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Abstract

The class of ranked tree-child networks, tree-child networks arising from an evolution process
with a fixed embedding into the plane, has recently been introduced by Bienvenu, Lambert, and
Steel. These authors derived counting results for this class. In this note, we will give bijective proofs
of three of their results. Two of our bijections answer questions raised in their paper.

1 Introduction

Phylogenetic trees and networks are important discrete structures from biology where they are used to
model evolution; see [9, 10, 11]. Of these two types of structures, phylogenetic trees are simpler and
more classical but they are less suitable to model evolutionary scenarios that involve reticulation events.
Thus, in many recent studies, they have been replaced by (the more general) phylogenetic networks.
However, the majority of the classes of phylogenetic networks are not recursive and thus they are a poor
model for processes that evolve over time. In order to be able to model such processes, Bienvenu et
al. recently proposed the class of ranked tree-child networks; see [1].

We recall some definitions. First, a (rooted, binary) phylogenetic network is a simple DAG (directed
acyclic graph) with a unique root of indegree 0 and outdegree 1 such that all other nodes belong to one
of the following types:

• leaves, which are nodes with indegree 1 and outdegree 0; these are bijectively labeled by the set
{1, . . . , `} where ` is the total number of leaves;

• tree nodes, which are nodes with indegree 1 and outdegree 2; and

• reticulation nodes, which are nodes with indegree 2 and outdegree 1.

A phylogenetic network is called a tree-child network if each internal (i.e., non-leaf) node has at least
one child which is not a reticulation node. For such a network, we call a tree node whose two children
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Figure 1: (a) The two types of events of a ranked tree-child network; (b) An example of a RTCN.

are both not reticulation nodes a branching event and a reticulation node together with both its parents a
reticulation event; see Figure 1-(a). A ranked tree-child network (or RTCN for short) is now a tree-child
network which is drawn in such a way that one starts with a branching event and then successively adds
either a branching event or a reticulation event until the leaves are reached; see Figure 1-(b).

The class of RTCNs has the advantage over other network classes that the special embedding into the
plane makes counting relatively straightforward. (In contrast, few of the other classes of phylogenetic
networks have so far been counted; see, e.g., [2, 3, 4, 5, 6, 7, 8] for some recent progress.) For instance,
the following simple formula was obtained in [1] for the number RTC` of RTCNs with ` leaves:

RTC` =
`!(`− 1)!2

2`−1
. (1)

Curiously, the same number is the answer to the following counting problem: find the number of ways for
` people to cross a river with a two-person boat where the boat trips follow the pattern 2 send, 1 returns,
2 send, 1 returns, etc; see A167484 in the OEIS. Thus, one can ask for a bijection between RTCNs and
such boat sequences; however, in Remark 2.8 in [1] it was claimed that a natural bijection seems to be
unlikely because for ` = 3, 3 out of the 6 RTCNs contain a reticulation event and 3 do not (see bottom
resp. top row of Figure 2) whereas all 6 possible boat trips are completely equivalent. Nevertheless,
we will give a simple bijection in the next section; again see Figure 2 for the correspondence between
RTCNs and boat sequences for ` = 3 arising from our bijection.
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Figure 2: All RTCNs and their corresponding boat sequences for ` = 3.

Using this bijection, branching events are, e.g., mapped to the following events of boat sequences.
Assume that the ` people are ranked according to their skill at steering the boat. Then, the number of
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Figure 3: A ranked tree T (upper left corner) with ` = 4 leaves and all 15 RTCNs which contain T
where incoming edges of reticulation nodes which need to be removed to obtain T are indicated by
arrows. (Note that one of the RTCNs is T itself.)

branching events corresponds to the number X` of return trips where the most skilled person among
those on the opposite shore takes the boat back. Since it was proved in Corollary 2.7 in [1] that the
number of branching events in a RTCN chosen uniformly at random from all RTCNs with ` leaves
satisfies a central limit theorem, we obtain the following result.

Theorem 1. For a boat sequence of ` people chosen uniformly at random from all boat sequences, the
number of times X` that the most skilled person takes the boat back satisfies the limit law:

X` − log `√
log `

d−→ N(0, 1),

where d−→ denotes convergence in distribution and N(0, 1) denotes the standard normal distribution.

In fact, the number RTC`,b of RTCNs with ` leaves and b branching events was counted in [1] as
well:

RTC`,b =

[
`− 1

b

]
· RT`,

where the bracket denotes the (signless) Stirling numbers of the first kind and RT` = `!(` − 1)!/2`−1

is the number of ranked trees (i.e., RTCNs without reticulation events). Since the Stirling numbers of
the first kind count permutations with a fixed number of cycles, this result suggests that there should
be a simple bijection between RTCNs with a fixed number of branching events and pairs consisting of
permutations with a fixed number of cycles and ranked trees. We will give such a bijection in Section 3.

A final bijection discussed in this note is related to another result in [1] which concerns containment
of ranked trees in RTCNs. Here, we say that a ranked tree T is contained in a RTCN N , in symbols
T @ N , if T can be obtained fromN by choosing one of the incoming edges of each reticulation node of
N , removing them, and then suppressing resulting nodes with indegree 1 and outdegree 1; see Figure 3.

For a fixed ranked tree T with ` leaves, it was proved in [1] that

#{N : T @ N} = 1 · 3 · 5 · · · (2`− 3) =: (2`− 3)!!. (2)
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(O-ii)

(O-i)

Figure 4: The two operations (O-i) and (O-ii) in the recursive construction of RTCNs.

Note that (2` − 3)!! is the number of phylogenetic trees with ` leaves where a phylogenetic tree is a
phylogenetic network without reticulation nodes; see, e.g., Corollary 2.2.4 in [10]. Thus, one again
would like to have a simple bijection between RTCNs which contain T and phylogetetic trees; see
Remark 3.7 in [1]. In the final section of this note, we will give such a bijection.

2 RTCNs and boat sequences

In this section, we will describe a bijection between RTCNs with ` leaves and boat sequences involving
` people. This will be done in three steps. First, we will explain how to construct all RTCNs with
`+ 1 leaves from those with ` leaves; then, we will do the same for boat sequences; and finally we will
synchronize these two constructions to get the desired bijection.

Recursive construction of RTCNs. Here, we give a top-down construction which (uniquely) produces
all RTCNs with ` + 1 leaves. A similar construction was described in [1] where the authors used the
concept of decorated RTCNs. We will sidestep this concept which gives a (slightly) simpler construction.

Assume we have a given RTCN with ` leaves. Then, we perform either one of the following two
operations (see Figure 4 for examples).

(O-i) Pick two labels a, b from the set {1, . . . , ` + 1}, remove the label ` from the RTCN and attach
to its leaf two children with labels a, b. Finally, relabel all the other leaves of the RTCN in an
order-consistent way with the remaining labels from {1, . . . , `+ 1} \ {a, b}.

(O-ii) Pick two labels a < b from {1, . . . , `+ 1} and a label c from {1, . . . , `+ 1} \ {a, b}. Next, find
the relative ranks, say a′ < b′, of a < b in {1, . . . , `+1} \ {c}. Remove a′, b′ from the RTCN and
attach a reticulation event to their leaves with the children corresponding to the leaf which had the
label a′ being a leaf with label a and the reticulation vertex, the children corresponding to the leaf
which had the label b′ being a leaf with label b and the (same) reticulation vertex and the child of
the reticulation vertex being a leaf with label c. Finally, relabel all the other leaves of the RTCN
in an order-consistent way with the labels from {1, . . . , `+ 1} \ {a, b, c}.

Since both of these operations are reversible, we have the following result.
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Proposition 1. Starting from all RTCNs with ` leaves and performing for each of them all the operations
above gives (exactly once) all the RTCNs with `+ 1 leaves.

Moreover, this construction also immediately gives (1).

Corollary 1. We have

RTC` =
`!(`− 1)!2

2`−1
.

Proof. The number of different ways to perform (i) and (ii) above is(
`+ 1

2

)
+

(
`+ 1

2

)
(`− 1) =

(`+ 1)`2

2
.

Thus,

RTC` =
`−1∏
j=1

(`+ 1)`2

2
=
`!(`− 1)!2

2`−1

which proves the claim.

{1,2,3,4,5} {1,3,4} {1,2,3,4} {2,4} {2,3,4} {2} {2,5} { }

{ } {2,5} {5} {1,3,5} {1,5} {1,3,4,5} {1,3,4} {1,2,3,4,5}

{2,5} {1,3} {3,4} {2,5}
{2} {3} {5}

{2,5} {1,3} {2,3} {1,2}
{1} {2} {4}

r

Figure 5: An example of a boat sequence involving 5 people. Top: the people on both sides of the shores
after each step. Bottom: the representation of the boat sequence as array and the array of rankings
obtained from it by applying the map r.

Recursive construction of boat sequences. Here, we explain how all boat sequences involving `+ 1
people can be constructed from those involving ` people. (Note that this reveals a recursive structure
inherent to boat sequences that was not considered in [1].)

First, note that a boat sequence involving ` people can be represented by an array with 2 rows where
the first row has ` − 1 entries and the second has ` − 2 entries, namely, the first row contains the set of
numbers of the people sent in the i-th step and the second row contains the singleton of the number of
the person who returned in the i-th step; see bottom left array in Figure 5 for an example.

Now, each such array can be mapped to a corresponding array where the numbers are replaced by
the relative ranks of the people within the group on their shore, e.g., if {2, 5} are sent with {2, 3, 5, 6} at
the same shore, then {2, 5} is replaced by {1, 3}. Call the resulting map r; see bottom of Figure 5.

Note that the map r is clearly a bijection from the above arrays representing boat sequences to
arrays where in the first row, we have a subset of size 2 of {1, . . . , `}, followed by a subset of size 2
of {1, . . . , ` − 1}, etc. until the set {1, 2} and in the second row, we have a subset of size 1 of {1, 2},
followed by a subset of size 1 of {1, 2, 3}, etc. until a subset of size 1 of {1, . . . , `− 1}.

Now, we apply the following operations on the latter arrays: we shift all entries of the first row to
the right by one position, add a subset of size 2 of {1, . . . , ` + 1} in the (now empty) first position and
add a subset of size 1 of {1, . . . , `} at the end of the second row; see the downwards arrow in Figure 6.

Finally, by using the inverse of r, we obtain an array for a boat sequence involving `+1 people; see
the bottom left array in Figure 6.

Since the above process is reversible, we obtain the following result.
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r−1

{2,5} {1,3} {3,4} {2,5}
{2} {3} {5}

{2,5} {1,3} {2,3} {1,2}
{1} {2} {4}

r

{2,3} {2,6} {1,4} {5,6}
{2} {3} {6}

{1,3}
{1}

{2,5} {1,3} {2,3} {1,2}
{1} {2} {4} {1}
{2,3}

({2,3},{1})

Figure 6: A boat sequence with 6 people constructed from the boat sequence with 5 people from Figure 5.

Proposition 2. Starting from a boat sequence involving ` people and using the map r, all possible
operations above, and the inverse of r, we obtain (exactly once) all boat sequences involving ` + 1
people.

(a, b, c) = (2, 4, 3)
(a′, b′) = (2, 3)

inverse of (ii)

(a, b) = (1, 3)

inverse of (i)

2 3 4 1
2 3 1 1 2

rr−1

{1,2}
{2,4} {1,4} {2,3}
{4} {2}

{2,4} {1,3} {1,2}
{2} {2}

{1,3} {1,2}
{2}

{1,2}
({2,4},{2}) ({1,3},{2})

Figure 7: A RTCN (top left corner) with ` = 4 and the process of constructing its image under the
bijection. Top: the two steps of reducing the RTCN to the one with ` = 2. Right-most column: The boat
sequence corresponding to the initial case and its array of rankings. Bottom: the process of extending
the array of rankings. Left-most column: applying r−1 gives the desired result (middle).

Synchronization of the two constructions. We will now explain how to synchronize the constructions
from the above two paragraphs to get a bijection between RTCNs and boat sequences. This bijection is
defined recursively.

Assume we have given a RTCN on ` + 1 leaves. Reverse the recursive construction from Proposi-
tion 1 to obtain a RTCN on ` leaves. By induction hypothesis, this RTCN is mapped on a boat sequence
which is represented by an array as described in the previous paragraph. We apply the map r to this
array. Now, depending on which of the two operations was used in Proposition 1 to construct the RTCN
on `+ 1 leaves from that of ` leaves, we do the following to the array of ranks.

(i) If Operation (O-i) was used, then move all the pairs from the first row by one position and add {a, b}
as the first entry. Also, add {`} at the end of the second row.

(ii) If Operation (O-ii) was used, then again move all the pairs from the first row by one position and
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1 53 42 6

1 2 3 4 5

1 2 3 4

1 2 3

1 2

q1 = 1

q3 = 1

q2 = 0

q4 = 1

q5 = 0

2 51 46 3

Figure 8: Left: a RTCN with ` = 6 leaves and k = 3 reticulation events; the profile equals (qi)5i=1 =
(1, 0, 1, 1, 0) and the sequence of positions of reticulation events equals (ai)3i=1 = (1, 3, 4). Right: the
same RTCN redrawn as described in Section 3.

add {a, b} as the first entry. Add the relative rank of c in {1, . . . , `+ 1} \ {a, b} to the end of the
second row.

Finally, apply the inverse of r to the above array to obtain the desired boat sequence.
More generally, in order to get the corresponding boat sequence for a RTCN on ` leaves, we first

have to reduce it to the RTCN on 2 leaves by applying Proposition 1 `−2 times and retain the operations
from the first paragraph for each step. Then, we can start from the (trivial) boat sequence and use the
above procedure `− 2 times to construct the corresponding boat sequence; see Figure 7 for an example.

Also, from the above, it is clear that branching events correspond to steps where the person with the
maximal rank was picked for the return trip (or, using the language introduced just before Theorem 1,
the most skilled person on the opposite shore). This proves Theorem 1 from the introduction.

3 Branching events, permutations and ranked binary trees

In this section, we describe an explicit bijection between the set of RTCNs with ` leaves and k reticula-
tion events (equivalently, with `−1−k branching events) and the set of pairs (T, σ) where T is a ranked
binary tree with ` leaves and σ is a permutation of {1, . . . , `− 1} consisting of `− 1− k disjoint cycles.

From a RTCN to a ranked binary tree and permutation. Given a RTCN with ` leaves labeled 1 to
`, define its profile as the sequence (qi)

`−1
i=1 ∈ {0, 1}`−1 where qi = 0 if and only if the i-th event from

the bottom is a branching event (see left of Figure 8). Note that we necessarily have q`−1 = 0, as only
two lineages (i.e., vertical edges) are available to merge for the last event. Suppose

∑`−1
i=1 qi = k, that is,

that the RTCN under consideration has k reticulation events, and let a1 < a2 < . . . < ak be the indices
i ∈ {1, . . . , ` − 2} such that qi = 1, corresponding to the reticulation events in question (note that the
reticulation event ai happens at time `− ai, with the notation from Figure 1-(b)).

Next, note that we can consider lineages above (and below) each event to be naturally ordered as
follows. Assuming that lineages just below event i are labeled 1 to ` − i + 1 and that the event is
a branching event, label the ` − i lineages just above the event with the integers 1 to ` − i so that
their order reflects the order after the branching event, with the parent lineage identified with its child
whose label is smaller. Similarly, assuming i is a reticulation event, order the lineages present just above
the event i consistently with their order after the event (ignoring the hybrid lineage resulting from the
reticulation event). This is by no means the only possible convention (other conventions would yield
equivalent bijections), but we may use it to determine the left-to-right order of lineages when the RTCN
is drawn in the plane (so that we can say that the `− i lineages above event i are labeled “left-to-right”
with the numbers 1 to `− i). The planar embedding induced by this convention is depicted on the right
of Figure 8: the RTCN on the left is redrawn on the right with lineages ordered left to right according to
their current labels, which are explicitly indicated above and below each event; in the representation on
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L1 L3 L2

l1 l2

L1 L3 L2

l′1 l′2

Figure 9: A reticulation event is replaced by a branching event: the hybrid lineage L3 becomes the future
of the former rightmost parent lineage, which is no longer involved in the event. Note that the number L3

need not be between L1 and L2: for examples where it is not, see the second and third transformations
performed in Figure 10.

1 2 3 4 5 6

1

2

3

4 5

1

2

3 4

1

2

3

1

2

a1 = 1, b1 = 3 a2 = 3, b2 = 2 a3 = 4, b3 = 1

1 53 42 6

1 2 3 4 5

1 2 3 4

1 2 3

1 2

1 2 3 4 5

1 2 3 4

1 2 3

1 2

1 53 42 6

1 2 3 4 5

1 2 3 4

1 2 3

1 2

1 53 42 6

Figure 10: From the RTCN displayed to the far left to its corresponding ranked binary tree obtained
on the right, with its accompanying permutation σ = (a1, a1 + b1)(a2, a2 + b2)(a3, a3 + b3) =
(1, 4)(3, 5)(4, 5) = (1, 5, 3, 4)(2), which is the product of ` − 1 − k = 6 − 1 − 3 = 2 disjoint cy-
cles. The three subsequent steps turn reticulation events 1, 3, 4 into branching events. The values of
(L1, L2, L3, l1, l2, l

′
1, l
′
2) are (1, 5, 4, 1, 4, 1, 4) for the first step, (1, 2, 4, 1, 2, 1, 3) for the second, and

(2, 3, 1, 1, 2, 2, 1) for the third.

the right, parent lineages of reticulation events are drawn directly above the respective non-hybrid child
lineages.

In order to obtain a ranked binary tree, we will replace each of the k reticulation events of the RTCN
with a branching event; at the same time, we shall keep track of additional information allowing the
recovery of the original reticulation event.

Build the corresponding ranked binary tree to our RTCN by considering in turn the events a1, . . . , ak.
The result of the reticulation event a1 is given by two lineages L1 < L2, labeled l1 < l2 above the
reticulation event, and a third hybrid lineage L3; replace this by a branching event that yields L1, L2

from a single parent lineage P and leaves L3 intact. Some convention is needed in order to match
lineages P,L3 to lineages l1, l2; we identify P with l1 and assign the evolution of the hybrid lineage L3

to the lineage l2 (Figure 9). Labels assigned to lineages below event a1 are unchanged by this procedure,
but labels above the event are recomputed according to the rules we explained previously. In particular,
labels immediately above the event a1 range between 1 and ` − a1; the lineage that used to be labeled
l1 is now labeled l′1 and the lineage that used to be labeled l2 is now labeled l′2 where the values of l′1, l

′
2

depend on L1, L2, L3: if L3 < L1, then l′1 = L1 = l1 + 1 and l′2 = L3; if L2 < L3, then l′1 = L1 = l1
and l′2 = L3 − 1; if L1 < L3 < L2, then l′1 = L1 = l1 and l′2 = L3.

The result of this operation is a RTCN T1 with k − 1 reticulation events. In order to be able to
reinstate the original reticulation, it is enough to keep track of a1 (identifying the branching event to be
turned back into a reticulation event) and a number b1 that identifies the lineage to turn back into the
original hybrid. Note that the label l′2, for example, would allow the recovery of the original RTCN; l′2 is
an integer between 1 and `− a1, but cannot take all values in the range independently of T1, as it cannot

8



be equal to l′1, that is, to the label of the parent lineage of the branching event a1. We therefore define
the number b1 as l′2 if l′2 < l′1 and l′2− 1 otherwise. This way, we have 1 ≤ b1 ≤ `− 1− a1; since l′1 can
be determined from T1, the pair (a1, b1) is enough to recover l′2 and thus the original RTCN (as we will
further discuss later).

We repeat this operation for each reticulation to obtain a final ranked binary tree Tk and a sequence
(a1, b1), . . . , (ak, bk) where 1 ≤ bi ≤ `− 1− ai: see Figure 10 for an example.

This sequence of k pairs can be naturally encoded by the permutation σk = (a1, b1 + a1) · (a2, b2 +
a2) · . . . · (ak, ak+ bk) in the symmetric group S`−1 (where we adopt the convention that composition of
permutations is obtained via multiplication from the right); this is the product of k transpositions such
that a1 < . . . < ak and bi+ ai > ai. The latter condition is actually equivalent to the permutation being
a product of `− 1− k disjoint cycles, as clarified by the following lemma:

Lemma 1. For all integers n > k > 0, a permutation σ ∈ Sn is the product of n − k disjoint cycles if
and only if it can be expressed as a product of transpositions of the form (x1, y1) · . . . · (xk, yk) where
0 < x1 < . . . < xk < n and xi < yi ≤ n for 1 ≤ i ≤ k; moreover, if such an expression for σ exists,
then it is unique.

Proof. First of all, given a positive integer n, we show the fact that any product of k < n transpositions
with the properties described in the statement is the product of n− k disjoint cycles by induction on k.
Given a positive integer i < n, consider a permutation τ ∈ Sn of the form τ = (α1, β1)·. . .·(αi−1, βi−1)
where α1 < α2 < . . . < αi−1 and αj < βj for 1 ≤ j ≤ i − 1; assume that τ has n − i + 1 cycles
and that each j in {1, . . . , n} \ {α1, . . . , αi−1} is the maximum element of the cycle it belongs to in the
factorisation of τ as a product of disjoint cycles. Consider any permutation of the form τ · (αi, βi) where
n ≥ βi > αi > αi−1. The elements αi, βi must belong to separate cycles in τ and each must be the
maximum of its own cycle, as neither can be in {α1, . . . , αi−1}. Denote by cα the cycle of τ containing
αi and by cβ the one containing βi; the disjoint cycles of the permutation τ · (αi, βi) are those of τ , with
the cycles cα and cβ merged into one.

Note that the property that elements not in {α1, . . . , αi} are maximal in their cycles holds for τ ·
(αi, βi). Indeed, if some element is not in {α1, . . . , αi−1} and does not belong to cα or cβ , then it is
maximal in its cycle in τ , and thus it is maximal in the same cycle of τ · (αi, βi). The elements αi
and βi, which do not appear in the list {α1, . . . , αi−1}, are the maximums of the cycles cα and cβ ,
respectively. It follows that the element βi is maximal in its cycle of τ · (αi, βi), which is the union of
cα and cβ . Finally, suppose by contradiction that an element of the new cycle other than βi belongs to
{1, . . . , n} \ {α1, . . . , αi}; this would imply that it was maximal in its cycle in τ , and therefore in cα or
cβ; it would thus belong to {βi, αi}, which we have excluded.

It follows from the fact that the identity of Sn (the product of zero transpositions) consists of n
disjoint cycles of length one (and is thus such that each element in {1, . . . , n} is maximal in its cycle)
that any permutation of the form described in the statement is the product of n− k disjoint cycles.

Conversely, consider a permutation σ ∈ Sn made up of n− k < n disjoint cycles; let us determine
positive integers x1, . . . , xk, y1, . . . , yk between 1 and n such that x1 < . . . < xk, xi < yi for 1 ≤ i ≤ k,
and σ = (x1, y1) · . . . · (xk, yk). The element x1 must necessarily be the smallest one that is not
fixed by σ. The element y1 must be such that σ(y1) = x1, as x1 is not moved by any of the other
transpositions. Consequently, we have y1 = σ−1(x1) > x1. We can repeat this procedure recursively
on the permutation (x1, σ

−1(x1)) · σ (which fixes all elements up to and including x1) to obtain the
subsequent transpositions (x2, y2), . . . , (xk, yk).

As a result, from our initial RTCN we have constructed a pair given by a ranked binary tree and a
permutation in S`−1 which, by applying Lemma 1 with n = ` − 1, we find to be a product of as many
disjoint cycles as the number of branching events in the original RTCN (that is, ` − 1 − k). We have
already sketched how we can revert each change made to recover the original RTCN, but we give a more
complete description of the inverse construction below.
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From a ranked binary tree and a permutation to a RTCN. We are given a ranked binary tree with
` labeled leaves and a permutation σ in S`−1 with `− 1− k cycles.

First of all, by Lemma 1 we can express σ in a unique way as a product of transpositions of the form
previously described, as (x1, y1) · . . . · (xk, yk) with 0 < x1 < . . . < xk and xi < yi ≤ n for 1 ≤ i ≤ k.
We then obtain our pairs (ai, bi)ki=1 as ai = xi, bi = yi − xi.

All that is left to do is replace the branching events ak, . . . , a1 in our ranked binary tree (numbered
from the bottom) by reticulation events. We can still number our lineages from 1 to `−i above branching
event i (again, think of the order induced by assigning to the parent the label of the smaller child).

For i = k, . . . , 1 in turn, consider lineages 1 to ` − ai right above branching event ai and let l be
the label assigned to the parent of the branching event ai; pick the past of lineage bi + s where s = 1
if bi ≥ l and s = 0 otherwise, to become the past of the larger child issued from the branching event
(while the past of the branching event becomes the past of the smaller child), and make the future of
lineage bi + s into a hybridised version of the two lineages involved in the branching event.

This operation yields a RTCN and is precisely the inverse of the one previously described (see again
Figure 10 where one can follow the steps backwards to recover the RTCN from the final ranked binary
tree).

4 Ranked tree containment and phylogenetic trees

In this final section, we give a bijection between the set of RTCNs which contain a fixed ranked tree and
the set of phylogenetic trees; see the last two paragraphs of Section 1.

We first recall how all RTCNs which contain a fixed ranked tree T are constructed from T ; see [1]
where this was used to prove (2). Starting from the leaves and moving back in time, for every branching
event of T a decision is taken whether or not the branching event is turned into a reticulation event and
if yes, which of the (future) lineages not in the branching event is connected with which of the (future)
lineages from the branching event; see Figure 11-(b) for an example. We will call the resulting RTCN
N and will directly translate each step in the above process of building N from T into a corresponding
step for building a phylogenetic tree (time will, however, be reversed).

(a) (b)

1 15 2 3 4 2 3 4 5 1 2 3 4 5

Figure 11: (a) A ranked tree T on 6 leaves which is redrawn such that the leaf labels are in increasing
order; (b) A RTCN N containing the ranked tree.

In order to describe this, we first draw the ranked tree T so that all the leaves are in increasing order
when read from left to right; see Figure 11-(a). Then, we consider the resulting N (with the same order
of the leaves). Now, starting from a tree consisting of a root with one child labeled by 1, we build the
(rooted) tree τ with leaf labeled by 1, . . . , ` and internal nodes labeled by 1, . . . , `− 1 where ` is the
number of labels of T and we assume that 1 < · · · < ` < 1 < · · · < `− 1, by processing the events
from N top-down. More precisely, for the k-th event in N , we do the following:

(a) If the k-th event is a branching event, we insert a node with label k into the root edge of τ and attach
to this node a leaf with label k + 1;
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1 1̄
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1 1̄

1 1̄

1

2 2̄

2 2̄

2 2̄

2

3

3̄

3

3̄

3

4 4̄

45

1 2 3 4 5

Figure 12: The rooted labeled tree constructed from the RTCN from Figure 11-(b) which contains the
ranked tree from Figure 11-(a).

(b) If the k-th event is a reticulation event that was created from the k-th branching event of T by
connecting the i-th (future) lineage (not counting the lineages of the k-th branching event), then,
we insert a node with label k into one of the edges to the children of the internal node with label i
of τ where the child with the smaller (larger) label is chosen depending on whether the left or the
right lineage of the k-th branching event of T was used to form the reticulation event; moreover,
we again attach a leaf with label k + 1 to the inserted node.

See Figure 12 for a visualization of the the above construction for the RTCN from Figure 11-(b).
Next, we remove the labels of all international nodes and the root edge of τ . The resulting tree is a

phylogenetic tree; see the tree on the right of Figure 13. This tree is the image of N .

4 1 5 2 3

45

3 2

1

Figure 13: The image of the RTCN from Figure 11-(b) under the bijection.

Finally, it is not hard to see that the above construction is reversible: e.g., if the phylogenetic tree
on the right of Figure 13 is given, find the largest label (5); its parent will have label 4. Then, remove
the largest label, the parent label and the edge which joins them. Continue until all internal nodes
have received a label (where the number of the label is decreased by 1 in every step). This gives the
right-most tree in Figure 12 which unambiguously encodes the whole tree construction process from
Figure 12. Clearly, this process can be used to re-construct N .
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