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ABSTRACT Time series data is increasingly used in a wide range of fields, and it is often relied on in
crucial applications and high-stakes decision-making. For instance, sensors generate time series data to
recognize different types of anomalies through automatic decision-making systems. Typically, these systems
are realized with machine learning models that achieve top-tier performance on time series classification
tasks. Unfortunately, the logic behind their prediction is opaque and hard to understand from a human
standpoint. Recently, we observed a consistent increase in the development of explanation methods for time
series classification justifying the need to structure and review the field. In this work, we (a) present the
first extensive literature review on Explainable AI (XAI) for time series classification, (b) categorize the
research field through a taxonomy subdividing the methods into time points-based, subsequences-based and
instance-based, and (c) identify open research directions regarding the type of explanations and the evaluation
of explanations and interpretability.

12

13

INDEX TERMS Explainable artificial intelligence, time series classification, interpretablemachine learning,
temporal data analysis.

I. INTRODUCTION14

Machine learning (ML) models have achieved unprecedented15

performance in recent years. While the models become more16

accurate and complex, the lack of model explainability or17

interpretability is one of the key challenges of ML research.18

Such a challenge may prevent the use of ML in applications19

that call for interpretable decisions, such as high-stakes fields20

like healthcare or autonomous systems [1]. For this reason,21

and due to the state-of-the-art performance of these mod-22

els in many other areas, there is a need to overcome this23

problem. The research field of eXplainable AI (XAI) [2], [3]24
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or interpretable machine learning [4] tackles explainability 25

challenges to give insights into model behavior. 26

A large part of the work in explainability is done on tab- 27

ular data or in the field of computer vision, where deep 28

neural networks (DNN) typically achieve state-of-the-art per- 29

formance. While computer vision is undeniably an impor- 30

tant research field of machine learning, we argue that there 31

might be a bias in XAI research toward image data due to 32

(i) the availability of data, e.g. Imagenet [5] or CIFAR-10 [6] 33

and – more importantly – (ii) the inherent semantics present 34

in images: explaining the classification of a rooster based 35

on the rooster comb is easily interpretable and verifiable, 36

while a time series is often not intelligible without domain 37

knowledge [7]. 38
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FIGURE 1. The number of papers published per year on XAI for time
series classification started to increase significantly in 2019, suggesting
an increase in the topic’s relevance. The search was performed on Scopus
using the search terms presented in Table 1.

We believe that time series should receive the same39

research attention since they are omnipresent, e.g., in40

technical systems [8], [9], the medical domain [10], or busi-41

ness applications [11]. Further, due to the tremendous amount42

of data generated by sensors over time, machine learning43

models yield superior results at many tasks due to their capa-44

bility to capture long- as well as short-term patterns in the45

data [12]. Thus, such models can outperform experts in cer-46

tain time series tasks, enabling their application in various47

use cases, e.g., in predictive maintenance [8], [13], heart-48

beat anomaly detection [10], or texture recognition [14].49

The research field of XAI for time series classification has50

becomemore popular since around 2019, a variety of valuable51

papers have been published in recent years (see Figure 1).52

This trend was the motivation to structure the field with a53

review of the most important works and to deduce open54

research directions to close gaps.55

The primary goals of this work are to (i) give an overview56

of the current body of literature on XAI for Time Series Clas-57

sification (TSC), (ii) categorize the research field through a58

sound taxonomy, and (iii) deduce new insights, identifying59

open research challenges in order to inspire new research60

in this emerging field. We achieve these goals by surveying61

papers in the field. Thus, we conduct a semi-structured liter-62

ature review by including works we consider influential and63

a systematic search with Scopus to systematically create an64

overview of the field.65

We further introduce applications and evaluations which66

incorporate the reviewed approaches or can be applied to67

them. Specifically, we present a set of applications where the68

aforementioned methods have been used in various areas to69

include explainability in applications. We discuss the state-70

of-the-art regarding the evaluation of the aforementioned71

XAI approaches and also include references to applicable,72

but not yet implemented, computer vision evaluation tech-73

niques. Applications and evaluations give a valuable insight74

into the state-of-the-art of the discussed XAI approaches75

and introduce further opportunities on how to deploy these76

techniques.77

Lastly, we discuss the findings of our selected papers and78

propose future opportunities for XAI for TSC. The final79

discussion presents the trends and challenges we identified80

in our review of the different approaches towards explain-81

ability for time series models. Furthermore, based on these82

challenges and other influences, we highlight future research 83

directions to contribute closing the gaps we identified. Thus, 84

in the following, we contribute: 85

1) a semi-structured literature review of the most recent 86

explainable AI approaches for time series classifica- 87

tion; 88

2) a taxonomy of approaches for XAI deduced from the 89

reviewed work 90

3) insights into the differences and advantages of such 91

explainable AI techniques; 92

4) highlights of applications and evaluation strategies to 93

showcase applied XAI techniques; 94

5) research directions in order to inspire future research in 95

the field of XAI for time series classification. 96

The rest of the paper is organized as follows. Section II 97

illustrates recent surveys in the areas of XAI, time series, 98

and works at their intersection. Section III reports basic 99

notions and definitions necessary to understand the content 100

of this survey. Section IV details the research methodol- 101

ogy adopted to retrieve the works presented in this survey. 102

Section V presents the proposed taxonomy and the review, 103

while Section VI presents applications of the XAI methods 104

reviewed and discusses evaluation of explanations. Finally, 105

Section VII discusses findings and illustrates future research 106

directions in XAI for TSC. 107

II. RELATED WORK 108

The intensive request for explainability approaches [15] 109

largely contributed to the massive increase of research in 110

XAI. The proliferation of XAI methods working in different 111

domains has been accompanied by various surveys catego- 112

rizing these methodologies [2], [3], [16], [17]. An introduc- 113

tion to frequently used explainers in XAI can for example 114

be found in the books [18], [19] and in the surveys [2], [3]. 115

However, while explainers for data types such as relational 116

data, images, and texts are illustrated from various perspec- 117

tives in different literature reviews, explainers for other data 118

types, like time series, are not reviewed sufficiently in detail. 119

In the rest of this section, we report general surveys on XAI 120

not specifically addressing time series, surveys on TSC, and 121

two preprints of surveys on explainability methods for TSC, 122

highlighting the differences to our paper. 123

In [2], a classification of XAI methods according to the 124

problem they are able to solve is presented. The first cate- 125

gorization is between (1) explanation by design or intrinsic 126

interpretability, and (2) black-box explanation or post-hoc 127

explanation. In [3], [16], and [17] the same principal cat- 128

egorization is adopted. The second categorization further 129

classifies the black-box explanation problem into model 130

explanation, outcome explanation, and black-box inspection. 131

Another significant distinction shared among [2], [3], [17], 132

[20], [21] is between model-specific and model-agnostic 133

explanation methods. In this survey, we adopt and exploit the 134

same taxonomy of [2], [3], [17], [20], [21] which is detailed 135

in the next section. However, while these surveys are gener- 136

alists, we focus on explainers for time series classification 137
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problems. We underline that some surveys related to XAI138

are focused not only on machine learning but also on social139

studies [22], [23], recommendation systems [24], model-140

agents [25], and domain-specific applications such as health141

and medicine [26] or predictive maintenance [27].142

Concerning surveys for TSC not addressing XAI, the143

works of [28], [29], and [30] are probably most updated and144

complete. In [28] the focus is more on classical approaches,145

implementing and comparing 18 algorithms starting from the146

simple and popular k-Nearest Neighbor (kNN) and then illus-147

tratingmore novel and complex classifiers. On the other hand,148

in [29], the focus is on neural network-based approaches,149

and the performance of deep learning algorithms are pre-150

sented with an empirical study involving the most recent151

deep neural network (DNN) architectures for TSC. A detailed152

analysis of time series classifiers based on Convolutional153

Neural Networks (CNNs) is presented in [31]. In [30] the154

focus is on multivariate time series classification, compar-155

ing 16 state-of-the-art TSC algorithms. However, none of156

the surveys above touches on questions related to inter-157

pretability or explainability. The authors of [32] presented a158

focused review on time series classifiers adopting a distance-159

based approach, as well as a discussion of the strengths and160

weaknesses of each method and distance measure reviewed.161

Distance-based classifiers can be considered transparent if it162

is possible to retrieve the most similar time series respon-163

sible for the classification and if the distance measure is164

simple enough. However, most advanced distance-based165

approaches use complex distance measures like Dynamic166

Time Warping [33], and therefore they are omitted from this167

survey.168

To the best of our knowledge, the only existing review169

papers at the intersection of XAI and TSC are the pre-170

prints [34], [35]. The authors of [34] present an overview of171

XAI methods for TSC and illustrate the types of explanations172

they produce. In their overview table, they categorize XAI173

methods by the type of model to be explained, i.e., CNNs or174

RNNs (Recurrent Neural Networks), whereas we focus on the175

type of explanation returned by the explainers. In addition,176

differently from [34], we also discuss evaluation measures177

for explainers of time series classifiers. In [35], XAI with178

respect to TSC is faced at a high level and the survey only179

reports i) generalist explanation methods such as LIME [36],180

SHAP [37], Grad-CAM [38] and DeepLIFT [39], ii) expla-181

nation methods for neural networks. In contrast to [35],182

we focus more on explanation methods designed explicitly183

for TSC, including many different kinds of XAI approaches,184

such as transparent models and non-neural network-based185

methods, thus providing an extended overview of the186

state-of-the-art.187

III. SETTING THE STAGE188

This section introduces notations and definitions useful to189

comprehend the state-of-the-art. First, we report definitions190

for time series classification, and then we formalize the con-191

cepts related to explainability.192

FIGURE 2. Review methodology: Semi-systematic literature review
combining a systematic search on Scopus (Table 1) with a dynamic
search. Exclusion and inclusion criteria (Table 2) were applied to identify
the final set of papers.

A. TIME SERIES CLASSIFICATION 193

This section presents formal definitions for Time Series Clas- 194

sification (TSC) and recalls basic notions. We define a time 195

series as follows: 196

Definition 1: A time series x = {t1, t2, . . . , tm} ∈ Rm×d is 197

an ordered set of m real-valued observations (or time steps), 198

with dimensionality d . 199

We say that a time series is univariate when d = 1, i.e., 200

each observation ti ∈ R is a real value. On the other hand, 201

when d > 1 we name x a multivariate time series (also 202

referred to as multidimensional time series), i.e., each obser- 203

vation ti ∈ Rd is a vector containing multiple real values. 204

From another perspective, a multivariate time series is formed 205

by d univariate time series with lengthm. Often, the univariate 206

time series which are part of a multivariate time series are also 207

referred to as signals, or channels [40]. 208

A set of time series, either univariate or multivariate, with 209

attached labels, forms a time series classification dataset. 210

Definition 2: A time series classification dataset D = 211

(X ,Y ) is a set of n time series, X = {x1, x2, . . . , xn} ∈ 212

Rn×m×d , with a vector of assigned labels (or classes), 213

Y = {y1, y2, . . . , yn} ∈ Nn. 214

For a dataset D containing l classes, yi can take l different 215

values.When l = 2,D is a binary classification dataset, while 216

for l > 2,D is amulti-class classification dataset.We can now 217

define the TSC problem as: 218

Definition 3: Given a TSC datasetD, Time Series Classifi- 219

cation is the task of training a function or mapping f from the 220

space of possible inputs X to a probability distribution over 221

the class values Y . 222

The resulting TSC function f takes as input a time series 223

x and returns the label y of the class to which x belongs to 224

according to what f learned, i.e., y = f (x). We use f (X ) = 225

Y as a shorthand for {f (x) | x ∈ X} = Y . Typically, the 226

classifier f can be queried at will. 227
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B. EXPLAINABLE ARTIFICIAL INTELLIGENCE228

The research field of Explainable AI (XAI) studies229

approaches that unveil the logic behind automatic decision-230

making systems [2], [41], [42], [43]. In general, we like231

to point out that the terminology in XAI is not fully estab-232

lished yet (see, e.g., the study of [44]). Some researchers233

use some terms interchangeably, while others view them234

as different. An example are the terms explainability and235

interpretability. While we do not aim to establish a new236

terminology, we give some insight into the current state of237

the discussion. One definition states that XAI has the goal238

of creating ‘‘a suite of new or modified ML techniques that239

produce explainable models that, when combined with effec-240

tive explanation techniques, enable end users to understand,241

appropriately trust, and effectively manage the emerging gen-242

eration of AI systems’’ [45]. In [46], XAI is described as243

a tool ‘‘to ensure that algorithmic decisions as well as any244

data driving those decisions can be explained to end-users245

and other stakeholders in non-technical terms.’’. Regard-246

ing the two common terms explainability and interpretabil-247

ity, we follow the definition of [47] stating that ‘‘systems248

are interpretable if their operations can be understood by a249

human, either through introspection or through a produced250

explanation’’. The definition in [2] is in line with that above,251

stating that interpretability describes the extent to which252

a model and/or its predictions are human-understandable.253

Models can be categorized into those that provide inter-254

pretability themselves (sometimes referred to as white-box255

models or intrinsically interpretablemodels) and those requir-256

ing an explanation (commonly referred to as black-box mod-257

els). This distinction is made in many papers [1], [2], [22].258

Interpretability can be viewed as a passive characteristic259

and explainability as an active characteristic of a model or260

method [48].261

An interesting new perspective is brought up in [49], where262

the term quasi-explanations is introduced. This refers to263

explanations that include terms foreign to the domain for264

which the explanation is intended. In other words, the target265

user will not be able to understand these quasi-explanations.266

The authors of [49] state that even models frequently referred267

to as intrinsically interpretable models might not be inter-268

pretable for the end user. Eventually, one line of research269

advocates not using black-box models for critical decisions270

but rather building intrinsically interpretable models [1].271

In this paper, we do not aim to take a stand for or against272

using black-box models. However, we believe that when273

using black-boxmodels for important decisions, explanations274

should be provided that are interpretable in the sense outlined275

above.276

According to the current XAI literature, XAI approaches277

can be categorized according to different criteria. In our sur-278

vey, we follow the categorization presented in [2] and [3]:279

1) ANTE-HOC VS. POST-HOC280

Ante-hoc explainable methods, such as decision trees, are281

models that can be considered directly interpretable due to282

their simple structure and/or transparency by design. How- 283

ever, we like to note that transparency in that sense has been 284

discussed at three levels in [50]. Adding explainability to a 285

black-box does not necessarily make the model interpretable 286

as a whole but rather sheds light on specific parts of the model 287

or the model’s decisions. 288

Post-hoc explainability approaches are instead separated 289

from the model they explain and can provide insight into 290

what a model has learned after training without changing 291

its underlying structure, e.g., LIME [36]. Defining an intrin- 292

sic explainable method means learning a classification func- 293

tion f that directly unveils the reasons for the classification. 294

On the other hand, a post-hoc explainability method should 295

be applied when f is a black-box model like an artificial 296

neural network (ANN), a support vector machine (SVM), or a 297

random forest, and the reason for the decision is not directly 298

accessible or understandable. Thus, a post-hoc explainer typ- 299

ically consists of a function g that takes as input the classifier 300

f as well as a dataset D. We highlight that in our review, 301

we survey both ante-hoc [1] and post-hoc [2] approaches 302

that have been proposed or can be utilized for time series 303

classification. 304

2) GLOBAL VS. LOCAL 305

Global explanation approaches provide an explanation that 306

describes the overall logic of the entire model for any input 307

instance, i.e., g returns a generalized explanation for the deci- 308

sions that are valid for the whole set X . On the other hand, 309

local explanation approaches explain the behavior of a model 310

for a specific instance, i.e., g unveils the reasons for the clas- 311

sification only for a specific instance x. 312

3) MODEL-AGNOSTIC VS. MODEL-SPECIFIC 313

Model-agnostic explainers g can be used to explain any 314

type of classifier f , i.e., it does not matter if f is an ANN, 315

a Random Forest, or a composition of private software for 316

decision-making. LIME [36] is a well-known example of 317

a model-agnostic explainer. Model-specific explainers g are 318

specifically built to add interpretability to a certain type of 319

classifier f , i.e., g are only able to explain a classifier f 320

belonging to a specific family of classifiers. For instance, 321

Grad-CAM [38] is able to explain only differentiable clas- 322

sifiers like CNNs. We claim that every ante-hoc approach is, 323

by definition, model-specific, given that it can be used only 324

to explain itself, i.e. f = g. 325

IV. REVIEW METHODOLOGY 326

The overriding goals of our paper are to (i) give an overview, 327

(ii) categorize, and (iii) deduce new insights from the current 328

body of literature on XAI for time series classification. These 329

goals are achieved by reviewing papers in the field. 330

While a systematic literature searchmight seem like a natu- 331

ral choice, we found that it will yield an incomplete review in 332

this emerging field. Reasons are different terminologies used 333

in different research subfields. Examples are the papers on 334
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TABLE 1. Systematic search on Scopus (title, abstract, keywords). The
rows were combined with AND operators into one search query.

TABLE 2. List of inclusion and exclusion criteria, where IC refer to
inclusion and EC to exclusion criteria, respectively.

shapelets that are quite different from deep learning papers.335

Hence, we opted for a semi-systematic literature review [51]:336

1) we conducted a systematic search on Scopus using a set337

of search terms (Table 1);338

2) we conducted a dynamic search to uncover additional339

papers in the different subfields;340

3) the found papers were judged by the authors based on341

exclusion and inclusion criteria (Table 2) in order to342

decide whether to include a paper.343

The review methodology is shown in Figure 2.344

In order for the reader to be able to distinguish papers345

included in the review from papers supplying background346

information, we reference reviewed papers with author347

names. For example, Gee et al. [52] references a reviewed348

paper while [2] is referenced for background information.349

Furthermore, all reviewed papers are shown in Table 3.350

V. XAI FOR TIME SERIES CLASSIFICATION351

In the following, we highlight the advantages and charac-352

teristics of our semi-systematic literature review. We report353

the papers analyzed in Table 3. The papers are organized354

according to the following taxonomy (see Figure 3). First,355

we discriminate on the granularity of explanation returned356

depending on the portion of a time series used to illustrate the357

causes for the decision process. Accordingly, we have three358

families of explanation methods characterized by the type of359

FIGURE 3. The proposed taxonomy categorizes the reviewed XAI
approaches in different explanation types based on their explanations.
The explanation methods used to generate the explanations are assigned
into our categories.

explanation returned (Figure 3). In particular, we have recog- 360

nized time points-based explanations if the explanation refers 361

to specific time points in a time series, subsequences-based 362

explanations if the explanation refers to sub-parts of the time 363

series, and instance-based explanations if the explanation 364

adopts entire time series as explanation.We put into the others 365

family those explanation types that cannot be tied to any of 366

the previous ones. We increase the detail of the taxonomy 367

by further analyzing and categorizing the XAI approaches 368

falling into the three aforementioned families. Indeed, for 369

each family of XAI methods, we further differentiate the 370

algorithmic strategies adopted by the reviewed approaches to 371

return the explanation. Details are provided in the respective 372

subsections. In addition, in Table 3 we further categorize the 373

explanation methods into ante-hoc and post-hoc approaches, 374

into model-specific and model-agnostic approaches, and into 375

global and local explanations. Additional categories include 376

whether the approaches were explicitly designed for time 377

series (TS-specific or not) and whether they were designed 378

for univariate or multivariate TS. 379

Also, for every method, we report the name (if available), 380

the reference, the publication year, and the code language 381

with a hyperlink to the corresponding library. 382

A. TIME POINTS-BASED EXPLANATIONS 383

Explanations based on time points assign a relevance score or 384

weight to every time point of a time series. Such scores indi- 385

cate howmuch a certain time point contributed to the model’s 386

decision. Formally, we define time points-based explanations 387

as: 388

Definition 4 (Time Points-Based Explanation): Given a 389

time series x, a time points-based explanation e = {ri,j | ∀i ∈ 390

[1,m], j ∈ [1, d]} for the time series x contains a relevance 391

score ri,j for every real-valued input data point ti,j of x where 392
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TABLE 3. List of reviewed papers and taxonomy for XAI methods for Time Series Classification. Table legend: Post/Ante-hoc: P-Post, A-Ante;
Model-Agnostic/Specific: A-Agnostic, S-Specific; Global/Local: G-Global, L-Local; TS-Specific: (3) if it is a Time Series specific method; Uni/Multivariate:
U-Univariate, M-Multivariate; Code: P-Python, M-Matlab, J-Java, JS-Javascript. Code letters are hyperlinks to official web pages. We considered all
Ante-hoc methods as Model-Specific methods.
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the index i refers to the time point and j to the dimension in393

case of a multivariate time series.394

Such relevance scores can be retrieved in different ways.395

The most widely adopted ones are related to approaches396

based on attributions and attentions. At a high level, we can397

say that attribution-based approaches exploit some external398

method, which uses the TSC model to attribute output pre-399

dictions to input variables. On the other hand, attention-based400

approaches use some internal mechanism of the TSC model401

to show which variables of the input they use. In both cases,402

interpretability is achieved by considering the most important403

time points and presenting these to users, e.g., visually.404

1) ATTRIBUTIONS405

Attributions methods are often deployed in computer vision,406

as one can visualize the output as a heatmap to gain insights407

into the model’s relevant regions in the input [120]. How-408

ever, even attribution techniques typically used in computer409

vision, such as LIME [36] or LRP [55], can be applied to410

time series to better understand the model’s behavior [7],411

[120]. Attributions techniques can be categorized into three412

classes, gradient-based, structure-based, and surrogate-and-413

sampling-based [120]. Gradient-based methods (Integrated414

Gradients [53] proposed by Sundararajan et al., Grad-CAM415

by Selvaraju et al. [60] adapted for time series in [54]416

by Wang et al., SmoothGrad by Smilkov et al. [58],417

Saliency [121]) use the gradients of the input with418

regard to the output to get attributions. While structure-419

based techniques (LRP by Bach et al. [55], DeepLIFT420

by Shrikumar et al. [39], Excitation Backpropagation by421

Zhang et al. [56]) use a scorewhich gets backpropagated from422

the output to the input. Finally, surrogate-and-samplingmeth-423

ods (Ribeiro et al.’s LIME [36], Lundberg et al.’s SHAP [37]424

and Occlusion by Zeiler et al. [57]) generate samples around425

the given input to train an interpretable model or use a426

game-theoretical weighting of the features to gain attribu-427

tions. A more sophisticated approach as opposed to using428

data points is, similarly to superpixels for image data, to first429

segment the time series and then use each segment of the time430

series as a feature [71], [100].431

The authors of [7] propose to use current computer vision432

techniques such as the previously introduced attribution tech-433

niques like LIME, SHAP and others to explain deep learn-434

ing models for time series in the same way as for images.435

They evaluated LIME, LRP, DeepLIFT, Saliency, and SHAP436

against each other as well as a random explanation. They437

further propose evaluation techniques using a perturbation438

analysis on the produced attributions. The time points within439

subsequences of the input data were perturbed for a selection440

of ten univariate time series datasets. A decrease in the accu-441

racy caused by the perturbation is assumed to indicate that an442

important part of the time series for the models’ prediction443

power was altered. The results are reported for three ML444

models: a CNN, an RNN, and ResNet. While there is no445

clear best XAI method for the CNN or RNN in terms of the446

decrease induced by the perturbation, for the more advanced447

ResNet, SHAP shows the highest average decrease across all 448

data sets and perturbation settings. Hence, of the evaluated 449

XAI methods, SHAP appears to best capture the time points 450

relevant for classification behavior of the model. 451

Also, in [59], computer vision techniques (CAM and 452

Grad-CAM ) are used to explain time series classifiers. In par- 453

ticular, Zhou et al. enhance CAM and Grad-CAM with a 454

backpropagation to combine saliency as well as CAM calcu- 455

lations and improve the generalizability of CAM. They show 456

on six datasets how the approach Salience-CAM outperforms 457

CAM with improved attributions. 458

In [61], Siddiqui et al. propose TSViz explaining CNNs by 459

showing which regions in the input data are responsible for a 460

decision (saliency maps) as well as the influence of the net- 461

work’s filters on a given decision. The explanations are based 462

on the layers’ gradients, i.e., they use a gradient×input [121] 463

approach. In [62], Munir et al. exploit TSViz to design 464

TSXplain, a system for time series explanation of DNN deci- 465

sions. TSXplain finds the most salient regions responsible 466

for a certain prediction and the most important time series 467

through TSViz [61]. Such regions and instances are then 468

combined with different statistical features used to generate 469

natural language explanations. In a user study, the expla- 470

nations were provided to expert and novice users, and the 471

majority of users were satisfied with the explanations. The 472

textual explanations differ from most other explainers, and 473

we view them as promising. The authors acknowledge that 474

their explanation system is task-specific and cannot easily be 475

transferred to a different task. A further evolution of TSViz 476

is TSInsight [63] a post-hoc explainer for TSC proposed by 477

Siddiqui et al. TSInsight trains an autoencoder (AE) on the 478

input data. The AE is fine-tuned using the trained classifier’s 479

gradients, and the AE’s objective function is enhanced by 480

a sparsity-inducing norm driving the AE to reproduce the 481

relevant parts of the input time series. 482

In [64], Mishra et al. propose SoundLIME, a perturbation- 483

based method that, using LIME, explains TSC in the 484

field of music content analysis. Explanations are based 485

on patterns, where, as a key contribution in addition 486

to the temporal domain, also the frequency and the 487

time-frequency domain are incorporated into the expla- 488

nation. Assaf et al. proposeMTEX-CNN [65], an end-to-end 489

explainable CNN that can classify multivariate time series 490

and simultaneously generate saliency maps. MTEX-CNN 491

uses a two-stage network architecture combined with specific 492

kernel sizes, allowing the application of Grad-CAM for visu- 493

alizing the attention over both time and dimensions. In [66], 494

Parvatharaju et al. proposed a perturbation-based method 495

named PERT to find interesting and relevant time points. 496

For a given time series, PERT first finds time series in the 497

data that can be used as background to perform perturbations. 498

Then, it learns the extent to which each time step can be per- 499

turbed without altering the prediction of the classifiers. The 500

goal of PERT is to keep the number of perturbed data points 501

minimal. In [67], Tonekaboni et al. propose Feature Impor- 502

tance in Time (FIT) to observe the temporal shift influence of 503
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individual features over time to estimate their importance.504

FIT contrasts the predictive distribution of a model against505

a counterfactual, using the contribution of the predictive dis-506

tributional shift under a KL-divergence. Thus, FIT observes507

the model’s behavior under the influence of fixing some vari-508

ables and changing others. In [68], Rooke et al. extend FIT509

by proposing WinIT that directly uses the predictive distri-510

butional shift on the explanation with lookback-windows to511

further enable longer-lasting patterns. A perturbation analysis512

shows thatWinIT improves the explanations of FIT on amed-513

ical dataset they selected, while experiments on a synthetic514

dataset show that the explanations returned are correct.515

While we exclude from the survey papers strongly relying516

on application-specific features, in the following, we briefly517

illustrate the contribution of [69], [70] that exploit domain-518

knowledge, not in the feature extraction step, but to eval-519

uate the explanations. In [69], a 1D-CNN is trained on520

univariate ECG time series, and the data is transformed521

into the time-frequency domain while Grad-CAM is used522

to explain the classification. Then, the difference between523

the explanation and the well-known features used by clin-524

icians is quantified. This quantification is used to validate525

the learned representations and explanations generated by526

the 1D-CNN. In [70], a dual-channel 1D-CNN is used to527

detect rock fracturing in univariate time series: one chan-528

nel is used to process the temporal domain, and the other529

to process the frequency domain. The explanation is based530

on Grad-CAM [60] and is evaluated by visualized examples531

and, in addition, w.r.t. to domain knowledge. While these532

approaches are not directly generalizable, we believe the533

ideas are transferable to selected domains, where the under-534

lying data is well-understood and shows clear, acknowledged535

patterns.536

In [71], Guilleme et al. propose LEFTIST a model-agnostic537

local explainer. LEFTIST segments the input time series uni-538

formly and creates neighborhoods by replacing some of these539

interpretable components with a transform function, e.g.,540

by constant values or random background from training data.541

This way, the importance of the segments of the time series542

is determined. The explanation is then obtained from these543

components using LIME or SHAP. This method is somewhat544

between a time point-based and a subsequences-based one.545

Indeed, the final explanation is in the form of the impor-546

tance of segments of the time series, but can also be viewed547

as a saliency map highlighting time points inside each seg-548

ment.We highlight that this paper includes an extensive study549

on interpretability: fidelity analysis is conducted, comparing550

the approach to a white-box and a more complex black-box551

model. Furthermore, the interpretability is assessed as helpful552

in a user study with 194 participants.553

SUMMARY AND ANALYSIS554

Attributions are used to attribute a relevance score to each555

input value of a model. In many fields, such as com-556

puter vision, these attribution techniques are straightfor-557

ward to implement and fast to compute. Furthermore, these558

methods can extract regions of an input that are important 559

for understanding the focus of the model. In time series, 560

such relevance scores can also be calculated with the same 561

computational time as for images [7]. However, due to the 562

non-intelligible nature of time series, generating explanations 563

is much more difficult using just attributions and their rel- 564

evance scores [120]. When applied to time series, attribu- 565

tions and their primary explanation medium, heatmaps, are 566

often promising for domain experts but ineffective for gen- 567

eral users, given that the relevance scores are difficult to 568

interpret without additional knowledge about the underlying 569

data [122]. Regarding surrogate-and-sampling methods that 570

can be applied to time series, considering each time step as a 571

feature, we like to point the reader to two recent papers. [123] 572

discusses challenges of LIME, SHAP, and related methods, 573

independent of their use on time series. They emphasize 574

the known fact that the methods’ underlying assumption is 575

feature independence. However, feature independence is not 576

respected for adjacent observations in a time series. The 577

authors of [124] stress that Shapley values, which are the fun- 578

damentals of SHAP, assume that adding players to the game 579

does not decrease its overall value. However, adding features 580

to an ML model may decrease the model’s performance. 581

2) ATTENTIONS 582

In contrast to attributions, attentions use an internal mech- 583

anism to incorporate a special focus, i.e., attention, of the 584

network onto certain parts of the input or transformed data. 585

Long Short-termMemory (LSTM) encoder-decoder architec- 586

tures (Seq2Seq-Models) calibrate important areas of the input 587

for the decoder to involve the overall context [125]. Later, 588

attention layers were introduced, focusing even heavier on the 589

internal calibration of the input data towards itself (attention 590

and self-attention) [126]. These attention mechanisms are 591

often used in transformer networks to achieve state-of-the- 592

art performance in language tasks [126]. However, attention 593

should be handled with care, as it sometimes does not directly 594

show the relevant parts of the input for the classification and 595

can be attacked easilywith adversarial examples [127]. Atten- 596

tion approaches are designed to work with different types 597

of deep learning architectures, as shown in the following. 598

Most of the approaches in this section are ante-hoc explana- 599

tion methods, i.e., the attention is embedded in the network 600

architecture. 601

Karim et al. [12] combine CNNs with LSTM submodules 602

to create a specialized time series classification model. While 603

the main contribution of the work is the classifier itself, the 604

authors propose a variant incorporating an attention mecha- 605

nism, allowing to explain the decision process of the LSTM 606

cell. In [72], Lin et al. proposeGCRNN, a Group-Constrained 607

Convolutional Recurrent Neural Network. GCRNN com- 608

prises three modules: CNN, RNN, and SGL, the latter being 609

a fully connected module with a group lasso penalty. The 610

CNN module extracts high-level features while the RNN 611

module learns the temporal characteristics of the data. Finally, 612

the purpose of the SGL is to reduce the complexity of the 613
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model by regularizing it while also allowing the inspection614

of its attention regions. Interpretability is assessed based on a615

model-internalmetric; however, its evaluationmight be future616

work. In [73], Vinayavekhin et al. propose a temporal contex-617

tual layer that incorporates an attention mechanism into time618

series classification. In contrast to using recurrent layers, they619

propose to provide the whole input sequence to the attention620

layer. This layer calculates each attention weight based on621

information of the input time-series. This allows the network622

to directly select dependencies in the data and to assign sig-623

nificant weight only to the most important time steps. The624

model is evaluated with three brief case studies on sequential625

data but not on the type of time series we refer to in our626

paper. In [74], Hsu et al. propose ETSCM (Explainable Time627

Series Classification Model) that can perform interpretable628

early classification of multivariate time series. ETSCM first629

employs a pre-trained deep learningmethod to extract the fea-630

tures among the different time series dimensions and capture631

their temporal structure. Then, an attention mechanism high-632

lights the most important segments for the classification. The633

authors were able to conduct an expert-led study. For ECG634

time series, two medical doctors evaluated the interpretability635

of the produced explanations. The doctors claimed that the636

highlighted sections had no medical significance because no637

entire intervals were highlighted. In a second dataset, the638

doctors confirmed that approximately half of the provided639

explanations were ‘‘correct’’ from a medical standpoint.640

In [75], Hosseini et al. propose DACNN, a deep-aligned641

CNN specifically aimed at tackling SBARS, i.e., skeleton-642

based action recognition and segmentation. DACNN con-643

tains so-called alignment filters that can extract and high-644

light important local patterns in the temporal dimensions645

of the data more efficiently than regular convolution filters.646

Even if the paper shows an application-specific approach,647

these filters could be utilized in a more general setting to648

increase the interpretability of CNNs. In [76], Hsieh et al.649

introduce LAXCAT, a Locality Aware eXplainable Convolu-650

tional ATtention network that is able to classify multivariate651

time series transparently. The framework is composed of a652

CNN feature extraction module and two attention modules653

that can identify the key variables responsible for the classi-654

fication and the most discriminative time intervals. In [77],655

Dang et al. propose DeepVix, an LSTM model that supports656

interactive operations allowing a visual representation of the657

intermediate steps of the learning process. DeepVix enables658

the user to perform what-if analyses on multivariate time659

series to understand the most important features and cus-660

tomize the neural network configurations by injecting domain661

knowledge. DeepVix was extended in [78] (VixLSTM) to662

incorporate Shapley Values, improving the usability of the663

framework. Finally, Schwenke et al. [79] turn time series664

into a symbolic form and then train a transformer model.665

The data points are subdivided based on their attention score666

and are either fully included, partially included, or discarded667

using two user-defined thresholds. Regarding evaluation, the668

authors took an interesting approach: the method is evaluated669

by training a classification model on the transformed data 670

and comparing its performance with a model trained on the 671

original data. The underlying assumption is that if the results 672

do not change significantly, the transformer does indeed focus 673

on the relevant parts. Note that while this approach segments 674

the time series in a first step, due to the used explanation 675

method, it was categorized as time points-based rather than 676

subsequences-based. 677

SUMMARY AND ANALYSIS 678

Similar to attributions, attentions can show relevant parts of 679

the input. However, attention only works if specific compo- 680

nents are implemented into the model’s architecture. Also, 681

like attributions, attentions are often visualized as heatmaps 682

and are somewhat hard to interpret in many cases [122]. Fur- 683

ther, these explanations can be misleading, as different atten- 684

tions (meaningful and not meaningful) can still produce the 685

same output [127]. An interesting insight comes from [74], 686

where domain experts (medical doctors) were not satisfied 687

with the highlighted subset of the data points because the 688

selection did not correspond with units typically considered 689

by domain experts. 690

3) SUMMARY OF TIME POINTS-BASED METHODS 691

The reviewed time points-based XAI methods comprise attri- 692

bution methods incorporating an attention mechanism, with 693

about two-thirds of the papers presenting attributionmethods. 694

While some methods were initially not developed for time 695

series, e.g., SHAP and LIME, the research community has 696

developed specific methods for time series. The proposed 697

methods address univariate and multivariate time series in 698

equal shares. 699

B. SUBSEQUENCES-BASED EXPLANATIONS 700

Explanations based on subsequences identify sub-parts of a 701

time series responsible for the classification outcomes. For- 702

mally, we define a subsequence as: 703

Definition 5 (Subsequence): Given a time series x = 704

{t1, . . . , tm}, a subsequence s = {t ′i , . . . , t
′

i+l−1} of length l 705

is an ordered sequence of values such that 1 ≤ i ≤ m− l+ 1. 706

We further distinguish subsequences as proper and improper 707

as follows. A proper subsequence of the time series x is a 708

direct and continuous sampling of values from x, i.e. s = 709

{ti, . . . , ti+l−1}. In other words, the set of observations in a 710

proper subsequence is part of a time series. On the other 711

hand, an improper subsequence of the time series x is a sub- 712

sequence s for which there is no requirement of correspon- 713

dence between the observation of the subsequence and the 714

observations in the time series. Usually, an improper sub- 715

sequence holds some semantic meaning with respect to a 716

time series dataset, identifying, for example, important pat- 717

terns that are similar in different time series with small shape 718

changes. These kinds of patterns are sometimes also called 719

subsequence prototypes, not to be confused with time series 720

prototypes that are defined in Section V-C. 721
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Furthermore, subsequences can be real-valued or dis-722

cretized. Real-valued subsequences are directly extracted723

from the raw time series. On the other hand, discrete sub-724

sequences are commonly obtained through the Symbolic725

Aggregate approXimation (SAX) algorithm [128]. In short,726

SAX transforms time series into strings. The algorithm uses727

Piecewise Aggregate Approximation (PAA) [129] to dis-728

cretize the time series, dividing it into equally sized bins and729

averaging the values of each bin. Then, the PAA segments730

are converted into a sequence of symbols, usually letters.731

This approximation can reduce noise and capture the main732

characteristics of the time series. Discretized subsequences733

are, for the most part, proper subsequences because their734

symbolic representation can be mapped back to the original735

segments in the time series. Both for proper and improper736

subsequences, interpretability is achieved by considering the737

most discriminative sequences of time points.738

1) PROPER SUBSEQUENCES739

TSC methods relying on proper subsequences (sometimes740

also named patches or patterns) are typically interpretable-741

by-design approaches.742

Due to possible computational problems in extracting sub-743

sequences of the most suitable length, often approximations744

such as SAX are performed, as detailed in the following.745

In [10],Maletzke et al. propose to extractmotifs, i.e. repeating746

patterns, and characteristics, i.e. global statistics, from the747

times series and to train interpretable symbolic models on748

them. The approach identifies both local and global patterns749

by extracting all subsequences of a given length from the750

time series, compressing them using SAX. Then, a Collision751

Matrix is built to identify subsequences likely to be motifs.752

These patterns are then used with decision trees to achieve753

interpretable classification. In [80], Senin et al. extract char-754

acteristic patterns using SAX with an overlapping window.755

From SAX patterns, a bag-of-patterns model is created. Then,756

a class is described by discriminative patterns extracted from757

all the time series of this class. New time series are classified758

w.r.t. the discriminative patterns per class. Song et al. [81]759

proposed an approach for multivariate times series that learns760

a representation based on deconvolutions and bag-of-words761

that were created from SAX subsequences. Classification is762

conducted with logistic regression on the learned representa-763

tion vectors and the bag-of-words. The approach is evaluated764

with classification accuracy and with author-selected exam-765

ples visualized as a network plot. The interpretability of this766

plot is, however, not evaluated.767

Similarly to [80], Nguyen et al. [82] represent the time768

series in a symbolic form with multiple resolutions. In addi-769

tion, Symbolic Fourier Approximation (SFA) [130] is used to770

incorporate the frequency domain. New time series are then771

classified based on the found representation using a linear772

classifier. While the paper’s main focus is the improvement773

of the classification accuracy, interpretability is shown for a774

variant of the approach, excluding the difficult to interpret775

frequency domain induced by the SFA approach.776

The approach of Cho et al. [83] extracts subsequences 777

by first considering highly activated nodes in a CNN, fol- 778

lowed by the clustering of the extracted subsequences with 779

a self-organizing map (SOM) approach. The subsequences 780

identified are those more responsible for the activations. 781

Therefore, this approach uses an attention approach, but the 782

explanation of the classification is returned in terms of subse- 783

quences for the various layers. In [101], Mercier et al. trans- 784

form a time series sample into patches by splitting the initial 785

sample. These patches are used to train a DNN to classify the 786

overall sample. Using the highest predicted class of the DNN 787

for the individual patches and connecting them, they train 788

another ML model on these extracted predictions to classify 789

the overall sample. The framework returns themost important 790

patches and, while being interpretable, is only slightly worse 791

than a simple DNN directly trained on the original data. 792

SUMMARY AND ANALYSIS 793

Proper subsequences are parts of the original time series 794

extracted during training. They highlight time series intervals 795

that are important for the model and can assist in combining 796

domain knowledge with model knowledge extraction on data. 797

At first sight, they should have a high interpretable power 798

due to their interpretability by design, directly pointing users 799

to relevant parts of the original data. However, such subse- 800

quences, patches, or patterns are often still relatively hard 801

to interpret due to the non-intelligibility of time series. For 802

this reason, these approaches need further tweaks to perform 803

better, and abstractions need to be easier to interpret for users. 804

For example, motif-based models do not have state-of-the-art 805

accuracy with small, easy-to-understand decision trees [10]. 806

A challenge with using subsequences is the segmentation 807

of the data. Often, fixed-length intervals are used, and the 808

choice of the length is critical since, for a suboptimal choice, 809

segmentation may not capture relevant patterns. 810

2) IMPROPER SUBSEQUENCES – SHAPELETS 811

Shapelets were first introduced in [131] as a new time series 812

primitive embedded in a decision tree classifier. Shapelets 813

are sequences of values that are most representative of class 814

membership, i.e., depending on their distance from the time 815

series, they split the dataset, maximizing the information 816

gain. At each step of the decision tree induction, both the 817

shapelet and the best dataset split point are determined. Inter- 818

pretable classification is then achieved by inspecting the deci- 819

sion tree and the shapelets in each tree node. Formally, we can 820

define shapelets as: 821

Definition 6 (Univariate Shapelet): Given a TSC dataset 822

D ∈ Rn×m×d , a univariate shapelet s ∈ Rl of length l < m is 823

an improper subsequence that discriminates the target Y . 824

Typically, a shapelet-based method extracts a set contain- 825

ing k-most discriminative shapelets, denoted as S ∈ Rk×l×d , 826

typically with k < n and d = 1 for univariate time series. 827

The interpretable classifiers, such as decision trees but also 828

logistic regressors or others, are then trained on the so-called 829

shapelet transformation approach [85]: 830
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Definition 7 (Shapelet Transformation): Given a set of831

time series X , a set of shapelets S, and a distance function832

dist , a shapelet transformation turns a set of time series833

X ∈ Rn×m×d into a matrix of continuous values X ′ ∈ Rn×k ,834

obtained by taking the minimum distance dist between each835

time series in X , and each shapelet in S.836

The shapelet transform extracts the k most discriminative837

shapelets from a time series dataset and returns a new rep-838

resentation of the data, where the attributes represent the839

distances between the k shapelets and each time series.840

In this way, any classification algorithm can be used, poten-841

tially increasing the accuracy while reducing training time.842

In general, the choice of the distance measure is method-843

dependent. In the case of multivariate time series and uni-844

variate shapelets, it is calculated w.r.t. the dimension the845

shapelet was extracted from [40]. In [86], the problem of846

shapelet extraction in a multivariate setting is first tackled.847

The proposed method is called Multivariate Shapelets Detec-848

tion (MSD) and extracts shapelets from all time series dimen-849

sions. The approach uses an information gain-based distance850

to split the dataset and ranks the shapelets depending on a851

utility score, weighted to favor shapelets appearing earlier.852

Definition 8 (Multivariate Shapelet): Given a TSC dataset853

D ∈ Rn×m×d , a multivariate shapelet s ∈ Rl×d is a set of d854

aligned univariate shapelets of equal length l < m.855

Since the introduction of shapelets in [131], there were856

many contributions focused on improving the efficiency of857

the shapelet search both for univariate [132], [133], [134],858

[135], [136], [137], [138], [139], and multivariate [140],859

[141], [142] time series. In the following, we include only the860

approaches that contribute from an interpretability standpoint861

and not necessarily from an efficiency standpoint.862

In [87], Mueen et al. propose Logical-Shapelets (LS),863

a more expressive classification approach that addresses the864

problem of scalability of the original method. Furthermore,865

LS can exploit conjunctions or disjunctions of shapelets to866

discriminate the target variable. In [88], Grabocka et al. for-867

malize the shapelet search as an optimization problem that868

jointly learns the shapelets from the training data and mini-869

mizes their incurred error without the need to explore all pos-870

sible candidates. The approach, called Learning-Shapelets871

(LTS), first roughly estimates the shapelets and then itera-872

tively learns and optimizes their shape via gradient descent by873

minimizing a classification loss function. LTS was extended874

in [143] to use Dynamic Time Warping as a distance mea-875

sure. In [89], Yang et al. propose LCTS, a shapelet learning876

method that, instead of extracting the top shapelets directly877

from time series subsequences, uses self-organizing incre-878

mental neural networks (SOINN) to first generate shapelet879

prototypes. The learned candidates are then used to transform880

the time series into the shapelet feature space by combining881

an exponential function with distance normalization. Finally,882

an L1-regularizer is used to select the top shapelets from the883

candidates. The advantage of using SOINN is that isolated884

shapelets are removed and similar shapelets combined, result-885

ing in a smaller and better-quality set of shapelets. We believe886

that a smaller but more precise set of shapelets leads to better 887

interpretability since it reduces the cognitive workload of end 888

users. 889

In [90], Fang et al. propose an efficient way to 890

learn shapelets using a multi-stage process on the 891

PAA-transformed and the raw time series. Interpretability 892

is explicitly addressed by finding shapelets so that each 893

shapelet represents one characteristic of a class. This property 894

is achieved by incorporating a coverage metric for the class 895

characteristics in a final filtering process on the previously 896

found shapelets. Classification is performed with a linear 897

classifier. In [91] another prototype-based shapelet learn- 898

ing approach is proposed by Deng et al. This method is 899

based on dictionary learning theory and learns basic repre- 900

sentative shapes robust to deformations and transformations. 901

It first minimizes the average least-squares error between 902

the transformed subsequences and the shapelet prototypes. 903

It then updates the dictionaries to represent the basic shapes 904

learned from the time series. The discovered shapelet pro- 905

totypes are reported to be more general and expressive 906

because they preserve the intrinsic shapes present in the data. 907

In [92], Guilleme et al. propose the method Localized Ran- 908

dom Shapelets. This approach aims to generate more realistic 909

and interpretable shapelets by adding shapelet localization 910

to the traditional shapelet transform representation. Using 911

a hierarchical feature selection process with regularization, 912

the approach can be tuned to select, for each shapelet, either 913

only its distance information or both distance and localization 914

information. In this way, the user can understand how much 915

the localization of the shapelet, besides its presence in the 916

time series, is important for the prediction. 917

In [93], Ma et al. propose Adversarial Dynamic Shapelet 918

Networks (ADSNs). This approach dynamically generates 919

shapelets that are more similar to real subsequences by fram- 920

ing the shapelet generation process as a two-player minimax 921

game, following the idea of Generative Adversarial Networks 922

(GAN). The discriminator is trained to distinguish between 923

synthetic shapelets and real subsequences in the input time 924

series. A regularization term is added to the objective function 925

to avoid model collapse and ensure shapelet diversity. Anal- 926

ogously to prototypes, we believe that diverse shapelets lead 927

to better interpretability. In [94], Wang et al. propose XCNN, 928

an adversarily regularized EXplainable Convolutional Neu- 929

ral Network. XCNN learns discriminative and meaningful 930

shapelets by using two networks: a CNN to classify the time 931

series and a discriminator to regularize the classifier and force 932

it to learn shapelets similar to real subsequences of the train- 933

ing set. In [95], Vandewiele et al. proposeGENDIS, a genetic 934

approach that uses evolutionary computation to perform the 935

shapelet search. One of the key advantages of this method 936

is that it evaluates entire sets of shapelets instead of inde- 937

pendently analyzing single shapelet candidates. In this way, 938

both the quality of the candidate sets and their size can be 939

optimized, resulting in fewer and more different shapelets. 940

Moreover, GENDIS allows taking into account interactions 941

between shapelets explicitly. In [96], Medico et al. present a 942
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DNN in which multivariate shapelets are embedded as train-943

able weights. By adding two regularization terms to the loss944

function, the approach can efficiently and transparently clas-945

sify multivariate time series, retrieving a small set of uncor-946

related shapelets.947

In [97], Guidotti and D’Onofrio show an alternative948

approach to designing an interpretable shapelet-based deci-949

sion tree. In particular, the proposed approach (MAPIC)950

exploits the Matrix Profile [144] to extract shapelets in the951

form of motifs and discords for each splitting of the deci-952

sion tree. The approach is efficient both theoretically and953

empirically, while being comparable or even outperforming954

approaches using different procedures for shapelet extraction.955

In [99], Hu et al. propose a combination of shapelets and956

attention-mechanism. An efficient shapelet transformation957

aims to reduce the number of shapelets. While the inter-958

pretability of the shapelets is not explicitly addressed, the959

reduction of the number of shapelets is in line with the con-960

cept of sparsity, known from prototype methods. Classifica-961

tion is conducted based on the found shapelets combined with962

an RNN with an attention mechanism. The use of the RNN963

improves the classification accuracy yet, turns the approach964

into a model-specific approach.965

In [100] Guidotti et al. proposed LASTS, a Local Agnos-966

tic Shapelet-based Time Series explainer. LASTS uses an967

autoencoder first to compress the time series into a simplified968

latent encoding. Then, a genetic algorithm generates syn-969

thetic instances that, once decoded, constitute a neighborhood970

containing both prototypical and counterfactual time series.971

Finally, a shapelet-based decision tree is trained to output972

factual and counterfactual rules, explaining the classification973

in terms of subsequences that must, or must not, be contained974

to get a specific black-box outcome.975

SUMMARY AND ANALYSIS976

Shapelets are a compromise between state-of-the-art perfor-977

mance (e.g., accuracy) and interpretability. In some cases, the978

first learning shapelet approaches did not explicitly address979

interpretability, such as [142]. The accuracy of shapelet980

methods has increased for later methods like [93] due to981

various extensions. However, the pipeline as a whole has982

become more difficult to understand as a result of the inclu-983

sion of complex models, such as an autoencoder [100] or984

a GAN [93]. Furthermore, being closer to the data, such985

approaches push shapelets closer to proper subsequences by986

addressing issues such as the fact that they are still difficult to987

interpret for some use cases and users. Discovering meaning-988

ful shapelets in multivariate time series is particularly chal-989

lenging due to potentially differing change points in the time990

series of the different dimensions.991

3) IMPROPER SUBSEQUENCES – PROTOTYPES992

Prototypes are improper archetypal subsequences for build-993

ing interpretable time series classifiers. Ming et al. pro-994

posed ProSeNet [105] which encodes sequential data, not995

constrained to time series, with an encoding network. The996

encoded representation is then passed to a layer that learns 997

prototypes fulfilling the criteria of simplicity, diversity, and 998

sparsity. A novelty compared to previous work is using a 999

constrained similarity measure, rather than the commonly 1000

used L2 distance, to compare the encodings with the learned 1001

prototypes. Mercier et al. [102] train an autoencoder to gen- 1002

erate embeddings for an input time series in their approach 1003

P2ExNet. The embedding representation is then fed into a 1004

prototype network in which multiple subsequence prototypes 1005

of the whole input time series, instead of a single prototype, 1006

are used. Following that, a softmax-layer conducts the clas- 1007

sification based on the prototypes. The results show only a 1008

marginal performance decrease for the accuracy w.r.t. models 1009

not using prototypes. 1010

SUMMARY AND ANALYSIS 1011

One idea of prototype-based explanations is to com- 1012

bine domain knowledge with learning approaches such as 1013

neural networks to generate meaningful domain-specific 1014

subsequences. Interestingly, all methods reviewed in this 1015

subsection extract prototypes by means of neural networks. 1016

Prototype explanations generally incorporate knowledge 1017

about experts’ data acquired during previous analysis or 1018

through know-how. Furthermore, black-box models incorpo- 1019

rating expert-created prototypes are sometimes applied [105]. 1020

In summary, prototypes propose a promising extension for 1021

opaque models but need other techniques to open the 1022

black-boxes around them. 1023

4) IMPROPER SUBSEQUENCES – FEATURE-BASED 1024

In [104], Wang et al. propose to use multilevel discrete 1025

wavelet transform to decompose time series into subse- 1026

quences ranked by the contained frequencies. The data is 1027

then classified in the time-frequency domain by a cascade of 1028

classifiers (different types of neural networks) incorporating 1029

residual connections. In doing so, the time-frequency domain 1030

is included at different resolutions. Classification is explained 1031

by the importance of each time-frequency part. 1032

SUMMARY AND ANALYSIS 1033

Feature-based methods on improper subsequences extract 1034

features from some kind of transformed representation 1035

rather than the original data points. For example, the 1036

frequency-domain was used in [104]. Regarding explainabil- 1037

ity, the features’ interpretability determines the explanation’s 1038

quality. Features from the frequency domain could be used 1039

as an example in fields where frequency bands are part of the 1040

domain-specific knowledge, such as EEG frequency bands in 1041

the medical domain. 1042

5) SUMMARY OF SUBSEQUENCES-BASED METHODS 1043

The types of subsequences-based methods are manifold, 1044

comprising methods based on the SAX representation as well 1045

as shapelets. The reviewed papers addressed patches, proto- 1046

types, and feature-based methods to a lesser extent. Except 1047

for one, all methods were originally designed for time series 1048
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data. Furthermore, we highlight that the great majority of1049

the interpretable subsequences-based classifiers make use of1050

shapelets. Indeed, shapelets are a powerful discriminative tool1051

that can be theoretically and practically extended to other1052

data types. In turn, this allows experimenting with these inter-1053

pretable features on domains different from time series [98].1054

Although shapelets could be considered state-of-the-art in1055

this category, this might indicate a research gap in developing1056

other types of interpretable subsequences-based time series1057

classifiers.1058

C. INSTANCE-BASED EXPLANATIONS1059

The methods falling in this category rely on the whole time1060

series instance to express the reasons for the classification.1061

We mainly recognize two categories of methods returning1062

instance-based explanations. On one hand, those counting on1063

features extracted from the whole time series. On the other1064

hand, those returning time series instances as explanations.1065

Regarding the latter, the most common explanations are pro-1066

totypes and counterfactuals.1067

1) FEATURE-BASED EXPLANATIONS1068

Feature-based interpretability approaches try to explain clas-1069

sification, e.g., through statistics extracted from the time1070

series data. These features are not based on individual time1071

points or subsequences and therefore are usually less sensitive1072

to noise.1073

An early representative for the extraction of feature sets is1074

the work of Gay et al. [108]. Time series are transformed into1075

multiple representations using generic transformations like1076

derivatives or auto-correlation functions to identify patterns1077

characteristic for each class. Co-clustering is employed to1078

group similar patterns within classes and thereby identify a1079

set of class-discriminant features. Classification is then con-1080

ducted on a feature space with standard classifiers, shown1081

with Naive Bayes. The approach is applied to univariate time1082

series, but it can be transferred to multivariate time series1083

by adapting the feature extraction steps. Interpretability is1084

achieved by considering the identified features in a textual1085

form. Evaluating the interpretability of the created explana-1086

tions could be future work.1087

In [109], Shalaeva et al. propose MTDT (Multi-operator1088

Temporal Decision Trees) extending the decision tree algo-1089

rithm to time series data. MTDT uses split operators to cap-1090

ture different geometrical structures in the data based on1091

dynamic time warping and spherical operators besides SAX1092

subsequences. Users can then inspect each node condition1093

in the decision tree to understand how the classification was1094

achieved.1095

In [110], Ito and Chakraborty focus on computational effi-1096

ciency and present three shape-aware feature extractionmeth-1097

ods with linear time-complexity, that compute the similari-1098

ties between time series. The Fold Count (FC) representation1099

counts the number of foldings of a time series on itself. The1100

Time Axes Area (TAA) relaxes FC by measuring the areas1101

under the folds. The Log Weighted Area is a modification1102

of TAA that takes the logarithm to avoid too long delays. 1103

As an interpretable classifier, kNN is adopted to exploit these 1104

shape-aware time series representations. 1105

In [111], Küsters et al. introduce a framework to extract, 1106

test, and evaluate the intrinsic features used by models adopt- 1107

ing pre-defined filters. Filters, such as lowpass filters, can be 1108

applied to the input data before the classifier’s prediction to 1109

investigate the model’s behavior regarding these intrinsic fea- 1110

tures. Such variables can be used to compare experts’ domain 1111

knowledge with the features used by the model. The approach 1112

is evaluated against LRP [55] and shows that by changing 1113

fewer data in a fidelity analysis, the accuracy changes even 1114

more. 1115

Extracting statistical features, the work of 1116

Zaman et al. [112] builds a decision tree for the classification 1117

of control chart patterns (univariate time series). The deci- 1118

sion tree is assumed to be interpretable and is shown as an 1119

example. 1120

SUMMARY AND ANALYSIS 1121

Feature-based explanations have a long history and are tra- 1122

ditionally applied to time series classification. However, 1123

in many cases, such approaches are hard to understand for 1124

non-expert users, and in some cases, even for experts. For 1125

example, as observed for MTDT [109], the resulting decision 1126

trees are still hard to explore. Due to their intrinsic use of 1127

features in the time series, these feature-based approaches 1128

hold promising value for evaluating other explanations, such 1129

as attributions, like in Küsters et al. [111]. In summary, the 1130

interpretability of feature-basedmethods strongly depends on 1131

the interpretability of the used features for the target users. 1132

2) PROTOTYPE-BASED EXPLANATIONS 1133

Prototypical examples are time series exemplifying the main 1134

aspects responsible for a classifier’s specific decision out- 1135

come. Formally, 1136

Definition 9 (Prototype): Given a classifier f , an instance 1137

x̃ is a prototype if there is a set of instances X ′ ⊂ X repre- 1138

sented by x̃, and such that ∀x ∈ X ′, f (x̃) = f (x). 1139

A prototype can be a real record sampled from the dataset 1140

that is important and meaningful because it summarizes the 1141

shape of many other similar instances, or a synthetic one, for 1142

example a cluster centroid or a record generated by following 1143

some ad-hoc processes. The explanation is obtained by com- 1144

paring an instance x for which we have the decision f (x) with 1145

the prototype x̃. 1146

In [52], Gee et al. propose an approach for learning time 1147

series prototypes. The prototypes are found using an autoen- 1148

coder, and the work’s novelty is the learning of diverse pro- 1149

totypes. They are used for classification and explanation. The 1150

evaluation shows that the approach finds diverse prototypes. 1151

A study involving end users to contrast this approach with 1152

other prototype-based methods could potentially lead to new 1153

insights regarding the interpretability of the extracted pro- 1154

totypes. Das et al. [103] extract prototypes from the latent 1155

representation of the input data in a deep neural network. The 1156
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prototypes are weighted, and a surrogate model is built from1157

the prototypes. The approach also applies to data other than1158

time series, yet, a case study for time series data is presented.1159

In this case study, entire time series (stemming from longer1160

time series segmented prior to training the model) are used1161

as prototypes. The authors describe their approach as model-1162

agnostic, since it can be used for different deep learning net-1163

work architectures. However, following the proposed taxon-1164

omy, we categorize it as model-specific since it is constrained1165

to neural networks.1166

Tang et al. propose the Dual Prototypical Shapelet1167

Networks [106]. While the paper focuses on few-shot learn-1168

ing, it contributes to interpretability by combining explana-1169

tion methods offering both local and global explanations.1170

A new representation is learned in the first step, incorporating1171

shapelets and SFA features. The learned representation is then1172

classified with a nearest neighbor classifier. Interpretability1173

is achieved by representative time series examples as well as1174

representative and discriminative shapelets.1175

While the main motivation of Zhang et al.’s approach Tap-1176

Net [107] is to cope with the lack of labeled data, a contri-1177

bution to interpretability is also made. For multivariate time1178

series, embeddings are learned by creating subgroups of the1179

univariate time series, followed by 1D-CNNs applied to these1180

groups. In addition, an LSTM is trained on the original multi-1181

variate time series. From the learned embeddings, prototypes1182

are extracted and then used for classification. The prototypes1183

are shown in a t-SNE [145] projection of the embedded space.1184

SUMMARY AND ANALYSIS1185

As for improper subsequence prototypes, instance-based pro-1186

totypes hold valuable information and represent an interest-1187

ing direction for explainable time series classifiers. However,1188

the black-boxes, usually neural networks, used to build the1189

prototypes are still not explained. Another drawback is that1190

the majority of the works assume that the prototypes are1191

interpretable, focusing solely on evaluating known prototype1192

metrics. For example, the approach in [107] is promising, but1193

the prototypes are visualized with a projection method that is1194

not intrinsically understandable. In some of the studies, the1195

prototypes themselves are analyzed.1196

3) COUNTERFACTUAL-BASED EXPLANATIONS1197

Counterfactual time series show the minimal changes in the1198

input data that lead to a different decision outcome. Formally,1199

Definition 10 (Counterfactual): Given a classifier f that1200

outputs the decision y = f (x) for an instance x, a counterfac-1201

tual consists of an instance x ′ such that the decision for f on x ′1202

is different from y, i.e., f (x ′) 6= y, and such that the difference1203

between x and x ′ is minimal, and that x ′ is plausible.1204

Minimality and plausibility depend on the domain where1205

counterfactuals are necessary. However, for time series, min-1206

imality typically refers to a notion of distance between time1207

series. On the other hand, plausibility refers to notions involv-1208

ing the usage of outlier detection metrics or measuring the1209

presence of anomalies in the time series.1210

In [113], Delaney et al. propose to extract potential 1211

counterfactual time series, named native guides, from ini- 1212

tial training data. As a first step, these are real time series 1213

belonging to D. These are then adapted to generate novel 1214

counterfactuals, following four identified key properties for 1215

good counterfactuals: proximity, sparsity, plausibility, and 1216

diversity. While these properties are generally assumed to 1217

yield interpretable examples (prototypes or counterfactuals), 1218

evaluating this promising approach involving end users could 1219

be promising for future work. The approach is quantitatively 1220

evaluated for these properties and compared to two bench- 1221

mark methods. 1222

In [114], Karlsson et al. define the problem of locally and 1223

globally explainable time series tweaking. They propose the 1224

two approaches τRT and τIRT that try to find the minimum 1225

amount of changes to a time series that forces a classifier 1226

into changing its classification output. The authors focus 1227

on implementing the approach for two classifiers, namely 1228

k-Nearest Neighbors and Random Shapelet Forest [146]. 1229

Evaluating the interpretability of the random forest could be 1230

future work. 1231

In [115], Ates et al. propose CoMTE, an explainability 1232

method that provides explanations for multivariate time series 1233

classification in terms of counterfactuals. Using a heuristic 1234

search algorithm, CoMTE finds a distractor time series from 1235

the training set and computes the minimal number of substi- 1236

tutions in order to change the class of the original time series 1237

to that of the distractor. 1238

Labeien et al. [116] transferred the concept of Contrastive 1239

Explanation Method (CEM) [147] to time series classifica- 1240

tion. Using an LSTM in combination with a fully connected 1241

network, they find the minimal perturbations for the model to 1242

change its classification decision. These perturbed instances 1243

are called pertinent negatives, being similar to counterfactu- 1244

als. Note that the model is reported to be model-agnostic, 1245

while we view it as model-specific since it relies on a combi- 1246

nation of LSTM and an autoencoder. 1247

SUMMARY AND ANALYSIS 1248

Counterfactual-based explanations are grounded in human 1249

explanation theory and are intuitively understandable [22]. 1250

However, generating counterfactuals for time series is not as 1251

trivial as in traditional approaches like [148] that use gradient- 1252

based optimization. Those approaches bear the risk of gen- 1253

erating time series counterfactuals that are not consistent 1254

with the original data [113], i.e., adversarial examples. Thus, 1255

a counterfactual-based explanation can be hard to generate 1256

but can potentially be a human-acceptable explanation for 1257

time series classifiers. 1258

4) SUMMARY OF INSTANCE-BASED METHODS 1259

There is less research on instance-based XAI methods com- 1260

pared to time points- and subsequences-based methods. The 1261

introduced methods comprise prototypes, counterfactuals, 1262

as well as feature-based methods. The vast majority of 1263

the methods were originally designed for time series data. 1264
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We would like to point out that there are more interest-1265

ing feature-based methods that we did not include due to1266

domain-specific feature extraction.1267

D. OTHER TYPES OF EXPLANATIONS1268

We place in this section a miscellanea of methods that, in our1269

opinion, do not return explanations that can be easily assigned1270

to one of the previous categories.1271

In [117], Okajima and Sadamasa proposeRule-Constrained1272

Network (RCN), i.e., a neural network trained to make deci-1273

sions by selecting decision rules. Given an instance, RCNs1274

select a decision rule from a given set so that the observation1275

satisfies the antecedent of the rule and the consequent gives1276

a high probability to the correct class. An RCN is a data-1277

agnostic model, but in [117] is successfully applied on time1278

series after learning the rules on a TSC dataset.1279

While Huang et al. [118] focus on anomaly detection under1280

specific assumptions, we include it due to its interesting and1281

completely different approach. They address the detection1282

of faults in aircraft systems with the underlying assumption1283

that the correlation between the signals in the multivariate1284

time series is stationary in normal operation mode. In fact,1285

a change in the correlation is an indication of a fault. They1286

useGranger causal graphs to learn and represent the causal-1287

ities between the signals and classify the data based on the1288

differences between the causalities. Interpretability is then1289

achieved by visualizing the differences in the correlations.1290

In [119], Mohammadinejad et al. propose to learn Tempo-1291

ral logic formulas to classify time series. Regarding inter-1292

pretability, the approach favors shorter formulas, which are1293

viewed as easier to understand. Relating this approach to the1294

common terminology of XAI, we view it as a global expla-1295

nation – since the temporal logic formulas are determined1296

from the entire training set. In addition, we view the approach1297

as model-specific, since the learned formulas are used as a1298

classification model. In contrast to the vast majority of the1299

reviewed papers, this approach does not present the expla-1300

nations visually, but rather as temporal logic. The authors1301

note that general temporal logic can be transformed into plain1302

text explaining decisions. This is, however, not shown for1303

the approach in the paper and might be a promising future1304

research.1305

SUMMARY OF OTHER METHODS1306

This subsection comprised promising approaches for future1307

research directions, such as temporal logic, rules, or Granger1308

causality analysis. However, these approaches are quite dif-1309

ferent from the typical work on XAI and might not be within1310

the scope of XAI researchers. Although these works may not1311

be directly accessible to XAI researchers due to the use of1312

differentmethods and terminology, wewould like to highlight1313

their promising ideas.1314

VI. APPLICATIONS AND EVALUATION1315

Explainable AI strives in many different research fields1316

and proposes solutions to overcome uncertainties with1317

explainability in high-stakes applications. Various applica- 1318

tions present use cases of how to deploy machine learning 1319

models and apply XAI to increase the understanding and 1320

knowledge of the underlying model and gain the users’ trust. 1321

Further, evaluation is a key performance indicator of how 1322

reasonable these explanations are on the model and the data 1323

for the tackled problem. 1324

A. APPLICATIONS 1325

Due to the tremendous amounts of data generated by an even 1326

larger number of deployed sensors, time series classification 1327

can be applied in a nearly endless amount of tasks, such as 1328

anomaly detection for cardiovascular [149] and brain dis- 1329

eases [150], human activity recognition [151], pattern extrac- 1330

tion [152], real-time crash prediction [153] and so on. In the 1331

past, fewer machine learning models were applied in critical 1332

tasks, given their insufficient performance and/or the need for 1333

understandable decision-making. Recently, due to the huge 1334

success of deep learning models in fields such as computer 1335

vision, more andmore machine learning algorithms are tested 1336

and applied to automate and solve problems. XAI helps to 1337

further increase such models’ reach into areas where there is 1338

a need for understandable decisions. Without claiming to be 1339

exhaustive, in the following paragraphs we present examples 1340

of some relevant applications. 1341

1) TECHNICAL SYSTEMS 1342

Technical systems typically incorporate machine learning 1343

models to automate or improve existing tasks previously 1344

solved by humans or handcrafted algorithms, for example, 1345

in order to identify critical events in production [8] or to 1346

diagnose bearing faults [154]. Explainability for TSC has 1347

been used in various papers on power consumption. In [140] 1348

shapelets are used to classify different events in power 1349

consumption. The authors report that through these subse- 1350

quences, they are able to investigate the data, understand 1351

which shapelet leads to an event, and hence improve the 1352

trust in the system. The investigation is then used to under- 1353

stand which appliance caused an occurred event. Other works 1354

like [65] uses a CNN to classify power consumption of dif- 1355

ferent households and use attribution techniques to show rel- 1356

evant features and time points for the classification. Their 1357

visualization shows a heatmap of the important values. Fur- 1358

thermore, predictive maintenance is a field where time series 1359

are commonly encountered. In [155], a 1D-CNN is used on 1360

univariate vibration signals to classify faults in linear motion 1361

guides. The explanation is achieved using Grad-CAM in 1362

the frequency domain, arguing that different errors manifest 1363

themselves through different frequency patterns. An LSTM is 1364

used in [156] to classify rolling-element bearings. The expla- 1365

nation method used is LRP to show a heatmap in the time 1366

domain. Because time series data is present in a wide range 1367

of technical systems, such as manufacturing, automotive, 1368

or the internet of things, we consider this application field 1369

highly relevant and demanding for interpretable time series 1370

classification. 1371
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2) MEDICAL DOMAIN1372

In the medical domain, it is even more critical to support the1373

trust of doctors and specialists in automatic decision systems1374

in their daily work. In [157], a framework is presented to1375

apply post-hoc attribution methods such as LIME in medical1376

time series to explain the decisions of models. They apply1377

a DNN on ECG data to classify patients’ conditions and use1378

LIME as an explanation extractor to show users how the clas-1379

sification was achieved. Many others also apply attribution1380

methods on ECG [69] or robotics data on surgical tasks [158]1381

to extract explanations frommodels. In [159], a CNNwith an1382

attentionmechanism is utilized for epileptic seizure detection1383

in multivariate EEG time series. The approach extracts the1384

importance of each EEG channel (one signal of the mul-1385

tivariate time series). Furthermore, the authors show how1386

the attention mechanism allows locating the important brain1387

regions based on the location of the electrodes. Furthermore,1388

for seizure detection, [160] applied SHAP on multivariate1389

EEG data to identify important EEG channels. The need for1390

interpretable models is rather obvious in the medical domain.1391

Often, applications of XAI approaches in this domain are1392

indeed steps towards deployment in a real-world scenario.1393

B. EVALUATION1394

Evaluations are crucial to validate working approaches for1395

practical computer science problems. However, due to differ-1396

ent evaluation methodologies, there is not a straightforward1397

and standard solution to apply to every challenge. In most1398

cases, evaluations can be split into two different types: quan-1399

titative and qualitative. Quantitative evaluation metrics focus1400

on evaluating the performance of a model, comparing it to1401

other approaches, for example, measuring their accuracy on1402

a benchmark dataset. On the contrary, qualitative evaluations1403

do not strictly focus on just a measure and use subjective1404

human decisions to measure performances. Humans are often1405

involved in interpreting results giving opinions on which pro-1406

posed solution works best for a specified task, for exam-1407

ple, by looking at the realism of the images generated by a1408

model.1409

XAI inherits these two approaches to evaluate explana-1410

tions from the field of computer science, as these are highly1411

subjective towards the target user group. For example, engi-1412

neers working with time series and forecasting models need1413

a different explanation than maintenance workers repairing1414

engines and maintaining large production machines. Thus,1415

extracting the proper explanation for each group involves1416

different evaluations. At first, the XAI technique needs to1417

be evaluated, and then a suitable medium for the explanation1418

needs to be found and presented to users [161].1419

Typically, a first initial analysis of the explanations is1420

undertaken in a visual assessment of individual samples with1421

experts. Afterward, in some cases, a broader range of experts1422

and users is included to evaluate the explanations. To gen-1423

erally demonstrate that the XAI approaches are working,1424

quantitative fidelity analysis is used to assess the trustwor-1425

thiness of the model’s explanation. Then in some cases,1426

enhancements of the fidelity or other quantitative and auto- 1427

matic evaluation measures are used to get further insights into 1428

the approach and the classifier. We believe that the evaluation 1429

of XAI, in general, is challenging and currently not solved at a 1430

satisfactory level. The lack of widely accepted metrics or test 1431

procedures for the young research field of XAI for time series 1432

classification is evenmore evident. For general XAI, the posi- 1433

tion paper [42] made a strong case for rigorous evaluation 1434

methods. These thoughts should also be taken into account in 1435

the time series domain. Currently, there is no accepted metric 1436

to quantify the interpretability of the reviewed methods, i.e., 1437

user studies will be necessary for the time being. In addition, 1438

it is desirable to have a set of quantified metrics since they are 1439

less subjective and easier to compare. We believe a combina- 1440

tion of quantitative results and user studies will be necessary 1441

to convince potential users of the proposed XAI methods. 1442

In the following, we shortly introduce the mentioned 1443

concepts: 1444

1) VISUAL EVALUATION 1445

Beginning with qualitative evaluation, a first initial judgment 1446

is often done by inspecting the explanation’s visualization. 1447

In such cases, visualizations facilitate presenting an expla- 1448

nation to users [120]. In Table 4 we refer to this type of 1449

explanation as author-selected examples. Such first demon- 1450

strations give insights into the model as well as into the 1451

data used [61], [83], [101], [162]. However, these visual 1452

approaches are highly qualitative evaluations given that in 1453

most cases, only small-scale studies with a limited amount 1454

of users are undertaken. When the evaluation involves only 1455

domain experts, the scale is even smaller, and the mea- 1456

surement of their understanding of a model’s behavior and 1457

explanations is limited [62], [105]. However, these initial 1458

evaluations often lead to either feedback for further research 1459

opportunities or present valuable empirical data to support the 1460

claims of applicable state-of-the-art approaches [62], [122]. 1461

The main drawback is that such visual evaluations, being 1462

rather subjective, can possibly lead to faulty conclusions. 1463

Hence, they should be verified together with a quantitative 1464

method [163]. 1465

2) FAITHFULNESS ANALYSIS 1466

The most prominent and widely used quantitative evalua- 1467

tion for XAI in TSC is the faithfulness analysis. Faithful- 1468

ness describes how accurate an explanation fits a model’s 1469

behavior towards the prediction score. Throughout literature, 1470

faithfulness is referred to under various terms, for instance 1471

perturbation analysis [83], ablation study, trustworthiness, 1472

or fidelity [61]. In many cases, such a fidelity analysis is 1473

achieved by explaining a sample and changing (perturbing) 1474

the relevant parts from the explanation of the sample to non- 1475

informative values [7]. Afterward, the change in prediction is 1476

observed either over just one sample [111] or other a whole 1477

set of samples [7]. In cases over more than one sample, 1478

a quality metric presents changes in the prediction. Often, 1479
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a significant change in the quality metric score is assumed1480

to highlight good working explanations [7].1481

Quality metrics that are applied in such cases often use the1482

underlying training metrics such as accuracy (ACC) or area1483

under the receiver operating characteristic curve (AUROC).1484

Examples for such evaluations using accuracy are [7], [62],1485

[83], [111], [162], AUROC [67], [68], AUPRC (area under1486

the precision-recall curve) [67], [164].1487

After selecting a quality metric to observe, the perturbation1488

analysis can either remove or retain relevant values in samples1489

for the observation [165]. However, removing and retaining1490

information still needs a non-information holding value as a1491

baseline to perturb the data. In time series, such values are1492

not easy to identify for many datasets [166], for example,1493

values like 0 could have a specific meaning altering the class1494

membership. Thus, [166] proposes seven different alterna-1495

tives on how to perturb the data in relevant parts to enable1496

non-information holding values. Besides the focus on indi-1497

vidual time points, they also propose perturbation strategies1498

to evaluate the time constraints. Both, [162] and [7], suggest1499

that there is not one best explanation method to use for all1500

models, but rather a heavy dependence on the appliedmodel’s1501

approach.1502

3) OTHER APPROACHES1503

In [165], fidelity analysis is enhanced with a referee to com-1504

pare the prediction of the initial model with referee clas-1505

sifiers, gradually removing or retaining the most important1506

features highlighted by the explanation. The informativeness1507

of an explanation is assessed by looking at the degradation in1508

performance of the referee classifiers. They argue that such1509

a referee helps to better compare various XAI techniques1510

against each other. In [164] a benchmark for XAI techniques1511

is proposed using synthetic data with properties to evalu-1512

ate the explanations of such methods. In other fields, such1513

as computer vision, there are further techniques to evaluate1514

explanations, e.g., [167] or ROAR [168]. However, most of1515

them are not exhaustively applied to XAI for TSC yet.1516

VII. DISCUSSION AND RESEARCH DIRECTIONS1517

During the analysis of the selected papers, we identified var-1518

ious trends and challenges in XAI research for TSC. In the1519

following, we shortly discuss our perspective of the review on1520

these challenges and highlight future research opportunities1521

to close the gaps we identified.1522

A. DISCUSSION1523

We found some interesting relationships between differ-1524

ent categories of the proposed taxonomy. From Table 3,1525

it becomes obvious that the granularity of the explanation is1526

related to the locality or globality of the XAI approaches.1527

For example, point-based explanations are mostly local,1528

clarifying the model explanation for individual instances.1529

In contrast, subsequence and instance-based explanations1530

are more often global, shedding light on the whole model’s1531

behavior. Next, we identified connections between the1532

explanation method and ante/post-hoc approaches. In partic- 1533

ular, attribution methods are primarily post-hoc, working on 1534

fixed trained models without the need to make assumptions 1535

about the explained classifier. On the other hand, attentions 1536

and shapelets are built into the model as a constraint and an 1537

ante-hoc mechanism, with interpretability directly embedded 1538

in the approach. Instance-based methods are more heteroge- 1539

neous, with a similar amount of ante/post-hoc approaches. 1540

From the reviewed papers, model-agnostic approaches are 1541

rarer compared to model-specific approaches and are, for the 1542

most part, local. Finally, an interesting observation is that 1543

time-point-based methods have been proposed for univari- 1544

ate and multivariate time series about equally often, while 1545

for subsequence- and instance-based methods, the focus is 1546

on univariate time series, with just a few approaches for 1547

multivariate time series. While the use of subsequences 1548

is more challenging, there appears to be a research gap 1549

due to the high practical relevance of multivariate time 1550

series. 1551

It is clear from the publication dates that subsequences- 1552

based methods, such as SAX or shapelets, have a rich history 1553

with many solid methods. However, in that field, computa- 1554

tional efficiency is frequently given more attention. 1555

Since we believe that the evaluation of XAI methods is 1556

challenging and has not yet reached a satisfactory state [7], 1557

[42], we analyzed how the XAI methods proposed in the 1558

reviewed papers were evaluated (see Table 4): evaluation 1559

is quite frequently done using author-selected examples, 1560

showing that the approach is plausible. As a quantitative 1561

method, classification accuracy is frequently used, showing, 1562

for example, that explainable methods are competitive with 1563

their non-explainable counterparts. Accuracy, however, can 1564

not assess the methods’ interpretability. To a much lesser 1565

degree, other quantitative explanation measures are used. 1566

User studies evaluating the interpretability were presented 1567

in a small minority of the papers. Interestingly, none of the 1568

reviewed subsequences-based approaches was validated with 1569

a user study. We view the lack of user studies as an impor- 1570

tant observation that, from our point of view, points to a 1571

deficiency in a research field that aims to make machine 1572

learning interpretable for human beings. One strong under- 1573

lying motivation of XAI is to enable users to trust machine 1574

learning models that, without explanation, have a black-box 1575

nature. Not involving users in evaluating explanations bears 1576

the risk that proposed explanations are not accepted for use 1577

in practical applications for the same reasons as not accept- 1578

ing machine learning in the first place. Hence, we view the 1579

involvement of users as necessary for future work until the 1580

interpretability of a newmethod is shown. Further work, such 1581

as refining or making a method more efficient, may not then 1582

require user studies. Also, if quantitative methods to measure 1583

interpretability are found and widely accepted in the field, 1584

the incorporation of users might not be required for each 1585

study. 1586

While for machine learning on feature vectors, decision 1587

trees, rule bases, or – for a limited number of features – linear 1588
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TABLE 4. Overview of evaluations conducted in the reviewed papers. The lack of user studies to evaluate interpretability becomes obvious. (Frequently
used evaluation methods are shown with the abbreviations: ACC = classification accuracy, EX = author-selected examples and visual presentation,
PERTURB = pertubation analysis, RT = runtime, US = user study, QUANTCOMP = quantitative comparison to other methods, POINT = pointing game in
localization).
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models are generally assumed to be intrinsically inter-1589

pretable,1 we do not see analogous models for time series.1590

While decision trees have been used for time series, they rely1591

on some feature extraction step or the use of shapelets. The1592

entire process can not simply be considered interpretable.1593

Distance-based methods might, to some degree, be consid-1594

ered interpretable; however, they suffer the same problem for1595

more complex distance measures.1596

Regarding code implementation, we found that the vast1597

majority of the publishedwork uses Python as a programming1598

language. The most famous and used libraries for time series1599

are those with good documentation and implementation,1600

for example Shap [37], Captum [169], GradCAM [170],1601

Lime [36] for time point-based explanations,sktime [171],1602

tslearn [172] and pyts [173] for subsequences-based1603

explanations. At the same time, some promising approaches1604

are not as widespread, given their lack of a simple and1605

easy-to-use codebase. We believe that a library specifically1606

designed for explaining time series classifiers is still missing.1607

As a critique of our taxonomy, we observe that a small1608

subset of papers, not aligned with typical XAI works, could1609

not be classified under it; for this reason, the ‘‘others’’ subcat-1610

egory was added. In addition, some approaches could be con-1611

sidered hybrid (e.g., time-points and subsequences-based),1612

and this was indicated in the text. Furthermore, we acknowl-1613

edge that our selection of reviewed papers might have missed1614

interesting work. For example, we did not include preprints1615

and Ph.D. theses, which might also hold compelling ideas.1616

B. RESEARCH DIRECTIONS1617

Based on the reviewed papers and our work in the field,1618

we identified a number of research directions that we believe1619

can contribute to inspire research in the field.1620

1) HIGHER-ORDER EXPLANATIONS ARE DESIRABLE1621

Throughout reviewing our selected papers, we often observed1622

visualizations showing the time series with a heatmap on1623

top of the line plot or behind it, as described in [120] for1624

attributions or attentions. For subsequences and some appli-1625

cations, we mainly observed a highlighting of the relevant1626

part of the time series corresponding to the subsequence.1627

However, we argue that such visualizations are not sufficient1628

in those cases where the pure signal cannot be directly inter-1629

preted. In contrast to computer vision, highlighted parts of1630

a time series are not directly interpretable for all problem1631

settings. We see an opportunity for higher-order representa-1632

tions besides line plots of the explanations to enable a more1633

straightforward explanation. Based on such other represen-1634

tations, we further highlight the importance of explanations1635

that are not purely visualizations. Verbalization, i.e., textual1636

descriptions of the explanation, can also explain the decision1637

and behavior of the black-box model in the specific terminol-1638

ogy of the problem domain [174] enabling experts to under-1639

1Note that also decision trees and rule bases can become too complex to
be easily interpretable.

stand the model better. An example of a textual explanation is 1640

TSXplain [62] where the explanations were found to be valu- 1641

able in a user study. A combination of verbalization and time 1642

series visualizations can help explain models in user terms 1643

without the need for in-depth knowledge in the time series 1644

domain regarding properties like, e.g., periodicity or structure 1645

of the data, understanding of time series representations, and 1646

algorithms. While machine learning engineers often use XAI 1647

methods, explanations offered to end users should be suffi- 1648

cient to understand the application domain itself, e.g., manu- 1649

facturing, automotive, or medical domain. In [49], this issue 1650

is referred to as quasi-explanations which are explanations 1651

containing items that are foreign to the domain. 1652

2) MODEL-AGNOSTIC APPROACHES ARE PARTICULARLY 1653

USEFUL FOR TSC 1654

For TSC, a variety of different model types is used. In con- 1655

trast to, e.g., computer vision applications, deep learning 1656

methods do currently not clearly dominate the field. In the 1657

search for the best method for a given problem setting, deep 1658

learning [29], ensembles [28], distance-based methods [32], 1659

shapelets and further methods are used. In order to compare 1660

the interpretability of these entirely different model architec- 1661

tures, model-agnostic methods are required. Model-specific 1662

methods may then be used at a later stage of the model selec- 1663

tion process. 1664

3) DOMAIN-SPECIFIC EXPLANATIONS FOR SPECIFIC 1665

APPLICATIONS 1666

In general, building models and explanations that work in a 1667

wide range of fields is desirable. However, we believe some 1668

cases require domain-specific explanations when explaining 1669

the models to end users. Indeed, the effectiveness of an expla- 1670

nation depends on the user’s perception and response rather 1671

than on the model. In particular, the end user may not be 1672

able to understand all the information even if a model is 1673

made entirely transparent. In other words, given that expla- 1674

nations depend on the requirements of the target users, there 1675

is no one-size-fits-all solution in the expanding body of XAI 1676

techniques: what makes an explanation effective depends on 1677

the user’s goals, background, and current level of knowl- 1678

edge [175].When addressing these issues, differentiating user 1679

groups is a good place to start. For instance, machine learning 1680

experts might want to enhance or debug deep learning mod- 1681

els, business owners might want to assess compliance with 1682

regulations, and laypeople might want to gauge how AI deci- 1683

sions affect their daily lives. Furthermore, XAI approaches 1684

can be improved by considering the application domain while 1685

incorporating domain-specific knowledge, yielding useful 1686

explanations instead of quasi-explanations [49]. For instance, 1687

in the healthcare industry, doctors would greatly benefit from 1688

XAI techniques that could clarify the AI diagnosis and enable 1689

the injection of the expert’s knowledge to enhance the quality 1690

of the explanations [176], [177]. Domain knowledge is also 1691

essential in AI-based cybersecurity systems, where expla- 1692

nations must satisfy the needs of many stakeholders [178]. 1693
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Besides domain-specific XAI methods, a research direction1694

might be to develop general XAI methods that incorporate1695

specific domain knowledge. Finally, tighter integration of1696

humans into the explanation generation can lead to a better1697

evaluation of the methods.1698

4) EASY-TO-USE EXPLAINERS ARE DESIRABLE1699

Some XAI methods to explain black-box models might be1700

viewed as black-boxes themselves, as pointed out in previous1701

works [27]. Explaining complex ML models calls for sophis-1702

ticated and often complicated XAI methods. For example,1703

some XAI methods come with assumptions like local linear-1704

ity or feature independence (see [123], [124] for a discussion)1705

andmany hyperparameters, e.g., to control approximations of1706

computationally expensive explanations. For these reasons,1707

there is a risk that the XAI methods will produce invalid1708

explanations.1709

5) MORE RIGOROUS EVALUATION OF EXPLANATIONS IS1710

NEEDED1711

We view the evaluation of explanations as a crucial challenge1712

in XAI research in general, and specifically in XAI research1713

for time series. Evaluation of explainability in other domains1714

such as computer vision is much more advanced than in the1715

time series domain. In particular, adapting some of these eval-1716

uation techniques to previously presented XAI methods can1717

lead to first insights into developing more specialized ones.1718

In general, further methods for faithfulness analysis need to1719

be implemented and generally be used to establish a rigorous1720

quantitative and automatic evaluation. Finally, focusing on1721

verbalization and not only visualization can help improve1722

such evaluations even more, as possibly faulty explanations1723

can be identified more easily.1724

6) EVALUATION SHOULD ALSO ADDRESS HUMAN1725

INTERPRETABILITY1726

We observed that research in the field often addresses the part1727

of explainability, i.e. explaining a model by means of e.g.1728

a visualisation, shapelets or prototypes. These artefacts are1729

then shown with author-selected examples or in some cases1730

evaluated quantitatively. Whether the artefacts are indeed1731

interpretable for the target audience is an evaluation that is not1732

regularly conducted. The artefacts are, by definition, assumed1733

to be interpretable. However, as, e.g., shapelets can be differ-1734

ent to the initial dataset time series samples (see examples1735

in [142]), users do not necessarily understand such explana-1736

tions. The same is true in the case of highlighting parts of1737

the input data that do not correspond with the understanding1738

of domain experts (as shown in a study with medical doc-1739

tors in [74]). Furthermore, extracted prototypes are typically1740

evaluated with respect to acknowledged properties for pro-1741

totypes (e.g., sparsity, diversity). However, whether or not1742

these prototypes are useful to end users is not always eval-1743

uated. This fact emphasizes the need to involve end users in1744

evaluating a method’s interpretability, as also stressed in [49].1745

We believe that quantitative metrics should be used to support1746

user studies or, if progress is made in studying the human 1747

interpretability of XAI explanations, perhaps even to replace 1748

them in the future. 1749

7) UNIFIED IMPLEMENTATION OF XAI FOR COMPARATIVE 1750

EVALUATION 1751

While many of the reviewed XAI methods provide source 1752

code (see Table 3), there is no unified library that allows for 1753

easy comparative evaluation of XAI methods. Looking back 1754

at the history of research on time series, we believe that the 1755

initiative by Keogh and other researchers to provide a uni- 1756

fied data archive [179] for evaluating time series algorithms 1757

has inspired research in the field and made more rigorous 1758

research possible. For time series classification, several pro- 1759

gramming libraries exist (e.g., sktime, tsai). An analo- 1760

gous library of XAI methods for time series classification 1761

is desirable, ideally in connection with datasets. Recently, 1762

promising work towards an XAI benchmark, not specifically 1763

aimed at time series, was published as a preprint [180]. 1764

8) BENCHMARK DATA SETS FOR EVALUATION ARE 1765

DESIRABLE 1766

Quantitatively evaluating an explanation is challenging. 1767

Using perturbation methods [7] requires setting thresholds 1768

and to alter the original data using some pre-defined values 1769

or some obtained background noise. Hence, the evaluation 1770

process has a number of parameters itself, which might lead 1771

to different results when being used by different researchers. 1772

An idea could be to have gold-standard datasets for the 1773

evaluation of explanations: time series that are annotated, 1774

i.e., subsequences, data points or higher order features that 1775

are known to be discriminative are annotated. Unfortunately, 1776

such datasets are not available yet. Indeed, typically studies 1777

proposing novel XAI approaches for time series experiment 1778

on common benchmarking datasets used for TSC,2 not con- 1779

taining annotations regarding interpretability, rather one label 1780

per time series. For example, in computer vision there are 1781

data sets that have annotations for parts within the image, 1782

e.g., the CUBS data set [181] or CLEVR-XAI [182]. To be 1783

as complete as possible, it might be an option to synthetically 1784

create such datasets, inducing known class-discriminative 1785

artefacts into the data. A drawback of such a solution would 1786

be a potential overfitting of explanations methods towards 1787

gold-standard data sets. Hence, those datasets could be an 1788

additional option to check the plausibility of an explanation 1789

but not a replacement for the more generic evaluation meth- 1790

ods currently being developed e.g., [7], [165], [166]. Fur- 1791

thermore, they will not replace user studies to evaluate the 1792

interpretability for the target audience. 1793

VIII. CONCLUSION 1794

In this review, we presented the first extensive overview of 1795

the current body of literature regarding XAI for time series 1796

2Examples are the UCR archive [179] and the Time Series Classification
Website.
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classification. We proposed a taxonomy based on the granu-1797

larity of the explanation, categorizing the reviewed methods1798

into three groups of approaches: time points-, subsequences-1799

, and instance-based. We further highlighted the main1800

approaches to evaluate explanations and the practical chal-1801

lenges of developing quantitative and qualitative metrics1802

towards human and automatic techniques. To inspire fur-1803

ther research in the field, we identified various research1804

directions. Specifically, we believe there are research gaps1805

in the fields of higher-order explanations, model-agnostic1806

approaches, domain-specific explanations, easy-to-use expla-1807

nations, more advanced evaluation of explanations, evalua-1808

tion of interpretability as well as a unified framework with1809

XAI methods for time series classification and benchmark1810

data sets for their evaluation.1811

Explainability is a fast-growing subject in the literature,1812

and it is clear that the interest on the topic is rising. XAI1813

approaches for time series data are helpful in building trust1814

towards the decisions of machine learning algorithms, to bet-1815

ter support experts and their accountability and responsibility1816

in the decision-making, bringing insights in many critical1817

domains.1818
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