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We consider the problem of devising a suitable Quantum Error Correction (QEC) procedures
for a generic quantum noise acting on a quantum circuit. In general, there is no analytic universal
procedure to obtain the encoding and correction unitary gates, and the problem is even harder if the
noise is unknown and has to be reconstructed. The existing procedures rely on Variational Quantum
Algorithms (VQAs) and are very difficult to train since the size of the gradient of the cost function
decays exponentially with the number of qubits. We address this problem using a cost function based
on the Quantum Wasserstein distance of order 1 (QW1). At variance with other quantum distances
typically adopted in quantum information processing, QW1 lacks the unitary invariance property
which makes it a suitable tool to avoid to get trapped in local minima. Focusing on a simple noise
model for which an exact QEC solution is known and can be used as a theoretical benchmark, we
run a series of numerical tests that show how, guiding the VQA search through the QW1, can indeed
significantly increase both the probability of a successful training and the fidelity of the recovered
state, with respect to the results one obtains when using conventional approaches.

I. INTRODUCTION

Performing reliable computations on physically imper-
fect hardware is something that has become usual nowa-
days, given the current state of classical computers, which
can produce perfect results without any software-side mit-
igation of the imperfections of the physical media where
the computation happens. Error correction is based on
the fact that these machines automatically perform, on
the hardware side, procedures that allow errors to happen
and to be fixed without any intervention from the end
user. This kind of setting is even more crucial in a quan-
tum scenario where the current noisy intermediate-scale
quantum computers (NISQ) have a much larger error
rate than their classical counterparts [1]. Performing re-
liable computations with a trustworthy error correction
procedure has direct implications not only in quantum
computation [2, 3], but potentially also in all the other
sectors of quantum technology which indirectly relay on
it (e.g. quantum communication or quantum key distri-
bution [4–6]).

In the typical Quantum Error Correction (QEC)
scheme, the quantum information that has to be pro-
tected is stored in a subspace of a larger Hilbert space,
using an encoding procedure. Stabilizer codes [7, 8], which
are within the best analytical results in this field, are not
universal because they are tailored for a generic noise
acting on a small but unknown subset of qubits. Several
attempts have already been made to create a numerical
optimization procedure to find an error correction code
for specific noise models [9–12], but these studies are not
universal because they rely heavily on the type of noise
on the specific quantum circuit and this is a problem
because real quantum devices are not characterized by a
single kind of quantum noise. Some attempts have been
made to characterize the noise of the current and near-
term devices [13, 14], but these methods will become very
difficult to implement soon because classical computers
are not able to simulate efficiently quantum circuits when
the number of qubits increases. Near-term devices with
approximately 50 qubits may already be intractable to
simulate for supercomputers [15].
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If we define a figure of merit of the quality of the state af-
ter the action of the noise and its corresponding correction,
the obvious choice for the kind of maximization algorithm
is a Variational Quantum Algorithm (VQA) [16]. These
are hybrid algorithms that couple a quantum computer
with a classical one. In this setting, usually, a parametric
quantum circuit is applied to some reference state, some
measurements are performed on the system, and the out-
comes are given to the classical computer to perform a
minimization procedure of a given cost function (from this
point of view the optimization procedure in a VQA can
be seen as the training phase in machine learning). Some
examples of this class of algorithms are the variational
quantum eigensolver [17] and the Quantum Approximate
Optimization Algorithm [18]. Proposals to use VQAs
to address QEC problems are already present in litera-
ture [19]. Unfortunately, VQAs usually suffer from the
phenomenon of barren plateaus [20, 21], namely the gradi-
ent of the cost function decays exponentially with respect
to the number of qubits of the system, leading to an un-
trainable model. The fundamental theoretical reason for
such behavior has been associated with the presence of
barren plateaus which originate when the cost function of
the problem is global, i.e. mediated by a highly non-local
operator [21]. To avoid these effects we propose here to
guide the VQA search using cost functions inspired to
Quantum Wasserstein distance of order 1 (or QW1 in
brief) introduced in Ref. [22] as a quantum generalization
of the Hamming distance [23] on the set of bit strings. As
will detail in the following, at variance with more conven-
tional quantum distances typically adopted in quantum
information, QW1 is lacking a fundamental symmetry
(unitary invariance) which makes it a suitable candidate
to avoid the barren plateau problem. The rationale behind
this is that for unitarily invariant distances as the trace
distance or the distances derived from the fidelity, all the
states of the computational basis are equally orthogonal
and thus have all maximum distance one with respect
to the other. The QW1 functional instead measures how
many qubits are different between the two states allowing
the VQA gradient to be less flat in the regions that are
not already very close to a local minimum. While this
special property of QW1 has been already observed in
other contexts, such as the study of quantum Generative
Adversarial Networks presented in [24–29], here we test
its effectiveness in the identifying effective QEC proce-
dures. For this purpose, we run a series of numerical tests
which compare the performances of a VQA that adopts a
conventional (i.e. unitary invariant) cost function, with
that of a VQA which instead refers to QW1-like distances.
Our findings confirm that in the second case the effective-
ness of the numerical optimization significantly increases
both in terms of the probability of a successful training
and in the fidelity of the recovered state.

The manuscript is organized as follows: in Section II
we present a concise, yet rather complete review on the
QW1 distance for qubits; in Sec. III we present some basic
notions on conventional QEC procedures which allow us

to set the notation and the theoretical background; in
Sec. IV we introduce our VQA discussing the different
choices of cost functions that can be used in order to
guide it; in Sec. V we present our numerical results where
comparing the performances of the VQA implemented
with different types of cost functions. Conclusions are
given in Sec. VI.

II. THE QUANTUM WASSERSTEIN DISTANCE
OF ORDER 1 FOR QUBITS

The theory of optimal mass transport [30–32] considers
probability distributions on a metric space as distributions
of a unit amount of mass. The key element of such theory
is the Monge–Kantorovich distance between probability
distributions, which is the minimum cost that is required
to transport one distribution onto the other, assuming
that moving a unit of mass for a unit distance has cost one
[33–35]. Such distance is also called earth mover’s distance
or Wasserstein distance of order 1, often shortened to
W1 distance. The exploration of the theory of optimal
mass transport has led to the creation of an extremely
fruitful field in mathematical analysis, with applications
ranging from differential geometry and partial differential
equations to machine learning [31, 35, 36].
The most natural distance on the set of the strings of

n bits is the Hamming distance [23], which counts the
number of different bits. The resulting W1 distance on
the set of the probability distributions on strings of n bits
is called Ornstein’s d̄-distance [37]. Ref. [22] proposed
a generalization of the W1 distance to the space of the
quantum states of a finite set of qubits, called quantum
W1 distance (or QW1 in brief). The generalization is
based on the notion of neighboring quantum states. Two
quantum states of a finite set of qubits are neighboring if
they coincide after discarding one qubit. The quantum
W1 distance of Ref. [22] is the distance induced by the
maximum norm that assigns distance at most 1 to any
couple of neighboring states; in the case of quantum states
diagonal in the computational basis it recovers Ornstein’s
d̄-distance and inherits most of its properties.

The QW1 quantity can be computed with a semidefinite
program, whose formulation requires to define a notion
of Lipschitz constant for quantum observables. The Lips-
chitz constant of the observable Ĥ acting on the Hilbert
space of n qubits is [22]

∥Ĥ∥L = 2 max
i=1, ..., n

min
Ĥic

∥∥∥Ĥ − Îi ⊗ Ĥic

∥∥∥
∞
, (1)

where the minimization is performed over all the observ-
ables Ĥic that do not act on the i-th qubit. The quantum
W1 distance between the quantum states ρ̂ and σ̂ can
then be expressed as [22]

∥ρ̂− σ̂∥W1
= max

∥Ĥ∥L≤1
Tr

[
(ρ̂− σ̂) Ĥ

]
. (2)
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The present paper is based on the following lower bound
to the quantum W1 distance. Let

Ĥ(wass) =

n∑
i=1

|1⟩i⟨1| ⊗ Îic , (3)

be the quantum observable that counts the number of

ones in the computational basis. We have
∥∥∥Ĥ(wass)

∥∥∥
L
= 1

[22], therefore for any quantum state ρ̂ we have∥∥ρ̂− |0⟩⟨0|⊗n
∥∥
W1

≥ Tr
[
ρ̂ Ĥ(wass)

]
. (4)

QW1 has found several applications in quantum infor-
mation theory and many-body quantum physics, among
which we mention a proof of the equivalence between the
microcanonical and the canonical ensembles of quantum
statistical mechanics [38] and a proof of limitations of
VQA [39, 40]. Furthermore, QW1 has been extended
to quantum spin systems on infinite lattices [41]. In
the context of quantum state tomography, the quantum
W1 distance has been employed as a quantifier of the
quality of the learned quantum state and has led to effi-
cient algorithms to learn Gibbs states of local quantum
Hamiltonians [42–44]. In the context of quantum machine
learning, the quantum W1 distance has been employed
as a cost function of the quantum version of generative
adversarial networks [24, 26–28].

A. Related approaches

Several quantum generalizations of optimal transport
distances have been proposed. One line of research by
Carlen, Maas, Datta and Rouzé [45–51] defines a quan-
tum Wasserstein distance of order 2 from a Riemannian
metric on the space of quantum states based on a quan-
tum analog of a differential structure. Exploiting their
quantum differential structure, Refs. [47, 48, 52] also
define a quantum generalization of the Lipschitz constant
and of the Wasserstein distance of order 1. Alternative
definitions of quantum Wasserstein distances of order 1
based on a quantum differential structure are proposed
in Refs. [53–56]. Refs. [57–59] propose quantum Wasser-
stein distances of order 1 based on a distance between
the vectors of the canonical basis.
Another line of research by Golse, Mouhot, Paul and

Caglioti [60–70] arose in the context of the study of the
semiclassical limit of quantum mechanics and defines
a family of quantum Wasserstein distances of order 2.
Ref. [71] proposes another quantum Wasserstein distance
of order 2 where the optimal transport is implemented
with quantum channels.

The quantum Wasserstein distance between two quan-
tum states can be defined as the classical Wasserstein
distance between the probability distributions of the out-
comes of an informationally complete measurement per-
formed on the states, which is a measurement whose

probability distribution completely determines the state.
This definition has been explored for Gaussian quantum
systems with the heterodyne measurement in Refs. [72–
74].

III. PRELIMINARIES ON QEC

Let Q be a quantum register we wish to protect (at least
in part) from the action of some external noise source.
In a typical QEC scenario [75] this problem is addressed
through the following three-step procedure:

i) Before the action of the noise, a unitary encoding

gate V̂QA is used to distribute the information origi-
nally contained in Q on the larger system QA. Here
A is an auxiliary quantum register that is assumed
to be initialized in a fiduciary quantum state, and
that is affected by the same noise that tampers with
Q;

ii) After the action of the noise, a measurement on QA
is performed to reveal the nature of the latter and,
based on the associated outcome, a unitary recovery
operation is applied to the system. Equivalently this
step can be described by introducing yet an extra
quantum register B (also initialized on a fiduciary
state but not affected by the noise) that is coupled
with QA trough a recovering unitary transformation
ŴQAB which effectively mimics the measurement
and the recovery operation;

iii) The inverse of the gate V̂QA is finally used on QA
to refocus the recovered information in Q.

Denoting with |ψ⟩Q the input state of Q, the corre-
sponding output state of QA that emerges from the pro-
cess at the end of the step iii) can be expressed as the
density matrix

ρ̂
(V,W )
QA (ψ) := trB

{
V†
QA ◦WQAB ◦ ΦQA (5)

◦VQA
(
|ψ⟩Q⟨ψ| ⊗ |Ø⟩A⟨Ø| ⊗ |Ø⟩B⟨Ø|

)}
:= V†

QA ◦ Φ(R)
QA ◦ ΦQA ◦ VQA

(
|ψ⟩Q⟨ψ| ⊗ |Ø⟩A⟨Ø|

)
where |Ø⟩X represents the fiduciary state of theX register,
trB{· · · } is the partial trace over B, and given a unitary

ÛX on X we adopted the symbol UX(· · · ) := ÛX · · · Û†
X

to denote its action as super-operator. In the above
expressions ΦQA is the LCPT quantum channel [75]

describing the noise on Q and A, while Φ
(R)
QA(· · · ) :=

trB{WQAB(· · ·⊗ |Ø⟩B⟨Ø|)} is the LCPT (recovery) quan-
tum channel on QA originating from the interaction with
B, that attempts to undo the action of ΦQA.
An ideal QEC procedure able to completely remove

the noise from the system will make sure that ρ̂
(V,W )
QA (ψ)

corresponds to |ψ⟩Q|Ø⟩A, irrespectively from the specific
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choice of |ψ⟩Q. A bona-fide figure of merit to character-
ize the effectiveness of a generic QEC scheme is hence
provided by the average input-output fidelity

F (V,W ) :=

∫
dµψ Q⟨ψ|A⟨Ø|ρ̂(V,W )

QA (ψ)|ψ⟩Q|Ø⟩A ,(6)

where dµψ is the uniform measure on the set of the in-
put states of Q originated from the Haar measure on
the associated unitary group [76] or from an exact or
approximate unitary 2-design S [75, 77] that simulates

the latter1. Notice that by expressing |ψ⟩Q = ÛQ|Ø⟩Q,
Eq. (6) can equivalently be casted in the more compact
form

F (V,W ) = QA⟨Ø|ρ̂(V,W )
QA |Ø⟩QA , (7)

with |Ø⟩QA := |Ø⟩Q ⊗ |Ø⟩A and where the state

ρ̂
(V,W )
QA :=

1

|S|
∑
ÛQ∈S

U†
Q ◦ V†

QA ◦ Φ(R)
QA ◦ ΦQA

◦ VQA ◦ UQ
(
|Ø⟩QA⟨Ø|

)
, (8)

now includes the average over all possible inputs. An
ideal QEC procedure will enable one to get F (V,W ) = 1.
A natural benchmark for lowest admissible F (V,W ) is
represented instead by the value one would get if one
decides not to perform corrections on the register that we
compute by setting V̂QA and ŴQAB equal to the identity
operators i.e.2

F 0 := QA⟨Ø|ρ̂(11,11)QA |Ø⟩QA . (9)

IV. VARIATIONAL QUANTUM ALGORITHM

While enormous progress has been made in the study of
QEC procedures, identifying efficient choices for the oper-
ations that lead to (non trivial) high values of F (V,W ) for
a specific noise model, is still a challenging open problem.

1 We remind that a unitary 2-design is a probability distribution
over the set of unitary operators which can duplicate properties of
the probability distribution over the Haar measure for polynomials
of degree 2 or less. When Q is a single qubit, a 2-design can
be realized by a uniform sampling over a set S composed by
only 6 elements 1̂, σ̂1, e±iπ/4σ̂1 , e±iπ/4σ̂2 that maps its logical
state |0⟩Q into the vectors |0⟩Q , |1⟩Q , (|0⟩Q± i |1⟩Q)/

√
2, (|0⟩Q∓

|1⟩Q)/
√
2.

2 Equation (9) accounts for the noise effects both on Q and A. A
more conservative estimation of F 0 can be obtained by focusing
directly on the noise on Q alone, i.e. tracing out the A component

of ρ̂
(11,11)
QA and studying its fidelity with |Ø⟩Q, i.e. F

(strong)
0 :=

Q⟨Ø|ρ̂(11,11)Q |Ø⟩Q ≥ F 0, with ρ̂
(11,11)
Q := trA ρ̂

(11,11)
QA . Notice that

for the noise model of Sec. IVC the two are directly connected

via the identity F 0 = F
(strong)
0 − n−1

n
p(1− |⟨0|σ̂|0⟩|2).
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Figure 1. Parametric gates V̂QA(α⃗) (green element) and

ŴQAB(β⃗) (red element) used for case of quantum registers Q,
A, and B with k = 1, n− k = 2, and r = 2 qubits respectively.
Indicating with σ̂1, σ̂2, and σ̂3 the Pauli operators, the Xθ, Yθ,
and Zθ elements of the figure represent single qubit rotations
e−iθσ̂1 , e−iθσ̂2 , and e−iθσ̂3 with the angles θ determined to

the components of the vectors α⃗, β⃗, respectively. Vertical
lines indicate instead quantum control operations which are
activated when the control qubits (indicated by the full or
empty circles) are in the logical state |1⟩ (full circle) or in |0⟩
(empty circle). As shown on the inset, each one of those gates
depend parametrically upon elements of the control vectors α⃗

and β⃗ through single qubit operations.

A possible solution, in this case, is to employ variational
quantum algorithms to run numerical searches. Our ap-
proach follows a training strategy inspired by the work
of Johnson et al. [19]. Assuming hence Q, A, and B to
be formed by collections of independent qubits (k for
Q, n − k for A, and r for B), we introduce a manifold

of transformations V̂QA(α⃗), ŴQAB(β⃗) parametrized by

classical controls vectors α⃗, β⃗ (see Fig. 1), and construct
the quantum circuit of Fig. 2. The method then proceeds
along the following stages:

1. Having selected the values of α⃗ and β⃗, the regis-
ter Q is prepared into a collection of known quan-
tum state {|ψ(1)⟩Q, · · · , |ψ(m)⟩Q} operating on the
vector |Ø⟩Q = |0⟩⊗k through action of the con-

trol gates ÛQ(1), · · · , ÛQ(m) (first cyan element of
the figure) which define the 2-design S entering
in Eq. (8). Each of such inputs is hence evolved
via a circuit (pale-orange area of the figure) that
emulates both the effect of the noise (patterned
square of the figure, see Section IVC and Fig. 4),

and the transformations V̂QA(α⃗), ŴQAB(β⃗), and

V̂ †
QA(α⃗) that are meant to implement the steps ii)

and iii) of the QEC procedure (green and red ele-
ments of the figure). Notice that in the ideal case

(i.e. if V̂QA(α⃗) and ŴQAB(β⃗) manage to completely
suppress the noise) then in correspondence with
the input |ψ(j)⟩Q the registers QA should emerge
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Figure 2. (Color online) Sketch of the variational quantum
algorithm: Q, A and B are quantum registers formed respec-
tively by k, n−k and r qubits. The initial information we wish
to protect is written in Q by the unitary gate ÛQ(j) extracted
from a 2-design set S; A and B are two auxiliary elements
(containing respectively n− k and r qubits) that are used to
implement the QEC procedure described by the parametric

gates V̂QA(α⃗), ŴQAB(β⃗), and V̂ †
QA(α⃗) of Fig. 1. The patterned

element in the central part of the scheme represents the noise
on Q and A (no noise is assumed to be active on B). Lastly,
the D-shaped measurements at the end of the circuit represent
local measurements on QA whose outcomes over the entire
collection of the possible inputs generated by the entire set S,
are processed by a classical computer which, evaluating the

cost function C(α⃗, β⃗) defined in Section IV B, decides how to

update the values of the parameters α⃗ and β⃗. Thick grey lines
in the figure represent classical control lines.

in the state |ψ(j)⟩Q ⊗ |Ø⟩A := |ψ(j)⟩Q ⊗ |0⟩⊗n−k,
which will be hence mapped into the final configu-

ration |Ø⟩QA := |0⟩⊗n by the inverse Û†
Q(j) of the

state preparation gate (second cyan element of the
figure).

2. For each choice of the index j ∈ {1, · · · ,m} a mea-
surement on the system is performed at the end of
the transformations described in stage 1 and the re-
sultingm collected outcomes used to compute a cost

function C(α⃗, β⃗) which evaluates the effectiveness
of the adopted QEC strategy in leading large values
of the average input-output fidelity. The specific
choice of the cost function is very important and is
discussed in Section IVA.

3. A classical computer decides, given the results of
the measurement, how to change the value of the

parameters α⃗ and β⃗ to be used in the subsequent

run in order to minimize the cost function C(α⃗, β⃗).
This is discussed in detail in Section IVB.

A. Cost function

The natural choice for the cost function at the stage 2
of our algorithm is provided by the expectation value of
the self-adjoint operator

Ĥ
(fid)
QA := 1̂QA − |Ø⟩QA ⟨Ø| , (10)

computed on the mean state of system QA which emerges
at the output of the quantum circuit of Fig. 2, i.e. the
quantity

C(fid)(α⃗, β⃗) := tr{ρ̂(V (α⃗),W (β⃗))
QA Ĥ

(fid)
QA } , (11)

where ρ̂
(V (α⃗),W (β⃗))
QA is the density matrix (8) evaluated

for V̂QA = V̂QA(α⃗) and ŴQAB = ŴQAB(β⃗). This choice
has two main advantages. First of all, the expectation

value C(fid)(α⃗, β⃗) can be evaluated by performing (sim-
ple) local measurement on the qubits of Q and A (in-
deed it can be computed by simply checking whether of
not each one of them is in the logical state |0⟩). Most
importantly, since by explicit evaluation one has that

C(fid)(α⃗, β⃗) = 1− F (V (α⃗),W (β⃗)), it is clear that by us-
ing (11) the algorithm will be forced to look for values

of α⃗, β⃗ that yield higher average input-output fidelities.

Despite all this, the use of C(fid)(α⃗, β⃗) as a cost function,
has a major drawback associated with the fact that the

spectrum of the Hamiltonian Ĥ
(fid)
QA exhibits maximum

degeneracy with respect to space orthogonal to the target
state |Ø⟩QA (see Fig. 3). Due to this fact a numerical
search based on a training procedure that simply target

the minimization of C(fid)(α⃗, β⃗), has non trivial chances
to get stuck somewhere in the large flat plateau associ-

ated with the eigenvalue 1 of Ĥ
(fid)
QA without finding any

good direction. in the large flat plateau A possible way
to avoid this problem is to introduce new cost-functions
Hamiltonians which, while maintaining the target vector
|Ø⟩QA as a unique ground state and still being easy to
compute, manage to remove the huge degeneracy of the

excited part of the spectra of Ĥ
(fid)
QA . Our choice is based

on the quantum Wasserstein distance of order 1 (W1)
introduced Ref. [22] which, even though it lacks some
interesting properties that the fidelity has, is less likely
to be affected by the barren plateaus phenomena [21].
As mentioned in Sec. II good estimation of the W1 dis-

tance that separate ρ̂
(V (α⃗),W (β⃗))
QA from the target state, is

provided by the following quantity

C(wass)(α⃗, β⃗) := tr{ρ̂(V (α⃗),W (β⃗))
QA Ĥ

(wass)
QA } , (12)

Ĥ
(wass)
QA :=

n∑
j=1

j Π̂
(j)
QA , (13)

where Ĥ
(wass)
QA is the Hamiltonian (3) which we express

here in terms of the projectors Π̂
(j)
QA on the sub-space of
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Ĥ
(w

ass
)

Q
A

N = 3

N = 3

N = 2N = 1

N = 2

N = 0

1

2

3

0

N = 1 N = 2 N = 3

N = 0
0

1

Figure 3. Pictorial rendering of the spectra of the Hamiltonians

Ĥ
(fid)
QA (top panel) and Ĥ

(wass)
QA (lower panel). While Ĥ

(fid)
QA

is characterized by a unique, flat plateau that includes all

the excited state, Ĥ
(wass)
QA partially removes the associated

degeneracy assigning higher energy to subspaces that have
higher number of qubits in the logical state |1⟩.

the register QA in which we have j qubits in |1⟩ and the
remaining one in |0⟩. Observe that, as already anticipated,

Ĥ
(wass)
QA is the sum of the number operators acting on the

individual qubits of the register QA as in (3): accordingly,

as C(fid)(α⃗, β⃗), C(wass)(α⃗, β⃗) can be computed from local

measurement. What C(wass)(α⃗, β⃗) does is to count the
total number of logical ones present in the system. To un-
derstand why using (12) could in principle lead to a more
efficient numerical search than the one obtained by using
(11), notice that Eq. (10) can be equivalently written as

Ĥ
(fid)
QA =

n∑
j=1

Π̂
(j)
QA. A comparison with (13) reveals hence

that indeed while both Ĥ
(fid)
QA and Ĥ

(wass)
QA admit |Ø⟩QA

as a unique ground state, the Wasserstein Hamiltonian
removes large part of the degeneracy of the high energy
spectrum of the fidelity Hamiltonian. Accordingly, it is
reasonable to expect that a numerical search that uses

Ĥ
(wass)
QA , has fewer chances to get trapped into regions of

constant energy (barren plateau) than a search based on

Ĥ
(fid)
QA ,3.

3 It goes without mentioning that alternative choices for the cost
function Hamiltonians are also available. For instance, one can

B. Descent algorithm

The algorithm that we used for this work is a gradient
descent algorithm with momentum [78]. To overcome the
numerical difficulties of using finite differences to estimate

the gradients of the cost function C(α⃗, β⃗), we exploit a
variation of the parameter-shift rule introduced in [79]
which reduces the problem to compute linear combina-
tions of the function itself evaluated in different points
that are not infinitesimally close. Specifically, we ob-
serve that, irrespectively from the choice of the operator

ĤQA, the functional dependence of C(α⃗, β⃗) upon the j-th

component of the vector β⃗ is of the form

C(α⃗, β⃗) = f(βj) :=
∑
k

tr
{
Ω̂

(k)
1 eiβj σ̂Ω̂

(k)
2 e−iβj σ̂

}
, (14)

with Ω̂
(k)
1,2 being multi-qubits operators which do not de-

pend upon βj , and with e−iβj σ̂ a single qubit rotation
generated by an element σ̂ of the Pauli set. Therefore its
gradient can be written as

∂C(α⃗, β⃗)

∂βj
= i

∑
k

tr
{
Ω̂

(k)
1 eiβj σ̂[σ̂, Ω̂

(k)
2 ]e−iβj σ̂

}
= f(βj +

π
4 )− f(βj − π

4 ) , (15)

where in the last passage we used the identity

i[σ̂, Ω̂
(k)
2 ] = ei

π
4 σ̂Ω̂2

(k)
e−i

π
4 σ̂ − e−i

π
4 σ̂Ω̂2

(k)
ei

π
4 σ̂. (16)

The gradient with respect the vector α⃗ can be computed
similarly. In this case however we observe that, due to

the fact that ρ̂
(V (α⃗),W (β⃗))
QA (ψ) depends upon the parame-

ters α⃗ via V̂QA(α⃗) and through its adjoint V̂ †
QA(α⃗), the

dependence of C(α⃗, β⃗) upon the j-th component of α⃗ is
slightly more complex. Indeed in this case we have

C(α⃗, β⃗) = g(αj , αj) , (17)

where g(α
(1)
j , α

(2)
j ) is the function

g(α
(1)
j , α

(2)
j ) :=

∑
k

tr
{
Ω̂

(k)
1 eiα

(1)
j σ̂Ω̂

(k)
2 e−iα

(1)
j σ̂ (18)

×Ω̂
(k)
3 eiα

(2)
j σ̂Ω̂

(k)
4 e−iα

(2)
j σ̂

}
,

with Ω̂
(k)
1,2,3,4 representing multi-qubits operators which

do not depend neither upon α
(1)
j nor α

(2)
j . It is important

use operators that also remove the residual degeneracies that

affect Ĥ
(wass)
QA – e.g. using the operator Ĥ

(full)
QA =

∑n
ℓ=1 wℓπ̂ℓ

with ωℓ positive weights selected so that different allocation

of |1⟩ states inside the eigenspaces of Ĥ
(wass)
QA get an assigned

ordering. Our numerical analysis however seems to indicate that
these refinements do not contribute significantly in improving
numerical search of the algorithm.
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to stress that g(α
(1)
j , α

(2)
j ) can be computed using the

same circuit of Fig. 2, by simply replacing the phases αj

of V̂QA(α⃗) and V̂ †
QA(α⃗) with α

(1)
j and α

(2)
j respectively.

Notice finally that exploiting the identity Eq. (16) we can
write

∂C(α⃗, β⃗)

∂αj
=

∂g(α
(1)
j , αj)

∂α
(1)
j

∣∣∣∣∣
α

(1)
j =αj

+
∂g(αj , α

(2)
j )

∂α
(2)
j

∣∣∣∣∣
α

(2)
j =αj

(19)

= g(αj +
π
4 , αj)− g(αj − π

4 , αj)

+ g(αj , αj +
π
4 )− g(αj , αj − π

4 ) ,

which shows that computing the gradient of C(α⃗, β⃗) with
respect to αj simply accounts to evaluate the circuit

that express g(α
(1)
j , α

(2)
j ) for four distinct values of the

parameters.

C. Noise model

The scheme presented so far can in principle be applied
to arbitrary classes of noises. In our research however
we focused on a specific model that has been extensively
studied in the literature producing explicit examples of
efficient QEC solutions which can be used as a theoretical
benchmark for our variational search. Specifically we
assume Q and A to be respectively a single qubit register
(k = 1) and a two qubit register (n = 3), globally affected
by a given species of single-qubit noise [80, 81]. These
transformations can be represented in terms of a LCPT
map of the form

ΦQA(· · · ) =
n∑
ℓ=0

K̂
(ℓ)
QA · · · K̂(ℓ)†

QA , (20)

with Kraus operators [75]

K̂
(0)
QA :=

√
1− p 1̂QA , K̂

(ℓ)
QA :=

√
p

n
σ̂(ℓ) , (21)

where for ℓ ∈ {1, · · · , n}, σ̂(ℓ) is the Pauli operator acting
on the ℓ-th qubit of QA which defines the noise species
we have selected. For instance, in the case we choose

to describe phase-flip noise then σ̂(ℓ) = σ̂
(ℓ)
3 , while for

describing bit-flip we have σ̂(ℓ) = σ̂
(ℓ)
1 . Explicit exam-

ples of V̂QA, ŴQAB which allow for exact suppression

of the noise (F (V,W ) = 1) are shown in Fig. 5. No-
tice that by construction the circuit parametrization of

V̂QA(α⃗), ŴQAB(β⃗) given in Fig. 2 include such gates as
special solution: accordingly if properly guided by an
efficient cost function, our numerical VQA search has a
chance to find the solution of Fig. 5.

V. RESULTS

In this section we study the impact of the cost func-
tion on the efficiency of the optimization algorithm of

Q

NOISE

iod le
st, tnoise,eptsmth

A
=

3

�K(3)
QA

Figure 4. Circuital implementation of the noise element of

Fig. 2: here K̂
(ℓ)
QA are weighted unitaries of Eq. (21).

Xπ /2

Xπ /4Q

A
Xπ /2

B

Q

A

Xπ /2

Xπ /4

Xπ /4

Zπ /2

Xπ /4

Xπ /4 Xπ /4

Xπ /4

Xπ /2 Xπ /2

Xπ /2

Zπ /2

Zπ /2

Figure 5. Circuital implementations of the ideal transforma-

tions V̂QA(α⃗) (left) and ŴQAB(β⃗) (right) which allow for exact
noise suppression of a single-qubit bit-flip noise model [i.e. (20)

with σ̂(ℓ) = σ̂
(ℓ)
1 ] using a quantum register B with r = 2 qubit.

gates.

Sec. IV. Assuming the single-qubit noise model detailed
in Sec. IVC and taking B to be a r = 2 qubit register,
we run two distinct numerical searches: the first obtained
by identifying C(α⃗, β⃗) with C(fid)(α⃗, β⃗) and the second

choosing instead C(wass)(α⃗, β⃗). Results are reported in
Figs. 6 and 7 for two different choices of the noise mod-
els (20), i.e. phase-flip and bit-flip. For both, we compare
the input-output average fidelity (7) at the end of the
procedure obtained with the two different cost functions,
and the number of iterations M needed for convergence.
Regarding this last quantity we set a maximum value
Mmax equal to 2000 before convergence and we chose this
limit mainly with practical choices like the maximum time
for the simulation, enforcing that a single run does not
require more than a few hours of computational time:
in case the algorithm fails to reach the convergency we
simply stop the numerical search (this is the reason for
the peak at the end of the upper orange plot in Fig. 7).
The plots report only the simulations that manage to
achieve an average fidelity that is greater or equal than
no-correction threshold bound F 0.
The first thing to observe is that for both noise mod-

els, C(fid)(α⃗, β⃗) has problem in reaching the do-nothing
threshold F 0: the probability of success being 2.6% for
the phase-flip case of Fig. 7 and only 0.2% for the bit-flip
case of Fig. 6 (for both noise models the total number of
simulations analyzed was 500). Observe also that in this
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Figure 6. Comparison of the input-output average fidelity (7)
attainable by running our optimization algorithm using the

cost function C(fid)(α⃗, β⃗) (blue data) and C(wass)(α⃗, β⃗) (orange
data). Here the error model is a single-qubit bit-flip noise
(σ̂ = σ̂1 in (20)) with p = 0.8. The no error correction
threshold (9) of this scheme is F 0 ≈ 0.822 – orange peak in
the fidelity plot, up to numerical precision. Only the runs
that produced a fidelity of at least F 0 have been included: for

C(fid)(α⃗, β⃗) this happens in the 0.2% of the runs, while for

C(wass)(α⃗, β⃗) for the 29.6%.

last case the algorithm never yields average input-output
fidelity values strictly larger than F 0 and that, even in
those cases, it requires a number M of iterations which
saturate the maximum allowed value Mmax (blue peak

in the upper plot of Fig. 7). C(was)(α⃗, β⃗) performs defi-
nitely better: to begin with it succeeds in overcoming the
threshold F 0 in one third of the simulations (specifically
40.6% for the phase-flip noise model and 29.6% for the
bit-flip noise model). Furthermore, the algorithm reaches
convergency with a number of iterations that are typically

smaller than those required by C(fid)(α⃗, β⃗).

To better enlighten the differences between the two cost
functions, we proceeded with further simulations, whose
results are summarized in Fig. 8. The idea here is to run a
two-step optimization process composed by two sequences
of runs: in the first run we start the optimization proce-

dure from a random point in the parameter space (α⃗, β⃗)

with one of the two cost functions (say C(fid)(α⃗, β⃗)), up
to convergence; after that we start a second optimization

run using the other cost function (say C(wass)(α⃗, β⃗)) but
assuming as initial condition for the parameters the final
point reached by the first run. The plots report the dif-
ference in fidelity between the second and the first run:

when we start using the C(wass)(α⃗, β⃗) in the first run, the
fidelity cannot further improve the result that is already
found, and this is represented by the fact that the best
improvement is of the order of 10−5; on the contrary, if

we started employing C(fid)(α⃗, β⃗) in the first run, the use

of C(wass)(α⃗, β⃗) in the second run typically yields sub-
stantial improvements of the performance4. Moreover, we
sampled some single descent processes and plotted the
cost in function of the iteration. When we move from
fidelity to W1, the descent part after the change of cost
function is qualitatively indistinguishable from starting
from a random point.

4 It has to be said that in few cases the figure of merit is worse
after the second optimization – see the negative bar in right panel
of Fig. 8. This is due to the fact that when using C(wass)(α⃗, β⃗)
we are not maximizing the fidelity but minimizing a function
whose stationary point corresponds to the maximum of the latter:
accordingly the final point of convergence for C(wass)(α⃗, β⃗) can
be slightly off mark in terms of fidelity. This is not a problem
because these two functions do not have a constant ratio, and we
checked that the inequalities between them are still satisfied.

VI. CONCLUSIONS

To summarize, we have shown a variational quantum al-
gorithm that allows finding the most suitable error correc-
tion procedure for a specific noise on quantum hardware.
We compared the performance of two different versions
of this algorithm using two different cost functions, the
fidelity and an approximation of the quantum Wasser-
stein distance of order one. We compared the difference
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Figure 7. Comparison of the the input-output average fi-
delity (7) attainable by running our optimization algorithm us-

ing the cost function C(fid)(α⃗, β⃗) (blue data) and C(wass)(α⃗, β⃗)
(orange data). Here the error model is a single-qubit phase-flip
noise (σ̂ = σ̂3 in (20) with p = 0.8. The no error correction
threshold (9) of this scheme is F 0 ≈ 0.822 – orange peak in
the fidelity plot, up to numerical precision. Only the runs
that produced a fidelity of at least F 0 have been included: for

C(fid)(α⃗, β⃗) this corresponds to the 2.6% of the runs, while for

C(wass)(α⃗, β⃗) the success probability is 40.6%.

in speed and the ability to obtain a useful solution be-
tween the two algorithms, finding really different trends
between the two optimization procedures. The optimiza-
tion process based on the fidelity suffers greatly from the
phenomenon of the barren plateaus, leading to very slow
convergence or no convergence at all, while the algorithm
based on the quantum W1 distance allows us to find the
configurations that correct the errors in the examples
that we explored. The obtained results show a clear im-
provement and allow us to explore further improvements
of these methods, as using different algorithms for the

minimization process, e.g. stochastic gradient descent or
higher-order algorithms like Newton or pseudo-Newton
algorithms.

Given that the gradient can be expressed only with
the cost function evaluated in a small number of circuits
that differ only in the parameter choice, the gradient of
the cost function can be computed on the same hardware
that will be used for the correction procedure. Moreover,
simulating this circuit may be difficult because of the
exponential scaling of the dimension of the Hilbert space
of a set of qubits, but this problem does not apply when
all the circuit is built on hardware, gaining a quantum
advantage. For the same reason, the same procedure
can be iterated to compute the exact Hessian of the cost
function and then apply a second-order method like the
Newton method as a descent algorithm. However, this
has not been done because the circuits that we marked
as useful have a relatively big number of parameters,
and computing the hessian scales quadratically with this
number, leading to intractable computations.

With this work, we have shown a clear advantage in
the use of this QW1 distance approximation in a gradient-
based optimization algorithm. In future work, it may be
interesting to study the effect of this cost function also
on gradient-free optimization algorithms, that do also
suffer from the barren-plateaus phenomenon, as shown in
Ref. [82].
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