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Abstract

Bounded depth refers to a property of Kripke frames that serve as semantics for
intuitionistic logic. We introduce nested sequent calculi for the intermediate logics
of bounded depth. Our calculi are obtained in a modular way by adding suitable
structural rules to a variant of Fitting’s calculus for intuitionistic propositional logic,
for which we present the first syntactic cut elimination proof. This proof modularly
extends to the new nested sequent calculi introduced in this paper.
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1 Introduction
Nested sequents are a natural extension of ordinary Gentzen sequents,
(re)discovered several times in different contexts [15,28,2]. Whereas Gentzen
sequents are lists (or multisets) of formulas, nested sequents are trees of multi-
sets of formulas. The tree structure makes nested sequents well-suited to handle
logics having Kripke-style semantics. Indeed, nested sequents have been em-
ployed to provide internal analytic calculi for modal logics for which this was
not possible before, for example, for the modal logic KB in [2]. Here, inter-
nal means that there are no “external” semantic constructs (like labels) in the
syntax, and analytic means that all derivations in these calculi have the prop-
erty that they only contain formulas which are subformulas of the conclusion
(subformula property). This feature of analytic calculi renders them a natural
starting point for proving meta-logical properties as decidability, complexity,
and interpolation, and for developing automated reasoning methods.

Nested sequents have been effective for classical modal logics in the
S5-cube [2], as well as for intuitionistic modal logics in the IS5-cube [29,25,17],
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and more generally, for all extensions of IK with Horn-Scott-Lemmon ax-
ioms [22]. Furthermore, they have been used to provide focused proof systems
for classical and intuitionistic modal logics [3,4], to construct interpolation
proofs [21], to implement proof search [11,27], and to “tame” modal logics with
path-axioms [12], where “taming” means to have proof systems suited for proof
search. In all these calculi, the tree structure of the nested sequents corresponds
to the accessibilty relation between the worlds in the Kripke frame.

An analytic nested calculus has also been proposed for intuitionistic propo-
sitional logic (IPL) by Fitting [8]; there the tree structure of the nested sequents
corresponds to the future relation between the worlds in the Kripke frame. His
calculus, that has been obtained as a notational variant of prefixed tableaux, is
not equipped with a direct cut elimination proof, which seemed hard to define.

This leads to the first contribution of this paper. We import insights from
the nested sequent calculi for modal logics to introduce NIPL — a variant 1

of Fitting’s calculus for IPL that allows for a direct cut elimination proof. In
the spirit of Belnap’s conditions for cut elimination in display calculi [1], our
proof relies on the abstract conditions (N1)–(N5), which will be presented in
Section 3. The rules of NIPL are all invertible, and therefore NIPL offers a
purely formula-driven approach to proof search.

The next question we address is: Can we extend NIPL by additional struc-
tural rules to capture intermediate logics (i.e., logics between intuitionistic and
classical logic), in a similar way as the nested systems for the modal logics
K and IK are extended with additional rules corresponding to additional ax-
ioms [25,13]? Moreover, can this be done in such a way that the cut elimination
property is preserved, and can this be proved in a modular way, i.e., can we
reuse the existing proof and only add the cases concerning the new rules? 2

For hypersequents—which are disjunctions of ordinary sequents—we have
such results, provided the additional axioms for intermediate logics follow a
certain shape [5]. This is not the case for the family of intermediate logics
characterized by Kripke models of bounded depth, usually denoted by BDn.
The logic BD1 is just classical logic and the logic BD2 is one of the seven
interpolable intermediate logics [24]. Analytic hypersequent calculi for BDn
are indeed provably not obtainable [18] by using the methodology in [5] which
extends the base hypersequent calculus for IPL with suitable structural rules
corresponding to the additional axioms.

Modular analytic calculi for BDn have been defined using frameworks more
powerful than hypersequents (and nested sequents); however, the objects that
the resulting calculi manipulate (labelled or display sequents [26,6]) cannot be
translated into formulas of the logic, and hence there is no real subformula
property even when the calculus is analytic; moreover the rules of these calculi
are not invertible.

1 NIPL is a notational variant of the calculus in [23].
2 Girard has argued in [10] that the lack in modularity is one of the main technical limitations
in structural proof theory.
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This brings us to our second contribution: modular nested sequent calculi
for the logics BDn (for all n ≥ 1). The calculi are obtained by adding suitable
structural rules to NIPL. We show that the cut elimination proof for NIPL
scales to the new systems, as our conditions (N1)–(N5) are preserved. It is
interesting to note that the additional rules for BDn, with n ≥ 2, have more
than one premise. To our knowledge, this is a novelty. So far, there are no
nested sequent systems with multi-premise structural rules.

2 Preliminaries
The formulas of intuitionistic propositional logic (IPL), denoted by A, B, C, . . .,
are generated from a countable set of atoms {p, q, . . .} via the grammar

A ::= p | ⊥ | A ∨ A | A ∧ A | A ⊃ A

We define the degree of a formula to be the number of connectives in it. A
nested sequent is a finite tree of multisets of formulas. In ordinary sequents
for intuitionistic logic we distinguish between the left and the right hand side
of the turnstile. To make this distinction in nested sequents, we use polarities
on formulas. There are two polarities, input (intuitively as if on the left of
the turnstile in the conventional sequent calculus), denoted by a • superscript
and output (intuitively as if on the right of the turnstile), denoted by a ◦
superscript. Now, a nested sequent can be written as:

Γ = A•
1, ..., A•

m, B◦
1 , ..., B◦

n, [Γ1], ..., [Γk] (1)

where A•
1, ..., A•

m, B◦
1 , ..., B◦

n is the multiset of formulas at the root of the sequent
tree of Γ, and where Γ1, . . . , Γk are its immediate subtrees. We use ∅ to
denote the empty sequent, i.e., where m = n = k = 0 in (1) above. We
use capital Greek letters Γ, ∆, Σ, . . . , to denote nested sequents, and we
assume that the associativity and commutativity of the comma is implicit in
our systems, and that ∅ acts as its unit. We write Γ• for A•

1, ..., A•
m and Γ◦ for

B◦
1 , ..., B◦

n, [Γ1], ..., [Γk] if Γ is as in (1) above. In other words, for every nested
sequent Γ we have that Γ = Γ•, Γ◦. More generally, we will write Γ•, ∆•, Σ•,
. . . , for multisets of input formulas (i.e., all formulas have •-polarity, and there
are no nestings), and we will write Γ◦, ∆◦, Σ◦, . . . , for sequents that have only
◦-formulas at their root nodes (i.e., there are no •-formulas at the root, but
there can be nestings with •-formulas inside).

The corresponding formula of the sequent in (1) above is defined as

fm(Γ) =
m∧

i=1
Ai ⊃

( n∨
j=1

Bj ∨
k∨

l=1
fm(Γl)

)
(2)

A (sequent) context is a nested sequent with a hole { }, taking the place of
a formula. Contexts are denoted by Γ{ }, and Γ{∆} is the sequent obtained
from Γ{ } by replacing the occurrence of { } with ∆. We write Γ{∅} for the
sequent obtained from Γ{ } by removing the { } (i.e., the hole is filled with
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Initial Sequents
ax

Γ{p•, ∆{p◦}}
⊥•

Γ{⊥•}

Logical Rules

Γ{A•, B•}
∧•

Γ{A ∧ B•}
Γ{A◦} Γ{B◦}

∧◦

Γ{A ∧ B◦}

Γ{A•} Γ{B•}
∨•

Γ{A ∨ B•}
Γ{A◦, B◦}

∨◦

Γ{A ∨ B◦}

Γ{A ⊃ B•, ∆{Σ, A◦}} Γ{A ⊃ B•, ∆{Σ, B•}}
⊃•

Γ{A ⊃ B•, ∆{Σ}}
Γ{[A•, B◦]}

⊃◦

Γ{A ⊃ B◦}

Figure 1. The calculus NIPL

Γ{A◦} Γ{A•}
cut

Γ{∅}

Figure 2. The cut rule

Γ{∅}
w

Γ{∆}
Γ{∆, ∆}

c
Γ{∆}

Γ{[∆]}
t

Γ{∆}
Γ{Σ◦}

4
Γ{[Σ◦]}

Γ{[Σ•, ∆]}
lift

Γ{Σ•, [∆]}
Γ{Σ◦, [∆]}

lower
Γ{[Σ◦, ∆]}

Figure 3. Admissible structural rules

nothing). The depth of a context Γ{ }, denoted by depth(Γ{ }), is the length
of the path in the sequent tree from the root to the hole { }. It is defined
inductively as follows: depth({ }) = 0 and depth(Γ′, Γ{ }) = depth(Γ{ }) and
depth([Γ{ }]) = depth(Γ{ }) + 1.

We will also use the notation Γ{[∆]} as abbreviation for Γ{[∆]}.
Example 2.1 Let Γ{ } = A•, B◦, [{ }, [D•, C◦]]. We have that

Γ{B◦} = A•, B◦, [B◦, [D•, C◦]]

and
Γ{∅} = A•, B◦, [[D•, C◦]].

Let ∆ = F •, [G◦], then

Γ{∆} = A•, B◦, [F •, [G◦], [D•, C◦]]

and
Γ{[∆]} = A•, B◦, [[F •, [G◦]], [D•, C◦]].

3 Nested Sequent Calculus for IPL
An elegant nested sequent calculus for Intuitionistic Propositional Logic IPL
was introduced by Fitting [8], as a notational variant of prefixed tableaux. The
lack of a direct cut elimination proof in his calculus has prevented its extension



Ciabattoni, Straßburger and Tesi 5

to cover intermediate logics. Indeed, to the best of our knowledge there are
no analytic nested calculi for any intermediate logic (other than classical and
intuitionistic logic). Even methods to extract such calculi from more powerful
frameworks (like the structural refinement method in [22,20] that used labelled
calculi as starting point), do not seem to work for intermediate logics. 3 In
order to define analytic nested calculi for intermediate logics, the nested sequent
formalism has been extended in various ways, giving rise to, e.g., linear nested
calculi [19], and injective nested calculi [16].

In general, proving syntactic cut elimination for nested calculi is harder than
for other proof theoretic formalisms, e.g., (hyper)sequent or display calculus.
Often this result is obtained by translating the nested calculus at hand to
other formalisms, as e.g. in [13,8]. The few existing cut elimination proofs
for nested calculi are indeed tailored to specific systems [28,2,25,29], and their
proofs do not seem to be generalizable (in particular, to deal with multi-premise
structural rules).

In this section we present NIPL, a variant of Fitting’s calculus for IPL de-
signed to have all invertible rules, and to admit a direct cut elimination proof.
The system NIPL, whose rules are shown in Figure 1, is obtained from Fitting’s
calculus by using multisets instead of sets and by absorbing the rule lift into
the initial sequents and the rule ⊃•. Observe indeed that ax and ⊃• can be
simulated in Fitting’s calculus by repeated applications of lift. As an immediate
consequence we obtain the soundness of NIPL with respect to IPL.

Terminology: As in standard sequent calculi, we call context the part left
unchanged from premises to conclusions, we call principal the introduced for-
mula in a logical rule, and the rest active part/formulas (active formulas in the
initial sequents are p•, p◦, and ⊥•).

As we will show in the next section, NIPL satisfies the following proper-
ties that guarantee a relatively simple proof of the elimination of the cut rule
depicted in Figure 2.

(N1) All rules are height-preserving invertible.
(N2) Dedicated structural rules are height-preserving admissible. These rules,

displayed in Figure 3, are the usual weakening (w) and contraction (c),
the lift-rule from [8], variations of the rules for the modal axioms t and 4,
from [25], and the new lower-rule which can be seen as the inverse of lift.

(N3) A cut over formulas that are not principal can be shifted upwards over
its premises. This condition is implied by Belnap’s sufficient conditions
(C2)–(C7) for cut elimination in display calculi [1].

(N4) All logical rules are reductive. This means that they allow the replacement
of a cut whose cut formula is principal in the left and right premise of the
cut rule by cuts on smaller formulas (possibly using the dedicated struc-
tural rules from (N2)). This property is the nested sequent formulation of
Belnap’s (C8) condition [1].

3 See also [14] for the correspondence between labeled systems and nesed sequents.
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(N5) Cuts having an initial sequent as one of their premises can be removed.
Let us mention two useful features of NIPL. The first is standard in well-

designed sequent-style calculi: the general form of the ax-rule is derivable.
Lemma 3.1 (Axiom expansion) The sequent Γ{A•, Π{A◦, ∆}} is derivable
in NIPL for every context Γ, Π, ∆ and every formula A.
Proof By induction on the degree of the formula A. We detail the case in
which A is of the shape B ⊃ C, the other cases being similar.

Γ{B ⊃ C•, Π{[B•, B◦, C◦], ∆}} Γ{B ⊃ C•, Π{[B•, C•, C◦], ∆}}
⊃•

Γ{B ⊃ C•, Π{[B•, C◦], ∆}}
⊃◦

Γ{B ⊃ C•, Π{B ⊃ C◦, ∆}}
The premises are derivable by induction hypothesis. 2

The second feature concerns the admissibility of the necessitation rule

Γ nec
[Γ]

which will be used in the heuristic for generating the structural rules for BDn
in Section 5. Note that unlike all other rules, nec is shallow, as it cannot be
applied inside a context.
Proposition 3.2 If a sequent Γ is derivable, then so is [Γ].
Proof The proof is by induction on the height n of the derivation of Γ. If Γ
is an initial sequent, so is [Γ]. If n > 0, then apply the induction hypothesis to
the premise(s) of the rule and then rule again. 2

4 Cut elimination for NIPL
We are going to show that NIPL satisfies conditions (N1)–(N5) and how these
conditions entail the cut elimination theorem.

The preservation of the height of a derivation is crucial for all our arguments.
Formally, the height of a derivation is the length of the longest path in the tree
from its root to one of its leaves. A inference rule with premises Γ1, . . . , Γn and
conclusion Γ is height-preserving invertible, if for every derivation of Γ, there
are derivations of each of Γ1, . . . , Γn with at most the same height. The rule is
height-preserving admissible if, whenever the premises are derivable, the conclu-
sion has a derivation whose height is not bigger than any derivation of a premise.
Lemma 4.1 The weakening rule w is height-preserving admissible in NIPL.
Proof By induction on the height n of the derivation of Γ{∅}. If n = 0, then
Γ{∅} is an initial sequent and so is Γ{∆}. If n > 0, we apply the induction
hypothesis to the premise(s) of the last rule applied and then the rule again.2
Lemma 4.2 Every rule in NIPL is height-preserving invertible.
Proof By induction on the height n of the derivation of the conclusion of each
rule. The proofs for conjunction and disjunction are standard. The rule ⊃• is
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height-preserving invertible by the height-preserving admissibility of the rule
of weakening. We discuss the rule ⊃◦. If Γ{A ⊃ B◦} is an initial sequent, then
Γ{[A•, B◦]} is an initial sequent too. If n > 0, then we apply the induction
hypothesis to each of the premise(s) and then we apply the rule again. 2

Lemma 4.3 The contraction rule c is height-preserving admissible in NIPL.
Proof By induction on the height n of the derivation. If Γ{∆, ∆} is an initial
sequent, the conclusion easily follows. If n > 0 and the principal formula is not
in ∆, we apply the induction hypothesis to each of the premises and then the
rule again. If n > 0 and the principal formula is in ∆ we exploit the height-
preserving invertibility of the logical rules as shown below, where ρ stands for
an arbitrary rule instance and ρ̄ stands for its inversion (which does not count
for the overall height, as ρ is heigt-preserving invertible):

Γ{∆′, ∆}
ρ

Γ{∆, ∆}
c

Γ{∆}
;

Γ{∆′, ∆}. . . . . . . . . . . . ρ̄
Γ{∆′, ∆′}

c
Γ{∆′}

ρ

Γ{∆}
The application of c is removed invoking the induction hypothesis. The case
where ρ is a binary rule is analogous and we omit the details. 2

The way we formulated the rules in NIPL allows us to establish the admis-
sibility of the lift-rule. A variant of this rule was instead explicitly present in
Fitting’s system. Its absence (in combination with w and c) permits the use of
the additive version of cut, which simplifies the cut elimination argument.
Lemma 4.4 The lift-rule is height-preserving admissible in NIPL.
Proof Proceed by induction on the height n of the derivation of the premise
Γ{[Σ•, ∆]} of the rule. If n = 0 and no formula in Σ• is active, then we can
remove it. Otherwise, Γ{Σ•, [∆]} is again an instance of ax. If n > 0 and no
formula in Σ is principal, we apply the induction hypothesis to the premise(s)
of the rule and then the rule again.
If a formula A• in Σ• is principal in ∧• or ∨•, we apply the induction hypothesis
(possibly twice). E.g.,

Γ{[Σ′•
, A•, B•, ∆]}

∧•

Γ{[Σ′•
, A ∧ B•, ∆]}

;

Γ{[Σ′•
, A•, B•, ∆]}

lift
Γ{Σ′•

, A•, B•, [∆]}
∧•

Γ{Σ′•
, A ∧ B•, [∆]}

If a formula A• in Σ• is principal in ⊃• as in
Γ{[Σ′•

, A ⊃ B•, ∆{Π, A◦}]} Γ{[Σ′•
, A ⊃ B•, ∆{Π, B•}]}

⊃•

Γ{[Σ′•
, A ⊃ B•, ∆{Π}]}

we apply the induction hypothesis and the rule ⊃•, as in
Γ{[Σ′•

, A ⊃ B•, ∆{Π, A◦}]}
lift

Γ{Σ′•
, A ⊃ B•, [∆{Π, A◦}]}

Γ{[Σ′•
, A ⊃ B•, ∆{Π, B•}]}

lift
Γ{Σ′•

, A ⊃ B•, [∆{Π, B•}]}
⊃•

Γ{Σ′•
, A ⊃ B•, [∆{Π}]}
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2

Note that with the admissibility of the lift-rule we immediately obtain com-
pleteness of NIPL with respect to IPL via Fitting’s system [8].

Lemma 4.5 The 4-rule is height-preserving admissible in NIPL.

Proof By induction on the height n of the derivation of the rule premise.
If Γ{Σ◦} is an initial sequent, then so is Γ{[Σ◦]}. If n > 0 we assume that a
formula in Σ◦ is principal, otherwise the proof is trivial. We apply the induction
hypothesis to the premise(s) of the rule and then the rule again. For example,
if the last rule applied is ⊃◦, we have:

Γ{∆, [A•, B◦]}
⊃◦

Γ{∆, A ⊃ B◦}
;

Γ{∆, [A•, B◦]}
4

Γ{[∆, [A•, B◦]]}
⊃◦

Γ{[∆, A ⊃ B◦]}
2

Lemma 4.6 The lower-rule is height-preserving admissible in NIPL.

Proof The lower-rule is derivable with the following height-preserving steps:

Γ{Σ◦, [∆]}
4

Γ{[Σ◦], [∆]}
w

Γ{[Σ◦, ∆], [Σ◦, ∆]}
c

Γ{[Σ◦, ∆]}
2

Lemma 4.7 The t-rule is height-preserving admissible in NIPL.

Proof By induction on the height n of the premise Γ{[∆]}. If n = 0, then
Γ{[∆]} is an initial sequent and so is Γ{∆}. If n > 0, we apply the induction
hypothesis to the premise(s) and then the rule again. As an example, con-
sider the case in which the last rule applied is ⊃• and formulas are introduced
(bottom-up) in [∆]. We have:

Γ{A ⊃ B•, [∆, A◦]} Γ{A ⊃ B•, [∆, B•]}
⊃•

Γ{A ⊃ B•, [∆]}
We construct the following derivation:

Γ{A ⊃ B•, [∆, A◦]}
t

Γ{A ⊃ B•, ∆, A◦}
Γ{A ⊃ B•, [∆, B•]}

t
Γ{A ⊃ B•, ∆, B•}

⊃•

Γ{A ⊃ B•, ∆}
where the applications of t are removed by induction hypothesis. 2

This completes the proof of the properties (N1) and (N2). To eliminate cut,
we also need (N3)–(N5), which will be shown below.

Theorem 4.8 (Cut elimination) The cut-rule is admissible for NIPL.

Proof We consider a uppermost cut and proceed by induction on the lexico-
graphically ordered pair (c, n) where c is the degree of its cut formula and n is
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the height of the derivation of Γ{A•}. 4

(N5) If n = 0, then Γ{A•} is an initial sequent. If A• is not active, Γ{∅}
is an initial sequent too. If A• is active in ax, we have A• = p• for some p, and

Γ{p◦, ∆{p◦}}
ax

Γ{p•, ∆{p◦}}
cut

Γ{∆{p◦}}

The cut is eliminated as follows:

Γ{p◦, ∆{p◦}}
lower

Γ{∆{p◦, p◦}}
c

Γ{∆{p◦}}
The case of the axiom ⊥• is handled similarly, noticing that from the deriv-
ability in NIPL of Γ{⊥◦} follows the derivability of Γ{∅}.

(N3) If n > 0 and A• is not principal, we apply the invertibility of the
corresponding rule to Γ{A◦}, permute the cut upwards, and remove it by sec-
ondary induction hypothesis. For example, consider the following derivation,
where ρ is some binary rule from NIPL:

Γ{A◦}
Γ′{A•} Γ′′{A•}

ρ

Γ{A•}
cut

Γ{∅}
We construct the following derivation, where we again use the height-preserving
invertibility of ρ:

Γ{A◦}. . . . . . . . . ρ̄
Γ′{A◦} Γ′{A•}

cut
Γ′{∅}

Γ{A◦}. . . . . . . . . . ρ̄
Γ′′{A◦} Γ′′{A•}

cut
Γ′′{∅}

ρ

Γ{∅}
(N4) If A• is principal in ∧ or ∨, the case is handled in the usual way

using the invertibility of the rules. For example

Γ{B ∨ C◦}
Γ{B•} Γ{C•}

∨•

Γ{B ∨ C•}
cut

Γ{∅}
is eliminated as follows (where ∨̄◦ is the inversion of ∨◦ and each cut is on a
formula of lesser degree):

Γ{B ∨ C◦}. . . . . . . . . . . . . ∨̄◦

Γ{B◦, C◦}
Γ{B•}. . . . . . . . . . . . . w

Γ{B•, C◦}
cut

Γ{C◦} Γ{C•}
cut

Γ{∅}

4 It is enough to consider only the height of the left premise as every right rule is invertible.



10 Taming Bounded Depth with Nested Sequents

The case below in which A• is principal in ⊃•:

Γ{B ⊃ C◦, Π{Σ}}
Γ{B ⊃ C•, Π{B◦, Σ}} Γ{B ⊃ C•, Π{C•, Σ}}

⊃•

Γ{B ⊃ C•, Π{Σ}}
cut

Γ{Π{Σ}}

is handled using some of the structural rules from (N2). We first construct a
derivation of Γ{Π{B◦, Σ}}:

Γ{B ⊃ C◦, Π{Σ}}. . . . . . . . . . . . . . . . . . . . . . . . . . w
Γ{B ⊃ C◦, Π{B◦, Σ}} Γ{B ⊃ C•, Π{B◦, Σ}}

cut
Γ{Π{B◦, Σ}}

The cut is removed by secondary induction hypothesis. A symmetrical deriva-
tion yields Γ{Π{C•, Σ}}, and the reduction is completed as follows:

Γ{Π{B◦, Σ}}. . . . . . . . . . . . . . . . . . . . w
Γ{Π{B◦, C◦, Σ}}

Γ{B ⊃ C◦, Π{Σ}}. . . . . . . . . . . . . . . . . . . . . lower
Γ{Π{B ⊃ C◦, Σ}}. . . . . . . . . . . . . . . . . . . . . . ⊃̄◦

Γ{Π{[B•, C◦], Σ}}. . . . . . . . . . . . . . . . . . . . . . t
Γ{Π{B•, C◦, Σ}}

cut
Γ{Π{C◦, Σ}} Γ{Π{C•, Σ}}

cut
Γ{Π{Σ}}

2

We can now show completeness independently from Fitting’s calculus:
Corollary 4.9 NIPL is complete with respect to IPL.
Proof It is easy to check that every axiom of IPL can be proved in NIPL and
modus ponens can be simulated by cut. The claim follows by Theorem 4.8. 2

5 Intermediate Logics of Bounded Depth
We introduce nested calculi for the propositional intermediate logics BDn
(Bounded Depth n) which are semantically characterized by intuitionistic
Kripke frames in which every chain is of length less or equal to n. Our calculi
are defined in a modular way by extending NIPL with suitable structural rules,
which preserve conditions (N1)–(N5) and therefore cut elimination.
Definition 5.1 A bounded depth n Kripke frame is a pair ⟨P, ≤⟩, where P
is a non empty set of worlds, denoted by x, y, z, . . ., and ≤ is a partial order
on P with

∀x0 . . . xn.

 ∧
0≤i≤n−1

xi ≤ xi+1 ⊃
∨

0≤i≤n−1
xi+1 ≤ xi

 . (3)

A bounded depth Kripke model is a triple ⟨P, ≤, v⟩, where ⟨P, ≤⟩ is a bounded
depth Kripke frame and v a function which maps propositional atoms to
subsets of P , such that for all worlds x and y, if x ≤ y and x ∈ v(p) then
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y ∈ v(p) (monotonicity condition). Truth conditions for a formula in a world
are defined as usual, see, e.g. [9]. A formula is true in a model if it is true
in every world of the model. A formula is valid if it is true in every bounded
depth Kripke model. A sequent is true in a world (resp. true in a model,
resp. valid) if the corresponding formula is.

The logics BDn are axiomatized by the schemata

bd1 := p1 ∨ (p1 → ⊥) and bdn+1 := pn+1 ∨ (pn+1 → bdn)

where with an abuse of notation here and below we use p(i), q as metavariables,
to be substituted by arbitrary formulas. For each n, the logic BDn is sound
and complete with respect to the class of bounded depth n Kripke frames [9].
BD1 turns out to be classical logic, and BD2 one of the seven interpolable
intermediate logics [24].

Before presenting the peculiar structural rule capturing BDn, we sketch its
genesis, using BD2 as case study. The starting point for the rule’s definition is
(an adaptation to nested sequents of) the algorithm for transforming Hilbert
axioms into structural hypersequent rules given in [5], and into display rules
in [6,7]. Indeed, we start with the axiom schema bd2 := p ∨ (p ⊃ (q ∨ ¬q))
characterizing BD2. By using the invertible rules of NIPL, the axiom is decom-
posed into the equivalent nested sequent in which all connectives are removed:

p◦, [p•, q◦, [q•]] (4)

This sequent can be transformed into the equivalent (interderivable) rule

∆0, [∆0, ∆1, Σ, [∆2]] ∆0, [∆1, Σ, [∆2, Σ]]
bd′

2∆0, [∆1, Σ, [∆2]]
following the steps below:
• First, move p◦ and q◦ to the premise, as shown below left, and then p• and

q•, as in the rule below right (∆i, Σ are fresh metavariables for sequents):

Σ, q• ∆0, p•

∆0, [p•, Σ, [q•]]
Σ, q• ∆0, p• ∆0, [∆1, p◦, Σ, [∆2]] ∆0, [∆1, Σ, [∆2, q◦]]

∆0, [∆1, Σ, [∆2]]
r2

It is easy to see that each of these rules derives the sequent (4) in NIPL
(instantiate ∆0 := p◦ and ∆1 := p• and Σ := q◦ and ∆2 := q•). The
converse direction follows by nec (Proposition 3.2), w, c and cut with the
sequent in (4).

• The rule (bd′
2) is obtained from the (r2) rule above by cutting the premises

of the latter in all possible ways (using first nec and w). This ensures that
(bd′

2) derives (r2) in NIPL. For the converse direction we show that from any
instance of the premisses of (bd′

2) we can derive an instance of the premises
of (r2) for suitable p and q. Take p := fm(∆◦

0), and q := fm(Σ◦).
As shown below, the (bd′

2) rule allows the derivation of the axiom bd2, and
therefore its addition to NIPL result in a complete calculus for the BD2 logic.



12 Taming Bounded Depth with Nested Sequents

A◦, [A◦, A•, B◦, [B•]] A◦, [A•, B◦, [B•, B◦]]
bd′

2
A◦, [A•, B◦, [B•]]

⊃◦

A◦, [A•, B◦, ¬B◦]
∨◦

A◦, [A•, B ∨ ¬B◦]
⊃◦

A◦, A ⊃ (B ∨ ¬B)◦

∨◦

A ∨ (A ⊃ (B ∨ ¬B))◦

However, (bd′
2) does not preserve cut elimination. Prior identifying ∆1 and Σ,

we modify (bd′
2) from shallow to deep (using the terminology in [13]), to permit

its application on structures in any arbitrary node in the tree. This leads to:

Γ{∆0{[∆0{∅}, ∆1{[∆2]}]}} Γ{∆0{[∆1{[∆1{∅}, ∆2]}]}}
bd2Γ{∆0{[∆1{[∆2]}]}}

The argument applies also to BDn (n ≥ 1) resulting in a rule having n premises.

Definition 5.2 NIPLBDn is the calculus NIPL extended with the rule bdn:

Γ{∆0{[. . . {[∆i−1{∅}, ∆i{[. . . {[∆n]} . . .]}]} . . .]}}
∣∣ 1 ⩽ i ⩽ n

bdnΓ{∆0{[∆1{[. . . ∆n−1{[∆n]} . . .]}]}}
Proposition 5.3 For every n, the rule bdn is sound with respect to intuition-
istic Kripke frames with depth bounded by n.

Proof By contradiction. We assume that Γ{∆0{[. . . {[∆n]} . . .]}} is not valid.
Hence there are worlds x0, . . . , xn such that:
• xi ⩽ xi+1, with 0 ⩽ i ⩽ n − 1.
• xi ⊩

∧
∆•

i and xi ⊮
∨

∆◦
i .

where ∆•
i ,(∆◦

i ) are the input (output) formulas (formulas and boxed sequents)
in ∆i. By (3) we have xi+1 ⩽ xi for some i ∈ {0, ..., n − 1}. In each case,
by monotonicity (w.r.t. compound formulas) we get xi+1 ⊩

∧
∆•

i and thus
xi+1 ⊩

∨
∆◦

i , which (again by monotonicity) yields xi ⊩
∨

∆◦
i , which is a

contradiction. 2

6 Cut Elimination for NIPLBDn

We show that cut elimination holds for NIPLBDn. The proof extends that for
NIPL in a modular way: only the cases concerning the new rules need to be
considered. We start by showing properties (N1) and (N2): invertibility of all
rules, and height-preserving admissibility of the dedicated rules in Fig. 3.

Lemma 6.1 The weakening rule is height-preserving admissible in NIPLBDn.

Proof Proceeds as the proof of Lemma 4.1. 2

Lemma 6.2 Every rule is height-preserving invertible in NIPLBDn.

Proof By induction on the height of the derivation for every rule of the system.
The structural rule bdn is height-preserving invertible by using Lemma 6.1. The
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addition of the rule bdn preserves the invertibility of the other rules. The strat-
egy consists in applying (possibly twice, due to the repetition of the contexts)
the induction hypothesis to each premise of the rule. 2

Lemma 6.3 The contraction rule is height-preserving admissible in NIPLBDn.

Proof By induction on the height of the derivation. The only additional case
concerns the rule bdn. Since the principal formulas are repeated in each premise
of bdn we just apply the induction hypothesis and then the rule again. We give
a concrete example of this qualitative analysis; to improve the readability we
consider the particular case of the bd2 rule.

Γ{∆0{[∆0{∅}, ∆1{[∆2]}], [∆1{[∆2]}]}} Γ{∆0{[∆1{[∆1{∅}, ∆2]}], [∆1{[∆2]}]}}
bd2Γ{∆0{[∆1{[∆2]}], [∆1{[∆2]}]}}

We construct the following derivation:

Γ{∆0{[∆0{∅}, ∆1{[∆2]}], [∆1{[∆2]}]}}
w

Γ{∆0{[∆0{∅}, ∆1{[∆2]}], [∆0{∅}, ∆1{[∆2]}]}}
c

Γ{∆0{[∆0{∅}, ∆1{[∆2]}]}}

Γ{∆0{[∆1{[∆1{∅}, ∆2]}], [∆1{[∆2]}]}}
w

Γ{∆0{[∆1{[∆1{∅}, ∆2]}], [∆1{[∆1{∅}, ∆2]}]}}
c

Γ{∆0{[∆1{[∆1{∅}, ∆2]}]}}
bd2Γ{∆0{[∆1{[∆2]}]}}

2

Lemma 6.4 The rule lift is height-preserving admissible in NIPLBDn.

Proof By induction on the height of the derivation. To simplify the notation
we consider only bd2; the generalization to bdn is immediate.

Let Γ{[Σ•, ∆]} be the conclusion of bd2, we need to consider two subcases.
Either [Σ•, ∆] is moved by the rule or not. In the latter case we simply apply
the induction hypothesis to the premises of the rule and then the rule again. In
the former case we need to distinguish two further subcases. Either [Σ•, ∆] is
∆i for i ∈ {0, 1, 2} or not. In the latter case we apply the induction hypothesis
to the premises and then the rule again. In the former case assume [∆1{ }] =
[Σ•, ∆{ }]. We have:

Γ{∆0{[∆0{∅}, Σ•, ∆{[∆2]}]}} Γ{∆0{[Σ•, ∆{[Σ•, ∆{∅}, ∆2]}]}}
bd2Γ{∆0{[Σ•, ∆{[∆2]}]}}

We construct the following derivation:

Γ{∆0{[∆0{∅}, Σ•, ∆{[∆2]}]}}
lift

Γ{∆0{Σ•, [∆0{∅}, ∆{[∆2]}]}}
w

Γ{∆0{Σ•, [∆0{Σ•}, ∆{[∆2]}]}}

Γ{∆0{[Σ•, ∆{[Σ•, ∆{∅}, ∆2]}]}}
several lift

Γ{∆0{Σ•, Σ•, [∆{[∆{∅}, ∆2]}]}}
c

Γ{∆0{Σ•, [∆{[∆{∅}, ∆2]}]}}
bd2Γ{∆0{Σ•, [∆{[∆2]}]}}

2

Lemma 6.5 The rule 4 is height-preserving admissible in NIPLBDn.

Proof By induction on the height of the derivation. Assume the last applied
rule is bdn. We observe that the general form of Σ◦ is A◦

1, . . . , A◦
n, [Σ1], . . . , [Σm].

We distinguish three cases: either Σ◦ does not move, or it entirely moves
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to another boxed sequent, or different components of Σ◦ move to different
sequents. In the first and second case we simply apply the induction hypothesis
to the premises and then the rule again. In the latter case we have that Σ◦ is
of shape Σ◦ = Σ′{[Σ′′{Σ′′′}]} and we have

... Γ{∆0{[. . . {[∆′
i, Σ′{[∆′

i, Σ′{∅}, Σ′′{. . . {[∆n]} . . . }]} . . .]}]}} ...
bdn

Γ{∆0{[. . . {[∆′
i, Σ′{[Σ′′{. . . {[∆n]} . . . }]} . . .]}]}}

4
Γ{∆0{[. . . {[∆′

i, [Σ′{[Σ′′{. . . {[∆n]} . . . }]}] . . .]}]}}
and we can proceed as follows:

...

Γ{∆0{[. . . {[∆′
i, Σ′{[∆′

i, Σ′{∅}, Σ′′{. . . {[∆n]} . . . }]} . . .]}]}}
4

Γ{∆0{[. . . {[∆′
i, [Σ′{[∆′

i, Σ′{∅}, Σ′′{. . . {[∆n]} . . . }]}] . . .]}]}}
4

Γ{∆0{[. . . {[∆′
i, [Σ′{[∆′

i, [Σ′{∅}], Σ′′{. . . {[∆n]} . . . }]}] . . .]}]}} ...
bdn

Γ{∆0{[. . . {[∆′
i, [Σ′{[Σ′′{. . . {[∆n]} . . . }]}] . . .]}]}}

2

Lemma 6.6 The rule lower is height-preserving admissible in NIPLBDn.

Proof This proof is literally the same as for NIPL, applying 4, w and c. 2

We now need to prove the admissibility of the t rule, which removes boxes. To
simplify the proof in the presence of bdn, we consider the auxiliary rule lift∗

below.

Lemma 6.7 The following rule is derivable with {t, c, 4, lift, w}.

Γ{Σ{[∆, Σ{∆}]}}
lift∗

Γ{Σ{[∆, Σ{∅}]}}

Proof For better readability we only show the case where the depth of Σ{ }
is 1, i.e., Σ{ }= Σ1, [Σ•

2, Σ◦
2, { }]:

Γ{Σ1, [Σ•
2, Σ◦

2, [∆, Σ1, [Σ•
2, Σ◦

2, ∆]]]}
t

Γ{Σ1, [Σ2
•, Σ2

◦, [∆, Σ1, Σ2
•, Σ2

◦, ∆]]}
c

Γ{Σ1, [Σ2
•, Σ2

◦, [∆, Σ1, Σ2
•, Σ2

◦]]}
lift

Γ{Σ1, [Σ2
•, Σ2

•, Σ2
◦, [∆, Σ1, Σ2

◦]]}
c

Γ{Σ1, [Σ2
•, Σ2

◦, [∆, Σ1, Σ2
◦]]}

4
Γ{Σ1, [Σ2

•, Σ2
◦, [∆, Σ1, [Σ2

◦]]]}
w

Γ{Σ1, [Σ2
•, Σ2

◦, [∆, Σ1, [Σ2
•, Σ2

◦]]]}
If the depth of Σ{ } is n, all steps in this derivation have to repeated n times.2

Lemma 6.8 The rule t is height-preserving admissible in NIPLBDn.

Proof The only new case to consider is the bdn-rule. Again, for the sake of
clarity, we discuss bd2. We distinguish the following subcases: either we apply
t to [∆i] for some i∈ {1, 2}, or to some other boxed sequent. In the latter case,
we apply the induction hypothesis (possibly twice) to the premises and then
the rule again. In the former case we assume w.l.o.g. that we apply t to ∆1:
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Γ{∆0{[∆0{∅}, ∆1{[∆2]}]}} Γ{∆0{[∆1{[∆1{∅}, ∆2]}]}}
bd2Γ{∆0{[∆1{[∆2]}]}}

t
Γ{∆0{∆1{[∆2]}}}

We have two subcases to distinguish here:
• [∆1] is an immediate child of ∆0 in the nested sequent tree. We have:

Γ{∆0, [∆0, ∆1{[∆2]}]}
t

Γ{∆0, ∆0, ∆1{[∆2]}}
c

Γ{∆0, ∆1{[∆2]}}
by applying the induction hypothesis to the left subproof, discarding the
right one.

• [∆1] is not an immediate child of ∆0 in the nested sequent tree, so we can
assume that ∆0 contains at least one nesting, thus we have:

∆0{ }= ∆′
0{[∆′′

0{ }]}

for some contexts ∆′
0{ } and ∆′′

0{ }. We construct the derivation

Γ{∆′
0{[∆′′

0 , [∆′
0{[∆′′

0{∅}]}, ∆1{[∆2]}]]}}
t

Γ{∆′
0{[∆′′

0 , ∆′
0{[∆′′

0{∅}]}, ∆1{[∆2]}]}}
t

Γ{∆′
0{[∆′′

0 , ∆′
0{∆′′

0{∅}}, ∆1{[∆2]}]}}
lift∗

Γ{∆′
0{[∆′′

0 , ∆′
0{∅}, ∆1{[∆2]}]}}

Γ{∆′
0{[∆′′

0 , [∆1{[∆1{∅}, ∆2]}]]}}
t

Γ{∆′
0{[∆′′

0 , ∆1{[∆1{∅}, ∆2]}]}}
w

Γ{∆′
0{[∆′′

0 , ∆1{[∆′′
0 , ∆1{∅}, ∆2]}]}}

bd2Γ{∆′
0{[∆′′

0{∆1{[∆2]}}]}}
which yields the desired conclusion.

2

This completes the proofs of conditions (N1) and (N2).
Theorem 6.9 (Cut elimination) The cut rule is eliminable in NIPLBDn.
Proof The proof proceeds as for NIPL. We only need to check that the cut
rule can be shifted up over bdn. That means we only have to verify (N3), as
(N4) and (N5) are not affected by adding new structural rules to the system
(and (N1) and (N2) still hold).

If the cut formula A• is not active in bdn, we can permute the cut upwards
and remove it by induction hypothesis. If A• is active, assume w.l.o.g. that the
cut formula is in [∆i]. We distinguish two cases according to its position.
• If A• is in the branch from ∆0 to ∆n, we have:

Γ{∆0{[A◦, ∆1{[∆2 . . . {[∆n]}]}]}}
. . . Γ{∆0{[A•, ∆1{[A•, ∆1{∅}, ∆2 . . . {[∆n]}]}]}} . . .

bdnΓ{∆0{[A•, ∆1{[∆2 . . . {[∆n]}]}]}}
cut

Γ{∆0{[∆1{[∆2 . . . {[∆n]}]}]}}

(we display the premise in which the position of A• changes). For each
premise different from Γ{∆0{[A•, ∆1{[A•, ∆1{∅}, ∆2 . . . {[∆n]}]}]}}, we proceed
by height-preserving admissibility of w and cross-cuts which are removed by
induction hypothesis. Then we construct the following derivation:
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Γ{∆0{[A◦, ∆1{[∆2 . . . {[∆n]}]}]}}
w

Γ{∆0{[A◦, ∆1{[∆1{∅}, ∆2 . . . {[∆n]}]}]}}
Γ{∆0{[A•, ∆1{[A•, ∆1{∅}, ∆2 . . . {[∆n]}]}]}}

lift
Γ{∆0{[A•, ∆1{[∆1{∅}, ∆2 . . . {[∆n]}]}]}}

cut
Γ{∆0{[∆1{[∆1{∅}, ∆2 . . . {[∆n]}]}]}}

to which we can now apply the rule bdn and obtain the desired conclusion.
• If A• is not in the branch from ∆0 to ∆n, then A• must be inside a bracket

in this branch, as in:

Γ{∆0{[[∆{A◦}], ∆1{[∆2 . . . {[∆n]}]}]}}
. . . Γ{∆0{[[∆{A•}], ∆1{[[∆{A•}], ∆1{∅}, ∆2 . . . {[∆n]}]}]}} . . .

bdnΓ{∆0{[[∆{A•}], ∆1{[∆2 . . . {[∆n]}]}]}}
cut

Γ{∆0{[[∆{∅}], ∆1{[∆2 . . . {[∆n]}]}]}}

We construct the following derivation:

Γ{∆0{[[∆{A◦}], ∆1{[∆2 . . . {[∆n]}]}]}}
lower

Γ{∆0{[∆1{[[∆{A◦}], ∆2 . . . {[∆n]}]}]}}
w

Γ{∆0{[∆1{[[∆{A◦}], ∆1{∅}, ∆2 . . . {[∆n]}]}]}}
Γ{∆0{[[∆{A•}], ∆1{[[∆{A•}], ∆1{∅}, ∆2 . . . {[∆n]}]}]}}

lower, c
Γ{∆0{[∆1{[[∆{A•}], ∆1{∅}, ∆2 . . . {[∆n]}]}]}}

cut
Γ{∆0{[∆1{[[∆{∅}], ∆1{∅}, ∆2 . . . {[∆n]}]}]}}

The cut is removed invoking the secondary induction hypothesis. With re-
spect to the other premises we permute the cut upwards and we remove
it applying the secondary induction hypothesis. The desired sequent then
follows by an application of bdn. 2

Corollary 6.10 NIPLBDn is complete with respect to BDn.

Proof Follows from Corollary 4.9, the derivability of the axiom bdn, and the
cut elimination theorem. 2

Concluding Remark
The cut elimination proof contained in this paper makes use of the auxiliary
rules t and 4, originally introduced in the modal logics context [25]. Our results
can be seen as “transfer of knowledge” from (the proof theory of) modal logics to
intermediate logics. We consider it an important aspect or our future research
to also initiate a transfer back to modal logics. In fact, notice that our cut
elimination proof holds for NIPL extended by any structural rule that preserves
properties (N1)–(N5). This paves the way for the definition of an algorithm,
along the line of that in [5,6], to introduce analytic nested calculi for a large
class of intermediate logics starting from their axiomatizations. Many such
intermediate logics have indeed modal counterparts that have not yet been
investigated from a proof theoretical point of view. We plan to do so using our
work on nested sequents.
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[13] R. Goré, L. Postniece, and A. Tiu. On the correspondence between display postulates
and deep inference in nested sequent calculi for tense logics. Log. Methods Comput. Sci.,
7(2):2:8, 38, 2011.
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