
PHYSICAL REVIEW RESEARCH 5, 043135 (2023)

Giant-atom effects on population and entanglement dynamics of Rydberg atoms
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Giant atoms are attracting interest as an emerging paradigm in the quantum optics of engineered waveguides.
At variance with the well-known artificial giant atoms for microwave photonics, here we propose the archetype
of a giant atom working in the optical regime by considering a pair of interacting Rydberg atoms coupled to
a photonic crystal waveguide (PCW) and also driven by a coherent field. Giant-atom effects are observed as
a phase-dependent decay of the double Rydberg excitation during the initial evolution stage while a nontrivial
internal entanglement is exhibited at later times. Such an entanglement onset occurs in the presence of intrinsic
atomic decay toward nonguided vacuum modes and is accompanied by antibunching in the emitted photons. Our
predictions should be observable in current Rydberg-PCW experiments and may open the way toward giant-atom
optical photonics for quantum information processing.
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I. INTRODUCTION

A fascinating paradigm of quantum optics dubbed “gi-
ant atom” has been developed recently to describe situations
where artificial atoms interact with microwave or acoustic
fields beyond the standard dipole approximation [1]. With
state-of-the-art technologies, one can implement giant atoms
that are coupled to a waveguide at multiple points, with
coupling separations comparable to field wavelengths. These
nonlocal interactions can result in peculiar self-interference
effects, which account for a number of phenomena not
happening in conventional natural atoms, such as frequency-
dependent atomic relaxation rates and Lamb shifts [2–6],
nonexponential atomic decay [7–9], in-band decoherence-
free interactions [3,10–12], and exotic atom-photon bound
states [13–18]. To date, platforms capable of implementing
giant atoms mainly include superconducting quantum cir-
cuits [3,8,19,20], coupled waveguide arrays [21], and matter
waves in optical lattices [22], but have also been extended to
synthetic frequency dimensions [23] and ferromagnetic spin
systems as an alternative [24].

Nevertheless, it is important to explore new physics of
giant atoms within different atomic architectures, especially
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those working with natural atoms and optical photons be-
yond the microwave regime. Rydberg atoms, unlike those in
low-lying excited states, exhibit unique properties including
strong dipole-dipole interactions and long radiative lifetimes
[25] and turn out to be an excellent building block in quan-
tum information processing, with potential applications for
realizing quantum logic gates [26–29], single-photon sources
[30–33], and various entangled states [34–37]. Rydberg atoms
have also been successfully employed in waveguide quantum
electrodynamics by coupling to engineered structures like op-
tical nanofibers [38], photonic crystal waveguides [39], and
coplanar microwave waveguides [40].

In this paper, we study giant-atom effects in the optical
regime by considering a pair of two-level Rydberg atoms cou-
pled to a photonic crystal waveguide (PCW) through the two
lower transitions and driven by a coherent field through the
two upper transitions (see Fig. 1). A typical self-interference
effect appears at shorter times of the atomic pair’s dynamic
evolution dominated by two competing two-photon resonant
transitions, thereby realizing a synthetic giant atom with two
coupling points at a variable distance d about the atomic
separation R. For longer times, we observe instead internal
entanglement onset through mutual Rydberg excitations of the
two atoms as the phase φ accumulated from a coupling point
to the other takes specific values, which depend on d hence
tunable. This effect is characterized by a detailed examination
on quantum correlations of the emitted photons and further
understood in terms of dark states decoupled from both co-
herent field and waveguide modes. These results hold also
for continuous atom-waveguide couplings, which are more
appropriate to the large spatial extents of Rydberg atoms.
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FIG. 1. (a) The two-level configuration (single-atom basis). Two
Rydberg atoms placed at a distance R interact via a potential V6(R)
and couple to a waveguide mode ak at x1 = 0 or x2 = d while driven
by a coherent field ωc. (b) The four-level configuration (two-atom
basis). Blue (red) lines represent single (double) Rydberg excitations,
whereby two lower (upper) transitions are coupled by mode ak of
strength gk (field ωc of strength �c). (c) The dispersion relation of
a PCW: frequency ωe of the lower transitions falls within the prop-
agating band while frequency ωe + V6 of the upper transitions falls
within the band gap (red shaded). (d) The (equivalent) synthetic two-
level giant atom with |g〉 ≡ |g1g2〉 and |r〉 ≡ |r1r2〉, upon adiabatic
elimination of the single-excitation states, bears separate couplings
of strengths ξ at x1 and ξeiφ at x2, with φ being the accumulated
phase between x1 and x2.

II. MODEL

We start by illustrating in Fig. 1(a) the model of a pair of
Rydberg atoms with ground |g1,2〉 and Rydberg |r1,2〉 states
separated by frequency ωe and trapped in the vicinity of a
PCW [41,42] at x1 = 0 and x2 = d , respectively. The two
atoms are illuminated by a coherent field of frequency ωc and
interact through a (repulsive) van der Waals (vdW) potential
V6 = C6/R6, when both are excited to the Rydberg states,
with C6 being the vdW coefficient and R the interatomic
distance, which could be different from d (see Appendix A
for details). The vdW interaction results in the shifted en-
ergy 2h̄ωe + h̄V6 for the double-excitation state |r1r2〉 while
the single-excitation states |r1g2〉 and |g1r2〉 remain to ex-
hibit energy h̄ωe. In the two-atom basis, for a large enough
V6, we have the four-level configuration shown in Fig. 1(b)
whereby the coherent field ωc drives only transitions |g1r2〉 ↔
|r1r2〉 and |r1g2〉 ↔ |r1r2〉 with detuning �c = ωc − (ωe +
V6) and strength �c, while a waveguide mode of frequency
ωk (wavevector k) drives only transitions |g1g2〉 ↔ |g1r2〉 and
|g1g2〉 ↔ |r1g2〉 with detuning δk = ωk − ωe and strength gk .
This scheme is supported by the following two considera-
tions. First, ωc is far away from ωe but close to ωe + V6 with
�c � V6, so that the coherent field can only drive two upper
transitions. Second, ωe and ωe + V6 fall, respectively, within
the lower propagating band and the band gap of a PCW as
sketched in Fig. 1(c), so that the waveguide mode can only
drive the two lower transitions.

Then, for a continuum of waveguide modes interacting
only with two lower transitions, the Hamiltonian in the

rotating-wave approximation is (h̄ = 1)

H = ωe(σ 1
+σ 1

− + σ 2
+σ 2

−) + (ωe + V6/2)(σ 3
+σ 3

− + σ 4
+σ 4

−)

+
∫

dkωka†
kak +

[ ∫
dkgak (σ 1

+ + eikdσ 2
+)

+ �ce−iωct (σ 3
+ + σ 4

+) + H.c.

]
. (1)

Here, we have introduced the atomic raising operators σ 1
+ =

|r1g2〉〈g1g2|, σ 2
+ = |g1r2〉〈g1g2|, σ 3

+ = |r1r2〉〈r1g2|, and σ 4
+ =

|r1r2〉〈g1r2| (two-atom basis) while the corresponding low-
ering operators are σ

j
− = (σ j

+)†. Moreover, a†
k and ak refer,

respectively, to the creation and annihilation operators of a
waveguide mode ωk . We have also assumed constant coupling
strengths, i.e., gk � g, in the Weisskopf-Wigner approxima-
tion.

As we address only the two-atom dynamics, the waveg-
uide modes of density D(k) at frequency ωk can be traced
out (Born-Markov approximation), yielding the master equa-
tion for density operator ρ [43,44] (see Appendix B for
details),

∂tρ = − i[Hat , ρ] +
4∑

i=1

γL[σ i
−]ρ +

2∑
j=1

�L[σ j
−]ρ

+ �ex

[(
σ 1

−ρσ 2
+ − 1

2
{σ 1

+σ 2
−, ρ}

)
+ H.c.

]
, (2)

where L[O]ρ = OρO† − 1
2 {O†O, ρ} is the Lindblad super-

operator describing two-atom decay processes, with �(k) =
4πg2D(k) denoting the decay rate into relevant modes of the
waveguide (guided modes) [2,3] while γ being the mean de-
cay rate into other electromagnetic modes (nonguided modes).
Under the two-photon resonance condition �c + δk � 0, as-
sumed to hold for all guided modes, the atomic Hamiltonian
is

Hat = �c(σ 1
+σ 1

− + σ 2
+σ 2

−) + Jex(σ 1
+σ 2

− + σ 2
+σ 1

−)/2

+ [�c(σ 3
+ + σ 4

+) + H.c.], (3)

with Jex = �sinφ and �ex = �cosφ denoting, respectively, the
coherent and dissipative parts of the exchange interaction
mediated by the waveguide. Here we have defined φ(k) =
|k|d = ωkd/|vg(k)| � ωed/|vg(k)| with vg(k) being the group
velocity of a guided mode with a “linearized” dispersion ωk �
kvg(k). It is worth stressing that �ex serves as a reservoir to
engineer the atomic decay through selected guided modes ωk

(or bandwidth of modes) and their density distribution D(k).
In turn, such an engineered reservoir together with the atomic
separation d represents a set of knobs to control the phase φ(k)
acquired by an emitted photon between the contact points x1

and x2 of a giant atom (see below).

III. SYNTHETIC TWO-LEVEL GIANT ATOM:
THE SHORT-TIME REGIME

Maintaining �c + δk � 0 and further requiring |�c| �
�c, g, the two atoms initially in the double Rydberg state
|r1r2〉 would behave like a two-level giant atom decaying
directly to the ground state |g1g2〉 at two coupling points
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x1 and x2. This expectation will be verified by numerically
comparing the dynamics of the four-level atomic pair to that
of the synthetic two-level giant atom. In the latter picture, the
two atoms interact with the waveguide modes only through
the two-photon resonant transition |r1r2〉 ↔ |g1g2〉 whereby
an external photon of frequency ωc and a waveguide photon of
frequency ωk are emitted (or absorbed) at the same time. Upon
the adiabatic elimination of states |r1g2〉 and |g1r2〉 [45,46],
the effective |r1r2〉 ↔ |g1g2〉 transition amplitude consists of
two contributions: ξ1 = −g�c/�c ≡ ξ (interaction at x1 = 0)
and ξ2 = ξeiφ (interaction at x2 = d), as sketched in Fig. 1(d),
which interfere with each other.

With the above assumptions, we write down the synthetic
two-level giant-atom Hamiltonian as

H = (2ωe + V6)σ+σ− +
∫

dk(ωk + ωc)a†
kak

+
∫

dk[ξak (1 + eikd )σ+ + H.c.], (4)

in terms of the transition operator σ+ = (σ−)† = |r〉〈g| with
|r〉 ≡ |r1r2〉 and |g〉 ≡ |g1g2〉. Again, by tracing out the
waveguide modes, we arrive at the master equation for the
giant-atom density operator � (see Appendix C for details)

∂t� = 2γL[σ−]� + (ϒ + ϒ∗)σ−�σ+
−ϒσ+σ−� − ϒ∗�σ+σ−, (5)

where ϒ = 4πξ 2D(1 + eiφ ) = (� + �ex + iJex )�2
c/�

2
c with

its real and imaginary parts being, respectively, the phase-
dependent decay rate and Lamb shift.

In the remaining part, we perform numerical analysis in
support of the predictions anticipated above. We first consider
that for large enough (driving) detunings |�c|, the adiabatic
elimination of two single-excitation states can be actually
made, providing in turn an adequate evidence of the equiva-
lence between the (four-level) atomic pair and the (two-level)
giant atom in the short-time regime. This has been examined
in Fig. 2(a) by comparing time evolutions of atomic-pair
population ρr1r1,r2r2 based on Eq. (2) and giant-atom popula-
tion �rr based on Eq. (5) with matched parameters. Taking
φ = 40.5π as an example and starting from ρr1r1,r2r2 (0) =
�rr (0) = 1, we find that ρr1r1,r2r2 (t ) and �rr (t ) exhibit a better
agreement for a larger |�c| so that the adiabatic elimination
leading to a giant atom becomes reliable for |�c|/�c � 30.
It is also worth noting that ρr1r1,r2r2 (t ) and �rr (t ) decay faster
as |�c| decreases because a smaller |�c| results in a stronger
coupling strength ξ and thereby a larger decay rate Re(ϒ) of
the synthetic giant atom.

The giant-atom self-interference effect can instead be ex-
amined by plotting ρr1r1,r2r2 (t ) in Fig. 2(b) for �c = 30 MHz
and different values of φ. It is clear that an enhanced (re-
duced) decay occurs for ρr1r1,r2r2 (t ) in the case of φ = 2mπ

(φ = 2mπ + π ) with m ∈ Z due to a perfectly constructive
(destructive) interference between two coupling points, as can
be seen from Im(ϒ) = 0 and Re(ϒ) = �(1 + cos φ)�2

c/�
2
c .

The atomic pair is found in particular to show an un-
damped double-excitation population [ρr1r1,r2r2 (t ) ≡ 1] for
φ = 2mπ + π and γ = 0, which is one of the most re-
markable features of giant atoms [2] due to a complete
decoupling from the waveguide (ϒ = 0) and a vanishing

(a)

(b)

FIG. 2. (a) Time evolutions of double Rydberg population
ρr1r1,r2r2 and giant-atom population �rr with φ = 40.5π and different
values of �c. (b) Time evolutions of ρr1r1,r2r2 with �c = 30 MHz
and different values of φ. Other parameters are V6 = 20 GHz, �c =
1.0 MHz, � = 1.0 MHz, and γ = 1.0 kHz. The thin gray line in
(b) is shown as a reference for γ = 0 (no intrinsic decay) with
�c = 30 MHz and φ = 41π .

intrinsic decay (γ = 0). In the case of φ = 2mπ ± π/2,
we have Im(ϒ) = ±��2

c/�
2
c and Re(ϒ) = ��2

c/�
2
c , which

accounts for the identical population dynamics with a mod-
erate decay since opposite detunings (Lamb shifts) make no
difference.

We finally detail how one can actually adjust phase φ

while leaving V6 unchanged. To this end, a pair of 87Rb
atoms with ground state |g1,2〉 = |5S1/2, F = 2, mF = 2〉 and
Rydberg state |r1,2〉 = |75P3/2, mJ = 3/2〉 of transition fre-
quency ωe � 2π × 1009 THz are taken here as an example.
In this case, we have γ � 1.0 kHz for the intrinsic Ryd-
berg lifetime τ � 964 µs while V6 � 20 GHz for R � 3.1 µm
and C6 � 2π × 2.8 × 1012s−1µm6 [47,48]. When the atomic
pair is placed exactly along the waveguide, we have d = R
and hence φ � 41.6π by assuming here that vg is a half
of the vacuum light speed c. When the atomic pair is mis-
aligned along the waveguide, however, we attain d � 2.95 µm
and hence φ � 39.6π with neither R nor V6 being changed
(see Appendix A).

IV. ATOMIC ENTANGLEMENT ONSET:
THE LONG-TIME REGIME

Now leaving the short-time regime where the atomic pair
can be modeled as a giant atom according to Eq. (5), we turn
to the long-time regime where the decay toward nonguided
vacuum modes becomes important as less and less popula-
tion can be found in the double-excitation state. A peculiar
aspect of the long-time regime is the internal entanglement
of the atomic pair (i.e., a specific superposition of two
single-excitation states) generated by the coherent interaction
described by Hat , which can be quantified by the Wootters
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(a)

(b) (d)

(c)

FIG. 3. Time evolutions of atomic concurrence Cat (a) and pho-
tonic correlation g(2)

ph (b) for different values of φ as well as atomic
populations ρgg, ρrr , ρ++, and ρ−− for φ = 40π (c) and φ = 41π

(d) with other parameters same as in Fig. 2(b).

concurrence [49–51]

Cat = Max(0, λ1 − λ2 − λ3 − λ4) (6)

with λ1 > λ2 > λ3 > λ4 being the four eigenvalues of ma-
trix X defined by X 2 = √

ρ(σy ⊗ σy)ρ∗(σy ⊗ σy)
√

ρ and the
standard Pauli matrix σy. This concurrence takes values in the
range of [0,1] with Cat = 0 (Cat = 1) denoting a nonentangled
(maximally entangled) state and is related to the correlation
function [52–54]

g(2)
ph = ρr1r1,r2r2

ρr1r1ρr2r2

(7)

of the photons emitted by two Rydberg atoms. As usual,
ρr1r1 = 〈r1|Tr2ρ|r1〉 and ρr2r2 = 〈r2|Tr1ρ|r2〉 are obtained
from the reduced density matrices of different atoms, while
g(2)

ph > 1 and g(2)
ph < 1 refer to the effects of photon bunching

and anti-bunching, respectively.
We plot in Fig. 3(a) time evolutions of Cat for different

values of φ starting from the same double-excitation state
and find that Cat becomes suddenly nonzero at a critical time
for φ = 2mπ but remains vanishing for other values of φ.
Such an onset of internal atomic entanglement happens when
the photon correlation function g(2)

ph evolves from the regime
of bunching to that of antibunching as shown in Fig. 3(b),
making a clear connection between the emergence of photon
antibunching effect and the generation of internal atomic en-
tanglement.

It is worth noting that g(2)
ph also indicates how the two Ryd-

berg atoms are distributed in the single- and double-excitation
states, which provides a better understanding of the physics
of the entanglement sudden-onset dynamics. This inspires
us to further plot ρgg, ρrr , ρ++, and ρ−− in Fig. 3(c) for
φ = 2mπ and Fig. 3(d) for φ = 2mπ + π with |g〉 ≡ |g1g2〉,
|r〉 ≡ |r1r2〉, and |±〉 ≡ 1/

√
2(|r1g2〉 ± |g1r2〉) by consider-

ing that |+〉 (|−〉) is the symmetric (antisymmetric) dressed
state of Hat in the case of φ = mπ due to Jex = 0. To be
more specific, we have the following dynamic equations

(a)

(b) (c)

FIG. 4. (a) Schematic of two Rydberg atoms close to a waveg-
uide with identical exponential coupling distributions around x1 = 0
and x2 = d . Time evolutions of population ρr1r1,r2r2 (b) and con-
currence Cat (c) with � = 5π/2 and different values of φ. Other
parameters are the same as in Fig. 2(b).

(see Appendix B for calculation details):

∂tρ++ = −γ+ρ++ + γ ρrr + i�∗
cρr+ − i�cρ+r,

∂tρ−− = −γ−ρ−− + γ ρrr, (8)

with γ± = γ + � ± �ex. It is clear that |−〉 is decoupled from
field �c and will become a dark state if it is further immune to
the waveguide modes in the case of φ = 2mπ . However, |+〉
is always a bright state in that its dynamics depends on field
�c all the time.

Note in particular that γ+ = γ + 2� � γ− = γ in the case
of φ = 2mπ , which explains why ρ++ vanishes while ρ−−
does not in Fig. 3(c) so that we have g(2)

ph � 4ρrr/ρ
2
−−. The

atomic entanglement onset occurs for φ = 2mπ just because
a dark state immune to field �c allows the transition from
4ρrr > ρ2

−− to 4ρrr < ρ2
−−. In the case of φ = 2mπ + π ,

however, we have a nonzero ρ++ and a vanishing ρ−− in
Fig. 3(d) and hence g(2)

ph � 4ρrr/ρ
2
++ due to γ− = γ + 2� �

γ+ = γ . The atomic entanglement onset is absent for φ =
2mπ + π just because a bright state interacting with field
�c always results in 4ρrr > ρ2

++. Finally, we stress that the
fact of ρ++ > 0 (ρ−− > 0) and ρ−− = 0 (ρ++ = 0) does not
mean that the decomposition of a mixed state ρ must include
a pure state |+〉 (|−〉), hence does not mean that we must
have Cat > 0, which further explains why Cat could suddenly
become nonzero only for φ = 2mπ .

V. CONTINUOUS COUPLINGS

Working with “point-like” atom-waveguide couplings, as
assumed so far, is just a rough approximation for highly-
excited Rydberg states of size r̄ ∝ n2, with n being the
principal quantum number. We then extend our discrete-
coupling configuration results to the continuum limit whereby
the coupling region becomes a large ensemble of coupling
points, each with a different strength. For an exponential con-
tinuous distribution [4,55] of such coupling strengths spread
about each contact point with a characteristic width � as
in Fig. 4(a), we find that the master equations (2) and (5)
can be generalized to the continuous-coupling limit by re-
placing {�,�ex, Jex, ϒ} with {�′, �′

ex, J ′
ex, ϒ

′} and meanwhile
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FIG. 5. Arrangement details of two Rydberg atoms with respect
to a one-dimensional waveguide shown as a blue area. The atomic
pair is (a) placed along the waveguide with d = R or (b) misaligned
along the waveguide with d < R.

introducing an interaction term J ′(σ 1
+σ 1

− + σ 2
+σ 2

−) in Eq. (3).
While explicit expressions of �′, �′

ex, J ′
ex, ϒ ′, and J ′ are given

in Appendix D, here we use them to plot in Figs. 4(b) and 4(c)
the time evolutions of ρr1r1,r2r2 and Cat in the short-time and
long-time regimes, respectively, for different values of φ and
a fixed �.

It is easy to see that the giant-atom effects of phase-
dependent population decay and entanglement onset remain
observable for a remarkable coupling broadening. Moreover,
the dynamic behavior of ρr1r1,r2r2 for � = 5π/2 (continuous
couplings) is identical to that for � = 0 (point-like couplings)
in the case of φ = 2mπ + π since there is no decay toward the
waveguide with Re(ϒ ′) = 0. Note, however, that a nonzero
Lamb shift with Im(ϒ ′) �= 0 always exists for continuous
couplings (see Appendix D), which does not affect atomic
population decay but would be relevant to other problems such
as photon scattering.

VI. CONCLUSIONS

We have proposed a feasible scheme for constructing a
synthetic giant atom with a pair of interacting Rydberg atoms
coupled to an optical PCW. Compared to well-known plat-
forms involving microwave photons (e.g., superconducting
quantum circuits [3,8]) or a recent matter-wave analogy [22],
our Rydberg-pair giant-atom platform is clearly suitable for
manipulating optical photons. Giant-atom effects manifest

themselves through a phase-dependent population dynamics
in the short-time regime whereas an internal entanglement
onset at longer times. The latter differs also from a recently
examined entanglement generation taking place between two
giant atoms in the microwave regime [51].

The giant-atom effects we anticipate here are observable
also for continuous couplings, indicating their robustness
against unavoidable coupling broadenings, and could be ex-
tended to multi-pairs of Rydberg atoms when coupled to a
meandering waveguide [56]. These features make our plat-
form altogether suitable to explore regimes that cannot be
reached with microwave systems and also well poised to
potential applications in the optical network engineering and
information processing.
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APPENDIX A: MISALIGNED ARRANGEMENT
OF TWO ATOMS ALONG A WAVEGUIDE

In this section, we discuss how to manipulate the van der
Waals (vdW) potential V6 and the accumulated phase φ sepa-
rately. As mentioned in the main text, V6 and φ are determined
by the (straight-line) distance R between a pair of Rydberg
atoms and the separation d (along the waveguide) between
two coupling points, respectively. When this atomic pair is
placed exactly along the waveguide, we have R ≡ d so that
φ or V6 cannot be changed alone as shown in Fig. 5. In this
case, it is easy to attain φ � ωed/vg = ωeR/vg = 41.6π with
R � 3.1 µm, ωe � 2π × 1009 THz, and vg � 0.5c as consid-
ered in the main text. In order to change φ and V6 separately,
we can choose a misaligned arrangement of this atomic pair as
shown in Fig. 5, where d is clearly smaller than R. In this case,
keeping R � 3.1 µm and hence V6 = 20 GHz unchanged, it is
viable to tune φ in the range of [41.6, 39.6]π by reducing
d from 3.1 µm with a vanishing misaligned angle to 2.95 µm
with a 0.09π misaligned angle.

APPENDIX B: MASTER EQUATION OF A TWO-ATOM FOUR-LEVEL CONFIGURATION

In this section, we provide the derivation procedures from Eq. (1) on Hamiltonian H to Eq. (2) on density operator
ρ in the main text. As shown in Fig. 1(b), two upper transitions |g1r2〉 ↔ |r1r2〉 and |r1g2〉 ↔ |r1r2〉 are driven by the
external coherent field �c while two lower transitions |g1g2〉 ↔ |g1r2〉 and |g1g2〉 ↔ |r1g2〉 are coupled to the waveguide
modes. Under the two-photon resonance condition (i.e., �c � −δk with �c = ωc − ωe − V6 and δk = ωk − ωe), we neglect
the interactions resulted from coherent field ωc in H for the moment and move to the interaction picture with respect to H0 =
(2ωe + V6 − ωc)(σ 1

+σ 1
− + σ 2

+σ 2
−) + ∫

dkωka†
kak = (ωe − �c)(σ 1

+σ 1
− + σ 2

+σ 2
−) + ∫

dkωka†
kak . Then the Hamiltonian describing

the atom-waveguide interaction can be written as

Hint(t ) =
∫ +∞

−∞
dk[ge−i(�c+ωk−ωe )t akσ

1
+ + geikd e−i(�c+ωk−ωe )t akσ

2
+ + H.c.]

=
∫ +∞

−∞
dk[ge−i(�c+δk )t akσ

1
+ + geikd e−i(�c+δk )t akσ

2
+ + H.c.] (B1)

with σ 1
+ = (σ 1

−)† = |r1g2〉〈g1g2| and σ 2
+ = (σ 2

−)† = |g1r2〉〈g1g2| defined as in the main text.
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To study the population dynamics of this atomic pair, we can eliminate the waveguide field via a standard procedure and
calculate the following master equation for a reduced density operator [43,44]

∂tρ(t ) = −
∫ ∞

0
dτTrw[Hint(t ), [Hint(t − τ ), ρw ⊗ ρ(t )]], (B2)

where Trw represents a partial tracing over the waveguide degrees of freedom and ρw = |0〉〈0| is the initial vacuum state of the
waveguide modes. Substituting Eq. (B1) into Eq. (B2) we have

∂tρ =
∑
j=1,2

�

(
σ

j
−ρσ

j
+ − 1

2
σ

j
+σ

j
−ρ − 1

2
ρσ

j
+σ

j
−

)
+ �̃ + �̃∗

2
(σ 1

−ρσ 2
+ + σ 2

−ρσ 1
+)

− �̃

2
(σ 1

+σ 2
−ρ + σ 2

+σ 1
−ρ) − �̃∗

2
(ρσ 1

+σ 2
− + ρσ 2

+σ 1
−)

=
∑
j=1,2

�

(
σ

j
−ρσ

j
+ − 1

2
σ

j
+σ

j
−ρ − 1

2
ρσ

j
+σ

j
−

)
+ �ex(σ 1

−ρσ 2
+ + σ 2

−ρσ 1
+)

− �ex

2
(σ 1

+σ 2
−ρ + σ 2

+σ 1
−ρ + ρσ 1

+σ 2
− + ρσ 2

+σ 1
−) − iJex

2
(σ 1

+σ 2
−ρ + σ 2

+σ 1
−ρ − ρσ 1

+σ 2
− − ρσ 2

+σ 1
−), (B3)

with

� = 2g2
∫ ∞

0
dτ

∫ +∞

−∞
dke±i(�c+δk )τ = 2g2

∫ ∞

0
dτe±i�cτ

(∫ 0

−∞
dke±iδkτ +

∫ +∞

0
dke±iδkτ

)

= 4g2

vg

∫ ∞

0
dτe±i�cτ

∫ +∞

−∞
dδke±iδkτ = 4g2

vg

∫ ∞

0
dτe±i�cτ 2πδ(τ ) = 4πg2

vg
= 4πg2D(k),

�̃ = 2g2
∫ ∞

0
dτ

∫ +∞

−∞
dke−i(�c+δk )τ e±ikd

= 2g2
∫ ∞

0
dτ

[∫ 0

−∞
dke−i(�c+δk )τ e∓i(δk+ωe )d/vg +

∫ +∞

0
dke−i(�c+δk )τ e±i(δk+ωe )d/vg

]

= 2g2

vg

∫ ∞

0
dτ

[∫ +∞

−∞
dδke−i(�c+δk )τ e∓i(δk+ωe )d/vg +

∫ +∞

−∞
dδke−i(�c+δk )τ e±i(δk+ωe )d/vg

]

= 2g2

vg

[
ei(ωed/vg−�cτ )

∫ ∞

0
dτ2πδ(τ − d/vg) + e−i(ωed/vg+�cτ )

∫ ∞

0
dτ2πδ(τ + d/vg)

]

= 4πg2

vg
ei(ωe−�c )d/vg � 4πg2

vg
eiωed/vg = �eiφ, (B4)

as well as �ex = Re{�̃} = �cosφ and Jex = Im{�̃} = �sinφ. In the above derivation, we have also considered the δ function
definition

∫ +∞
−∞ dke±ikx = 2πδ(x) and the waveguide mode density D(k) = ∂k/∂ωk [2,3,57].

Note that Eq. (B3) just describes the interactions between a continuum of waveguide modes and two lower atomic transitions
|g1g2〉 ↔ |g1r2〉 and |g1g2〉 ↔ |r1g2〉. Further taking into account the intrinsic atomic decay toward nonguided modes in the
free space as well as the neglected interactions between a coherent field and two upper atomic transitions |g1r2〉 ↔ |r1r2〉 and
|r1g2〉 ↔ |r1r2〉 in H , one can easily obtain the master equation (2) in the main text. This equation, if expanded in the two-atom
four-level configuration, will turn out to be

∂tρg1g1,g2g2 = (γ + �)ρr1r1,g2g2 + (γ + �)ρg1g1,r2r2 + �exρr1g1,g2r2 + �exρg1r1,r2g2 ,

∂tρr1r1,g2g2 = −(γ + �)ρr1r1,g2g2 + γ ρr1r1,r2r2 − �̃/2ρg1r1,r2g2 − �̃∗/2ρr1g1,g2r2 − i(�cρr1r1,g2r2 − �∗
cρr1r1,r2g2 ),

∂tρg1g1,r2r2 = −(γ + �)ρg1g1,r2r2 + γ ρr1r1,r2r2 − �̃/2ρr1g1,g2r2 − �̃∗/2ρg1r1,r2g2 − i(�cρg1r1,r2r2 − �∗
cρr1g1,r2r2 ),

∂tρg1r1,g2g2 = (i�c − γ /2 − �/2)ρg1r1,g2g2 + γ ρg1r1,r2r2 − �̃∗/2ρg1g1,g2r2 − i�cρg1r1,g2r2 ,

∂tρr1g1,g2g2 = −(i�c + γ /2 + �/2)ρr1g1,g2g2 + γ ρr1g1,r2r2 − �̃/2ρg1g1,r2g2 + i�∗
cρr1g1,r2g2 ,

∂tρg1g1,g2r2 = (i�c − γ /2 − �/2)ρg1g1,g2r2 + γ ρr1r1,g2r2 − �̃∗/2ρg1r1,g2g2 − i�cρg1r1,g2r2 ,

∂tρg1g1,r2g2 = −(i�c + γ /2 + �/2)ρg1g1,r2g2 + γ ρr1r1,r2g2 − �̃/2ρr1g1,g2g2 + i�∗
cρr1g1,r2g2 ,

∂tρg1r1,g2r2 = −γ ρg1r1,g2r2 − i�∗
c (ρg1r1,g2g2 + ρg1g1,g2r2 ),

∂tρr1g1,r2g2 = −γ ρr1g1,r2g2 + i�c(ρr1g1,g2g2 + ρg1g1,r2g2 ),
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∂tρr1g1,g2r2 = −(γ + �)ρr1g1,g2r2 − �̃/2ρg1g1,r2r2 − �̃∗/2ρr1r1,g2g2 − i(�cρr1r1,g2r2 − �∗
cρr1g1,r2r2 ),

∂tρg1r1,r2g2 = −(γ + �)ρg1r1,r2g2 − �̃∗/2ρg1g1,r2r2 − �̃/2ρr1r1,g2g2 + i(�∗
cρr1r1,r2g2 − �cρg1r1,r2r2 ),

∂tρr1r1,g2r2 = −(i�c + 3γ /2 + �/2)ρr1r1,g2r2 − �̃/2ρg1r1,r2r2 − i�∗
c (ρr1r1,g2g2 + ρr1g1,g2r2 − ρr1r1,r2r2 ),

∂tρr1r1,r2g2 = (i�c − 3γ /2 − �/2)ρr1r1,r2g2 − �̃∗/2ρr1g1,r2r2 + i�c(ρr1r1,g2g2 + ρg1r1,r2g2 − ρr1r1,r2r2 ),

∂tρg1r1,r2r2 = −(i�c + 3γ /2 + �/2)ρg1r1,r2r2 − �̃/2ρr1r1,g2r2 − i�∗
c (ρg1r1,r2g2 + ρg1g1,r2r2 − ρr1r1,r2r2 ),

∂tρr1g1,r2r2 = (i�c − 3γ /2 − �/2)ρr1g1,r2r2 − �̃∗/2ρr1r1,r2g2 + i�c(ρr1g1,g2r2 + ρg1g1,r2r2 − ρr1r1,r2r2 ), (B5)

constrained by ρg1g1,g2g2 + ρr1r1,g2g2 + ρg1g1,r2r2 + ρr1r1,r2r2 = 1.
As mentioned in the main text, it is helpful to understand the long-time entanglement onset dynamics by replacing

single-excitation states |g1r2〉 and |r1g2〉 with their superpositions |±〉 = 1/
√

2(|r1g2〉 ± |g1r2〉). Population evolutions in the
two symmetric and antisymmetric states can be calculated from the above equations as

∂tρ++ = 1
2 (∂tρg1g1,r2r2 + ∂tρr1r1,g2g2 + ∂tρr1g1,g2r2 + ∂tρg1r1,r2g2 )

= 1
2 [(−γ − � − �̃∗/2 − �̃/2)(ρg1g1,r2r2 + ρr1r1,g2g2 + ρr1g1,g2r2 + ρg1r1,r2g2 ) + γ ρr1r1,r2r2 ]

+ i(�∗
cρr1r1,r2g2 + �∗

cρr1g1,r2r2 − �cρr1r1,g2r2 − �cρg1r1,r2r2 )

= −(γ + � + �ex )ρ++ + γ ρrr + i�∗
cρr+ − i�cρ+r,

∂tρ−− = 1
2 (∂tρg1g1,r2r2 + ∂tρr1r1,g2g2 − ∂tρr1g1,g2r2 − ∂tρg1r1,r2g2 )

= 1
2 [(−γ − � + �̃∗/2 + �̃/2)(ρg1g1,r2r2 + ρr1r1,g2g2 − ρr1g1,g2r2 − ρg1r1,r2g2 ) + γ ρr1r1,r2r2 ]

= −(γ + � − �ex )ρ−− + γ ρrr, (B6)

which are exactly Eq. (8) in the main text if we further introduce γ± = γ + � ± �ex.

APPENDIX C: MASTER EQUATION OF A GIANT-ATOM TWO-LEVEL CONFIGURATION

In the case that the single-excitation states |r1g2〉 and |g1r2〉 are not populated initially, if we have |�c| � �c, g and
�c + δk � 0, our two-atom four-level configuration can be reduced to a (synthetic) giant-atom two-level configuration by
eliminating |r1g2〉 and |g1r2〉 in the short-time regime. In view of this, a pair of Rydberg atoms will decay from the double-
excitation state |r1r2〉 directly to the ground state |g1g2〉 by simultaneously emitting a coherent-field photon of frequency ωc and
a waveguide-mode photon of frequency ωk , through two competing two-photon resonant transitions exhibiting effective coupling
strengths ξ1 = −g�c/�c ≡ ξ and ξ2 = ξeiφ , respectively. This can be substantiated by the following discussions starting from
an effective Hamiltonian defined as [46,58]

He(t ) = −iHI (t )
∫ t

0
HI (t ′)dt ′, (C1)

with

HI (t ) =
∫

dkgake−iδkt (σ 1
+ + eikdσ 2

+) + �ce−i�ct (σ 3
+ + σ 4

+) + H.c. (C2)

being the total interaction Hamiltonian involving both waveguide modes and coherent field of our two-atom four-level configu-
ration. Substituting Eq. (C2) into Eq. (C1), one has

He(t ) � g2

δk

∫
dkaka†

k (σ 1
−σ 1

+ + σ 2
−σ 2

+) − �2
c

�c
(σ 3

+σ 3
− + σ 4

+σ 4
−)

+ g�c

δk

∫
dkake−i(δk+�c )t (σ 3

+σ 1
+ + eikdσ 4

+σ 2
+) − g�c

�c

∫
dka†

kei(δk+�c )t (σ 1
−σ 3

− + e−ikdσ 2
−σ 4

−) + · · ·

= 2g2

δk

∫
dkaka†

k |g1g2〉〈g1g2| − 2�2
c

�c
|r1r2〉〈r1r2|

+ g�c

δk

∫
dkake−i(δk+�c )t (1 + eikd )|r1r2〉〈g1g2| − g�c

�c

∫
dka†

kei(δk+�c )t (1 + e−ikd )|g1g2〉〈r1r2| + · · · , (C3)

where we have omitted a few terms related to the single-excited states |r1g2〉 and |g1r2〉 since they are decoupled from other
states and only interact with each other.
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Considering again �c + δk � 0 and |�c| � �c, g as mentioned above, we have |g2/δk| → 0 and |�2
c/�c| → 0, which then

result in a reduction of He into the interaction Hamiltonian

Hint(t ) =
∫ +∞

−∞
dk[ξ (1 + eikd )e−i(δk+�c )t akσ+ + H.c.], (C4)

for a synthetic giant atom with two levels |g〉 = |g1g2〉 and |r〉 = |r1r2〉 by taking ξ = g�c/δk = −g�c/�c. We can attain H in
Eq. (4) of the main text by rotating this interaction Hamiltonian with respect to frequency 2ωe + V6 of the giant-atom transition
|g〉 ↔ |r〉, which is coupled to a continuum of waveguide modes of frequency ωk accompanied by a coherent field of frequency
ωc. Substituting Eq. (C4) into an equation similar to Eq. (B2) for the giant-atom density operator �, we can further attain the
master equation (5) in the main text by including also the intrinsic atomic decay toward nonguided modes in the free space. This
master equation turns out to be

∂t�gg = (ϒ + ϒ∗ + 2γ )�rr,

∂t�gr = −(ϒ∗ + γ )�gr,

∂t�rg = −(ϒ + γ )�rg, (C5)

after an expansion in the giant-atom two-level configuration and are constrained by �gg + �rr = 1 with

ϒ = 2ξ 2
∫ ∞

0
dτ

∫ +∞

−∞
dk[e±i(δk+�c )τ + e−i(δk+�c )τ e±ikd ] = 4πξ 2D(k)[1 + eiφ] = (� + �ex + iJex )�2

c/�
2
c . (C6)

APPENDIX D: CONTINUOUS COUPLINGS OF RYDBERG ATOMS AND WAVEGUIDE MODES

In this section, we try to derive the explicit expressions of relevant constants describing various interactions between two
Rydberg atoms and a continuum of waveguide modes modified in the case of continuous couplings. As shown in Fig. 4(a) in the
main text, the two continuous couplings around x1 = 0 and x2 = d exhibit a common characteristic width �, with which relevant
exponential distribution functions can be expressed as ν1(ϕ) =

√
�

�
e− 2

�
|ϕ| and ν2(ϕ) =

√
�

�
e− 2

�
|ϕ−φ| that satisfy

∫
dϕν1,2(ϕ) =√

� [4]. Here ϕ = φx/d � ωex/vg describes the phase accumulated from x1 to x by a propagating photon along the waveguide
and will become φ in the case of x = x2, which has been considered above for two discrete couplings. In this way, one can
immediately generalize the master equation (2) in the main text to the continuous-coupling case, where the modified constants
are given by

�′ =
∫ ∞

−∞
dϕ

∫ ∞

−∞
dϕ′ν1(ϕ)ν1(ϕ′)cos(ϕ − ϕ′)

= �

�2

∫ ∞

−∞
dϕ

∫ ∞

−∞
dϕ′e− 2

�
|ϕ|e− 2

�
|ϕ′|cos(ϕ − ϕ′)

= �

�2

[∫ ∞

0
dϕ

∫ ∞

0
dϕ′e− 2

�
ϕe− 2

�
ϕ′

cos(ϕ − ϕ′) +
∫ ∞

0
dϕ

∫ 0

−∞
dϕ′e− 2

�
ϕe

2
�

ϕ′
cos(ϕ − ϕ′)

+
∫ 0

−∞
dϕ

∫ ∞

0
dϕ′e

2
�

ϕe− 2
�

ϕ′
cos(ϕ − ϕ′) +

∫ 0

−∞
dϕ

∫ 0

−∞
dϕ′e

2
�

ϕe
2
�

ϕ′
cos(ϕ − ϕ′)

]

= 16�

(�2 + 4)2
, (D1)

J ′
ex =

∫ ∞

−∞
dϕ

∫ ∞

−∞
dϕ′ν1(ϕ)ν2(ϕ′)sin|ϕ − ϕ′|

= �

�2

∫ ∞

−∞
dϕ

∫ ∞

−∞
dϕ′e− 2

�
|ϕ|e− 2

�
|ϕ′−φ|sin|ϕ − ϕ′|

= �

�2

[
2

∫ ∞

φ

dϕ

∫ ϕ

φ

dϕ′e− 2
�

ϕe− 2
�

(ϕ′−φ)sin(ϕ − ϕ′) +
∫ ∞

φ

dϕ

∫ φ

0
dϕ′e− 2

�
ϕe

2
�

(ϕ′−φ)sin(ϕ − ϕ′)

+
∫ ∞

φ

dϕ

∫ 0

−∞
dϕ′e− 2

�
ϕe

2
�

(ϕ′−φ)sin(ϕ − ϕ′) +
∫ φ

0
dϕ

∫ ∞

φ

dϕ′e− 2
�

ϕe− 2
�

(ϕ′−φ)sin(ϕ − ϕ′)

+
∫ φ

0
dϕ

∫ ϕ

0
dϕ′e− 2

�
ϕe

2
�

(ϕ′−φ)sin(ϕ − ϕ′) +
∫ φ

0
dϕ′

∫ ϕ′

0
dϕe− 2

�
ϕe

2
�

(ϕ′−φ)sin(ϕ′ − ϕ)
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+
∫ φ

0
dϕ

∫ 0

−∞
dϕ′e− 2

�
ϕe

2
�

(ϕ′−φ)sin(ϕ − ϕ′) +
∫ 0

−∞
dϕ

∫ ∞

φ

dϕ′e
2
�

ϕe− 2
�

(ϕ′−φ)sin(ϕ′ − ϕ)

+
∫ 0

−∞
dϕ

∫ φ

0
dϕ′e

2
�

ϕe
2
�

(ϕ′−φ)sin(ϕ′ − ϕ) + 2
∫ 0

−∞
dϕ

∫ φ

−∞
dϕ′e

2
�

ϕe
2
�

(ϕ′−φ)sin(ϕ − ϕ′)
]

= �

(�2 + 4)2
[(8φ + 2�2φ + 12� + �3)e− 2φ

� + 16sinφ], (D2)

�′
ex =

∫ ∞

−∞
dϕ

∫ ∞

−∞
dϕ′ν1(ϕ)ν2(ϕ′)cos(ϕ − ϕ′)

= �

�2

[ ∫ ∞

0
dϕ

∫ ∞

φ

dϕ′e− 2
�

ϕe− 2
�

(ϕ′−φ)cos(ϕ − ϕ′) +
∫ ∞

0
dϕ

∫ φ

−∞
dϕ′e− 2

�
ϕe

2
�

(ϕ′−φ)cos(ϕ − ϕ′)

+
∫ 0

−∞
dϕ

∫ ∞

φ

dϕ′e
2
�

ϕe− 2
�

(ϕ′−φ)cos(ϕ − ϕ′) +
∫ 0

−∞
dϕ

∫ φ

−∞
dϕ′e

2
�

ϕe
2
�

(ϕ′−φ)cos(ϕ − ϕ′)
]

= 16�cosφ

(�2 + 4)2
, (D3)

with ϕ′ = φx′/vg for a position x′ different from x. Moreover, an extra coherent interaction term
∑

j=1,2 J ′σ j
+σ

j
− has to be

introduced in Hat with the effective interaction strength obtained as

J ′ =
∫ ∞

−∞
dϕ

∫ ∞

−∞
dϕ′ν1(ϕ)ν1(ϕ′)sin|ϕ − ϕ′|

= �

�2

∫ ∞

−∞
dϕ

∫ ∞

−∞
dϕ′e− 2

�
|ϕ|e− 2

�
|ϕ′|sin|ϕ − ϕ′|

= �

�2

[
2

∫ ∞

0
dϕ

∫ ϕ

0
dϕ′e− 2

�
ϕe− 2

�
ϕ′

sin(ϕ − ϕ′) +
∫ ∞

0
dϕ

∫ 0

−∞
dϕ′e− 2

�
ϕe

2
�

ϕ′
sin(ϕ − ϕ′)

+
∫ 0

−∞
dϕ

∫ ∞

0
dϕ′e

2
�

ϕe− 2
�

ϕ′
sin(ϕ′ − ϕ) + 2

∫ 0

−∞
dϕ

∫ ϕ

−∞
dϕ′e

2
�

ϕe
2
�

ϕ′
sin(ϕ − ϕ′)

]

= ��(�2 + 12)

(�2 + 4)2
. (D4)

Note also that the expressions of J ′ and �′ will remain unchanged if we replace ν1 by ν2, i.e.,∫ ∞

−∞
dϕ

∫ ∞

−∞
dϕ′ν1(ϕ)ν1(ϕ′)ei|ϕ−ϕ′ | =

∫ ∞

−∞
dϕ

∫ ∞

−∞
dϕ′ν2(ϕ)ν2(ϕ′)ei|ϕ−ϕ′ |, (D5)

implying that the two constants are identical for both Rydberg atoms.
For the synthetic two-level giant atom, in a similar way, ϒ = (� + �ex + iJex )�2

c/�
2
c in the case of discrete couplings should

be replaced by ϒ ′ = (�′ + �′
ex + iJ ′ + iJ ′

ex )�2
c/�

2
c in the case of continuous couplings.

Finally, we discuss how to control the coupling characteristic width � in experiment by considering the radial size r̄ of a
Rydberg atom. To be more specific, this characteristic width can be estimated as � = wωe/vg = 2

√
r̄2 − h2ωe/vg with w being

the overlap width between the electronic wavefunction of the Rydberg atom and the evanescent field of the waveguide while h the
distance from the Rydberg-atom nucleus to the evanescent-field surface. Then it is viable to attain � = 5π/2 with h � 449 nm
since we have r̄ � 583 nm for |r1,2〉 = |75P3/2〉 [48].
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Lukin, High-fidelity control and entanglement of Rydberg-atom
qubits, Phys. Rev. Lett. 121, 123603 (2018).

[36] I. S. Madjarov, J. P. Covey, A. L. Shaw, J. Choi, A. Kale,
A. Cooper, H. Pichler, V. Schkolnik, J. R. Williams, and M.
Endres, High-fidelity entanglement and detection of alkaline-
earth Rydberg atoms, Nat. Phys. 16, 857 (2020).

[37] P.-F. Sun, Y. Yu, Z.-Y. An, J. Li, C.-W. Yang, X.-H. Bao, and
J.-W. Pan, Deterministic time-bin entanglement between a sin-
gle photon and an atomic ensemble, Phys. Rev. Lett. 128,
060502 (2022).

[38] K. S. Rajasree, T. Ray, K. Karlsson, J. L. Everett, and S. N.
Chormaic, Generation of cold Rydberg atoms at submicron
distances from an optical nanofiber, Phys. Rev. Res. 2, 012038
(2020).

[39] Y. Chougale, J. Talukdar, T. Ramos, and R. Nath, Dynamics
of Rydberg excitations and quantum correlations in an atomic
array coupled to a photonic crystal waveguide, Phys. Rev. A
102, 022816(R) (2020).

[40] S. D. Hogan, J. A. Agner, F. Merkt, T. Thiele, S. Filipp,
and A. Wallraff, Driving Rydberg-Rydberg transitions from a
coplanar microwave waveguide, Phys. Rev. Lett. 108, 063004
(2012).

[41] J. S. Douglas, H. H. Habibian, C.-L. Hung, A. V. Gorshkov,
H. J. Kimble, and D. E. Chang, Quantum many-body models
with cold atoms coupled to photonic crystals, Nat. Photon. 9,
326 (2015).

043135-10

https://doi.org/10.1103/PhysRevA.106.013715
https://doi.org/10.1103/PhysRevA.95.053821
https://doi.org/10.1038/s41567-019-0605-6
https://doi.org/10.1007/s11433-022-1990-x
https://doi.org/10.1103/PhysRevLett.120.140404
https://doi.org/10.1103/PhysRevResearch.2.043184
https://doi.org/10.1103/PhysRevA.105.023712
https://doi.org/10.1103/PhysRevResearch.2.043014
https://doi.org/10.1103/PhysRevLett.126.043602
https://doi.org/10.1103/PhysRevA.101.053855
https://doi.org/10.1038/s41534-022-00591-7
https://doi.org/10.1103/PhysRevA.106.013702
https://doi.org/10.1103/PhysRevA.107.023716
https://doi.org/10.1126/science.1257219
https://doi.org/10.1103/PhysRevA.103.023710
https://doi.org/10.1364/OL.393578
https://doi.org/10.1103/PhysRevLett.122.203603
https://doi.org/10.1103/PhysRevLett.128.223602
https://doi.org/10.1038/s41467-022-35174-9
https://doi.org/10.1103/RevModPhys.82.2313
https://doi.org/10.1103/PhysRevLett.100.170504
https://doi.org/10.1038/s41567-018-0313-7
https://doi.org/10.1103/PhysRevX.10.021054
https://doi.org/10.1103/PhysRevLett.129.200501
https://doi.org/10.1103/PhysRevLett.121.123605
https://doi.org/10.1126/science.aau1949
https://doi.org/10.1364/OPTICA.391485
https://doi.org/10.1038/s41467-022-32083-9
https://doi.org/10.1103/PhysRevLett.111.033606
https://doi.org/10.1103/PhysRevLett.121.123603
https://doi.org/10.1038/s41567-020-0903-z
https://doi.org/10.1103/PhysRevLett.128.060502
https://doi.org/10.1103/PhysRevResearch.2.012038
https://doi.org/10.1103/PhysRevA.102.022816
https://doi.org/10.1103/PhysRevLett.108.063004
https://doi.org/10.1038/nphoton.2015.57


GIANT-ATOM EFFECTS ON POPULATION AND … PHYSICAL REVIEW RESEARCH 5, 043135 (2023)

[42] J. D. Hood, A. Goban, A. Asenjo-Garcia, M. Lu, S.-P. Yu, D. E.
Chang, and H. J. Kimble, Atom-atom interactions around the
band edge of a photonic crystal waveguide, Proc. Natl. Acad.
Sci. USA 113, 10507 (2016).

[43] H. Breuer and F. Petruccione, The Theory of Open Quantum
Systems (Oxford University Press, Oxford, 2002).

[44] G. Calajó, F. Ciccarello, D. Chang, and P. Rabl, Atom-field
dressed states in slow-light waveguide QED, Phys. Rev. A 93,
033833 (2016).

[45] E. Brion, L. H. Pedersen, and K. Mølmer, Adiabatic elimina-
tion in a lambda system, J. Phys. A: Math. Theor. 40, 1033
(2007).

[46] D. Yan, J.-W. Gao, Q.-Q. Bao, H. Yang, H. Wang, and
J.-H. Wu, Electromagnetically induced transparency in a five-
level � system dominated by two-photon resonant transitions,
Phys. Rev. A 83, 033830 (2011).

[47] I. I. Beterov, I. I. Ryabtsev, D. B. Tretyakov, and V. M. Entin,
Quasiclassical calculations of blackbody-radiation-induced de-
population rates and effective lifetimes of Rydberg nS, nP, and
nD alkali-metal atoms with n � 80, Phys. Rev. A 79, 052504
(2009).
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