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Abstract: Single-particle tracking is a powerful technique to investigate the motion of molecules or
particles. Here, we review the methods for analyzing the reconstructed trajectories, a fundamental
step for deciphering the underlying mechanisms driving the motion. First, we review the traditional
analysis based on the mean squared displacement (MSD), highlighting the sometimes-neglected
factors potentially affecting the accuracy of the results. We then report methods that exploit the distri-
bution of parameters other than displacements, e.g., angles, velocities, and times and probabilities of
reaching a target, discussing how they are more sensitive in characterizing heterogeneities and tran-
sient behaviors masked in the MSD analysis. Hidden Markov Models are also used for this purpose,
and these allow for the identification of different states, their populations and the switching kinetics.
Finally, we discuss a rapidly expanding field—trajectory analysis based on machine learning. Various
approaches, from random forest to deep learning, are used to classify trajectory motions, which can
be identified by motion models or by model-free sets of trajectory features, either previously defined
or automatically identified by the algorithms. We also review free software available for some of the
analysis methods. We emphasize that approaches based on a combination of the different methods,
including classical statistics and machine learning, may be the way to obtain the most informative
and accurate results.

Keywords: particle dynamics; molecular diffusion; molecular trajectory statistics; single-molecule
analysis; single molecule tracking; machine learning in biology; quantitative microscopy; quantitative
biology; hidden Markov models; moment scaling spectrum

1. Introduction

Single-particle tracking (SPT) is an established technique for observing the behavior
of single entities at high spatial and temporal resolution (nanometers and milliseconds)
in various scientific fields such as Biology, Chemistry, and Physics. SPT is based on the
reconstruction of the trajectories of single particles visualized in real time in the system of
interest. In life science, for example, it has been applied to resolve the working mechanisms
of molecules, organelles, and viruses [1–4].

The technique requires synergistic efforts in several aspects, such as instrumentation,
particle labeling, and data analysis [5–9]. Experimental time-lapse images are processed
with two main analysis steps—trajectory reconstruction and trajectory analysis [1,10].
The latter allows for the extraction of various parameters characterizing the behavior of
the tracked particles, such as the type of motion, diffusion coefficient, velocity, and/or
interaction events thus finding the crucial links between the observed motions and the
processes driving them. Over the years, different types of possible trajectory analyses
have been developed, with the aim of extracting more and more detailed information
about the mechanisms underlying the observed trajectories. With the proliferation of
analysis methods, it is useful to have some overview of the different possibilities to identify
approaches that may be useful for the application of interest. The available reviews on SPT
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typically aim to cover all the aspects of the technique, often including its applications [1,9].
Here, we present a comprehensive review focusing on the last step of the technique, i.e.,
track analysis.

First, we briefly review the most common and traditional methods of track analysis,
which are based on the mean squared displacement (MSD) function. In particular, we
highlight some factors that are not always considered but can affect the precision and
accuracy of the results, especially the choice of the number of points to consider in the MSD
curve for extracting parameters like the diffusion coefficient and the effects of localization
uncertainty, as well as of some experimental parameters such as temporal resolution. MSD
analysis is challenged by measurement uncertainties and by the presence of too-short
trajectories and of heterogeneities, particularly in the case of anomalous motion [11,12]. It
remains a valid tool, but various studies have indicated that alternative and sometimes
complementary approaches might allow for the obtaining of more informative results.
Distributions of parameters other than displacements have been considered, e.g., the
angular distribution within tracks, which has proved to be more sensitive for quantifying
caging and distinguishing different and even rare transport mechanisms [13].

Due to environmental heterogeneities, the presence of interactions or other processes,
and changes in motion type and parameters can also occur within a single trajectory [14].
This demands methods to partition the trajectory into multiple segments and to characterize
the motion in each state and the switching behavior between them. In some cases, the
presence of multiple states within single trajectories was undetectable in an MSD analysis; it
was instead revealed by more advanced approaches, which allowed for the characterization
of multiple states with their switching kinetics, and the consequent construction of models
of the underlying mechanisms [15,16]. Hidden Markov model approaches have been
applied in some cases to classify states characterized by different diffusivities or types of
motion and to extract populations and switching probabilities. We discuss the limitations
and challenges of this kind of analysis as well; these are related to the definition of the
states in the case of non-pure Brownian motion and to the choice of the number of states to
be considered.

Nowadays, classification is one of the main tasks solved by machine learning, which
has therefore also been applied to trajectory analysis. In the last part of the review, we
focus on these kinds of methods, which have greatly expanded in recent years. We describe
approaches based on several machine learning methods, from random forest to deep neural
networks. Machine learning methods are demonstrating good accuracy and sensitivity
and are proving to be very advantageous for detecting hidden phenomena and extracting
valuable results even from short and noisy trajectories. However, also in this case, several
challenges have arisen, such as transferring learning to experimental data after training on
simulations, time, and computational requirements, and interpretability and explainability.
We focus on some examples that show how the integration of classical statistics can be very
helpful in assessing the validity of the results and in defining the best set of features used
by the machine learning algorithm to classify trajectories.

2. Mean Squared Displacement (MSD) Analysis

Mean Squared Displacement (MSD) is the most common analysis in an SPT study. It
is the second moment of the displacements distribution as a function of time lag, i.e., it
quantifies the average squared distance traveled by a particle in a certain time (Figure 1a,b).
It can be calculated as follows:

MSD (τ = n∆t) ≡ 1
N − n

N−n

∑
j=1

|X(j∆t + τ)− X(j∆t)| 2,

where N is the number of points in the trajectory X(τ), the latter being sampled at times
∆t, 2∆t, . . . N∆t and |. . .| represents the Euclidean distance. To be more specific, the
reported calculation is used to estimate the time-averaged MSD (TAMSD) for each single-
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particle trajectory; this is the most used formulation. Another possible calculation is the
so-called ensemble-averaged MSD, in which the displacements are averaged over multiple
particles at time t. The first one is preferred because of possible heterogeneities in a
population of different particles, but tracks of sufficient length are not always available. The
two averages can also be combined into the time- and ensemble-averaged mean-squared
displacement (TEAMSD) [17].
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Figure 1. Mean Squared Displacement (MSD) analysis. (a) Different numbers of steps (different time
lags) are considered for the MSD calculation. (b) The average of all displacements with the same
time lag gives a point in the MSD curve. (c–e) The plot of MSD versus the time lag (τ) allows the
classification of the type of motion for the trajectories (in the insets) showing Brownian (c), drifted (d),
and confined (e) motion. (f) Examples of MSD behavior for superdiffusive (red line) and subdiffusive
(blue line) “anomalous” motion, compared with the one for a Brownian trajectory (orange line). Bar
in (c–e) insets: 0.16 µm. Panels (a,b) are adapted with permission from [3] © 2011 The American
Society of Gene and Cell Therapy, published by Elsevier Inc. Panels (c–e) are adapted with permission
from [18] © 2011 Elsevier B.V.

The MSD function can reflect the kind of particle motion. It has been used to distin-
guish between immobile, pure Brownian, confined and directed motions (with the latter
usually having a component of Brownian diffusion and a component of active transport
with a constant drift velocity), because these show different trends in their associated
MSD [18–20] (Figure 1c–e). For Brownian motion, the MSD increases linearly with time,
whereas linearity is lost for the other types of motion. The expressions used to fit the MSD
function for the different motions are well established and can be found elsewhere [21].

For each kind of motion, fitting the MSD function leads to the extraction of param-
eters describing the specific situation, e.g., the diffusion coefficient D for the Brownian
motion, velocity and diffusion coefficient for the directed motion, confinement radius, and
characteristic time for the confined motion [9].

In some cases, such as molecular labeling with organic dyes subject to photobleaching,
the trajectories are relatively short and only the initial part of the MSD curve can be
reconstructed, making it difficult to capture the nature of the movement from the MSD
fit [14]. In these situations, and when one wishes to measure a diffusivity regardless of the
kind of motion, the slope of a straight line passing through the first MSD points is used to
calculate a short-term diffusion coefficient [2,18,20–23].

The MSD function of a trajectory in ν dimensions can also be fitted with a general law
as follows [24,25]:

MSD(τ) = 2νDατα
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where Dα is the generalized diffusion coefficient (or anomalous diffusion constant) and α
is the anomalous exponent (Figure 1f); α close to 1 characterizes Brownian motions, α < 1
corresponds to subdiffusion, α > 1 corresponds to superdiffusion. A log–log plot of MSD
versus time is commonly used, where α is the slope of the curve in such plot [26].

A precise determination of the scaling exponent when the type of motion does not
change in the single trajectory would require at least two order of magnitude for the time
lags at which the MSD is calculated; however, some insights on the type of motion can be
inferred also from estimates calculated by considering a lower number of initial points,
especially in the case of non-homogeneous motion, e.g., for demonstrating that a trajectory
can have several drifted subtrajectories, even if it seems Brownian or even confined at
longer lag times [27].

Estimates of the standard diffusivity D (from a linear fit of MSD versus lag time) and
α are often used together to assign the type of motion. For example, Jobin et al. performed
an SPT study on GABAB (γ-aminobutyric acid type B) receptors and classified the tra-
jectories with D < 0.01 µm2 s−1 as immobile; the trajectories with D ≥ 0.01 µm2 s−1 and
0.75 ≤ α ≤ 1.25 as Brownian diffusive; the trajectories with D ≥ 0.01 µm2 s−1 and α < 0.75
as sub-diffusive, the trajectories with D ≥ 0.01 µm2 s−1 and α > 1.25 as super-diffusive [28].

Anomalous diffusion is a phenomenon often found in SPT performed in different
contexts in live cells, from membranes to the cytoplasm and nucleus; this kind of motion
has multiple origins, such as crowded environments, presence of interactions, different
transport mechanisms; deciphering its nature and causes is very helpful in understanding
fundamental cellular processes [9,26,29–32]. For the descriptions of anomalous motion
models, we refer to [9,33–35].

One area where the MSD analysis of single-molecule trajectories has been widely
applied concerns the study of membrane receptors in living cells. From the work of Kusumi
et al. [19], this approach has been used to characterize the kind of motion of different
receptor families, e.g., epidermal growth factor receptors [19,36], transferrin receptors [19],
neurotrophin receptors [18], and G protein-coupled receptors [37–39]. Typically, four types
of motion (stationary, Brownian, directed, confined) have been identified thanks to MSD
analysis, and the changes in their population under different conditions have provided
insight into the correlation between the type of motion and the function performed by the
molecule [18,37–39]. The presence of different types of motion has played a fundamen-
tal role in defining the models of the plasma membranes, e.g., this approach helped to
demonstrate the existence of membrane compartments associated with the cytoskeleton
network [19].

However, caution must be taken in the MSD analysis as some papers have pointed
out the influence of experimental conditions (especially those related to uncertainties) on
the accuracy and reliability of this analysis and of the extracted motion parameters, as we
will discuss below.

It has been reported that, in the case of Brownian motion, the localization uncertainty
(the so-called static error) produces a positive offset in the MSD curve, and the finite camera
time exposure (the so-called dynamic error) produces a negative offset; considering both
contributions, the MSD function for a ν–D trajectory can be written as follows [40–42]:

MSD(τ) = 2νDτ + 2νσ2 − 4νDR∆t

where D is the diffusion coefficient, σ2 is the variance of the position coordinates for
an immobile particle, R is the motion blur coefficient (which depends on the temporal
illumination profile during the integration time, e.g., it is equal to 1/6 in the case of
continuous illumination), and the other quantities are defined as above [40–42].

Static and dynamic errors must also be considered for other kinds of motion, but the
formalization of their contributions is more controversial in cases other than the Brownian
one [43]. Backlund et al. showed that both static and dynamic errors must be taken into
account in the case of anomalous diffusion and derived an analytical expression for the
MSD that includes both these errors in the case of fractional Brownian motion (FBM) [43];
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FBM is a generalization of the Brownian motion such that the distribution
∼
BH(t) of the

displacement at time t is Gaussian with variance proportional to t2H , it is self-similar (i.e.,
∼
BH(αt) = αH

∼
BH(t)) and the increments are stationary (i.e., they depend only on the lag time

and not on a possibly different starting time) [43]. Destainville et al. calculated the effects
of time averaging in the case of confined diffusion and provided a corrected expression
for the MSD; however, they showed that when the parameter L2/12D (equilibration time,
where L is the apparent confinement domain size) is large compared to the exposure time,
the estimates of the confinement size and the diffusion coefficient are not affected by the
corrections [44].

One question that may arise concerns the choice of the points in the MSD function,
and therefore their optimal number, which should be used to extract the estimates of the
motion parameters. Indeed, at large time lags, the MSD points are less averaged and
thus subject to greater statistical fluctuations, and their cross-correlations are higher than
for short time lags (even if these are never zero), therefore they cannot be approximately
considered independent measurements; however, at shorter time lags, the MSD points are
more affected by the contribution of the localization error [45,46]. The number of points
used to estimate the short-term diffusion coefficient was different in different studies,
depending on the specific conditions [47,48]. Two points (D12, using time lags 1 and 2)
were typically used by some groups [2,20,49,50], three points (D2–4, time lags 2, 3, and
4) were used by other ones [51,52]. The optimal number of points to use was associated
to the so-called reduced localization error r = σ2

D∆t . Michalet found, through theory and
simulations, that when r ≪ 1 (uncertainty dominated by diffusion), the best estimate of
D is obtained by considering the first and second points of the calculated MSD (without
considering a (0,0) point); when r ≫ 1 (uncertainty dominated by localization uncertainty),
a larger number of points are needed to reduce the impact of localization uncertainty, and
their optimal number depends on r and on the number of time steps in the trajectory [46].
Ernst et al. analyzed this issue starting from a very long 3D experimental trajectory of a
fluorescent bead acquired using orbital tracking and analyzing subtrajectories with fixed
numbers of time points extracted from it. They found out that they needed to exclude the
MSD point at the shortest time lag because of the impact of residual oscillations of the
piezo used in their orbital tracking setup [45]. Considering this experimental quirk, they
demonstrated that using four points, i.e., from the second to the fifth point of the MSD,
minimized the ratio of the standard deviation over the estimated value of the diffusion
coefficient, for a value of r ≈ 0.8, in good agreement with the work of Michalet cited earlier
in this paragraph [45]; however, they found that, in their case, the optimal number of MSD
points did not seem to depend on the length of the tracks [45].

Kepten et al. published a guideline for MSD analysis in the case of anomalous dif-
fusion [12]. They analyzed the precision and accuracy of the fitted MSD by simulating
different conditions in terms of trajectory length, measurement error, and anomalous ex-
ponent. In each case, they identified a maximum lag time to be used in the MSD fit that
depends on the three parameters. Thus, they concluded that estimating the measurement
uncertainty and the range of the anomalous exponent beforehand can significantly help to
improve the accuracy of the results, by selecting the optimal number of points for MSD
analysis and fitting. Under conditions like short trajectories and no estimation of the
measurement uncertainty, or in the case of relatively large measurement uncertainty, the
MSD results were highly inaccurate.

We have also previously investigated the effects of different uncertainties and errors
on MSD-based estimates [53]. In particular, we considered the effects of different temporal
resolutions on the distribution of the short-term diffusion coefficient in the case of pure
Brownian motion (Figure 2). We observed that variations in temporal resolution can cause
shifts and broadening in such distribution. This type of effect is related to both localization
uncertainty (static and dynamic, the latter producing motion blur effects) and tracking
errors, which have different impacts on the diffusivity estimates depending on the interplay
of temporal sampling with conditions such as diffusivity, density, signal-to-noise ratio.
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We showed that the observed effects cannot be fully explained by the available theory,
e.g., the additive offset introduced in the MSD function to include static and dynamic
errors [40–42] discussed above is not enough to explain the effects we observed. Also, in
this case, preliminary evaluations of the impact of measurement and analysis uncertainties
are helpful in choosing the proper experimental conditions, such as the temporal resolution,
and to improve the accuracy and precision of the results.
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Figure 2. Effects of time resolution on estimates of diffusion coefficient by MSD analysis. (a) Movies
of single molecules diffusing with Brownian motion are simulated with a diffusion coefficient of
2 µm2/s at different time resolutions ∆t; we show the first frame of each movie and some of the
reconstructed trajectories. (b) The histogram shows the distributions (normalized to 1 at the peak) of
the short-term diffusion coefficients estimated from the first two points of the MSD function using
three different time resolutions. Data were obtained by detection and tracking on simulated movies.
(c) The peak of the estimated distribution of the short-term diffusion coefficient (Dpeak) is shown
at different time resolutions. Data were obtained by detection and tracking on simulated movies
(black, including static and dynamic localization errors and tracking errors) and by tracking on exact
simulated positions (grey, including tracking errors only). See [53] for more details and examples.

In addition to the caveats and necessary precautions discussed above, it is also impor-
tant to note that a simple MSD analysis is not sufficient in many cases; it cannot be used
when multiple modes of motion compose a single trajectory, and it also cannot discern
amongst different mechanisms producing the same MSD behavior, especially in the case of
anomalous diffusion. We will describe these cases in the following sections, and discuss
some alternative methods for analyzing the trajectories derived from SPT.

3. Alternatives to MSD Based on Classical Statistics

An often-used alternative to the MSD analysis is the Moment Scaling Spectrum (MSS);
while MSD focuses only on the second moment of the particle position distribution, the
MSS considers more moments of order ν for different time lags τ as follows [54]:

µν(τ) =
1

N − n

N−n

∑
j=1

|X(j∆t + τ)− X(j∆t)|ν.

The case ν = 2 is the MSD, and usually ν from 1 to 6 are considered [55,56]. Each
moment is assumed to depend on the time lag in the form µν(τ) ∼ τγν eventually, with an
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addictive offset to include the effects of uncertainties explained above. The plot of γν versus
ν is called the moment scaling spectrum (MSS). By analyzing the MSS, one can understand
if there could be distinct modes of motion in a single trajectory. Indeed, for a self-similar
trajectory, the MSS can be fitted by a straight line passing through the origin and its slope γ
reflects the type of motion as follows: a slope close to zero characterizes stationary particles;
a slope between 0 and 0.5 indicates a sub-diffusive/confinement regime; a slope close to
0.5 indicates pure diffusion; a slope higher than 0.5 characterizes the super-diffusive regime
(γ gives the same classification as half the anomalous exponent α defined above, and the
value should also be almost the same for self-similar trajectories) [55–57]. In this case,
since the MSS is based on more moments than the MSD, it can provide a more robust
characterization of the motion. If, instead, the γν is not directly proportional to ν, one
can conclude that the trajectory is not self-similar and suspect of inhomogeneities in the
particle motion; in this sense, MSS is more useful in analyzing complex and dynamic motion
patterns [57]. When inhomogeneous trajectories are suspected, they are then often subjected
to a segmentation in subtrajectories, e.g., detecting transient arrests of diffusion (TADs, a
method based on transient confinement analysis as described in the following and in [58]).
This kind of analysis has been used for many SPT analyses [23,54,56,57,59,60]. Marchetti
et al. used the MSS analysis to distinguish between self-similar and multimodal trajectories
in an SPT study on the neurotrophic receptor TrkA [23,60]. By combining MSS, MSD,
and TAD [58] analyses, they obtained a classification of trajectories and subtrajectories
into immobile, slow, fast, drifted, and TAD events. Moreover, they used bidimensional
histograms of γ versus D12 (the short-term diffusion coefficient obtained by MSD, Figure 3)
measured for the receptor under different conditions (stimulation by different ligands
or administration of different drugs to the cells), identifying different dynamic regions
in the plot. An analysis of the changes in populations in these regions in the different
conditions allowed for the association of each region with a behavior of the receptor
(such as free-diffusion, formation of signaling platform, assembly of signaling endosomes
precursors). The authors concluded that the receptor dynamics on the plasma membrane
is a specific signature of its activation state and is ligand-dependent (different ligands
produce different dynamics patterns called the “ligand fingerprinting” effect); therefore,
the receptor dynamics induced by ligand binding has a strict correlation with the induced
biological response.
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Figure 3. Bidimensional histograms of the γ coefficient (from the MSS analysis) versus the short-term
diffusion coefficient D (from the MSD analysis) measured by SPT for the TrkA receptor (unstimulated
in (a), stimulated by the nerve growth factor, NGF, in (b)). White rectangles numbered from 1 to
8 correspond to the different identified dynamic regions [23]. On the right the color bar shows
the frequency of the total D-γ distributions in logarithmic scale and normalized to 1 at the peak.
Reproduced with permission from [23] (© 2013 The Company of Biologists Ltd.), permission conveyed
through Copyright Clearance Center, Inc.
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An important type of motion for biological SPT applications is the one caused by
confinement; considering membrane proteins for example, this can be due to clustering,
to cytoskeleton-mediated compartmentalization, or to the presence of lipid domains, and
is often associated with the activation of receptors or the regulation of their density in
specific areas [23,61–63]. Indeed, one of the first methods to detect changes in motion within
trajectories focused on the detection of transient confinement. Such periods of motion were
identified by calculating the probability of remaining in a region for a significantly longer
period of time compared to the case of a pure Brownian motion with the average D of
the trajectory. The analysis was performed by testing the average square displacement
per frame of a particle in a moving window and allowed for the separation of a track
into different segments [58]. This method has been widely applied and continues to be
so [23,64–66]. There are also other more general approaches based on the segmentation and
classification applied on different rolling windows within tracks, for example, using MSD
analysis in each window [67,68] or considering velocity statistics (e.g., average, median,
and/or maximum, considering its direction as well) in each window [27,69–71]. One
challenge with this type of strategy is the choice of the window length; indeed, smaller
windows are required to increase the sensitivity for the detection of motion switches, but
larger windows are required to increase the accuracy of motion classification [67,72]. Thus,
in some cases, this type of approach fails to detect short-lived motion types or gives variable
results depending on the window size [23,73].

Vega et al. developed a method called the “divide-and-conquer moment scaling
spectrum” (DC-MSS), which uncouples the detection of motion switches from motion
classification, overcoming the main limitation of traditional rolling-window-based ap-
proaches [72]. After a first segmentation based on a local movement descriptor (the maxi-
mum pairwise distance between particle positions within an 11-frame moving window),
the motion classification is performed via the MSS analysis, which is also exploited to refine
the initial track segmentation. One reported limitation was the requirement of relatively
long periods (at least 20 frames) characterized by the same type of motion for correct
identification. However, the method was tested on the cell membrane protein CD44 tracked
in macrophages and was able to distinguish changes in mobility due to interactions with
the actin cortex [72].

Another possible analysis approach is based on the van Hove correlation (vHc) func-
tion, which is the displacement distribution at the lag time of interest [13,74]. For pure
or fractional Brownian motion, the van Hove correlation function is a Gaussian distribu-
tion. The Gaussian form of the ensemble-averaged vHc function indicates a homogeneous
system of particles moving with a Brownian motion and the same diffusion coefficient.
Deviations from Gaussian behavior indicate heterogeneous systems (in the case of an
ensemble-averaged distribution) or non-Brownian motion in the case of a single-particle
displacement distribution. In a study of transcriptional regulators, Wagh, Stavreva et al.
approximated the vHc as a superposition of Gaussian functions and, using an iterative
inversion procedure, calculated the distribution of MSDs, finding two different mobility
states in single nucleosome tracks [75].

Spot On is a free tool for SPT analysis based on the fitting of an analytical model to
the empirical displacement distribution at various time lags (equivalent to the vHc) using
non-linear least squares fitting [76] (Table 1). The model is constructed by calculating the
probability of a particle having a given displacement in a given time delay; it accounts
for localization errors (which can be user-defined or inferred from the data) and corrects
for the defocalization bias (out-of-focus motion) and the undercount of the fast diffusing
population (caused by the fact that such molecules spend less time in focus and are more
subject to motion blurring). The model considers only pure Brownian motions and two or
three possible populations. Spot On extracts diffusion coefficients and subpopulations of
trajectories. It has been tested and validated on simulated and experimental SPT data; the
latter obtained by tracking different types of nuclear protein dynamics in live cells. The
Spot On web interface is freely available at [77]; the code is available on GitLab [78]; the
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Matlab command line version is available at [79]; and the Python command line version is
available at [80]. A TrackMate plugin is also available which allows the trajectory obtained
by TrackMate to be uploaded directly to Spot On for analysis [81].

Table 1. Freely available software for SPT analysis. The columns report the name of the software, the
type of analysis implemented, the types of motion considered, the programming language in which
it is implemented, whether localization error is considered or not, the number of mobility states that
can be considered, the experimental (if available) application reported in the software publication,
and the reference for the software or where it is described.

Software Method Motion
Models Implementation Localization

Error
Number of

States
Studied
Proteins Ref.

Spot-On

fitting of the
empirical

displacement
distribution

Brownian web interface,
Matlab, Python yes 2 or 3 H2B, CTCF,

NLS, Sox2 [76–80]

Saspt Bayesian
analysis model free Python yes found by the

analysis RARA, H2B [82–84]

vbSPT HMM model free Matlab no found by the
analysis

RNA-
binding

protein Hfq
[85,86]

pEMv2 1

(https:
//github.com/

MochrieLab/
pEMv2

(accessed 6
August 2024))

machine
learning

(perturbation
expectation-

maximization)

model free Matlab yes found by the
analysis

Rho GTPases
(version 1),
simulations
(version 2)

[87,88]

TraJClassifier random forest

normal
diffusion,

subdiffusion,
confined
diffusion,
directed
motion

imageJ plugin yes 4 fluorescent
nanoparticles [89,90]

DiffusionLab

manual or
machine
learning

classification

model free Matlab yes up to 5 simulations [91]

iHMMSPT infinite HMM Brownian Matlab no found by the
analysis

B-cell
receptor [92,93]

1 See the main text for the explanation about the version 1 of the software.

Heckert et al. developed a method based on Bayesian analysis that they refer to as
state array SPT (SaSPT, Table 1) [82]. It approximates continuous diffusion coefficient
distributions with a grid of discrete states to calculate the posterior occupancy at each point
in the grid. The method can estimate an unknown number of diffusion states, even in the
case of non-discrete diffusion coefficient distributions, incorporates localization errors, and
corrects for the overestimation of the population of slow states due to the defocalization bias.
However, it does not deal with transitions between states. SA can be generalized to any
motion model parameterized by a likelihood function. The method has been implemented
in a Python module available on GitHub [83], with available documentation [84].

Several other approaches, typically based on the distributions of the parameters other
than displacements, have been proposed to increase the amount of information extracted
from trajectories, particularly to gain more insight into the underlying mechanisms govern-
ing the observed system [13]. A relevant example is the distribution of directional changes

https://github.com/MochrieLab/pEMv2
https://github.com/MochrieLab/pEMv2
https://github.com/MochrieLab/pEMv2
https://github.com/MochrieLab/pEMv2
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within trajectories [13,94,95]. Burov et al. considered relative angles at different time scales,
where the trajectories were sampled with a certain time resolution, the resulting points were
connected by vectors, and the angles between successive vectors were measured. Relative
angles have been shown to have different distributions for different types of motions, and,
by using variable time intervals, it is possible to capture the time scale over which the
kind of dynamic is relevant [94]. Distribution of angular displacements can be plotted
using radial histograms (Figure 4). As observed by Harrison et al., the angular distribution
and the MSD analysis can be used as complementary approaches; in this way, the authors
analyzed the motion of lipid droplets in living cells and were able to identify different
motion regimes (characterized by different angular persistence and different features of
sub/super-diffusivity) at different time scales [95], with transition points between the
regimes that coincide in the two types of analysis [95]. The determination of directional
persistence and associated time-dependent directional changes have been performed by
analyzing the distribution of a turning angle between the segments of the track as a function
of the lag time [13,14]. Directional persistence may be indicative of an active transport
mechanism driven, for example, by molecular motors [13,14].

Int. J. Mol. Sci. 2024, 25, x FOR PEER REVIEW 10 of 28 
 

 

measured. Relative angles have been shown to have different distributions for different 
types of motions, and, by using variable time intervals, it is possible to capture the time 
scale over which the kind of dynamic is relevant [94]. Distribution of angular displace-
ments can be plotted using radial histograms (Figure 4). As observed by Harrison et al., 
the angular distribution and the MSD analysis can be used as complementary approaches; 
in this way, the authors analyzed the motion of lipid droplets in living cells and were able 
to identify different motion regimes (characterized by different angular persistence and 
different features of sub/super-diffusivity) at different time scales [95], with transition 
points between the regimes that coincide in the two types of analysis [95]. The determina-
tion of directional persistence and associated time-dependent directional changes have 
been performed by analyzing the distribution of a turning angle between the segments of 
the track as a function of the lag time [13,14]. Directional persistence may be indicative of 
an active transport mechanism driven, for example, by molecular motors [13,14]. 

 
Figure 4. (a) The trajectories of three particles are shown as examples in blue, green, and red. Panels 
(b–d) show the radial histograms obtained by calculating the angular displacement between each 
successive time step: the angle is reported along the azimuthal axis, the frequency for that angle is 
reported along the radial direction. In (b), the particle has no angular preferences, typical of Brown-
ian motion; in (c), the particle tends not to change direction (angular distribution center close to 0°); 
in (d), the particle tends to move in the opposite direction for each time point (angular distribution 
center close to 180°). Reproduced with permission from [14] (© 2019 John Wiley and Sons, Inc.), 
permission conveyed through Copyright Clearance Center, Inc. 

Another quantity used in the analysis of transport mechanisms is velocity. The dis-
tribution of velocity within individual particle trajectories has been used, for example, to 
characterize the motion of the motor protein Myosin V in the cytoplasm of live cells [96], 
the axonal transport of vesicles carrying neurotrophins in neurons [69–71] (with the used 
MATALB scripts reported in [71]) or the endocytic pathway of the influenza virus [97]. 
Tejedor et al. proposed a method based on a mean maximal excursion statistic (MMEs) for 
the analysis of different kinds of anomalous subdiffusion motions [98]. The maximal ex-
cursion is the largest distance covered by a particle in a time interval; an average is 

Figure 4. (a) The trajectories of three particles are shown as examples in blue, green, and red. Panels
(b–d) show the radial histograms obtained by calculating the angular displacement between each
successive time step: the angle is reported along the azimuthal axis, the frequency for that angle is
reported along the radial direction. In (b), the particle has no angular preferences, typical of Brownian
motion; in (c), the particle tends not to change direction (angular distribution center close to 0◦); in
(d), the particle tends to move in the opposite direction for each time point (angular distribution
center close to 180◦). Reproduced with permission from [14] (© 2019 John Wiley and Sons, Inc.),
permission conveyed through Copyright Clearance Center, Inc.

Another quantity used in the analysis of transport mechanisms is velocity. The dis-
tribution of velocity within individual particle trajectories has been used, for example, to
characterize the motion of the motor protein Myosin V in the cytoplasm of live cells [96],
the axonal transport of vesicles carrying neurotrophins in neurons [69–71] (with the used
MATALB scripts reported in [71]) or the endocytic pathway of the influenza virus [97]. Teje-
dor et al. proposed a method based on a mean maximal excursion statistic (MMEs) for the
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analysis of different kinds of anomalous subdiffusion motions [98]. The maximal excursion
is the largest distance covered by a particle in a time interval; an average is performed over
all the trajectories. They showed that MSD analysis is not able to discriminate between
two models used to simulate different kinds of anomalous diffusion that give rise to the
same anomalous exponent; instead, the additional observables they introduced, based on
the moments of the MME, allowed them to distinguish between different subdiffusion
mechanisms as well as to obtain more precise estimates of the anomalous exponent [98,99].

Also, Condamin et al. [100] observed that subdiffusion can arise from different mecha-
nisms leading to similar scaling laws, which can therefore not be distinguished by MSD
analysis alone. The authors considered the following two different microscopic models of
subdiffusion: (i) continuous time random walks (CTRWs) with a heavy-tailed distribution
of waiting time, where the high waiting times could be caused by a crowded environment
or to metastable chemical binding (in “traps”); and (ii) motion with fixed fractal obstacles.
These models are considered relevant for anomalous subdiffusive motion in living cells,
where crowding can be due to the high density of molecules, aggregates, or “traps”, e.g., in
the plasma membrane or in the cytoplasm, and fixed obstacles can be created by membranes
in the cytoplasm or cytoskeletal elements in both the plasma membrane and cytoplasm.
They based the analysis on three “first-passage observables”: (1) the time it takes a particle
from a given site to reach a target for the first time (first-passage time); (2) the probability of
reaching a given target before reaching another target (first-passage splitting probability);
and (3) the time a particle spends at a given site (occupation time). The distribution of
these variables is different in the two subdiffusive mechanisms, providing information
on the underlying nature of the processes, and, e.g., allowing for an explanation of the
kinetics of reactions especially when they are transport-limited (i.e., in conditions of low
concentrations of reactants).

Izeddin et al. studied the target-search strategies of two different transcription fac-
tors in the nucleus using SPT [30]. The two molecules were the proto-oncogene, c-Myc,
and the positive transcription elongation factor, P-TEFb. The authors showed that these
two transcription factors adopted the following different strategies to explore the nuclear
space and search for their targets: c-Myc showed free diffusion, more specifically, c-Myc
used a “non-compact” strategy, moving everywhere in the nucleus with an equal chance of
reaching any target regardless of its position; P-TEFb showed a motion confined by fractal
structures, i.e., P-TEFb followed a “compact” behavior in which a specific path guides it to
its potential targets. The authors used analysis based on MSD, angular distributions and
first-passage observables to support their conclusions, providing an interesting example of
how different methods of analysis can be exploited together and complemented to gain
more insight into the observed trajectories and to construct more informative descriptions
of the processes under investigation. Their results showed that the nuclear architecture is
protein-specific, and that the geometry of the exploration paths is important for regulating
transcription factor function and controlling gene expression [30].

Other approaches introduced to investigate anomalous motions, e.g., to distinguish
between different types of subdiffusion, are based [99,101,102] on the velocity autocorrela-
tion function [33,103,104], on the displacement correlation function [105,106], on the power
spectral density of the displacement [107–109], on the amplitude scatter distribution (which
describes the distribution of the TAMSD around the TEAMSD when considering multiple
trajectories/particles) [110–112], and on p-variations [101,102]. p-variation for a trajectory
X(τ) of total duration T is defined as starting from the partial sum of increments as follows:

V(p)
N (t) = ∑2N−1

j=0

∣∣∣∣X(
min

{
(j + 1)

T
2N , t

})
− X

(
min

{
j

T
2N , t

})∣∣∣∣p
,

where t < T and |. . .| indicates the Euclidean distance; the p-variation is formally the
limit for N → ∞ of V(p)

N (t), but some insight on the process behind a motion type can be

inferred by studying how estimates of V(p)
N (t) statistical changes with the exponent p and
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with time, especially for subdiffusive motion; in particular, the limit exists, is non-zero and
finite, and, on average, tends to the pth momentum of displacement at time t, only for p = 2
in the case of Brownian motion and of CTRW, and for p = 2/α for a FBM or a random walk
on a fractal structure (RWF) with an anomalous exponent α [99,101,102].

Weron et al. recently published a study comparing different analysis approaches on the
SPT data obtained on G proteins and G-coupled receptors with the aim of classifying their
dynamics [113]. First, they used a standard MSD approach based on the use of thresholds
for the anomalous coefficient to define the regions of sub-, normal and super-diffusion.
Due to the strong influence of the cutoff values on the results, they turned to statistical
hypothesis testing. They used the anomalous exponent as the test statistic in a two-sided
approach, testing the null hypothesis of free diffusion against the two alternatives and
calculating the critical regions after choosing the significance level. They also applied the
statistical testing approach using statistics derived from the maximum excursion (similar
to the MMEs) and from p-variations. The classification of trajectories led to different
results depending on the used method. The standard MSD approach underclassified free
diffusion and overclassified superdiffusion; p-variations is the method that gave the highest
percentage of subdiffusion. With the help of simulations, they showed that the results
depended indeed on the type of process. The statistical approach was more robust than
the standard MSD based on the cut-offs; but none of the tested statistics performed at best
in all the cases and each one gave the best result in specific situations (i.e., depending on
the kind of motion and length of tracks). They suggested combining the approaches by
trying to apply all the methods. If the classification results were compatible, any of the
methods could be used; if not, they proposed either to calculate an average of the results,
or to use other methods to identify the process driving the movement and applying the
most accurate test in such a case.

4. Markov Modelling

The task of trajectory segmentation and classification in SPT can be approached by
methods based on Markov Modelling, which is used to describe systems that can exist in
different states with certain transition probabilities between the different states, where these
probabilities depend only on the current state and not on previous ones. In SPT, hidden
Markov models (HMMs) are typically used, in which the Markov process is assumed to
have unobserved (hidden) states, and the observations made provide indirect information
about the state. In the end, HMMs allow for the characterization of different diffusive states
and estimating the probabilities of transition between them.

Cairo et al. studied, with this method, the mobility of CD45 in T lymphocytes inves-
tigated by SPT [16]. They applied both MSD analysis and HMM analysis. Only HMM
could detect heterogeneities and motion transitions within a single trajectory (masked in
MSD analysis), extracting the switching kinetics between the two identified states. HMM
allowed the authors to obtain the association and dissociation rates for the interaction
between CD45 and the cytoskeleton, and then design a model for these interactions.

In several cases, the HMM analysis is applied considering a random switching
between (typically two) purely diffusive states distinguished by different diffusion
coefficients [114–116]. However, some studies have shown that, in certain cases, when
there are also non-pure Brownian motion types, such a description of states cannot detect
changes in the kind of motion. Monnier et al. observed this problem when considering
trajectories that included switching between directed and random motion. To detect direct
transport, they had to develop an HMM analysis that explicitly included models of both
diffusive and directed motions, with Bayesian selection inferring the one consistent with
the displacement along the tracks. With this approach, they were able to detect the transient
transport states from the tracks of mRNA–protein complexes in living cells [73].

Slator et al. also found that an HMM approach detecting transitions only as changes in
diffusivities is not suitable for segmenting the trajectories of the ganglioside GM1 in model
membranes. A specific modeling of confinement was necessary and was incorporated into
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an HMM analysis based on the switching between free diffusion and confinement in a
harmonic potential well, potentially slowly diffusing. The developed model allowed for
the detection of the two states, their switching times and their parameters, i.e., the free
diffusion coefficient, the strength of the potential well, and the position of the potential
well center and its diffusivity [117].

The HMM was also developed for the identification of states with two different direc-
tional persistence inside single-particle trajectories, in order to study different intracellular
transport mechanisms; the directional persistence on a point was inferred by considering
the turning angle around that point at different multiples of the frame time (from one to
five, in the analyzed examples) [85]. The authors achieved a good separation into “active”
and “inactive” states. However, they needed to classify the turning angles with only two
states (forward and backward turns) to keep the number of model parameters low, and
they recognized that this modeling was a crude simplification [85].

One challenge with HMM models is finding an objective way to determine the number
of states. This challenge can be tackled using machine learning approaches, as discussed in
the next section. Here, we discuss some approaches based on classical statistics. Most of
the traditional approaches used a fixed number of states; instead, Persson et al. developed
a method (called variational Bayes SPT, vbSPT, Figure 5, Table 1) for HMM-based motion
analysis, which inferred the model parameters, including the number of diffusive states,
from the data [118]. Each state was described by a diffusion constant and a state lifetime.
Identifying the correct number of states required a compromise between the goodness of
fit and the complexity of the model. The approach has been applied to the intracellular
diffusion of the RNA-binding protein, Hfq, and the different identified diffusive states
have been mapped into the corresponding binding states. vbSPT is freely available as a
software package [86]. This software has also been used to identify four different states in
the mobility of G proteins and their receptors, observed by SPT on the cell membrane [119].
For each state, the authors extracted the diffusion coefficient, occupancy fraction, dwell
time, and transition probability from the HMM analysis.
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Figure 5. Variational Bayes SPT (vbSPT) software applied to simulated data. (a) Top: simulation of a
smaller region with lower diffusion coefficient within a larger area with higher diffusion coefficient.
Bottom: results of the vbSPT analysis that identified two states described by the indicated parameters
of diffusion coefficient (D), mean lifetime (τ) and transition probabilities during one time step (0.02,
0.10). (b) A single state is correctly identified by vbSPT for a homogeneous region with a single
diffusion coefficient. (c) (Top): simulation of a region with a continuously increasing diffusion
coefficient along the axis. (Bottom): results of the vbSPT analysis that identify three states with
the indicated parameters. Reproduced with permission from [118] (©2013 Nature America, Inc.),
permission conveyed through Copyright Clearance Center, Inc.
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A combined MSS and HMM analysis was performed by Gormal et al. in an SPT study
on β2-adrenergic receptors [120]. The MSS revealed a classification of the trajectories into
three motion modes—immobile, confined, and free. The HMM confirmed a three-state
model (five states allowed; best fit using vbSPT software resulted in three states), which, in
this case, was characterized only by different diffusion coefficients (one so low that the state
was called “immobile”). This investigation allowed the authors to identify the population
of the different states and to study the activation mechanism of the receptor.

Falcao and Coombs also addressed the issue concerning a fixed number of states [92].
They considered a method based on a so-called infinite HMM (iHMM, an extension of
HMM to an infinite number of states) which exploits a non-parametric Bayesian approach.
It infers the number of states, the transition rates, and the diffusion coefficient defining
each state from the data. The software is freely available [93]. As observed for other HMM
models cited above, only a pure diffusive motion with different diffusion coefficients was
considered; further improvements could include other motion kinds such as confinement
or directed motion.

One limitation of HMMs arises from their main characteristic of being memory-
less, and this approximation could be too crude in some SPT applications, e.g., for ano-
malous motion in viscoelastic media, or diffusion in crowded and/or heterogeneous
environments [121–123]. Indeed, there have been some theoretical or computational works
about including memory effects of the (generalized) Langevin equation to study particle
motion in complex environments [121,124–126]; also, some expected statistics have been
calculated in these cases (e.g., MSD and first passage times [122,123]). However, we did
not find applications of these methods to the analysis of experimental or simulated single-
particle tracks. Although some memory effects in the motion are included in some models
of anomalous diffusion already discussed above, we hope that these findings will soon be
considered in some automated algorithm for single-particle tracking analysis.

5. Machine Learning Analysis

Classification is one of the main tasks that machine learning (ML) can solve in a wide
range of applications today, and the field of trajectory analysis in SPT also benefits from
the recent explosion of this type of approaches. In the following, we give examples of
the numerous methods based on this branch of artificial intelligence (AI) that have been
introduced to overcome the limitations of previous strategies. Figure 6 shows a general
example of trajectory classification by supervised ML, a type of algorithm particularly used
for these purposes. It involves training a model on a labeled dataset, in which each training
example is paired with an output label; the model learns to make decisions based on this
input–output mapping.
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Wagner et al. developed a random forest classifier (a supervised approach that ex-
ploits an ensemble of decision trees [128]) to segment and classify particle trajectories into
four main motion types (confined, normal, directed, anomalous diffusion). They used
the following nine features to characterize the trajectories: the anomalous exponent, the
asymmetry, the efficiency (related to the ratio of the squared net displacement to the sum
of the squared step displacements), the fractal dimension, a measure of gaussianity for
the displacements, a measure of kurtosis (calculated using the positions projected on the
dominant eigenvector of the radius of gyration tensor), a mean squared displacement ratio
between two different time lags, the straightness (related to the ratio of the net displacement
to the sum of step lengths), and the trappedness (probability of trapping) [89]. The method,
after training on simulated tracks, was able to infer the motion type and its parameters for
each segment under different experimental conditions. The developed software is freely
available as an ImageJ plugin (TraJClassifier, available at [90], see also Table 1).

An ML random-forest-based method was also developed by Muñoz-Gil et al. to
classify tracks showing normal or anomalous (sub- or super-diffusion) motion with the
calculation of the anomalous exponent [129]. The approach also worked for short tracks
and in the presence of noise, and the authors showed its ability to transfer learning to data
generated with theoretical models not included in the training set.

Another software package developed for the analysis of SPT data under difficult
conditions, i.e., the presence of short trajectories and heterogeneities, is DiffusionLab [91]
(Figure 7, Table 1). In this package, after importing the trajectories, a set of features is
calculated for each of them. The software includes some predefined features, and user-
defined ones can be added by creating new code files. The predefined features are the
number of points (number of consecutive localizations), length (sum of all the individual
displacements), radius of the minimum bounding circle (radius of the smallest enclosing
circle that can be drawn around the localization coordinates, describing their spatial ex-
tension), distance between the center of the minimum bounding circle and the center of
mass (describing how homogeneously points are spatially distributed), elongation (weight
of the first principal component of localization coordinates), elongation angle (direction
of the first principal component of localization coordinates), entropy (measurement of
spatial randomness), and tortuosity (the ratio of the distance between the start and end
points versus the length of the track, describing start-to-end directionality) [91,130]. A
classification model is built either manually (by setting user-defined thresholds on the
features) or by machine learning through a hierarchical classification tree (other supervised
machine learning tools available in MATLAB can also be used). In the case of machine
learning, the thresholds and trajectory features to be considered are selected automatically
after training the model on a suitable dataset (up to five classes allowed); the classification
model is used to group tracks into populations with similar behaviors. The analysis of the
motion, useful to extract parameters characterizing each group, is then performed either
on each track or on each group of tracks, considering the following: time-averaged MSD
analysis can be performed on each track if they are sufficiently long; however, if the tracks
are too short, it is averaged over multiple tracks within the same group to obtain more
robust estimates of motion parameters. The software requires MATLAB and is freely avail-
able from [131]. DiffusionLab supports importing tracks from three SPT software—DoM
(Image-J plug-in), Localizer (Igor Pro plug-in), and COMSOL Multiphysics (a commercial
software for simulations) [130]. Although the developers state that support for importing
other formats can be requested, a useful improvement might be the ability to automatically
import from some of the most widely used SPT software for life sciences, such as u-track
and TrackMate [10,132].
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Figure 7. Workflow of DiffusionLab trajectory analysis. (1) Trajectories are imported; (2) a set of
trajectory properties is calculated; (3) a classification model is constructed either manually (3a) or
by machine learning (3b); (4) trajectories are classified with the constructed classification model and
pooled into populations with similar behavior; (5) MSD analysis is performed. Reproduced with
permission from [91] © The Author(s) 2022.

Pinholt introduced a general approach for SPT analysis (called “diffusional finger-
print”) that allows for the extraction of diffusional patterns of tracks, independently of
the underlying diffusion type [133]. It is based on a set of 17 descriptive features, pro-
viding the advantage of not requiring a priori assumptions about the type of movement,
unlike model-based analysis. Classification is achieved by a pattern recognition algorithm
based on ML, which trains a logistic regression model. The authors demonstrated that
training and prediction can be performed on experimental data, eliminating the need for
pre-training on simulated data and the assumption of correspondence between simulations
and experiments. To train the model to understand when two processes are dissimilar,
different experimental conditions were used. The label in the training on experimental
data corresponded to the different observed experimental conditions. The distributions of
features and the ranking of the relevance of the features were used in the application of
the trained model to decide whether two diffusion processes were different and to infer
important diffusion differences in microscopic motion. The method has been tested on a
variety of simulated and experimental scenarios, showing great flexibility and applicability
in many cases. It accurately assigned diffusional characteristics regardless of the type
of dynamics, using the same 17 characteristics in all cases, providing a general way of
mapping different phenomena in a common space.

Dosset et al. developed an approach based on a back-propagation neural network
(BPNN, a type of neural network that uses the back-propagation algorithm for training,
where the term “back-propagation” refers to the way the model adjusts its weights based
on the error rate obtained in the previous iteration [134]), which takes in input the MSDs
calculated on a sliding window along the trajectory [135]. After training on simulated trajec-
tories exhibiting Brownian, confined, and directed diffusion, the algorithm can distinguish
the three types of motion even within a single trajectory.

Kowalek et al. proposed a deep learning convolutional neural network (CNN,
Figure 8) for track analysis in SPT [136]. Unlike some other ML methods, including the
ones cited above, which require user-defined features, deep learning approaches require
no data preprocessing and extract the relevant features automatically, without human
intervention. CNN excels at tasks involving structured grid data, particularly images,
by leveraging convolutional and pooling operations to extract and learn the spatial hier-
archies of the features from the input data [137]. Their use of time series and trajectory
analysis is an emerging field since trajectories can be encoded into a 2D grid (image-like
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structure) [138,139]. Kowalek et al. compared the deep learning CNN with classical ML
methods (random forest and gradient boosting, both based on decision trees) for the identi-
fication of different motion modes in SPT. All models were trained with simulated data
(which included normal, directed, confined, and anomalous diffusion). CNN showed a
slightly higher accuracy than the other considered methods in most cases, but it required
longer processing times. The authors found that, as expected, the ML methods generally
failed to classify correctly motion models that were not included in the training data, even
if they produced similar diffusion trends, such as different types of confined diffusion,
with CNN being the worst in this respect. The study was carried out considering only
homogeneous motion within tracks, i.e., a single mode of motion per track; the authors
speculated that the CNN approach might show more advantages over the other ML models
in the presence of heterogeneities within single tracks, since most of the human-defined
features typically used are based on MSD estimates, which are the worst for short track
segments.
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Figure 8. Sketch of the architecture of a convolutional neural network (CNN). The hidden layers
automatically extract relevant features from the trajectories; they include convolutional layers (which
apply convolution operations to the input data to extract local features and capture spatial hierarchies)
and pooling layers (which reduce the spatial dimensions of the feature maps and thus help in reducing
the number of parameters and the computational complexity and in controlling overfitting, retaining
the most important information while discarding non-essential details). The extracted features are
used by the successive classification part of the algorithm based on fully connected layers in which
each neuron in a layer is connected to every neuron in the previous layer, allowing the network to
combine the extracted features. Reproduced with permission from [136]. Copyright (2019) by The
American Physical Society.

Based on the observation made in the last discussed work, in particular that (i) all
models failed to generalize the knowledge to the unseen (not present in the training data)
types of motion and (ii) that traditional ML is cheaper in terms of time and computational
resources and more interpretable than deep learning, Janczura et al. improved the random
forest and gradient boosting methods, proposing a new set of features that characterize
the tracks and can be used for their classification [127]. For the choice of the features,
they considered the study by Weron et al. ([113], discussed above), in which the author
compared classical hypothesis testing on statistics obtained by MSD, maximum excursion
and p-variations, and found that none was the best in all cases thus suggesting a combined
approach. The new set of features chosen by Janczura et al. thus included quantities
based on the diffusion coefficient, the anomalous exponents, the maximum distance, and
the p-variations. This set was used to train the ML models and to classify trajectories.
They showed improved knowledge transferability and, very importantly, that choosing
the right features is a crucial point, greatly affecting the accuracy of the results. Moreover,
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knowing the most and least important features helps to retain only those that actually drive
the results and to omit the less informative ones, in order to reduce dimensionality and
make the model faster. p-variation turned out to be the most informative feature, while
the diffusion coefficient was the least, with the removal of the latter changing the relative
importance of the remaining features.

Granik et al. were interested in resolving processes that produced different kinds of
anomalous diffusion, even starting from short trajectories. They presented a deep learning
approach based on a set of convolutional neural networks (trained on simulated data) to
classify trajectories by three types of diffusion (Brownian and two kinds of anomalous
diffusion, i.e., FBM and CTRW) and to infer motion parameters. Compared to traditional
MSD-based analysis, they demonstrate greater accuracy, the need for much less data to
achieve the same precision, a greater ability to extract information from even very short
tracks, and an increased robustness to noise [140].

One of the main difficulties of supervised ML approaches is finding a good training
set, i.e., sets of trajectories as similar as possible to the experimental ones to be analyzed;
the population in this training set should be quite high for the classification to be correct.
Indeed, as noticed above, often the algorithm is wrong on trajectories that are somehow
different than the ones used in the training set, even if the underlying model should be
the same. Often the training set is obtained by simulation, but it is not always easy to
include all the elements defining the experimental situation, and often each experiment
(e.g., biomolecules motion in different cell types or with different treatments) should be
considered unique. Another approach is performing a careful traditional analysis on a
subset of trajectories, checking the results one by one, and using the ML approach to
make automatic classification and parameters extraction on the remaining trajectories,
and/or to refine the parameters (like the thresholds) for the classifications based on features
statistics. This drawback could cast doubts on the comparisons of power and accuracy
between ML and more traditional approaches, since the comparisons are usually made
on the sets used to train the ML algorithm, while the traditional methods could also be
more easily adaptable to completely different datasets without the need for training (but
often requiring careful supervision by the researcher, who could introduce some bias). A
possible solution can arise from unsupervised ML approaches, where the objects to be
classified are grouped only according to their similarities, without being given any labels.
In this case, the characterization of the different classification groups has to be made a
posteriori¸ introducing therefore difficulties in the interpretation of the results and again
in their applicability to different datasets. To solve this last issue, the algorithm could be
applied again on the whole dataset if some data are added for making a comparison, but
this could change the established classes.

An example of an unsupervised machine learning-based classification method for
single-particle trajectories is pEM (perturbation expectation-maximization) [88] (Table 1).
It uses a system-level likelihood function (a Gaussian mixture model of multivariate
Gaussians) to collectively describe a population of trajectories with different diffusion
coefficients and localization noise. Convergence to the maximum of the likelihood function
is performed by a novel algorithm (perturbation expectation-maximization) that uses
iterative perturbations on the likelihood function. pEM extracts the number of diffusive
states with their properties from a population of tracks and statistically classifies each
track into a diffusive state. The method accounts for the experimental correlation between
particle displacements due to nearest-neighbor displacements and to localization noise.
pEM was tested on simulated data and experimental ones, the last ones obtained by
tracking proteins of the Rho GTPases families, finding six diffusive states, with the number
of states conserved across different proteins with variability in the population fractions. The
performance depended on the length of the trajectories, where shorter trajectories led to a
broadening of the diffusivity distribution of each state and made it difficult to distinguish
between the states; and longer trajectories increased the probability of transition between
different diffusive states. The first version of pEM had the following two main limitations:
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it assumed normal motion and no transition between diffusive states. A successive version
of the algorithm (pEMv2) was developed to overcome them [87]. pEMv2 also allowed for
the analysis of non-normal diffusion modes (it becomes a model-free approach with no
prior assumption about the nature of the motion) and could deal with motion transitions by
splitting trajectories into shorter segments of constant length, each segment being associated
with a diffusive state. The optimal segment length can be chosen by trying various values
and selecting the condition yielding the highest likelihood. Indeed, too short a length may
lead to misclassification, but too long a length may cause the inclusion of an increasing
number of transitions between different types of movement. For example, pEMv2 has been
applied to SPT of histone H2B and transcription factors, revealing two states with dynamic
switching between them and populations influenced by activation conditions [75]; and to
B-cell receptors as well, revealing eight distinct states, again correlating with activation
states [141].

In 2021, a competition was held to evaluate the methods for detecting and charac-
terizing anomalous diffusion—the Anomalous Diffusion (AnDi) Challenge [142]. The
participating teams used their approaches to solve the following three tasks: determination
of the anomalous diffusion exponent, which entailed the clasnosification of the diffusion
mode; track segmentation with the identification of change points within tracks, where
the anomalous exponent and the diffusion mode changed; and the determination of the
motion model and the anomalous exponent for each segment. The third task turned out to
be the most difficult, even in the relatively simple condition of a single change-point per
track, and, in fact, far fewer teams participated in this task than for the first two. The author
observed that the traditional MSD approach had several limitations, especially in the case
of short and noisy trajectories, heterogeneous motion, non-stationarity, non-ergodicity;
furthermore, distinct kinds of physical processes can produce the same scaling exponent,
making it impossible to distinguish the underlying model. Most of the models used in the
competition outperformed the performance of the traditional MSD analysis. The best mod-
els were based on machine learning (ML) approaches, showing that ML can extract more
information than classical statistics. However, the authors noted that classical statistics can
still be helpful, especially because of the black-box nature of ML.

Starting from the results of the AnDi competition, Seckler et al. published a recent
perspective focusing on the improvement in the explainability and interpretability of ML
approaches that were successful in the challenge. In particular, they investigated the
possibility to extract a set of statistical features to be used in the ML algorithms instead
of the raw position data, and then to determine uncertainty estimates [143]. Notably, the
authors observed that the analysis with classical statistical methods was still necessary to
assess the validity of ML results and to prepare training data as possible models, and that
not including the noise in the training data can lead to inaccurate predictions.

The results of the AnDi challenge were also exploited as a starting point by Manzo to
develop a method based on Extreme Learning Machine (ELM) applied to a set of engineered
features (AnDi-ELM [144]). ELM is an algorithm for single hidden layer feedforward neural
networks with a much faster learning speed than other ML methods [145,146]. The features
used in AnDi-ELM are based on estimators from classical statistics, i.e., the scaling exponent
of the moments of the displacement distribution, the time-correlation of displacements,
and the cumulative sum of squared displacements. With minor modifications to the entry
features, the method was able to cope with the three tasks of the challenge, although it
performed better on the classification task than on the regression with anomalous exponent
estimation. The overall performance was considered satisfactory, especially as the method
allowed for reduced training time, low computational cost, and an undemanding imple-
mentation compared to other ML approaches. Thus, the author suggested that it may be
particularly useful for preliminary screening prior to further and more time-consuming
evaluations.

The AnDi challenge stimulated the development of another ML-based method for
characterizing anomalous diffusion called WADNet, published by Li et al. [147]. This is
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a deep neural network based on a modified version of WaveNet (the latter being a deep
neural network developed for the generation of raw audio) combined with Long Short-Term
Memory (LSTM) networks, a particular type of recurrent neural network used specifically
for the classification of sequential data thanks to its ability to capture historical information.
The method was applied to the AnDi challenge dataset and proved to outperform the best
methods found in the original AnDi challenge for the first and the second tasks (inference of
the anomalous exponent and classification of the diffusion model). The main architectures
of WADNet are almost the same for the different tasks, with modifications concerning the
input and output dimensions of the network.

Verdier et al. proposed the use of graph neural networks, a class of deep learning
methods that use descriptions of data by graphs [148]. In their approach, a vector of
features was associated with each position in the trajectory and a graph was associated
with each trajectory. Training was performed on simulated data. The strategy was tested
on the anomalous motion modes proposed in the AnDi challenge, and it showed the ability
to infer the motion model and the anomalous exponent.

A new competition has just been launched from the same group at the beginning
of 2024, The 2nd Anomalous Diffusion Challenge, which aims to compare methods for
detecting motion changes in single-particle motion [149]. It proposes an analysis of both raw
videos and trajectories; the aim is to identify transient changes of the generalized diffusion
coefficient and/or anomalous exponent, transient interactions, transient confinement,
transient immobilization. The challenge is organized into the following two tasks: the first
one is to infer the simulated model, the number of states, the time spent in each state and
then, for each state, the mean and standard deviation of the distribution of the generalized
diffusion coefficients and of the anomalous diffusion exponent. The second task is to
find the change points for each trajectory and then, for each segment, to find the type of
motion, the generalized diffusion coefficient and the anomalous diffusion exponent. The
competition is still open [150].

6. Discussion and Conclusions

We reviewed various analysis methods available today for studying trajectories ob-
tained by SPT, along with the different advantages, potential, and open challenges for each
of them.

Traditional MSD-based analysis remains a well-established and valid tool, important
for historical reasons and easy to apply and interpret. Its use in SPT has allowed us to obtain
important insights into molecular dynamics in different types of applications. However, as
we have discussed, its application requires careful consideration of some aspects that have
emerged over time and that have not always been taken into account, particularly in relation
to the impact of experimental uncertainties. Several studies highlighted the limitations of
analyses based on MSD, related to the presence of heterogeneities within tracks and to data
consisting of a few noisy and short trajectories. Furthermore, conventional MSD analysis
often fails to characterize anomalous motion types because different physical mechanisms
can give rise to the same scaling behavior, making MSD incapable of distinguishing the
different underlying physical diffusion processes.

Many alternative approaches have been developed for the analysis of SPT trajectories.
Classical statistics have been based on parameters other than displacements, such as
angular or velocities distributions, mean–maximum travelled distances, passage times, and
p-variations.

A class of methods has been introduced for the analysis of transient behaviors that are
masked in MSD analysis, e.g., approaches based on the detection of transient confinement
or analysis within sliding windows. Indeed, amongst the important objectives in SPT
trajectory analysis, there are segmentation and classification, as trajectories can show
heterogeneous motions, reflecting the heterogeneity of the environment, the presence
of interactions or other processes. Hidden Markov models have been exploited quite
widely for this task; the state is usually described by a diffusion coefficient and transitions
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between states with different diffusion coefficients are investigated. A challenge in this
area concerns the transitions between states with motions other than pure Brownian, for
which a description of states based simply on a diffusion coefficient is not sufficient. The
a priori selection of a fixed number of states has also been a limitation of HMM models
in some cases, and this has been addressed and overcome in some of the studies we have
discussed above.

Finally, we described methods based on machine learning. Classification is one of the
main tasks approached with these kinds of methods nowadays. Therefore, in recent years,
many algorithms based on machine learning have been applied to trajectory classification.
They use different strategies, from more traditional ML, such as decision trees, to deep
learning. Most of these methods are based on a set of track features to be used as input of
the ML algorithm that classify the tracks. Different features have been exploited by the
different methods as follows: they can be defined in the development of the model, can
be expanded by the user in some cases, or can be automatically extracted in the case of
deep learning. Classification is performed amongst different motion types or in a feature
space. Identifying the best set of features is a critical issue and can greatly influence the
results. Typically, features consisting of variables calculated starting from the MSD and
other classical statistics have been used. Often ML approaches have been described to
be more powerful (e.g., applicable to noisier or shorter trajectories) and accurate than
the ones based on more classical statistics, but there could be doubts driven by the fact
that usually these comparisons are made on data of the same type used to train the ML
algorithms; indeed, as discussed above, ML-based algorithms often fail when applied
to different datasets, or when different sources of noise are included. Aside from these
difficulties in transfer learning, also due to the needed or possible training on simulated
data, several other challenges have been reported in the field of machine learning, such as
lack of interpretability, and high time and computational costs for training and analysis.

We also reported some freely available software for analyses based on machine learn-
ing, exploitable even by users without programming experience.

Despite the numerous available analysis methods, the characterization of anomalous
diffusion and track segmentation are active fields, as we have highlighted in the discussion
of recently launched competitions. Challenges such as AnDi are useful to compare available
methods, to stimulate the development of new ones, and to establish common datasets.

In conclusion, the analysis of SPT trajectories encompasses a wide range of methods
that are constantly evolving. The traditional MSD is still used and useful, and no other one
is as widespread and established; however, alternative methods can now help to overcome
its limitations. A successful strategy may use a combined approach that takes advantage
of more methods, such as a combination of classical statistics and machine learning. This
review can be a useful guide to identify the methods suitable for the situation of interest, as
well as an inspiration for new ideas and improvements.
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