

l

(|µl|2 + ε2|µl|4)β2l .

Using the orthogonality of the ψl’s, (65) and recalling the definition of C1 in Subsection (5.2),
we find

(124) (TΣε(Ψl),Ψj)HΣε
= ε2C0µlδlj + (S̃ε(Ψl), ψ

h
j ∂hw0)L2 + (Sε(Ψl),Ψj)L2 .

Multiplying by the coefficients β’s, using the Hölder inequality and (120)-(123) we get

(TΣε û2, û2)HΣε
= C0

∑

l

ε2µlβ
2
l +

1

εk
O(ε3)





(

∑

l

(µ2l + ε2µ4l )β
2
l

)
1
2
(

∑

l

β2l

)
1
2

+

(

∑

l

µ2l β
2
l

)
1
2
(

∑

l

(1 + ε2µ2l )β
2
l

)
1
2



 .

Recalling the Weyl’s asymptotic formula and the fact that δ ∈
(

k
2 + γ, 23k − γ

)

, we obtain
ε2µ2l = o(µl), ε

4µ4l = o(µl) for l ≤ ε−δ , so the last formula implies (115).
To prove (116) we notice that, by the orthogonality of the ψl’s, the term of order ε2 in

Sε(Ψl), once multiplied by ũ2 and integrated, vanishes identically. Therefore, from the Hölder
inequality, (118) and (123) we find

(TΣε û2, ũ2)HΣε
= O(ε3)

1

εk





ε−δ
∑

l=0

(µ2l + ε2µ4l )β
2
l





1
2




Cε−k
∑

l=ε−δ+1

β2l





1
2

,

which is precisely (116).
It remains to prove (117). Using (42), the formulas in the proof of Lemma 3.3 and the fact

that (linearizing (3) at w0) −∆ζ(∂hw0) + ∂hw0 = pw
p−1
0 ∂hw0, one finds

√

det gε(−∆gεΨl +Ψl) = pw
p−1
0 ψh

l ∂hw0 + εL0ψl + ε2(L2ψl + µlL0ψl) + ε3L2ψl

+ ε4(µlL2ψl + L3ψl).(125)

Hence from (113) it follows that

Sε(Ψl) = ε2
C0

C1

µl

p

√

det gε(−∆gεΨl +Ψl) + ε3µlL0ψl + ε4µl(L2ψl + µlL0ψl)

+ ε5µlL2ψl + ε6µl(µlL2ψl + L3ψl) + S̃ε(Ψl).

Since u3 is orthogonal to Ĥ2 inHΣε , integrating by parts we have
∫

Σε
u3(−∆gεΨl+Ψl)

√
det gεdydζ =

0 for l = 0, . . . , ε−δ. Hence from (119) and (123) we get

(TΣε û2, u3)HΣε
= O(1)‖u3‖HΣε





1

εk

ε−δ
∑

l=0

(

ε6µ2l + ε8µ4l + ε12µ6l
)

β2l





1
2

.

As shown before, ε2µ2l = oε(1) for l ≤ ε−δ, so we have ε12µ6l = o(ε8µ4l ), and the conclusion
holds.

We have now the counterpart of Lemma 6.2 with ũ2 replacing û2.
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Lemma 6.3 For some arbitrary real coefficients (αl)l and (βl)l, we consider functions u1 ∈ H1,
û2 ∈ Ĥ2 and ũ2 ∈ H̃2 of the form

u1 =

∞
∑

j=0

αjφj(εy)uj,ε(|ζ|); û2 =

ε−δ
∑

l=0

βlΨl; ũ2 =

Cε−k
∑

l=ε−δ+1

βlψ
m
l (εy)v̂l,ε,m(ζ).

Suppose also that u3 ∈ H3. Then, for δ ∈
(

k
2 + γ, 23k − γ

)

and γ sufficiently small, we have the
following relations

(126) (TΣε ũ2, u1)HΣε
= O(ε1−γ)‖u1‖HΣε





1

εk

Cε−k
∑

l=ε−δ+1

β2l





1
2

;

(127) (TΣε ũ2, ũ2)HΣε
≥ C−1

εk

Cε−k
∑

l=ε−δ+1

ε2µlβ
2
l ;

(128) (TΣε ũ2, u3)HΣε
= O(ε1−γ)‖u3‖HΣε





1

εk

Cε−k
∑

l=ε−δ+1

β2l





1
2

.

Proof. We show first (126). Since u1 and ũ2, for any fixed y are linear combinations of
spherical harmonics (in ζ

|ζ|) of different type, from the arguments of Subsection 4.2 it follows
that

(u1, ũ2)HSε
= 0;

∫

Sε

w
p−1
0 (|ζ|)u1ũ2dVg̃ε = 0,

so we clearly have that (TSεu1, ũ2)HSε
= 0. Then (126) follows immediately from Lemma 5.1.

To prove (127), we reason as for the proof of Lemma 5.6 to find

(129) (TSε ũ2, w)HSε
= Ã1 + Ã2 + Ã3,

where w ∈ HSε is arbitrary, and where

Ã1(w) =

∫

Sε

Cε−k
∑

l=ε−δ+1

[

(

−∆ζ + (1 + ε2ωl)− pw
p−1
0

)

( n
∑

m=1

βlψ
m
l (εy)v̂l,ε(|ζ|)

ζm

|ζ|

)

]

w;

Ã2(w) = ε2
∫

Sε

Cε−k
∑

l=ε−δ+1

( n
∑

m=1

βl ((B−R)ψl)
m (εy)v̂l,ε(|ζ|)

ζm

|ζ|

)

w;

Ã3(w) = ε2
∫

Sε

Cε−k
∑

l=ε−δ+1

( n
∑

m=1

βl(µl − ωl)ψ
m
l (εy)v̂l,ε(|ζ|)

ζm

|ζ|

)

w;

As for (95), since |µl − ωl| is uniformly bounded one finds

(130) |Ã2(w)| + |Ã3(w)| ≤ Cε2‖ũ2‖HSε
‖w‖HSε
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for a fixed positive constant C. Taking w = ũ2, by the orthogonality of the ψl’s, by the fact
that Tε2ωl

vl,ε,m = σε2ωl,ε
vl,ε,m (see Proposition 4.5) and by (74), with an integration by parts we

have

Ã1(ũ2) =
1

εk

Cε−k
∑

l=ε−δ+1

σε2ωl,ε
β2l ‖vl,ε,1‖ε2ωl,ε

=
1

εk

Cε−k
∑

l=ε−δ+1

σε2ωl,ε
β2l .

From (28), Proposition 4.2 and Proposition 4.5, which provide estimates on σε2ωl,ε
, we obtain

(131) Ã1(ũ2) ≥
C−1

εk

Cε−k
∑

l=ε−δ+1

ε2µlβ
2
l

for some fixed C > 0. Then (127) follows from (130), (131), Lemma 5.6 and Lemma 5.1 (since
ε2µl ≫ ε1−γ for l > ε−δ and for γ sufficiently small).

We turn now to (128). By (130), taking w = u3, it is sufficient to estimate Ã1(u3) + Ã3(u3).
From Tε2ωl

vl,ε,m = σε2ωl,ε
vl,ε,m in Hε2ωl,ε

, with an integration by parts we find

Ã1(u3)+Ã3(u3) =

∫

Sε

Cε−k
∑

l=ε−δ+1

σε2ωl

[

(

−∆ζ + (1 + ε2µl)− pw
p−1
0

)

( n
∑

m=1

βlψ
m
l (εy)v̂l,ε(|ζ|)

ζm

|ζ|

)

]

u3.

From (67) and from the fact that −∆N
Kψl = µlψl + (R−B)ψl, one finds

ε2µlψ
m
l v̂l,ε(|ζ|)

ζm

|ζ| = −ε2∆N
Kψ

m
l v̂l,ε(|ζ|)

ζm

|ζ| + ε2((R−B)ψl)
mv̂l,ε(|ζ|)

ζm

|ζ| .

Therefore, integrating by parts we obtain

(132) Ã1(u3) + Ã3(u3) = (Ũ2, u3)HSε
+ Ã4(u3),

where

Ã4(u3) = ε2
∫

Sε

Cε−k
∑

l=ε−δ+1

( n
∑

m=1

σε2ωl,ε
βl ((B−R)ψl)

m (εy)v̂l,ε(|ζ|)
ζm

|ζ|

)

u3,

and where Ũ2 =
∑Cε−k

ε−δ+1 σε2ωl,ε
βlψ

m
l (εy)v̂l,ε,m(ζ) ∈ H2. Now, as for ũ2 it is possible to prove

that there exists a fixed C > 0 such that

‖Ũ2‖2HSε
≤ C

εk

Cε−k
∑

l=ε−δ+1

σ2ε2ωl,ε
β2l ≤ C

εk

Cε−k
∑

l=ε−δ+1

β2l ,

where we used the fact that σε2ωl,ε
is uniformly bounded for l ≤ Cε−k. Since u3 is orthogonal

in HΣε to H2, from Lemma 5.1, these observations and the last two formulas it follows that

(Ũ2, u3)HSε
= O(ε1−γ)‖Ũ2‖HSε

‖u3‖HSε
≤ Cε1−γ





Cε−k
∑

l=ε−δ+1

β2l





1
2

‖u3‖HSε
.

53



The arguments of the proof of Lemma 5.6 yield Ã4(u3) ≤ Cε4
(

∑Cε−k

l=ε−δ+1 β
2
l

)
1
2 ‖u3‖HSε

. Hence

from (129), (132) and Lemma 5.1 we find that

(TΣε ũ2, u3)HΣε
= (Ũ2, u3)HSε

+O(ε1−γ)





Cε−k
∑

l=ε−δ+1

β2l





1
2

‖u3‖HSε
,

which concludes the proof.

6.2 Applications

In this subsection we apply the estimates in Lemmas 5.1, 6.2 and 6.3 to estimate the morse
index of TΣε as ε tends to zero, and to characterize the eigenfunctions of TΣε corresponding to
resonant eigenvalues.

From Proposition 4.2 we know that there exists a unique positive number α such that ηα = 0.
If Ck is the constant given in (27), we also let

(133) Θ =

(

α

Ck

)
k
2

V ol(K).

Then we have the following result.

Proposition 6.4 Let Θ be the constant given in (133), and let TΣε be the operator given in
(81). Then, as ε tends to zero, the Morse index of TΣε is asymptotic to Θε−k.

Proof. For any m ∈ N, the m-th eigenvalue λm of TΣε , and the m-th eigenvalue λ̃m of TSε

can be evaluated via the classical Rayleigh quotients

(134) λm = inf
dimMm=m

sup
u∈Mm

(TΣεu, u)HΣε

(u, u)HΣε

; λ̃m = inf
dimMm=m

sup
u∈Mm

(TSεu, u)HSε

(u, u)HSε

where Mm is a vector subspace of HΣε . Choosing Mm = M̃m to be the span of the first m
eigenfunctions of TSε , from the above formula for λm and from Lemma 5.1 we get

λm ≤ sup
u∈M̃m

(TΣεu, u)HΣε

(u, u)HΣε

= sup
u∈M̃m

(TSεu, u)HSε
+O(ε1−γ)(u, u)HSε

(1 +O(ε1−γ))(u, u)HSε

≤ λ̃m +O(ε1−γ).

Reasoning in the same way we also find λ̃m ≤ λm +O(ε1−γ), and hence it follows that

(135) |λm − λ̃m| ≤ Cε1−γ for all m ∈ N and for ε small,

where C > 0 is a fixed constant.
Now we let N1(ε) denote the number of eigenvalues λ̃m less or equal than −ε 1−γ

2 , and by

N2(ε) the number of eigenvalues λ̃m less or equal than ε
1−γ
2 . From Proposition 4.6 it follows

that N1(ε) is the number of the ηl,ε’s which are smaller than −ε 1−γ
2 . Reasoning as in Corollary

4.8 one finds that, as ε tends to zero

N1(ε) ≃
(

α

Ck

)
k
2

V ol(K)ε−k.
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On the other hand, still by Proposition 4.6 we have that N2(ε) = N2,1(ε) + N2,2(ε), where

N2,1(ε) is the number of ηl,ε’s which are smaller than ε
1−γ
2 , and N2,ε the number of σl,ε’s which

are smaller than ε
1−γ
2 . From (27), (28) and Proposition 4.5 we obtain, for ε small

N2,1(ε) ≃
(

α

Ck

) k
2

V ol(K)ε−k; N2,2(ε) ≃
(

1

CN−1,k

) k
2

V ol(K)ε
k(1−γ)

4
−k = o(ε−k).

From the last formula we deduce that also

N2(ε) ≃
(

α

Ck

)
k
2

V ol(K)ε−k.

Since by (135) the Morse index of TΣε is between N1(ε) and N2(ε), the conclusion follows.

We can now characterize the eigenfunctions of TΣε corresponding to eigenvalues close to zero.

Proposition 6.5 For ε sufficiently small, let λ be an eigenvalue of TΣε such that |λ| ≤ ες , for
some ς > 2, and let u ∈ HΣε be an eigenfunction of TΣε corresponding to λ with ‖u‖HΣε

=
1. In the above notation, let u = u1 + u2 + u3, with ui ∈ Hi, i = 1, 2, 3. Then, if u1 =
∑∞

j=0 αjφj(εy)uj,ε(|ζ|), one has

(136)

∥

∥

∥

∥

∥

∥

∥

∥

∥

u−
∑



j:|ηj,ε|≤ε
1−γ
2

ff

αjφjuj,ε

∥

∥

∥

∥

∥

∥

∥

∥

∥

HΣε

→ 0 as ε→ 0.

Proof. We show that u2, u3 tend to zero as ε tends to zero. This clearly implies ‖u−u1‖HΣε
→

0. Once this verified, (136) can be proved as in [40] Proposition 4.1.
To prove that u3 tends to zero as ε→ 0, we take the scalar product of the eigenvalue equation

TΣεu = λu with u3. Using the above arguments (in particular Lemma 5.1) we easily find

1

CC
2
k

‖u3‖2HΣε
+O(ε1−γ)‖u‖HΣε

‖u3‖HΣε
≤ (TΣεu, u3)HΣε

= λ(u, u3)HΣε
= λ‖u3‖2HΣε

.

This implies ‖u3‖2HΣε
= O(ε1−γ)‖u‖HΣε

‖u3‖HΣε
, and hence ‖u3‖HΣε

≤ Cε1−γ‖u‖HΣε
≤ Cε1−γ .

Next we take the scalar product of the eigenvalue equation with u2. From Lemmas 6.2 and
6.3 we find

(TΣεu2, u2)HΣε
≥ C0(1 + oε(1))

εk

ε−δ
∑

l=0

ε2µlβ
2
l +

O(1)

εk



ε5
ε−δ
∑

l=0

(µ2l + ε2µ4l )β
2
l





1
2


ε

Cε−k
∑

l=ε−δ+1

β2l





1
2

+
C−1

εk

Cε−k
∑

l=ε−δ+1

ε2µlβ
2
l .

Since ε5µ2l + ε7µ4l = oε(1)|µl| for l ≤ ε−δ and ε = o(ε2µl) for l > ε−δ (recall that δ ∈
(

k
2 + γ, k − γ

)

), it follows that

(137) (TΣεu2, u2)HΣε
≥ C−1 1

εk

Cε−k
∑

l=0

ε2µlβ
2
l
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for a fixed positive constant C. Finally, still from Lemmas 6.2-6.3, from the fact that ε4|µl| +
ε6|µl|3 = oε(1) for l ≤ ε−δ and ε2−2γ = o(ε2µl) ≫ 1 for l > ε−δ (taking γ sufficiently small) we
have also that

(138) (TΣεu2, u1 + u3)HΣε
= oε(1)(‖u1‖HΣε

+ ‖u3‖HΣε
)





1

εk

Cε−k
∑

l=0

ε2|µl|β2l





1
2

.

From (137) and (138) and the fact that TΣε is self-adjoint we deduce that

C−1

εk

Cε−k
∑

l=0

ε2µlβ
2
l + oε(1)





Cε−k
∑

l=0

ε2|µl|β2l





1
2

(‖u1‖HΣε
+ ‖u3‖HΣε

) ≤ (TΣεu, u2)HΣε
= λ(u, u2)HΣε

≤ Cες‖u‖HΣε
‖u2‖HΣε

.

Also, from Lemma 5.4, testing the eigenvalue equation on
∑

l≤l0
βlΨl, where l0 is the biggest

integer such that µl0 < 0, one finds

1

εk
ε2
∑

l≤l0

β2l |µl| = O(ε3)‖u‖HΣε
.

The last two formulas imply that 1
εk

∑Cε−k

l=0 β2l = oε(1), namely that ‖u2‖HΣε
tends to zero as ε

tends to zero. This concludes the proof.

6.3 Proof of Theorem 1.1

Once Propositions 6.4 and 6.5 have been established, the proof goes as in [39], Section 8 (see
also [38] Section 5) and therefore we will limit ourselves to sketch the main steps.

First of all, using Kato’s theorem, see [30], pag. 445, one can prove that the eigenvalues of TΣε

are differentiable with respect to ε, and if λ is such an eigenvalue, then there holds

(139)
∂λ

∂ε
= {eigenvalues of Qλ} ,

where Qλ : Hλ ×Hλ → R is the quadratic form given by

Qλ(u, v) = (1− λ)
2

ε

∫

Σε

∇u · ∇v − p(p− 1)

∫

Σε

uvu
p−2
I,ε

(

∂uI,ε

∂ε

)

(ε ·) .(140)

HereHλ ⊆ HΣε stands for the eigenspace of TΣε corresponding to λ and the function uI,ε : Ω → R

is defined by the scaling uI,ε(x) = uI,ε(εx), where uI,ε is as in Section 3. Notice that, since λ
might have multiplicity bigger than 1, when we vary ε this eigenvalue can split into a multiplet,
which is allowed by formula (139).

Taking λ as in Proposition 6.5, we can apply (139), and evaluate the quadratic form in (140)
on the couples of eigenfunctions in Hλ, which are characterized by (136). Reasoning as in [38],
Proposition 5.1 one can prove the following result.
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Proposition 6.6 Let λ be as in Proposition 6.5. Then for ε small one has

∂λ

∂ε
=

1

ε
(F + oε(1)),

where F is a positive constant depending on N, k and p.

Now we are in position to prove the following proposition, which states the invertibility of TΣε

for suitable values of ε.

Proposition 6.7 For a suitable sequence εj → 0, the operator J ′′
ε (uI,ε) : H

1(Ωε) → H1(Ωε) is

invertible and the inverse operator satisfies
∥

∥

∥
J ′′
εj
(uI,εj)

−1
∥

∥

∥

H1(Ωεj
)
≤ C

min{εkj ,ε
ς
j}
, for all j ∈ N.

Proof. From Proposition 6.4 we have that, letting Nε denote the Morse index of TΣε , there

holds Nε ≃
(

α
Ck

)k
2
V ol(K)ε−k. For l ∈ N, let εl = 2−l. Then we have

(141) Nεl+1
−Nεl ≃

(

α

Ck

)k
2

V ol(K)(2k(l+1) − 2kl) ≃
(

α

Ck

) k
2

V ol(K)(2k − 1)ε−k
l .

By Proposition 6.6, the eigenvalues λ of TΣε with |λ| ≤ ες are strictly monotone functions of ε
so by the last equation the number of eigenvalues which cross 0, when ε decreases from εl to
εl+1, is of order ε

−k
l . Now we define

Al = {ε ∈ (εl+1, εl) : ker TΣε 6= ∅} ; Bl = (εl+1, εl) \ Al.

By Proposition 6.6 and (141) we deduce that card(Al) < Cε−k
l , and hence there exists an interval

(al, bl) such that

(142) (al, bl) ⊆ Bl; |bl − al| ≥ C−1meas(Bl)

card(Al)
≥ C−1εk+1

l .

From Proposition 6.6, then it follows that every eigenvalue of TΣal+bl
2

in absolute value is bigger

than C−1min{εk, ες} for some C > 0. By Lemma 5.2 then the same is true for the eigenvalues

of J ′′
ε (uI,ε) so the conclusion follows taking εj =

aj+bj
2 .

Remark 6.8 The arguments in the proof of Proposition 6.5 can be easily adapted to the case
in which |λ| ≤ C−1ε2 with C is sufficiently large. Therefore the result of Proposition 6.7 can be

improved to
∥

∥

∥
J ′′
εj
(uI,εj)

−1
∥

∥

∥

H1(Ωεj
)
≤ C

min{εkj ,ε
2
j}
, for all j ∈ N.

Below, ‖ · ‖ denotes the standard norm of H1(Ωε). For the values of ε such that J ′′
ε (uI,ε) is

invertible, it is sufficient to apply the contraction mapping theorem. Writing ε = εj , we find a
solution ũε of (P̃ε) in the form ũε = uI,ε +w, with w ∈ H1(Ωε) small in norm. Since J ′′

ε (uI,ε) is

invertible we have that J ′
ε(u) = 0 if and only if w = − (J ′′

ε (uI,ε))
−1 [J ′

ε(uI,ε) +G(w)], where

G(w) = J ′
ε(uI,ε + w)− J ′

ε(uI,ε)− J ′′
ε (uI,ε)[w].

57



Note that

G(w)[v] = −
∫

Ωε

[

(uI,ε + w)p − u
p
I,ε − pu

p−1
I,ε w

]

v; v ∈ H1(Ωε).

Reasoning as in the last section of [40], we find the following estimates, which are based on
elementary inequalities

(143) ‖G(w)‖ ≤
{

C‖w‖p for p ≤ 2,

C‖w‖2 for p > 2;
‖w‖ ≤ 1;

(144)

‖G(w1)−G(w2)‖ ≤
{

C
(

‖w1‖p−1 + ‖w2‖p−1
)

‖w1 − w2‖ p ≤ 2,

C (‖w1‖+ ‖w2‖) ‖w1 − w2‖ p > 2;
‖w1‖, ‖w2‖ ≤ 1.

Defining Fε : H
1(Ωε) → H1(Ωε) as

Fε(w) = −
(

J ′′
ε (uI,ε)

)−1 [
J ′
ε(uI,ε) +G(w)

]

, w ∈ H1(Ωε),

we will show that Fε is a contraction in some closed ball of H1(Ωε). From (40), Proposition 6.7
(with Remark 6.8) and (143)-(144) we get

(145) ‖Fε(w)‖ ≤







Cε−(k+1)
(

εI+1− k
2 + ‖w‖p

)

for p ≤ 2,

Cε−(k+1)
(

εI+1− k
2 + ‖w‖2

)

for p > 2;
‖w‖ ≤ 1;

(146)

‖Fε(w1)− Fε(w2)‖ ≤
{

Cε−(k+1)
(

‖w1‖p−1 + ‖w2‖p−1
)

‖w1 − w2‖ p ≤ 2,

Cε−(k+1) (‖w1‖+ ‖w2‖) ‖w1 − w2‖ p > 2;
‖w1‖, ‖w2‖ ≤ 1.

Now we choose integers d and k such that

(147) d >

{

k+1
p−1 for p ≤ 2,

k + 1 for p > 2;
I > d− 1 +

3

2
k,

and we set
B =

{

w ∈ H1(Ωε) : ‖w‖ ≤ εd
}

.

From (145)-(146) we deduce that Fε is a contraction in B for ε small, so the existence of a critical
point ũε of Jε near uI,ε follows. All the properties listed in Theorem 1.1, including the positivity
of the solutions, follow from the construction of uI,ε and standard arguments. As in [40], when p
is supercritical one can use truncations and L∞ estimates to apply the above argument working
in the function space H1(Ωε) ∩ L∞(Ωε).

Remark 6.9 With the arguments given in Section 5 we could obtain sharp estimates on the
Morse index of TΣε and on the eigenfunctions corresponding to resonant eigenvalues. In par-
ticular about the latter we showed that the components in H2,H3 are small, and that in H1 the
Fourier modes are localized near some precise frequencies. This allowed us to prove Proposition
6.7 using Kato’s theorem.

Even if we did not work the computations out, it seems it should be possible to give a more
rough characterization of these eigenfunctions (in particular on the H2 component) and to prove
a (non sharp) estimate on the derivatives of the eigenvalues, still obtaining invertibility. This
might slightly simplify the proof of existence, although most of the delicate estimates will be
shifted from the analysis of TΣε to that of the quadratic form Qλ defined in (140).
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[46] Ni, W.M. Diffusion, cross-diffusion, and their spike-layer steady states. Notices Amer. Math.
Soc. 45 (1998), no. 1, 9-18.

[47] Ni, W.M., Takagi, I., On the shape of least-energy solution to a semilinear Neumann prob-
lem, Comm. Pure Appl. Math., 41 (1991), 819-851.

[48] Ni, W.M., Takagi, I., Locating the peaks of least-energy solutions to a semilinear Neumann
problem, Duke Math. J. 70, (1993), 247-281.

[49] Ni, W.M., Takagi, I., Yanagida, E., Stability of least energy patterns of the shadow system
for an activator-inhibitor model. Recent topics in mathematics moving toward science and
engineering. Japan J. Indust. Appl. Math. 18 (2001), no. 2, 259-272.

61



[50] Oh, Y.-G. On positive Multi-lump bound states of nonlinear Schrödinger equations under
multiple well potentials, Comm. Math. Phys. 131, (1990), 223-253.
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