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ABSTRACT: We investigate the effects of the leading tadpole potentials of 10D tachyon-free
non-supersymmetric strings in warped products of flat geometries of the type Mp1 x
R x Tip—p—2 depending on a single coordinate. In the absence of fluxes and for p < 8§,
there are two families of these vacua for the orientifold disk-level potential, both involving
a finite internal interval. Their asymptotics are surprisingly captured by tadpole-free
solutions, isotropic for one family and anisotropic at one end for the other. In contrast,
for the heterotic torus-level potential there are four types of vacua. Their asymptotics are
always tadpole-dependent and isotropic at one end lying at a finite distance, while at the
other end, which can lie at a finite or infinite distance, they can be tadpole-dependent
isotropic or tadpole-free anisotropic. We then elaborate on the general setup for including
symmetric fluxes, and present the three families of exact solutions that emerge when the
orientifold potential and a seven-form flux are both present. These solutions include a pair
of boundaries, which are always separated by a finite distance. In the neighborhood of
one, they all approach a common supersymmetric limit, while the asymptotics at the other
boundary can be tadpole-free isotropic, tadpole-free anisotropic or again supersymmetric.
We also discuss corresponding cosmologies, with emphasis on their climbing or descending
behavior at the initial singularity. In some cases the toroidal dimensions can contract during
the cosmological expansion.
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1 Introduction and summary

Above and beyond the clear interest of broken supersymmetry [1-3] for Particle Physics, the
very existence of a handful of non-supersymmetric ten-dimensional string models [4-11], free
of tachyons and satisfying all known consistency rules, makes it imperative to explore their
compactifications, paying properly attention to their stability properties. Supersymmetry
is absent in two of these models, the heterotic SO(16) x SO(16) string of [12, 13] and the
U(32) orientifold [14-23] model of [24, 25], while in the third model, Sugimoto’s USp(32)
orientifold [26-30], it is non-linearly realized [31-33] (for recent reviews see [34-36]). In
all three cases, the breaking of supersymmetry in the original ten-dimensional Minkowski
space induces a back-reaction that manifests itself via the emergence, in the low-energy
effective field theory, of a new contribution associated to a runaway “tadpole potential”

AS = —T/dloa: V=g €. (1.1)

String theory yields a sharp prediction for the strengths T of these potentials and for the
exponents v, which reflect their origin in string perturbation theory. In the Einstein frame,
v = g for the heterotic model of [12, 13], which only involves closed strings, so that the
leading contribution emerges from the torus amplitude, while v = % for the orientifold
models of [24, 25] and [26-30], where the leading contribution emerges from the two disk-
level amplitudes. A direct consequence of the potential (1.1) is that ten-dimensional flat
space is not an acceptable vacuum for these theories. Moreover, tadpole potentials of this
type emerge, in lower dimensions, as a result of compactifications that break supersymmetry,
and in particular in the widely explored Scherk-Schwarz reductions [37].

Ideally, one would like to address dynamical questions on the vacuum directly within
String Theory, but the currently available tools make it imperative to rely on the low-energy
effective field theory. Therefore, vacuum solutions for the Einstein equations coupled to collec-
tions of matter fields are the key ingredient to gather some information on the problem, with
one proviso. Their indications are fully reliable and significant for String Theory only within
regions where the string coupling g, = e? and spacetime curvature invariants are bounded
since, from the vantage point of String Theory, low-energy descriptions based on General Rel-
ativity are merely the leading contribution to a double series expansion in curvatures and gs.

In this paper, we explore the effects on the vacuum of the tadpole potential (1.1) for
the three non-supersymmetric non-tachyonic strings, and more generally we trace their
dependence on «y. To this end, we focus on geometries that are warped products of two flat
spaces, and are described by metric tensors of the form

ds? = A Ny dat dx” + e2B() gp2 4 20 g dy™ dy" (1.2)

depending on a single coordinate r, where 4 =0,...,p and the y™, with m =1,...,8 — p,
are coordinates on an internal torus. We also allow for symmetric dilaton and form profiles
of all types that are compatible with their symmetries. Backgrounds for supersymmetric
strings with these isometries were explored in detail in [38], to which we shall refer at times
as I, and of which this paper is a sequel.

The plan of the paper is as follows. In section 2 we briefly set up our notation,
reviewing the effective action and the symmetric field profiles that are allowed in the class of



metrics (1.2), we identify the convenient harmonic gauge and present the set of equations for
A(r), B(r), C(r), the dilaton profile ¢(r), and the allowed form field strengths. The reader
can find a more detailed discussion of all these steps in I. In section 3 we construct, within the
above framework, all static vacuum solutions in the presence of the tadpole potential in (1.1),
but in the absence of form fluxes. The special role of the “critical” orientifold potential
with v =~,. = % manifests itself clearly in this analysis where, following the approach that
revealed the onset of the climbing behavior in isotropic cosmologies in [40], we scan the
behavior of these vacua for arbitrary positive values of 7, and in particular in the new
solutions with p < 8. For v = ~, we find two families of such solutions: both approach, at one
end, a tadpole-free isotropic solution of appendix A, while at the other end the asymptotics
is governed by a tadpole-free isotropic or anisotropic solutions, even if the string coupling
diverges there. For v < v, the backgrounds approach, at both ends of the internal interval,
which is of finite length, the anisotropic tadpole-free solutions of I, and the string coupling
diverges at least at one end. For v > 7, there are four types of solutions. They all approach
an isotropic tadpole-dependent limit at one end, which lies at a finite distance, while at
the other end, which can lie at a finite or infinite distance, the limiting behavior can be
either isotropic and tadpole-dependent or anisotropic and tadpole-free. The string coupling
diverges again at least at one end. In section 4 we discuss corresponding cosmological models,
with emphasis on their climbing or descending behavior. In section 5 we describe the general
setup to analyze more complicated vacua where a form flux and a tadpole potential are
simultaneously present. Combining a form flux with the tadpole potential leads in general
to complicated systems that are not integrable, but there is a special case that is surprisingly
simple. It concerns the value v = % that pertains to the two ten-dimensional orientifolds and
an Hy flux, or equivalently a “magnetic” three-form flux. In section 6 we describe in detail
these exact solutions and elaborate on their different types of limiting behavior. All these
solutions include a finite interval and approach a supersymmetric limit at one end, while
at the other the limiting behavior can be zero-flux tadpole-free isotropic or anisotropic, or
again supersymmetric. The anisotropic case allows a finite string coupling in the asymptotic
region. Section 6 also contains a discussion of the corresponding cosmological solutions,
which can combine climbing and descending behaviors with contractions of some set of
coordinates. Section 7 contains our conclusions, and includes tables summarizing the main
properties of the solutions, together with some comments on possible future developments
along these lines. In appendix A we review the zero-flux solutions discussed in [38], which
play an important role in asymptotic regions also in the presence of the tadpole potential.
Appendix B collects some properties of a Newtonian model that recurs in our analysis, and
finally appendix C recovers the AdS x S vacua of [41, 42] in the harmonic gauge.

2 Symmetric profiles and equations of motion

In this section we describe our basic setup and the notation that we shall use for the
solutions of interest. We use the conventions of I, so that in the string frame the bosonic
portions of the low-energy effective field theories of interest include the terms

1 B ; e—2Bs¢
SZW /dD];\/—G{e 2¢[R+4(a¢)2:|_T6’y ¢_2(Z)—’_2)'H§+2} (21)



Model p Bs Vs
USp(32) (1,5) 0,0) -1

U(32) I,Vi(-1,1,3,5,7) | 1,-1;(0,0,0,0,0) | —1

SO(16) x SO(16) heter. Lv 1,—-1 0

Table 1. String-frame parameters for the tachyon-free ten-dimensional string models. Roman
numerals refer to NS-NS branes, entries within parentheses refer to RR ones, and dashes signal
couplings that are not present in the low-energy effective theory.

In principle, one should consider different values of p, with the exponents that are collected
in table 1. This prototype action thus involves, in general, two types of fields aside from
gravity: the dilaton ¢ and a (p + 1)-form gauge potential B, of field strength H, 2. Here
the “tadpole term” sized by 1" can describe, in principle, a non-critical sphere-level potential
if v¢ = —2 and D # 10, with T' ~ D — 10, a disk-level orientifold term if v¢ = —1 and
D = 10, or a genus-one contribution if y¢ = 0 and D = 10. In this paper, we shall focus on
critical non-supersymmetric strings in D = 10, and on the effects induced by an exponential
potential determined by the choice of v that dominates at weak string coupling, but here
and there we shall set up the formalism for generic values of D.
In the Einstein frame, with the metric g related to G according to

40
Gun =eDP=2 gyn, (2.2)

the action of eq. (2.1) becomes

8—1/dD /—a R—i(agb)?—T W_ﬂq_[ (2.3)
I R R T2
with
D —2(p+2 2D
ﬁp:ﬁS_D(—p2)’ VZ’YS‘Fm- (2.4)

The values of these quantities for the ten-dimensional tachyon-free string models are
collected in table 2, and the corresponding field equations read

672 BP ¢

1 4 )
Run — 5 gun = 5—— OupOng + 20+ 1! (Hp+2>MN

1 4(9¢)°  ePo
— 3 9MN lD_2 + 2(p+2)!7‘[p+2+V(¢) ,
8 . 6p 6_26P¢ 9 ,
D5 9= i) Hpo +V(9),
d(e™20 T, 15) =0, (2.5)
where
V(p)=Te?. (2.6)



Model P By y
USp(32) (1,5) (_ ,%) g

U(32) LVi(-1,135,7) | 3,—3; (—1 —%,0,%,1) 3

SO(16) x SO(16) heter. Lv 3.—3 s

Table 2. Einstein-frame parameters for the tachyon-free ten-dimensional string models. Roman
numerals refer to NS-NS branes, entries within parentheses refer to RR ones, and dashes signal
couplings not present in the low-energy effective theory.

In the 0’B string there is also a five-form field strength, which satisfies the first-order
self-duality equation

Hs = *Hs,

whose contribution is not captured by the preceding actions. We shall return to this case

(2.7)

shortly.

As we anticipated in the Introduction, we focus on metrics of the form (1.2), which
involve three dynamical functions of a single variable r. Furthermore, as in [38], we shall
find it convenient to work in the “harmonic gauge”, whereby

B=@p+1)A+(D-p-2)0C, (2.8)

which will simplify the resulting equations. Moreover, we shall also explore counterparts
of these solutions that are obtained via an analytic continuation of  and z° to imaginary
values. These build anisotropic cosmologies and generalize previous results.

As explained in [38], there are four types of symmetric tensor profiles compatible with
the Bianchi identities and the equations of motion,

Hpio = Hpio 2P0t BH(p+DA=(D=p=2)C 3,0 A A daP A dr,

Hpr1 = hpy1 da® A ... Ada?, (2.9)
and
Hp—p-1= ]:ID_p_l ¢ 2Pp-p-3b+B—(p+1)A+H(D-p-2)C dy' A ... AdyP P2 Adr,
Hp—p2="hppody* A...NdyP P72, (2.10)

where the H, H, h and h are constants.

There are also special tensor profiles that are relevant for the type-0’B theory in ten
dimensions. They demand a few additional comments, since the corresponding field strength
is self-dual. To begin with, one can start from the solution of the self-duality condition,
which reads

H _ ~
Hs = ﬁ (PHATC ey Adr + &) (2.11)
since g = 0 in this case. In a similar fashion, a second type of profile,
h _ ~
Hs = ﬁ (es) + e PATPHC dr N ey (2.12)

is the counterpart of eq. (2.11) for the h field strengths discussed above.



In the “harmonic” gauge (2.8), the equations of motion for A, C' and ¢ deduced from
egs. (2.5) are

T
A// = —m 62B+7¢ (213)
(D—p—3) 2 B+2 8y p—2(D—p—2)C 172 (D—p—2) 55 28,1 ¢p—2(p+1)A
- - @7 H N 2 77 p—1 p+) h2
2(D—2) © 2t Do) ¢ e
T
C” = —m €2B+’y¢ (214)
(p+1) 2 B+2 8y p—2(D—p—2)C p 2B—28,_1 ¢—2(p+1)A
e o2 £ p—1 p+1)Ap2
2(D—2) ¢ P27 9(D-29) ¢ L
o= T (l; ~2) 2B+ye (2.15)
D -2 _1(D =2
. By ( - ) 2B+28, qs—2(1?)—13—2)(111[23+2 n Bp-1 (8 ) 02B~26p 1 ¢—2(p+1)Ah12)+1

Moreover the equation for B, which is usually called “Hamiltonian constraint”, reads
(»+ 1)A’[PA/ + (D =p—=2)CT+ (D —p=2)C"[(D—p—3)C"+ (p+1)A]

D 2

+%e2ﬁp¢+2372(D7p72) ; —2Bp—1¢6—2(p+1)A4+2B th 0. (2.16)

Hyyy —

Notice that this system has an interesting discrete symmetry: its equations are left
invariant by the redefinitions

[A,.C, p] [CA D-p-3],
{ 276pahp+175p—1} — [ p+1> —Bp-1; — p+2, ,Bp} (2.17)

Two special cases, related to the type-0’B string, must be treated separately, since
they involve fluxes of the self-dual five-form field strength, for which we refer the reader to
egs. (2.11) and (2.12), and also to I and [43]. The complete equations of motion for the
first case are

Lo, 1 T .4
Rurw = o5 (H2),,0 500 0086+ 5 € guw (2.18)

and their reduced form for the class of metrics of interest in the “harmonic” gauge B =
4A 4 5C and for the symmetric Hs profile of eq. (2.11) reads

H? T
A — 5 €8A - €2B+'y¢,

8 8
" = _ig 68A _ Z €2B+'y¢
8 8 ’
3
= 57 e2Bre, (2.19)
The corresponding Hamiltonian constraint is
1 H2 T
3(A)’+104'C' +5(C")? = < (¢)° - e (2-20)



The counterpart of these results for the h;,41-fluxes corresponds to p = 4, and in this case

h? I
" 5 ,8C 2B+
A" = — Z2Bte

— e
8 8
h2 T
C// _ _§5 680 _ §€2B+'y¢’
¢”:;Tewﬂw, (2.21)
while the Hamiltonian constraint becomes
1 h2 T
5(A) 4104 C"+3(C) == (¢/)° + =2 € — — 2B+1e, (2.22)

-8
3 Vacuum solutions without form fluxes

We can now see how a tadpole potential affects the vacuum solutions of supersymmetric
strings described in I that do not involve form fluxes, which are also reviewed in appendix A.

The following discussion applies to all three non-tachyonic models in ten dimensions.
Eqgs. (2.13)—(2.15) simplify considerably in the present setting and become, in ten

dimensions,
T
A _g €2X’
T
c" = 7§ €2X’
"=T~e?X, (3.1)
where
X:@+nA+@—mC+%¢ (3.2)

Note that the harmonic gauge condition translates into
X:B+%¢ (3.3)

The r.h.ss of the three equations in (3.1) are all proportional, and consequently the new
variable X satisfies

T
X"ZE(VQ—%?) e?X (3.4)
h
where 3
7(/‘ = 5 ) (35)
the value that pertains the two ten-dimensional orientifolds. We thus come across the
quantity
T
A== -2, (3.6)

which will play an important role in ensuing analysis. The introduction of X reduces the
Hamiltonian constraint of eq. (2.16) to

2
but the four variables X, A, C and ¢ are clearly not independent.

(Xﬁ—7&)?—@+1NAU?—@—pN032—®?2+7%2X=07 (3.7)



The form of the original equations (3.1) now suggests to work with X and with the
additional combinations

V_A-C,
W=¢+87 A, (3.8)

whose equations of motion are simply

V"'=0,
w"=0. (3.9)
Notice, however, the linear relation
X+(8—p)V—%W:—4(72—%2)A, (3.10)

so that the three variables (V, W, X) are not independent in the special case v = . that is
relevant for the orientifold models of [24-30], which is to be treated separately. Let us now
begin our analysis from the special case v = ~..

3.1 Vacuum solutions with v = ~, = %

For v = 7. = 3 eq. (3.4) reduces to
X"=0, (3.11)
so that
X =p6r+po, (3.12)
where § and [y are a pair of constants, and it is now again convenient to distinguish two
cases.

3.1.1 The special case 8 =0

The special case 8 = 0 results in technically simpler solutions,

T0r2
A=— A A
16 + 17a+ 2
T 2
C=- % +C1r+Co, (3.13)

where —oo < r < 400, the A; and C; are constants and
Ty = T 2P0, (3.14)

while the condition X = 5y determines

¢ = ZT0T2 —l—% [Bo— (p+ 1)(A17 4+ A2) = (8 = p)(Cir + C2)] . (3.15)

Finally, in view of eq. (3.3), the harmonic gauge translates into

B = _z b+ By = —19—6T07“2 +(p+1)(Air+ A2) + (8—p)(Cir + Cy), (3.16)



and taking these results into account the Hamiltonian constraint reduces to

9To

8—p) (A —C1)° = : 3.17
B =p) (- 1) = 0 (3.17)
It can be solved consistently within this family only for p < 8, and letting
b b
A = = Ci=a—= 1
1=a+ 5 1=a 5 (3 8)
it determines
9Ty
b=+ ———————. 3.19
b+ D) (19
Using the preceding results this family of solutions can be cast in the form
ds? = e~ 8 Tor?+18ar—(7=2p)br—3 ¢2+2 80 7.2 | e—TOT’"QHar (ebrd$2 + e—brdg»Q)
e¢ — e¢2 e % To 7"2_12a7“+% (7—2p)br , (320)

and, as we have stated, they only exists for p < 8. The special tadpole-free solutions found
in section 5 of I with A; = C are recovered in the limit Ty — 0.

These solutions apparently depend on three arbitrary parameters, 5y, a and ¢o. However,
in the presence of a non-vanishing tension 7', one can eliminate the contributions proportional
to a by a translation of r, a redefinition of ¢ and independent rescalings of the z and
y coordinates. One is then left with ¢o and S5y, which only appears in the combination
reP | so that a rescaling of r can eliminate (3 altogether. All in all, these solutions can be
presented in the form

7,2

ds? — e—%Tﬂ—(?—Qp)br—%d)g dr? +€—TT (eb'r dz? + e—b'r dg?) ’

e — 2 G%Tr2+§(7—2p)br, (3.21)

where b is now as in eq. (3.19) with Ty replaced by T, so that they depend on a single
parameter, ¢o. Alternatively, one can choose in egs. (3.21) [y = %(]52, after removing a,
so that only the combination T° e2 2 enters the preceding expressions. The system is then
invariant under shifts of ¢o combined with corresponding multiplicative redefinitions of T,
as expected from the original form of the Lagrangian (2.4). In conclusion, ¢s is the only
essential parameter on which this class of solutions depends.
For large values of r, the terms depending on the tension 7' clearly dominate and,
letting
u=etTr (3.22)

turns the asymptotic form of eqgs. (3.21) into

2
2 . -4 2 -9 _3, du
ds“~e 6(da: + dy )—l—e 2 ST u
u du?
~e 6 (d:c2 +dgj’2) e 3 %
e® =ev, (3.23)



since % u+ logu + log 3 ~ % u for large values of u. The end result is the asymptotic form
of the nine-dimensional Dudas-Mourad vacuum of [39] at its strong-coupling end, and in
terms of the proper length & ~ e~ 1 v

ds® ~ €3 (d:cQ + dy2) 1 de?,
e?~ € (3.24)
where & = 0 at the boundaries, and where the dependence on T was eliminated by a further
rescaling of £&. Note that this is also, surprisingly, the isotropic strong-coupling solution
obtained in I in the absence of tension, which is briefly reviewed in appendix A.

In these anisotropic spacetimes, the length L in the r-direction is finite in the presence
of a non-vanishing tension 7', and is given by

o0 (7—2p)*
L= / Bdr=2 | T _ ot (3.25)
—00 3 Tez2 2

At the same time, the effective (p + 1)-dimensional Planck mass can be finite if the y’s
describe an internal torus, and then

o0
p—1 _ .8 —3 ¢ —Tr24-2br(p—4)
Mpipi1) = Mpi(10) VT €1 . dre

. sy, [T (=4
= Mpj(10) Vi e T el (3:26)
Consequently 3 (p—5)(5p—19)
. g (p=5)(5p—19)
MB1(p1) = 1 ™ei(0) Vi Lee e (320)

and the factor is of order one for 2 < p < 6 and of order 10 or so for p =1 and p = 7.
However, in the three non-tachyonic ten-dimensional models there is strong coupling at
both ends, since T' > 0.

This simple example is quite instructive. The key issue is that a positive tension
translates, in general, into a convex dilaton profile, and increasing ¢ is tantamount to
increasing even more the effective tension, which is determined by T eY?, with positive
values of « in all cases of interest for ten-dimensional strings with broken supersymmetry.
The dilaton profile has a minimum value in the interval, and one can choose ¢o to obtain a
small string coupling in a wide region away from the ends, where the effects of the tension
pile up and the string coupling diverges.

These solutions are vacua of non-supersymmetric strings that have a (p+1)-dimensional
Poincaré symmetry. They only exist for p < 8, since they require two independent sets of z
and y coordinates. In particular, for p = 3 one gets a vacuum with four-dimensional Poincaré
symmetry that, when combined with an internal torus, has an effective four-dimensional
gravity. The special form of the Hamiltonian constraint implies that these vacua cannot be
isotropic and do not admit cosmological counterparts, which would require a continuation
of A} and C} to imaginary values. When T = 0, one cannot remove the constant a in
egs. (3.20), and one recovers the two-parameter family of tadpole-free solutions reviewed in
appendix A.



3.1.2 Solutions with 8 # 0

If B #£ 0, up to a reflection of the radial coordinate one can confine the attention to positive
values of f. X acquires the linear term in eq. (3.12), and now [y can be absorbed by a
translation of . A and C' are determined from eq. (3.1), and read (—oco < 1 < 00)

T e2hr
A=— 32 62 +A1T+A2,
T 6257‘
C:—B—Q 2 +Cir+Csy. (3.28)

The definition of X in eq. (3.2) then determines

3 Q,Br
p==T —5 + 17+ P2, (3.29)
8 B
with
4
$r=g[0-p+HA-(8-p0],
4
$2=—3 (p+1)A2 4 (8 —p)Co] , (3.30)
and finally the harmonic gauge condition F' = 0 determines
9 e2fr 3
B=-5T 7 +Br = (d17+¢2) . (3.31)

Note also that Ay and C5 can be eliminated from the metric by rescalings in the x and y
directions, while their combination ¢9 remains in ¢ and B.

These solutions are to be considered again on the whole real r axis. All r-dependent
terms drop out of the Hamiltonian constraint (3.7), which reduces to a quadratic relation
among the three constants A;, C7 and (3, or equivalently Ay, Cy and ¢1:

4p @2 > 8(8—p)
L — p A+ (8 —p)Cy| -
8(p+1) pAr+ (8-p)Ch Pt

This expression, which should be used for p # 0, is independent of T', and coincides with a

Cc?. (3.32)

corresponding result that emerged in [38] for vacua of supersymmetric strings. It can be
cast in the two equivalent forms

%L plp+ 1) 43 +20p+ (8~ p)AICy+ (8= )7 — p)CF. (3.33)

and

St (p+ 1) AT+ () CF = [(p+ D1+ (5= p)Cil? (3.34)

which can also be used for p = 0. This last form is also discussed in appendix A.
Eq. (3.3) determines 3, which is assumed not to vanish for the present class of solutions,
as 5
B = Z(bl +(+1)A1+ (8 —p)Ct, (3.35)

and consequently A; = C7 = ¢1 = 0 is not an acceptable choice.

~10 -



These results reveal an important property of these “critical” vacua for v = % and

B # 0: given a solution of the T = 0 case, and thus an angle 6 in appendiz A, eq. (3.35)
determines a corresponding value of 3, and egs. (3.28) and (3.29) determine a solution of
the system in the presence of the “critical” tadpole potential with v = ~.. These “critical”
solutions are thus dressings of those for 7' = 0, and yet this modification has the crucial
effect of leading to r-intervals of finite length, as we can now see in detail.

The Dudas-Mourad isotropic solution for v = % Let us begin our analysis from

the most symmetric case, p = 8. In this case the Hamiltonian constraint (3.32) gives
1 =£12 4, (3.36)

and only the upper sign gives a non-vanishing f in eq. (3.35). In this fashion

B = g¢1 : (3.37)

and after letting

T 3
u=gam e frr (3.38)

and rescaling the x coordinates, the solution takes the form

ds? = ¢~ us da? + L e~ 3 (uto0) gy,2

37T ub
e? = eut0 y3 , (3.39)
where v > 0 and X
6 2\ 3
e? = ¢?2 (;ﬁl) . (3.40)

One can now explore the behavior of this solution in the neighborhoods of the two boundaries,
starting from the one at u = 0. In this case, the additional substitution

€ ~ut, (3.41)
shows that this limiting behavior is dominated, as £ — 0, by
ds® ~ €5 da® + de?,
e? ~ €3 (3.42)

This is again the isotropic tensionless solution of I reviewed in appendix A, with a string
coupling that vanishes at £ = 0.
On the other hand, for large values of w, where the powers have negligible effects
compared to the exponential terms, the background in eqgs. (3.39) approaches
2 T L S S
ds® =e 6 dx +f6 2 “du”,

e? =et. (3.43)
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Letting now e~ iU~ &, or if you will in terms of the distance from the other boundary, the
background takes the form

ds® ~ €5 da® + de?,
o ET (3.44)

This is again the isotropic tensionless solution of I reviewed in appendix A, which emerges,
surprisingly, in a region of strong coupling. Remarkably, the tadpole ought to dominate at
this end of the interval, but has somehow negligible effects even there for v = ..

Summarizing, we have described a one-parameter family of solutions depending on ¢q,
as in [39], which is indeed the Dudas-Mourad vacuum in a different parametrization. Its
key property in that the internal space is an interval of finite length

2 00 2 -3 1
g — \/;e_i¢0 /0 6_%1‘6“_% du = ﬁ (3 €¢0) * F (4> 9 (345)

which decreases for increasing values of ¢g. The corresponding nine-dimensional Planck
mass is finite, and is given by

4
_3 _4., 31/ 3\ 9 4
mPl(Q) m, (10) \/fe 1% / 3% 9du—mPl 10) fI‘( ) (> F<9)

=~ 0.09 mpy10 ¢ - (3.46)

The anisotropic p < 8 cases. Asin I and in appendix A, it is now convenient to define

A C
ap =t ac = =%, ad):ﬂ, (3.47)
7 7 7

which are determined in terms on angle 6 in egs. (A.13), and then
f=p(l+sing) . (3.48)

Note that the point § = m must be left out in the current treatment, since 3 vanishes there.
Consequently the solutions can be parametrized as

A T  2(4sinf)ur p A
= - + « T+ )
32 p? (1—i—sin<9)2 Al n 2
9 T e2(1+sinO)pr 3
B=——— ——— 4+ pur—-— ,
207 (1smoy? M 1%
T 2(1+sinf)pr
C=- +ac(@)pr+ Cy,
322 (14 sin6)? @) ?
3T 62(1+sin0)u'r

S —
?=3 1% (14 sinp)?

3 sin@ pur+ ¢, (3.49)

where

6= —5[(p+ 1)+ (8- p)Ca]. (3.50)
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As for p = 8, these expressions suggest a convenient change of variable,

u = g 62(1+sin9),ur’ (351)
where
3 T
8 u?(1+sinh)
After rescaling the x and y coordinates, letting also
_ 2 sipG
e — 2 ug (3.53)
the result can be finally cast in the form
u o (0) u ac(9)
ds? = e~ yTiomo dg + 3% e~ 3 (w+00)y, e 2 gy 2 +e’6 uTHemo dy?,
¢b = gutéoy Tt (3.54)

where 0 < u < 0o and a4 (), and ac () can be found in eqgs. (A.13). Note that p has
disappeared, and these vacua have a two-dimensional moduli space: they are characterized
by ¢o and 6 # 7.

For small values of u one can ignore the exponential terms and eqs. (3.54), and letting
1
£~y T0Fsm) (3.55)
the solutions take the form

d52 ~ gQaA(G) d$2 + gQaC(G) de + d£2,
e? ~ g3 sinb (3.56)

Once more, this limiting behavior is captured by the anisotropic tensionless solutions of [38]
that are reviewed in appendix A, independently of the limiting behavior of the string
coupling, which can be zero, finite or infinite depending on the value of 6.

For large values of u, where the exponential terms in egs. (3.49) dominate, the solutions
approach the nine-dimensional Dudas-Mourad vacuum of [39] given in eq. (3.43), whose
asymptotics is again dominated by the strong-coupling tensionless solution of I reviewed
in appendix A. To reiterate, the behavior of the background near the two boundaries is
captured by tensionless solutions, independently of the limiting behavior of the string
coupling. At one end the limiting form of the metric is generally anisotropic while at the
other end it is isotropic, and the string coupling diverges at least at one end.

The singularities at « = 0 and u = 400 are separated by a distance

1
2 3 4 2((1+sin ) 1
L=y/— e 1% (= r— — .
37 ¢’ <3) [2(1+Sin9)] ’ (3:57)
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Figure 1. Left panel: the length of the interval as a function of the angle 6 that parametrizes the
ellipse in eq. (A.9). Right panel: the ratios of the effective (p 4+ 1)-dimensional Planck mass to the
product of the length L and the volume of the internal torus for p = 1,4, 7 (solid, dashed, dotted)
as functions of . The p = 1 case has a bump but the other curves fall essentially on top of one
another. The string coupling is finite at the origin in the left portion of these curves and is infinite
in the right portion.

which is finite in the allowed region, where (1 +sin @) > 0, and if the y coordinates describe
a torus of parametric volume Vp, the reduced Planck mass, which is determined by

l—ay 1

2 3 4 3
1 8 3 4 3
m{;l(p—l—l):mPl(p—&-l)VT\/» 37 © i % /due su (113 00)
l—a g
2 3 3 143 1—@
=md _ -4 %o +1%e A
ey VY e <> a 3]
(P ) 1+ZCM¢

4
142(1-a4) T [ 104 ]
3 3 o 1+§Oé¢
= Mpipn) Vr L (4) ) 4

(3.58)
r

)
1
2(”3%)}

is always finite in the region sin# > —1, where they apply. Some examples are displayed in
figure 1. These solutions are vastly different from those obtained for 5 = 0 in section 3.1.1.

3.2 Vacuum solutions for v # %

In this case one can work with the three variables (V, W, X), defined in egs. (3.2) and (3.8),
which are now independent and determine (A, C, ¢) according to

(X +(8=p)V -3 W]

SR TCE R R
oo X+ [B-p+a(s? =RV -3 W]
4(v2—2) ’
29X +27(8-p)V -2 W]
¢ = CE) : (3.59)
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One can write the solutions of egs. (3.9) for V and W in the convenient form

_u
V= 5 r—+ 5
7 g
W=|l1-=](d1r+¢2)+ 508 —p)(vir+uv2)|, (3.60)
e e
where vy, v9, ¢1 and ¢ are integration constants. Consequently
1 v X 1
A= -7 t5|@=—pvi—vé1|r; +az,
9{ o e e mPm e
1 v X 1
C=-————= 1 ,
v X
p=2—5——-+hr+d2, (3.61)
(v*=2)

where as and co are a pair of constants determined by vo and ¢, whose detailed form
does not play a role, since they can be removed from the metric by rescaling the z and y
coordinates, and B is determined as

wX v

2 72 - E (¢1 T+ ¢2) : (362)

B=X-—

N |2

b =—
~

Finally, X is determined by the Hamiltonian constraint, which reads
(X2 =eA? 32X+ B, (3.63)

where

 e=si (v -12),

2 2 2
Ezl{(%—ﬂ>'ﬁﬁ—<%—i>@+lwﬁ—g>ﬁ}y (3.64)

and the two case v < 7. and v > . are to be discussed separately.

3.2.1 Vacuum solutions for v < %

Although this range of values is not realized in ten-dimensional String Theory, it is simple
and instructive to include it in our analysis. For 0 < v < v, = %, referring to appendix B
one can see that the problem reduces to the one-dimensional dynamics of a Newtonian
particle subject to a positive exponential potential, so that its energy E must be positive.
Up to a translation of the radial variable r, we have

X = —log {Ap cosh <;>} ) (=00 <1 < 400), (3.65)

where

(3.66)

A
I
-
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Letting now

1
A= —————, (3.67)
_2
) (1 73)
the allowed values of v; and ¢; can be parametrized via an angle 7, as
o1 18\
pr1=-—=- cos .,
p P e
v 12 22
v = LR Y i E— sinn, (3.68)

pp\(+1)E8—p)

and the solution reads

9 _adir e e dy?> e 9rrHo2) gp?
ds” =e " 2N - 18X
e (e ()
185
e? = [A p cosh (;)} e ehrtor (3.69)

Notice that 1 parametrizes the anisotropy of this family of solutions, which become 9 + 1
dimensional when it vanishes. We shall return to this case in section 3.2.3.

In fact, contrary to what egs. (3.69) may suggest, finite values of p can be removed
also from these solutions, rescaling r and the x and y coordinates and redefining ¢-, while
taking into account the definition of A in eq. (3.67). This leads to

[A cosh(r)]?? * [A cosh(r)]"®*

18 ~ ~

¢ = [A cosh(r)] % eh T+ (3.70)

- (8—p)uy r —(p+1)vg r N o dey
PR TLN dz? + o dy? e (b1r462) g2
s°=e 79

where v7 and (51 are defined in egs. (3.68) and depend on 7. This family of solutions thus
depends on the two parameters n and 52. On the other hand, the p — oo limit in egs. (3.69)
is singular.

As r — 400, the exponential potential becomes negligible in eq. (3.63), and

Taking into account the definitions of A and ¢ in egs. (3.68) and (3.67), one can then
conclude that, as r — +o0,

¢P dr ~ ¢ A 1755 cosn]r dr, (3.72)

so that the interval has a finite length for any choice of 7. At the same time,

18 A
¢~ T (i T cos 77) , (3.73)
Ye Ye

so that the string coupling diverges only at one end and vanishes at the other if

|cos n| > ’717 (3.74)

[
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while it diverges at both ends otherwise. Moreover, the reduced Planck mass is finite, if the
internal space is a torus, since

v 1 8(8 —p)
1—€e— cosn+ — e 3.75
€, oSt o \F LAY ey (3.75)
is positive for 0 < p < 8.
In terms of the proper lengths, which behave as
£~ 6_9)\[i1_% COS’I?}T (376)

close to the two ends of the interval, so that they vanish there in all cases, the background
approaches

ds? ~ €205 da? + £2°C i + dE2

+
P~ % (3.77)
where the exponents are
2(8—p) .
- 9 |:'Yc F ycosny * 3’yc /\E ;i% s1n17}
ay == ,
49 (e F 7 cosn)
2p+1) .
- {% F oy cosn F 2/ 18 sin 77}
an = — ,
“ 9 (Ye F v cosn)
e (O F e cosm) (3.78)
Ye (Ye F v cosn)
Taking into account that ., = %, one thus finds that the two conditions
(p+1)ak + (B —plas =1,
1
(p+1Dad? + (8 —plai? + = 5 a,? =1 (3.79)

hold, so that the two asymptotic regions are again described by Kasner-like flux-free
backgrounds for the 7' = 0 case, with parameters #* that depend on v and 7 as

singt — _ (0 F e cosn)

(Ve F ycosn)’ (3.80)

One can verify that, in all cases, the tadpole potential V(¢) ~ &7 o is sub-dominant as
& — 0 with respect to the scalar kinetic term.

In brief, for all values of v < ~, there are two asymptotic regions, where the limiting
behavior is dominated again by particular flux-free solutions of the T' = 0 system. The
behavior at one end determines 7, and thus also the behavior at the other end.
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3.2.2 Vacuum solutions for v > %

For 7 > ~., a range that is directly relevant for the SO(16) x SO(16) string, the potential is
an inverted exponential and the sign of the energy F in eqgs. (3.63) is arbitrary, so that one
must distinguish three cases.

e If the energy E = 0, a value which obtains if

_ 8 g
e \/(p+ 1)(8 —p) <%2 1> ’ (35

one can see from appendix B that, up to a translation of the radial variable r, X is

given by
X =-log(Ar), (0<r<o0). (3.82)

The solutions then read

o (B8=p)v v —(p+1)vy
ds* =e "9 (Ar)zl)‘| (e o da’+e” o dy2>

+ (A 70)18|/\\ e*'Y(¢1 r+¢2) dTZ,

_mw

e? = (Ar) @7 ehrrtoz, (3.83)

There are singularities at the two ends of the range of r, » = 0 and r = oo, which are
separated by a finite (infinite) distance if ¢1 > 0 (¢1 < 0). In the former case the
reduced Planck mass is also finite if the internal space is a torus, while in the latter
case it is infinite. There is always strong coupling at one end (r = 0), and there is
weak coupling at the other end if ¢1 < 0 and strong coupling if ¢1 > 0. In the vicinity
of the origin the background approaches

ds® = (A7) (da? + dy?) + (Ar)*N ar?,
—Z W
e? = (Ar) 72 e%? (3.84)

which is the isotropic ¢1 = 0 solution. In terms of the proper length & = PO it

becomes
272
ds® = €997 (dx? + dy?) + d&?,
b =77 ef2 (3.85)

This is once more a Kasner-like behavior but, in contrast with what we saw in
the preceding cases, it is not the tensionless behavior of egs. (A.15), which is only
approached as v — 7, and thus for A - —oo.

On the other hand, as 1 — 400 for ¢1 # 0, the limiting form of the background is

d82 ~ 5201,4 de + gQac de + d£27
e® ~ £% (3.86)
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where
Erne 2T, (3.87)

so that £ = 0 at the right boundary when ¢; > 0 and £ = oo if ¢1 < 0, and

_ ! 88—p) (1
g o (3]
1 8p+1) (@
ac_9[1i\/(8—p)( 'F)]’

ag=—=. (3.88)

Taking into account that ~, = %,

form (A.13), so that the r — oo limit is dominated by an anisotropic tensionless

one can verify that these expressions are of the

solution with

sinf = ——, (3.89)

independently of whether the coupling is weak or strong there, and the two values of
cos @ correspond to the two branches in eq. (3.81). Finally, for ¢; = 0 the limiting
behavior is captured by eqgs. (3.85).

e If the energy E > 0, as discussed in appendix B one can choose the solution

X = —log [Ap sinh (;)] (r > 0) (3.90)

and work in the region 0 < r < co. There are two branches of solutions of the
Hamiltonian constraint in egs. (3.64) parametrized by a real variable ¢,

18]\ 1-
¢ ==+ A cosh( = —-¢r1,
P Ve p
12 2|l 1
V) = — sinh( || — b = =y, 3.91
! p+1)@B—p) p (3:91)

where A is defined in eq. (3.67), and the background reads

s 2 P\I (8—p)vy r —(p+1)vy r
ds? = e 9 {Ap sinh (T)] (e Tz e dyQ)
p

F\TI8 1A
+ {Ap sinh ()] eV (G17+92) 4.2 :
p

e¢1 r+o2

e =

(3.92)

184\)4'

(20 sinn (5)]

Notice that p can be removed from these solutions, rescaling r» and the x and y
coordinates, and redefining ¢». As a result, this is a two-parameter family of solutions,
depending on ¢ and (.
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There are two singularities, at » = 0 and at r = +o0. Near r = 0 the background
approaches the £ = 0 solution in egs. (3.84) or, in terms of the proper length, in
egs. (3.85). The string coupling diverges at r = 0, where the dominant behavior is
isotropic and sensitive to the tension 7.

At the other singularity, as r — 0o, the background can be conveniently expressed in
terms of the proper length

9 |A|r

é' ~ e P (1$% COShC) (393)

Y

which diverges in the lower branch and tends to zero in the upper branch, and reads

d$2 ~ 52(1,4 de _1_52040 dg? +d£2,

e ~ £ (3.94)
where
i 2 . 2(8— i
L, e Ko
=y T ¥ % cosh¢ |’
I 9 . 2(p+1) |
P Fsh Gy RS
R F % cosh¢ |’
4 — cosh¢ £ L )
ap =3 7 T, (3.95)
(% cosh( F 1)

In all cases, these coefficients satisfy eqs. (3.79), so that the limiting behavior at the
right end is captured, once more, by the tensionless flux-free solutions of I reviewed
in appendix A, with

—cosh( + - 1 sinh ¢

e cosf =

A ’ e ’
o cosh ¥ 1 3VIAI T F - cosh ¢

sinf =

(3.96)

This also happened for v < 7., but in that case this type of behavior was also
approached at the other end, while for v > . the limiting behavior at the other end
is not captured by tension-free solutions.

In the first branch (upper sign) £ — 0 as r — oo and the length is finite. Moreover,
ag can have both signs. When a4 > 0 the solutions exhibit a novel feature: a finite
length in the r direction can be accompanied by a string coupling that is also finite
as 7 — 0o. This occurs when

cosh( < 7, (3.97)

Ye

The solutions in the second branch (lower sign) have an infinite length in the r
direction, so that eqgs. (3.94) apply for large values of £. In this case ay < 0, so that

the string coupling tends to zero at this end.
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e If the energy E < 0, letting F = —p%, one can parametrize ¢; and v; according to

2[A|

CEICETIR (3.98)

12
v1 =+ — cosh(
p

so that v cannot vanish and the solutions in this family are all anisotropic. In this
case, using the results in appendix B, X can be presented in the form

X = —log {Ap sin <;>} : (3.99)

so that 0 < r < 7 p, and the metric and the string coupling read

2|Al _ _

¢ T (8—p)vy T (p+1)vy r

ds? =e 5 [A,O sin (r)} (e e e dy2)
1%

N\ 71817
+ [Ap sin ()} eV P1ro2) gp2
p

$17+¢2
e = ¢ (3.100)

[apsin(5)] 7

Now the interval has a finite length and the effective Planck mass is finite, but

the string coupling diverges at both ends. Once more, p can be removed from the
solutions, rescaling r and the z and y coordinates, and redefining ¢-. This background
approaches the F = 0 solution at both ends, so that the limiting behavior is isotropic,
is not captured by tension-free solutions and the string coupling diverges.

3.2.3 Isotropic solutions for v # %

This class of solutions comprises the most symmetric backgrounds, which replace ten-
dimensional flat space in the presence of the tadpole potential (1.1). They can be recovered
from the general ones letting v; = 0, but their special nature deserves a few additional
comiments.

o For v <7, there are the two options # = 0, 7 in eqs. (3.68), which are equivalent up
to an overall reflection of the radial coordinate r € (—o0, 00), so that it will suffice to
consider

~  18A
o1 = o (3.101)

The background then becomes

18X

ds? — e,ﬂy“ dz? + dy? N er(WTTJrg?) dr?
[A cosh ()2 [A cosh (r)]'82

Y

18y % 18

e = [A cosh (r)] 7~ ene "T2 (3.102)

- 21 —



This class of solutions is a special case of what we discussed in section 3.2.1. It describes
compactifications on intervals of finite length, where the string coupling vanishes at
the one end and diverges at the other. The limiting behavior at both ends is captured,
as was the case for v = 4., by the isotropic tensionless solution of [38] or appendix A,

ds? ~ & (da® 4 d”) +dg?,
e? ~ 5 (3.103)
£ is close to zero in both cases, but this value corresponds to r = —oo at one end and

to r = +oo at the other.

For v >~ there are two classes of solutions, since for £ < 0 there are no isotropic

solutions.

— If the energy E = 0, the solutions are obtained from eqs. (3.83) letting v = 0,
and read

SEDY

d82 = ’I”QW (d$2 + dy2) + ?

-E2 N 3
e =r 77 e, (3.104)

e VP2 qr? ,

where 0 < r < oo. They describe intervals of infinite length, and the string
coupling diverges at one end. Letting

~ 9[Al+1
_om1d (1) 3.105
the preceding expressions become, for 0 < £ < oo,
292 dg?
ds? = €57 (da? + dy?) + % :
b =5 o9, (3.106)

after absorbing some multiplicative constants in rescalings of the (z,y) coor-
dinates and in redefinitions of ggg. Contrary to what happens for v < 7., the
limiting behavior of these solutions at both ends is not captured by tension-free
solutions, and the Kasner-like exponents satisfy the constraints of appendix A
only as v — 7.
— If the energy E > 0, referring to the preceding section, there are two branches
of solutions with v; = 0, and thus ¢ = 0, for which
¢ =+ 18IAL (3.107)

c

The corresponding form of the background is

29 (AT

ds? = e oe [Asinh ()P (da? + dy?)

18y A7

+ [A sinh (7)) e F TR0 192 @2
18 |\ r
¢2 e
[ (& Yec
e® = e (3.108)

[A sinh (r)] 7
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In both branches, the string coupling vanishes as » — oo but diverges at r = 0.
In the first branch (upper sign) the length of the r-interval is finite, while in
the second (lower sign) it is infinite. Close to r = 0 the limiting behavior is as
in egs. (3.106), and the string coupling is unbounded. On the other hand, as
r — 00, the limiting behavior is what we described in egs. (3.95), so that it is
captured, for the two branches, by the isotropic tensionless solutions

ds? ~ €5 (da? + dy?) + de2,
e? ~EEs o2 (3.109)

where in the first case & — 0 and in the second £ — +o0o. The string thus
vanishes in both asymptotic regions.

Summarizing, for v < 4. the asymptotic behavior of these isotropic backgrounds at
both ends of the internal interval is captured by the tension-free solutions of I, although the
string coupling vanishes at one end and diverges at the other. The length of the interval is
always finite, and the solutions depend on one real parameter, ¢o. For v > ., there are
three types of isotropic solutions. For E > 0 there are indeed two families of solutions,
identified by the branches in egs. (3.108), while the third type of solutions correspond to
E = 0. The length is only finite for one of the branches with £ > 0, while the string
coupling vanishes at one end and diverges at the other.

4 Cosmological solutions without form fluxes

We can now turn to the cosmological solutions, which can be obtained from the preceding
results via an analytic continuation.

4.1 Cosmological solutions for v = % and 8 #0

There are cosmological counterparts of the solutions with 8 # 0, which can be obtained
continuing r to i 7, and A1, C7 and ¢4, and thus also 3, to imaginary values. The end result
is just an overall change of sign for 7', so that

T 2B
T 32 32
9T e2687
~ 32 5

+ AT,

+ BT,

p=—— g 01T+ P2, (4.1)
where the range of 7 is the whole real axis.

Let us begin to describe these cosmologies, assuming that 8 > 0. In this case, the Big
Bang lies a finite amount of cosmic time in the past, and the solutions approach quickly
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a universal isotropic behavior for large positive values of 7. When the exponential terms
dominate, the relation
dt = B dr (4.2)

integrates indeed to
28t~ b, (4.3)

since deP ~ 2B eP dr, so that
ds® ~ —di? + t5 (dm2 + dgj2) :
e? ~ (28t)712. (4.4)

Proceeding as in the previous section, one can recast these results in a form similar to
eq. (3.54),

2 3 +_2 u Q3A u (1370
d82 = —3—T e§(u+¢0)u1+1 R du2 +e6 wlt1ee dfz +e6 wlt1ee dg'2 ,
b = ot ) s)
where 2
3T eP7
=— —. 4.6
Here the a’s correspond again to the points of the ellipse of eq. (A.9), and are given in

eqgs. (A.13). The value § = 7, which corresponds to oy = would describe an isotropic

4
-4,
descending solution, but is excluded, consistently with [40]. Close to the initial singularity
at u = 0, in terms of the cosmic time,

ds? ~ —dt® + 1224 d7? + 12 dy?,
e ~ e 1% (4.7)

and one recovers the behavior of the tension-free cosmological solution of [38].

The values of o within the range —% < gy < 0 correspond to the descending behavior,
which is possible in the anisotropic case also for v = 7., while the values in the range
0<ay < % correspond to the climbing behavior. Moreover, ag = 0 is a novelty of these
solutions, since in that case the dilaton descends from a finite height. Solutions of this type
are displayed in figures 2 and 3.

Summarizing, for § > 0 these cosmologies are generally anisotropic as the Universe
emerges from the initial singularity at a finite cosmic time in the past, but always approach
an isotropic expanding behavior for large values of the cosmic time. The two sets of
coordinates can always expand, or one set can first contract to then expand, and the
climbing and descending behaviors are both possible in the anisotropic case. On the other
hand, if 5 < 0 these cosmologies are generally isotropic and contracting as the Universe
emerges from an initial singularity, but become generically anisotropic for large values of
the cosmic time. These solutions could describe, in principle, dynamical compactifications
of an internal torus if a4 > 0 and a¢ < 0, but the Big Bang lies an infinite amount of
cosmic time in the past.
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Figure 2. e (dashed), ¢“ (dotted) and e? (solid) for a “critical” anisotropic climbing scalar
cosmology with asa < 0,a¢c > 0, a4 > 0, where the space-time z-coordinates undergo a bounce (left

panel), and for an anisotropic climbing scalar cosmology with as > 0,ac > 0,a4 > 0, where all
directions expand (right panel).
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Figure 3. ¢# (dashed), e (dotted) and e® (solid) for a “critical” anisotropic descending scalar
cosmology with asq < 0,a¢c > 0, a4 < 0, where the space-time z-coordinates undergo a bounce (left
panel), and for an anisotropic descending scalar cosmology with ag > 0,ac > 0, a4 < 0, where all
directions expand (right panel).

4.2 Cosmological solutions for ~ # %
There are also cosmological counterparts of these other families of solutions, with metrics
ds® = —e2B dr? + * dz? + 2C dy? (4.8)

that can be obtained letting » — ¢ 7 and continuing ¢; and v; to imaginary values. In this
fashion the relevant equations become

(X)2=eA? X+ F, (4.9)
where

i

T
2 2 2
A2 = = "V — 2

€ = sign (73 — 72> ,

2
E=1 (f—l) ﬁ&—(f—l)@f‘”ﬁ S W)
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The corresponding relations between X and the other quantities now read

1 V2 X 1
A= § {_M +§ [(8_27)”1 _V(ZSI}T};

X
B:—(,yzcﬁ—%(%T—i‘@) ;
1 2X 1
B 9{_(vg—~y2) ) [(P+1)v1+’y¢1}7} :
X
¢ = 27(727_ 22 + 17+ @2 (4.11)

The sign of the exponential potential is thus reverted with respect to the spatial profiles,
while the constant term maintains the same form, after the independent variable and the
old coefficients are all continued to imaginary values. Let us now investigate the behavior
of these models.

4.2.1 Cosmological solutions for v < %

For v < 7, the Newtonian potential is a negative exponential while the third of eqs. (4.10)
implies that £ > 0, and one can capture the independent values of ¢; and v; via the
trigonometric parametrization of egs. (3.68). As before, we thus set E = ip. There are two
classes of solutions where X spans the whole real axis, and one can confine the attention to
the choice where X increases as 7 < 0 also increases,

—T

X =—log {Apsinh(
P

ﬂ (—oo < 7<0). (4.12)

Then, defining again

1
A= ———m—1, (4.13)
_7
) (1 %2)
as in eq. (3.67), the solutions for the metric and the string coupling for £ > 0 read
9 e*’}’(dh T+¢2) dr? 41T € (8_179)1)1 - dz? +e _(p+7$)vl u dy2
ds” = — E WA X ,
spn () s ()]
18"2//\
e? = {Ap sinh <—T>} e ez (4.14)
p
Notice that, from egs. (4.14),
.

Xrs o~ rE X, _0- ~ —log|AT|, (4.15)
and since 9 A > 1 the latter limit corresponds to large cosmic time ¢ ~ (—7)1_9’\, where the
Universe approaches the isotropic expanding geometry

pare
ds? ~ —di? + 97 (da® + dy?) (4.16)
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while the string coupling tends to zero as
e?~tTT. (4.17)

This is actually the exact solution of the problem for £ = 0, in which case ¢; and v; must
also vanish. Indeed, all these anisotropic cosmologies approach, for large cosmic time, this
ten-dimensional counterpart of the isotropic Lucchin-Matarrese attractor [44].

On the other hand, 7 — —o0 corresponds to the initial singularity, and the results are
those in egs. (3.72) and (3.73), up to the replacement of |r| with —7, so that the limiting
behaviors of metric and string coupling are

2 18X 5 T
d82 o <A> 618>\[1+7—c cow}]; e—’y¢2 d7‘2 (4.18)
p
(L) [ammete e o )
Ap
i de 62;\)7 (1+% cosn— gs(gp:;l)))\ sin n)
A 18'%)\
AT
e ~ 2 (Qp) e = 15A (Setosn) (4.19)

These results indicate that in these cosmologies:

o there is always a Big Bang singularity in the finite past, since the integral
-
/ dreB(r)
—0o0
is finite for any value of 7;
e descending scalar solutions, for which the string coupling diverges as 7 — —o0, exist

for values of 1 such that
u 4+ cosn > 0.

Ye

The isotropic solutions with cosn = 1 are a special instance in this class;

e climbing scalar solutions, which emerge from the initial singularity with vanishing
string coupling, also exist in the complementary region

l+cos77<0.

c

The isotropic solutions with cosn = —1 are a special instance in this class.

o finite values of p can be removed from these equations, up to rescalings of the x and
y coordinates and up to a redefinition of ¢s, for any value of v. As a result, the
solutions depend only on 7 and ¢s.
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Figure 4. e# (dashed), e (dash-dotted) and e? (solid) for an anisotropic climbing scalar cosmology

where the space-time z-coordinates undergo a bounce (y = 0.2y.,n7 = —2F) (left panel), and
for an anisotropic climbing scalar cosmology where all directions expand (v = 0.2v.,7 = —%)

(right panel).
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Figure 5. e? (dashed), e (dash-dotted) and e? (solid) for an anisotropic descending scalar
cosmology where the space-time 2-coordinates undergo a bounce (y = 0.27.,1m = %) (left panel),
and for an anisotropic descending scalar cosmology where all directions expand (y = 0.2v.,n7 = {5)
(right panel).

Up to the interchange of the x and y coordinates, the independent cases are p = 0,1, 2, 3,
and they all allow for A and C both increasing as cosmic time increases (a Big Bang
singularity), or one increasing and one initially decreasing (a bounce for one group of
coordinates and a Big Bang singularity for the rest). The plots in figures 4 and 5 illustrate
these types of behavior, which are manifest in the special cases = 0, £7, for both climbing
and descending scalars.

4.2.2 Cosmological solutions for v > %

For v > ., which is a case of direct interest for String Theory, the potential is a positive
exponential and the energy in egs. (3.64) must be positive. In this case the solution reads

A\T181A
ds®> = — [A p cosh ()] e V(01 7H2) g2
p

2|7l _ _
b1 T (8—p)vy T (p+1)vy T
Te T {Ap cosh (Tﬂ (e T dat e dy2) )
p
1A

e? = {Ap cosh <T>} ° T gt ; (4.20)
p
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where 7 € (—00, +00), with the hyperbolic parametrization of egs. (3.91), which we display
again here for the reader’s benefit. We concentrate on the branch

1
b1 = — B one,
P Ve

12 2|A|
v = — sinh( | ——————,
T (r+1)(@8—p)

since the other, where ¢1 — —¢1, would simply obtain from this letting 7 — —7 and { — —(.
Figures 6 and 7 illustrate some interesting options for this class of cosmological models.

(4.21)

For large values of |7

18| Al . I~
ds? ~ — <A2p> 618 BY [1—1—% signT cosh Q] e 02 g2 (422)
n (Ap) 2|2l df2 . MATHT‘ (1—0—% signT cosh (+ 9?;513’\)” signt sinh()
2
2|\ || (1+lsi S TS I )
9 —signT cos ¢ - sign7 sinh ¢
+ dy e * v 9(8—p)[A| ,
A —p 18 Al ||
ﬁww(2p T g Tpaer (S5 tsienr cosh() (4.23)
and one can see that
 this class of metrics has two singularities. The first, at 7 = —o0, is reached within a

finite amount of cosmic time, and models the Big Bang, while the second, at 7 = +o0,
is reached within an infinite amount of cosmic time;

e the string coupling tends to zero as 7 — 400 for all values of (;

« the string coupling tends to zero as 7 — —oo if

. > cosh (,

[

so that in this range the system exhibits only a climbing behavior. If % = cosh (, the
string coupling starts from a finite value at the initial singularity. In the isotropic case
¢ =0, and one recovers the result of [40]. On the other hand, in the complementary
range

Y

— < cosh(,

C
which is available in these anisotropic cosmologies, the system exhibits a purely
descending behavior;

e p can be removed from these equations, up to rescalings of the z and y coordinates
and up to a redefinition of ¢9, for any value of . As a result, the solutions depend
only on ¢ and ¢2. However, the potential for X is now positive, and consequently the
p — oo limit is singular.
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Figure 6. e” (dashed), e“ (dash-dotted) and e? (solid) for an anisotropic four-dimensional climbing
scalar cosmology where space-time expands while the y internal space contracts (v = 2., ¢ = 1.2) (left
panel), and for an anisotropic climbing scalar cosmology where all directions expand (v = 2v,.,( = 0.1)

(right panel).
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Figure 7. e (dashed), e¢ (dash-dotted) and e (solid) for an anisotropic descending scalar
cosmology where space-time expands while the y internal space contracts (y = 1.67.,( = 1.2)
(left panel), and for an anisotropic descending scalar cosmology where all directions expand (v =

1.1v.,¢ = 1.2) (right panel).

5 Inclusion of form fluxes

We can now consider the general equations of section 2, allowing for both form fluxes of the
H-type and dilaton tadpoles. The corresponding results for the h fluxes are determined by

the discrete symmetry in eq. (2.17).

5.1 New variables for the general case: H-fluxes

The reduced form of the system of egs. (2.13)—(2.16) is now

a7 = T olprareporie | TP a6t A H2,,,

8

T
C// - _
8
~y

c2lornarEporye _ Pt o, ermn A H2,,.

16

¢ = Ty 2lPHDATEDICH3 6] | g o 2By o+(p+1) A HZ,,,
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and suggests to work in terms of three new variables

U=¢+{lp+1)7—2B8]A+[(T—p)y+28,]C},

X=(p+ DA+ S0+ (E-p)C,

Z=p+1)A+5,0. (5.2)
The last two are the combinations that enter the exponents, while the first is a combination

of the original functions that is still linear in 7, as we shall see shortly.
Inverting these relations gives

A= D;{W[ww(?p)v} —2(8-p) 8, U = Z 7128, + (T —p) 2(8p>}},
C= Dlen{X[Zﬁp[Qﬁp —y(p+1)]+2(p+1)]

+ Z|y[=28, +p+ 1] = 2p+ 1) + (p+ 1)U (28, - 7)} : (5:3)
¢ = DQen{(i% —p)(p+ 1)U = 28, +7(7 = p)| (0 + )X + [168, — 7(p + 1)]2} :

where the denominator is
Den = —(p+1)[4[28, + (T =) =28 = p)| +2 8, [188, — (p+ 11| . (5.4)

When this expression does not vanish, letting

a=4(72*v§)7 b=8By—p—1,

(7T—p)p+ 1)} ’ (5.5)

c_2[8ﬁ§+ 5

where, as before, . = %, one can reduce the system to

U’ =0 (5.6)
X" = g ae?X + Hi;ﬂ be??
z" = g be?X 4 H{%Q ce’”,
while the corresponding expression for the Hamiltonian constraint reads
c(XN ta(z)? —2bx 7 — PHDE=D) 1)2(8 =) gy
L ao <T62X+H§+2e22) o, (57)
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and determines (U’)2. Notice that for v = 7. the preceding equations take a simpler form,
with a = 0, ¢ = 16, and for RR forms b = 2(p — 5). These considerations will play a
role shortly.

If the denominator in eq. (5.4) vanishes, one can still reduce the system to the last two
equations for X and Z in (5.6), while ¢ can be obtained solving

" =Tye* X+, H 5?7, (5.8)

In this case, after obtaining X and Z, (¢')? can be determined by the Hamiltonian constraint,

which reads

p+1)@B—p)

C(X/)2+G(Z/)2_2bX/Z/_( 5 (¢/)2

Lo ox . Hpvo oz
—I-g(b —ac)|Te +— e =0. (5.9)

5.2 Special cases

These systems are complicated, and exploring their solutions requires in general numerical
techniques. Therefore, we shall now concentrate of the special cases that arise in String
Theory, one of which is remarkably far simpler than one could have naively anticipated.
Let us now record these special forms of the preceding expressions.

5.2.1 USp(32) and U(32) orientifolds with p = 1 “electric fluxes”
In this case v = % and (a,b,c) = (0,—8,16), so that the equations become

U"=0
H2
X//:_7362Z
2 )
Z//:_T62X+H32€2Z
_ 2 / /_z \2 2X Hig 27
0=2(X")+2X"Z 8(U) +Te”" + 5 € - (5.10)
The original variables are then determined as
7 1 1
A=—-U—-=-X+=-7
16 2 +8 ’
) 1 1
=—— - X+-Z
¢ 16U+2 +8 ’
6—"U_ax-37 (5.11)
4 27 ‘

5.2.2 SO(16) x SO(16) heterotic with p = 1 “electric” fluxes

In this case v = % and (a,b,c) = (16,8,16), so that the equations are

U,/:07

X//:2T62X+‘E;3262Z7

7" =T e?X 4+ H2e%Z (5.12)
_ 7 1\2 2 N2 ! 7l N2 2X Hg 27

0=, (U) —5[()() ~X'Z + (2] +Te + e’
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The original variables are then determined as

1

A= —(TU—-16X+262) ,
48

1

16
1

0= 5 (-TU+16X ~27) . (5.13)

C=—-(U=-22),

5.2.3 USp(32) and U(32) orientifolds with p = 5 “magnetic fluxes”

In these cases v = % and (a,b,c) = (0,0,16). As a result, U becomes linearly dependent on
X and Z, while the non-trivial second-order equations reduce to the far simpler form

X// — 0
Z" = H2e?% . (5.14)
The dilaton is then determined by
3 H?
P=C T e?X 4 T 27 (5.15)
2 2
and the corresponding Hamiltonian constraint reads
2 1 / ! / 1 2 2X H% 27
Finally, the original variables are related to (X, Z, ¢) according to
272 —¢ A X—-2Z)—¢
A= - =) 7 5.1
12 ¢ 12 (5.17)

This case is remarkably simple, and will be discussed in detail in the next section.

5.2.4 SO(16) X SO(16) heterotic with p = 5 “magnetic” fluxes

In this case v = 5 and (a,b,¢) = (16, —16,16), and therefore the non-trivial second-order
equations are

X" =2Te?X — HZ2e%Z,

7" = 2T e?X 4 H2 27, (5.18)
which imply that
X"+7"=0, (5.19)
and the dilaton equation is then
5 H?
”:ETeQX—%eQZ. (5.20)
The original variables are related to (X, Z, ¢) according to
27
A=22t9
12
4 X-Z)-7
C= ( 12) ¢ , (5.21)

— 33 —



and the Hamiltonian constraint is

2 1 H?
g(X'—2<z>’)(x’+z')—5(2’)2+Te”<+77e?Z:o. (5.22)
The special case X = —Z can be related to elliptic functions.

5.2.5 U(32) orientifold with p = 3 “dyonic” flux

This model affords this additional option, since its massless spectrum includes a self-dual
five-form field strength. In this case the non-trivial second-order equations follow from the
special system of egs. (2.19), and read

U//:O
H2
X//__75 27
s ¢
T H?
Z”:—E €2X+75€2Z, (523)

while the Hamiltonian constraint of eq. (2.20) becomes

H2
—5(U')2+8(X’)2+4X’Z’+T62X+7562Z:0. (5.24)

The original variables are then determined as

A=tz
4
1
C=(-6U+8X+2),
¢=10U—-12X —3Z. (5.25)

6 Orientifolds with tension and flux: an exact solution

In terms of the variables X, Z and ¢, the equations for D = 10, p = 5 and the “critical”
orientifold coupling v, = % reduce to the simple form discussed in section 5.2.3. Consequently

X =x1r+22, (6.1)
where x1 and x9 are two integration constants. The equations for Z and ¢ are then

Z//:H$€ZZ’
//:§

1
5 T 2% g2o1r 4 3 z". (6.2)

The function Z is determined by the first of egs. (6.2), and also by the Hamiltonian
constraint. The dilaton profile ¢ is obtained by quadratures, integrating the second of
egs. (6.2), while A, B and C follow from eqs. (5.17) and the harmonic gauge condition. As
before, one must treat separately the case z; = 0.
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6.1 The special vacua with 1 = 0

Now the second of egs. (6.2) integrates to

1 3
¢:§Z+ZT62“T2+X17‘+X2, (6.3)

where x1 and y2 are two more integration constants. The Hamiltonian constraint then
becomes
(Z')? = H?e?Z 1+ 2T 22, (6.4)

Referring to appendix B, this energy conservation condition corresponds to a particle with
positive energy subject to an inverted Newtonian potential, and therefore the solution reads

Z=—log [Hm sinh (rﬂ , (6.5)
P
with
1
P2
Notice that these solutions are deformations, induced by the tension T, of those in section 6.1

=2Te?™ =2Ty. (6.6)

of [38]. Alternatively, they are deformations, induced by the form flux parametrized by Hz,
of those in section 3. The solution for Z translates into

1 r 37712
¢:—210g[H7psinh<p>]+ 40 +X17 + X2, (6.7)

while egs. (5.17) and the harmonic gauge condition lead to

1 r Tor? 1
A=—=log [H7psinh(p>}— 0 —E(X17’+X2)7

8 16
3 9Tpr?* 3
B = g log [H7p sinh (;)] - 12; —Z(X1T+X2)+CC2, (6.8)
3 r Tor? 1 1
=—log |H7psinh (- || — - — — (4xg — . .
C = 5 log |7 psinh (£ )| = 205 — Jovr+ 35 (e =2 (69)
Therefore the metric is
T‘2 ™ 2 §
ds® = e_TOT_i(Xl 2 dr T + [H7p sinh (r)} ! e 3w dﬂ’g
oo ) p
r? 30 r+xo) 4
+ 6_QTg _3xa 2+X2 +2x2 |:H7 p Slnh (T>:| dT2 , (610)
p
while the string coupling and the form field strength are
P e %ﬂa r+x2
b —

- 10

g ()]

Hy7egdr
Hr = e? x (Hr dyy dys dys) = ———°

12 sun ()]

(6.11)
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6.1.1 Properties of the solutions

Let us first note that the solutions in the preceding equations contain an inessential
parameter, xo, which can be eliminated rescaling the variable r and the x and y coordinates.
As a result, these vacua depend on two independent parameters, y1 and xo.

A second property is that the tension grants inevitably a finite length along the r
direction, and also a finite reduced Planck mass if the y coordinates parametrize a torus,
independently of y1, although their actual values depend on x;. However, the string
coupling is inevitably singular at both ends.

For large values of r, the preceding expressions are dominated by the Gaussian terms
due to the tadpole potential, and therefore approach the flux-free solutions of section 3.1.2
ds? ~ e_TOTT2 (d:vQ + dﬂz) + 6_% dr?,

3Ty r2

6¢N6 4

i

Hr ~0. (6.12)

Letting
STor? =u, (6.13)

the dominant behavior is captured by

u ]_ 3
2 —= 2 —2 s U 2
ds e 6 (d([f + dy ) + 73 A e 2% du s

e® ~et,

H7 ~ 0, (6.14)

where the numerical coefficient is front of du? is not significant, since it can be changed
by a translation of w. This background thus coincides with egs. (3.23), which describe the
asymptotics of the flux-free solutions of section 3.1.2, and actually with eqs. (3.43), which
describe their isotropic form. As was shown there, this is actually the asymptotics of the
tension-free and flux-free solutions of [38] reviewed in appendix A.

Close to r = 0, the Gaussian terms due to the tadpole potential become negligible
compared to the other contributions, and the background approaches

dz?

F[Hpr]T dg? 4+ em2% [Hpr]t dr?, (6.15)
[H7 7]

ds® =

=

up to rescalings of the  and y coordinates, while the string coupling and the form field
strength are dominated by

X2
€¢ = 1
[Hr77]2
H7egdr
Hr =e® * (Hrdyr dya dys ) = ——— . (6.16)
( ) [H T]Q
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This is the limiting behavior near » = 0 of the p = 5 fluxed background in supersymmetric
strings described in [38]. Moreover, as we stressed there, when considered in the whole
region r > 0 these equations would describe a supersymmetric vacuum.

Summarizing, the solution in egs. (6.10) and (6.11) interpolates between a supersym-
metric vacuum at r = 0 and a tension-free and flux-free isotropic vacuum with broken
supersymmetry at large values of r, and the string coupling is infinite in both limits.

6.2 Vacua with 1 #0

In this case the solution for X is a linear function of r,

X =xz1r+ 29, (6'17)
and the second of egs. (6.2) gives
1 3T e?™
¢=§Z+78 s— e L T T+ X, (6.18)
21

where x1 and x2 are integration constants. The Hamiltonian constraint reduces to

4a3(1—2x1)

(Z/)2:H$€22+ 3

(6.19)

One is thus led once more to the Newtonian model of appendix B, with an inverted
exponential potential and a total energy

_ 42i(1-2x1)

E ;
3

(6.20)

which now has no definite sign. Consequently, there are three classes of solutions, which we
shall discuss shortly. We write the solution for Z in the form

Z =—log[f(r)], (6.21)

so that, using egs. (6.18), (6.21), egs. (5.17) and the harmonic gauge condition

1 T 272 1
A=—_-1 o 2¢1r
5 o8 lF0] = 55 S G+ ) |
3 9T 272 3
Bzglog[f(r)]*gzim%62x17.*Z(Xlxlr+x2)+xlr+x2,
T€2x2 2x1 T 1 1
C’—glog[f(r)]— 27 —E(X1$1T+X2)+§($1T+x2),
1 3T e?2
¢:—§ log [f(r)] 82 e 4 x1 T T+ X2 (6.22)
]
Letting now
T62$2 2x1 1T 1
_ - 2
g(r) 627 e + 5 (xiz1m+ x2) , (6.23)
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the background takes the form

2
di= et ( S () de> e 2ot 1)) 2

£ ()]
e eb9(r)
[f(r))z
My = Hy [;(zfﬂ? : (6.24)

where we have rescaled the y coordinates to absorb contributions depending on zs.

6.2.1 Properties of the solutions

These solutions actually depend on three parameters, x1, x2 and x2, and a two-valued
discrete one. Indeed, |z1| can be eliminated combining a rescaling of the r coordinate with
redefinitions of x2 and y2, together with rescalings of the x and y coordinates. However,
the sign of 1 leads to different solutions, and in fact has important effects, since the flux
introduces a restriction of r to the region 0 < r < oo.

The function f(r) depends on the energy F in eq. (6.20). Letting

1 2’l‘1|
;Z\/IEIZ 7 VIT=2x1l, (6.25)

one must distinguish, as usual, three cases:

1. If the energy E > 0, which is the case if x; < %, the solution of eq. (6.19) is

f(r) = Hy p sinh (;) , (6.26)
where 0 <7 < 0.
2. If the energy E = 0, which is the case if x1 = %,
flr)y=Hyr, (6.27)
where again 0 < r < oco.

3. Finally, if the energy E < 0, which is the case if x; > %,

r

f(r) = Hy p sin () , (6.28)
p
where now 0 < r < 7 p.

The behavior near » = 0, which is a curvature singularity where the radial variable
ends, is dominated by the magnetic flux and is universal. In all cases

f(r) ~Hzr, (6.29)
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so that

2
ds? = ({ dr -+ [H7r]idgj2> 1 e2e2-5xe [H7T]%d7‘2,

17‘177‘}Z
X2
€¢ - ‘ 1
[H7r]2
€g dr
Hr = Hy ———— | 6.30
7 7 o] (6.30)

up to rescalings of the z and y coordinates, and up to a redefinition of y2. The dependence
on zo can eliminated by a further combined redefinition of H; and r, after which this
expression coincides with egs. (6.15) and (6.16). This is again the limiting behavior near
r = 0 of the p = 5 fluxed background described in [38], and when considered in the whole
region r > 0 egs. (6.30) it would describe a supersymmetric vacuum.

For E < 0 the behavior at the other end is similarly governed by the supersymmetric
solution. On the other hand, for £ > 0, and thus for y; < %, the range of r is unbounded
and the behavior depends on the sign of x;.

Behavior for large r» with x;1 < % and x; > 0. Let us begin with the first case,
where F is positive and 1 > 0. Letting

u  Te?® .
- = mnr 6.31
6 1627 © (6:31)
asymptotically ¢ is dominated by
U
9~ (6:32)

and consequently, as r — +o0o the background approaches the isotropic behavior

ds®> ~e s (da:2 + dyz) + e Y du? ,

4t
e® ~ e, Hr~0, (6.33)

and the string coupling diverges. Up to a shift of u, this is the same type of isotropic
behavior found for 1 = 0 in egs. (6.14), and in fact it is again the asymptotic behavior of
the Dudas-Mourad solution of [39], which is also the by-now familiar isotropic tension-free
and flux-free strong-coupling solution of [38], reviewed in appendix A.

Behavior for large r» with x; < % and x; < 0. On the other hand, if 1 < 0,

1
g(r) ~ 6 X1 |x1] 7, (6.34)

and now f(r) does play a role in the asymptotic region. Taking into account that

1 3
X1 = 3 [1 - (2,0’331‘)2‘| ) (6.35)
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one finds
_5r _3)2, 0
2B o ¢ Alzile? [(plml ) +25} : (6.36)
and therefore the length of the interval is always finite. Moreover, the six-dimensional

effective Planck mass is always finite with an internal torus, since its asymptotic behavior
is governed by

. 2
Q2(B-A) 6_3\141\/32 {(p\xﬂ—%) +£} 7 (6.37)

which is always integrable at the right end. Finally, the asymptotic behavior of the string
coupling is determined by

T 1)\2
e ~ e Zerli? [(”"“”5) _1] , (6.38)

so that there is weak coupling at the right end of the interval if p|z;| > %

These solutions for ;1 < 0 were brought about by the presence of the flux, which
introduces a singularity at r = 0, so that the available region is the half-line » > 0. This
should be contrasted with the situation discussed in section 3, where the sign of x1 was
immaterial, since in that case the range of r was the whole real axis.

One can study this limiting behavior for large values of r in terms of

5r 3\2, 9
£=¢ lols? [(pm‘_ﬁ) +ﬁ} , (6.39)
so that when & approaches zero

d52 ~ fQOzA dl‘Q + d§2 + g?ac dg27
e ~ % (6.40)

where

15
(p 21| — 13—0) + 5
2
9 15
o (plaal = %) - 13
cC = 77 )
15 2
(p 21| — 13—0) + 5
2
1
4 (ploil+35) —1
ag=: ( 2)2 . (6.41)
(plxl\ — %) + 5
These expressions satisfy the constraints in appendix A with
2
pla|+3) —1
sing = > ( :) (6.42)

g (p\x1\—%)2+%,

so that this limiting behavior is captured once more by the tension-free and flux-free
solutions in [38], reviewed in appendix A. Contrary to the z; > 0 case, the limiting behavior
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is now anisotropic and depends on xi, or equivalently on the product p|z;|, which are
related to one another in eq. (6.35), and in addition the string coupling can be weak, as we
have seen. Notice that the case x; = %, corresponding to p — oo, has an interval of finite
length, and in the neighborhood of its » — oo boundary the background is captured by

ds? ~ d€2 + € 3da? + €15dy?,  e® ~ €5, (6.43)

so that the string coupling vanishes in the limit.

In brief, we have different types of solutions depending on whether x; vanishes, is
positive or negative. Within each family, the solutions also depend on three real parameters,
X1, X2 and x2, and have a common behavior near the r = 0 singularity, which is dominated
by the supersymmetric solution with flux. They also have in common a finite length of
the interval. The other properties concerning the string coupling and the behavior at the
other boundary are parameter-dependent. For 1 = 0 the background at the other end
approaches the strong coupling, isotropic, flux-free and tension-free solution of [38]. When
X1 < % they are also captured by tensionless solutions: for z; < 0, the background is
anisotropic and the limiting behavior of the coupling can be finite, infinite or zero, while
for x1 > 0 the background is isotropic with an infinite coupling. Finally when y; > % the
background behaves as at r = 0, and the system is again dominated at the other end by
the supersymmetric background with flux.

6.3 Cosmological solutions

One can obtain cosmological counterparts of the preceding solutions by an analytic continu-
ation. This is not possible for 1 = 0, as can be seen from eq. (6.4), but it is possible for
x1 # 0. The Hamiltonian constraint then takes the form

4x%(1 —2x1)

(Zl)2:_ 2622+ 3 7

(6.44)

so that now y; < % and, in the conventions of appendix B, the potential and the energy
are now positive. The solutions read

1 T62.'172 1
A—_21 217
g log[f(T)] + 2.7 5 T +xe)
T 219
B = g log [f(7)] + 9322% e? T — Z (X121 7+ x2) 217 + 22, (6.45)
3 T62$2 2x1 T 1 1
C = g log[f(T)]—i—gTw% e“ 1T — E(X1I1T+X2)+§($1T+ x2) )
1 3T 22
6= —5 log[f(T)] - 5 " T+ xim T+ xz, (6.46)
2 8]
with
f(r) = H7 p cosh (;) , (6.47)
where
1 2$1

S =2 VI-2u. (6.48)
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Now —oo < 7 < 00, and we take 1 > 0 in order to have the Universe expand for increasing
values of 7. Actually, 1 can be eliminated rescaling 7, so that one can set everywhere
x1 = 1. x1 can then be expressed in terms of p as

1 3
- = . A4
X1=35 8 2 (6.49)

6.3.1 Properties of the solutions

Note that at 7 — 400, the behavior of the background is dominated by the tadpole
contribution, and B — +oo while ¢ — —oo. The dominant behavior is isotropic and, in
terms of the cosmic time t — 400,

ds® ~ —di? + t5 (de + dy2) ,
e~ t73 (6.50)

On the other hand, as 7 — —oo the behavior is dominated by the linear terms in egs. (6.46),

so that )
BN_“‘(3_Q-M
8 2p

and the initial singularity lies at a finite amount of cosmic time in the past. Moreover

=-b|7| <0, (6.51)

oo Il

22 F - p] [3 + p] = flrl, (6.52)

2 2
so that one can have climbing behavior, and thus weak coupling, for p > % and descending
behavior, and thus strong coupling, for p < % There is also a third option: when p = %,
the dilaton approaches a constant value at the initial singularity.

The behavior close to the initial singularity is captured by

1 3 3
A~ — 2 _ = =
mﬁ%2‘ﬂ%z*@m alrl,
7 9 415 9 V15 _

which defines a and ¢, while egs. (6.51) and (6.52) define b and f, and the metric has a
Kasner-like form, with

ds? ~ —dt? 4t~ da? + % dif?,
ettt (6.54)

There are different options close to the initial singularity, depending of the value of p, which
determines the signs of a, c and f.

e For p > % + /3 the z-space contracts and the y-space expands, while the dilaton has
a climbing behavior.

e For % + @ <p< % + /3 the z and y-spaces expand, while the dilaton has a
climbing behavior.
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Figure 8. ¢” (dashed), e¢ (dotted) and e? (solid) for an anisotropic four-dimensional climbing
scalar cosmology with H; flux where space-time contracts while the y internal space expands

when emerging from the initial singularity (p = 6, left panel), and for an anisotropic climbing
scalar cosmology where all directions expand when emerging from the initial singularity (p = 1.5,

right panel).
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Figure 9. ¢ (dashed), e© (dotted) and e? (solid) for an anisotropic four-dimensional descending
scalar cosmology with H; flux where space-time expands while the y internal space contracts
when emerging from the initial singularity (p = 0.4, left panel), and for an anisotropic descending
scalar cosmology where all directions expand when emerging from the initial singularity (p = 0.2,

right panel).
e For % <p< 1% + @ the z-space expands, the y-space contracts, while the dilaton

has a climbing behavior.
- @ <p< % the z-space expands, the y-space contracts, while the dilaton has a

9
* 11

descending behavior.
e For p < % — @ the x and y-spaces expand while the dilaton has a descending

behavior.
Note that both in the far past and in the far future these solutions approach the results

of section 6 of [38]. The behavior is anisotropic in the far past, while it is isotropic in the

far future. These different options are displayed in figures 8 and 9.

7 Conclusions
In this paper, we have discussed in detail a class of instructive compactifications to p + 1-

dimensional Minkowski spaces in the presence of the dilaton tadpole potential of eq. (1.1),
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and also the cosmological models that can be obtained from them via analytic continuations.
We have traced the behavior of the system as the exponent  spans the two regions v < %
and v > % Although only values with v > % are directly relevant to String Theory, we have
pursued this scrutiny that has proved effective, in the past [40], in clarifying the emergence
of the climbing behavior in the isotropic cosmologies of these systems. Here it unveiled the
special role played, in the dynamics, by the “critical” value ~. = % that pertains to the two
orientifold models of [24, 25] and [26-30]: it leads to the decoupling of one combination of the
three functions A, C' and ¢ in the general case, and the behavior in the two ranges v < ~. and
v > 7. is markedly different, both in spatial profiles and in their cosmological counterparts.

We have treated the two special cases v = % and v = % in a similar fashion, as
in [39] and then in [45] and [40], since the second type of contribution is the dominant
one for the heterotic SO(16) x SO(16) model of [12, 13], although it arises from a genuine
quantum effect. There are other well-known contexts where this mixing of orders plays
a role in String Theory, for example the Green-Schwarz mechanism [46] and, even more
importantly in this context, the Fischler-Susskind proposal [47-49] to deal with vacuum
redefinitions in the absence of protecting mechanisms. The two values v = % and v = g
always arise in the leading contributions to models with broken supersymmetry, so that
the considerations in this paper have actually a wide range of applicability. This is true, in
particular, for Scherk-Schwarz [37] compactifications, which afford detailed treatments in
String Theory [50-52], even in the presence of open strings [53, 54].

When the tadpole potential (1.1) is taken into account, the static solutions always
involve internal intervals with singularities at one or both ends. We have seen that their
lengths can be finite, as in the Dudas-Mourad vacuum of [39], or infinite, depending on
the value of v and on the values of the integration constants. We have presented a careful
scrutiny of the different families of these exact solutions, identifying their moduli spaces
and taking a close look at their asymptotics. Within the region v < %, the limiting behavior
is always captured by the tensionless solutions in [38]. However, within the complementary
region y > % isotropic limiting behaviors are not always captured by the tensionless solutions
n [38]. On the other hand, whenever the limiting behavior is anisotropic, it is captured
again by the tensionless solutions in [38]. For 7 = 7., the asymptotics are always governed
by the tensionless solutions found in [38]. This result resonates with the existence of a
non-linearly realized supersymmetry [31-33] in the USp(32) Sugimoto model of [26-30],
which has this type of tadpole potential, and thus with the spontaneous character of “brane
supersymmetry breaking” [26-30]. All these properties are summarized in table 3.

The corresponding cosmological solutions that we have found exhibit a few novel
features. They are generally anisotropic, but for v < % they approach an isotropic expansion
for large values of the cosmic time. On the other hand, for v > % there are solutions with
a Big Bang in the finite past where, for large values of the cosmic time, some dimensions
continue to shrink. They can thus provide simple models of dynamical compactifications
where our macroscopic four-dimensional world would have emerged from the ten-dimensional
space time of String Theory via the cosmological evolution. Turning to the climbing issue,
in the anisotropic case there is still a transition point beyond which only a purely climbing
behavior is possible. However, it occurs for values of « that lie beyond %, and more so the

— 44 —



Solution Left(L) Left(T) Left(gs) | Right(L) Right(T) Right(gs)
Y=, =0 F is. (0) 00 F is. (0) 00
Y=7,B#0,p=28 F is. (0) 0 F is. (0) 00
Y=, B#0,p<8 F anis. (0) A F is. (0) )
V<Y, p=28 F is. (0) 0 F is. (0) 00
Y < e, cosn < —L F anis. (0) 0 F anis. (0) 00
v < Ve, COST) > % F anis. (0) 00 F anis. (0) 0
v < Ve, |cosn| < % F anis. (0) 00 F anis. (0) 00
Y>>, p=8, E=0 F is. (#£0) 00 00 is. (#£0) 0
Y>>, E=0,¢1 >0 F is. (#£0) ) F anis. (0) )
Y>>, E=0,¢1=0 F is. (#0) 00 00 is. (#£0) 0
Y>>, E=0,¢1 <0 F is. (#0) 00 00 anis. (0) 0
>, p=8, E>0, (u) F is. (#0) 00 F is. (0) 0
v>%, p=8, E>0,() F is. (#0) 00 00 is. (0) 0
v > v, E >0, (u) F is. (# 0) 00 F anis. (0) A
v >, E>0, () F is. (#£0) 00 00 anis. (0) 0
v >, B <0, F is. (#£0) 00 F is. (#0) 00

Table 3. A summary of the static solutions of section 3 with tension T and no form flux, with empha-
sis on their limiting behavior at their two singularities. The two groups of columns collect details on
the left and right ends of the internal interval. F and oo indicate finite or infinite values for their dis-
tances from the origin » = 0. Moreover, the labels 0, A, oo indicate that the string coupling g5 vanishes,
is arbitrary (i.e. can be zero, finite or infinite depending on the values of some parameters), or diverges
in the limits. In addition, “is. (0)” indicates that the vacuum approaches asymptotically the isotropic
solution of section 5 of [38], while “anis. (0)” indicates that it approaches one of the corresponding
anisotropic solutions, and (#£0) indicates that the tension is not sub-dominant close to the singularity.
Finally, (u) and (I) refer to the upper and lower branches of the parametrization for v > ..

more anisotropic the expansion of the Universe is. Table 4 summarizes these results for the
tadpole-driven cosmologies with no flux.

We have also explored the general setup underlying systems that combine a symmetric
form flux and the tadpole potential. These systems are more complicated and are generally
not integrable, but we have identified an exactly solvable case that corresponds to the
orientifold value v = ~. = % in the presence of an ‘H7 flux, the magnetic dual of a three-form
field strength. This setting indicates how the tadpole-driven solutions are deformed by
the flux, or alternatively how the flux-driven solutions are deformed by the tadpole. The
resulting novelties can be appreciated focusing on the singularity introduced by the flux,
close to which these backgrounds approach supersymmetric vacua, despite the presence of
the tadpole potential. The singularity limits the range to r > 0, so that if the effective
tension Te¢”? builds up toward large values of r one recovers the isotropic limiting behavior
at strong coupling. However, if it builds up in the opposite direction, its growth is bound to
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Solution

Climbing or Descending

P=8 7<% B#0

(C: =), (D: 5 =0)

P=8,7Y>7, B#0 (®
P<8 Y=, B#0 (C:0>0)
P<8 Y=, B#0 (D: 60 <0)

P <8 < (D:cosn+%>0)
(C:cosn+ L <0)
p>8, v < (C: coshc<%)

. o
(D: cosh¢ > L < 0)

Table 4. Main features of the cosmological solutions of section 4 with tension T and no flux, with
emphasis on their climbing (C) or descending (D) behavior at the initial singularity.

Solution Left(L) Left(T) Left(gs) | Right(L) Right(T) Right(gs)

X1> % F SUSY 00 F SUSY 00
x1<3i,21>0 F SUSY 00 F is. (0) 00
x1<3,21<0 F SUSY 00 F anis. (0) A

Table 5. The three families of exact solutions with p = 5 flux and “critical” (y = 7.) tension. As
above, A indicates that the limiting value of the string coupling gs at the right end can be finite,
infinite or zero depending on the value of a parameter.

Solution A-space C-space | Climbing or Descending
p>2+3 contracts | expands (©)
2+ @ <p< 343 | expands | expands (@)
l<p< 2+ ‘/7175 expands | contracts (©)
2 - @ <p<i expands | contracts (D)
p < 1% — @ expands | expands (D)

Table 6. Main properties of the cosmological solutions with p =5 H-flux and v = 7.

terminate at r = 0, where the interval ends, so that there are solutions where the tadpole
is never dominant. Consequently, these solutions can approach an anisotropic limit for
r — 00, even with small or finite asymptotic values of the string coupling. There are indeed
three families of solutions, as summarized in table 5, whose limiting behavior at one end is
always supersymmetric, while at the other it is tensionless, and can be isotropic, anisotropic
or again supersymmetric. We have also looked at the corresponding cosmologies, and their
novelty is the option of combining contractions of some coordinates with expansions of
others, which was only possible for v > v, without the flux. Table 6 summarizes the main
properties of these cosmologies.
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The three ten-dimensional models of [12, 13, 24-30] have brane spectra that were
characterized, from the CEFT perspective, in [56]. The vacua that we have constructed
should prove helpful to clarify the effects of the tadpole potential on their spatial profiles,
sufficiently beyond their horizons, where curvature effects should be less important. We hope
to return to this issue soon [55]. We also plan to investigate the role of internal spaces that
are more complicated than the tori considered here, since they have the potential of providing
additional interesting links to lower-dimensional Minkowski backgrounds. Setups of this
type stand a chance [43, 57] of bypassing the vexing stability problems [57] encountered by
AdS vacua [41, 42] with broken supersymmetry.

Before concluding, let us spend again a word of caution on the intrinsic limitations of
the type of analysis presented here and in [38], whose results are fully reliable for String
Theory only within regions where the curvature and the string coupling are both bounded.
This is typically the case far from the boundaries of the r-interval, where these conditions
are not always fulfilled. In [38] we actually found vacuum solutions where the string
coupling is bounded everywhere, and a detailed stability analysis of their spectra will be
presented in [43]. However, in none of the cases that we have analyzed is the curvature
everywhere bounded. Bypassing this difficulty might be possible considering systematically
higher-derivative corrections to the low-energy effective field theory, but the lowest-order
corrections do not suffice to this end [58].
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A Kasner-like solutions of systems with T' =0

In this appendix we review briefly some results of [38] that concern static solutions in
the absence of tension and flux, since this type of behavior presents itself recurrently in
asymptotic regions for the systems considered in this paper.

In the absence of tension and flux egs. (2.13)—(2.15) reduce to

A" =0, c"=o0, ¢ =0, (A.1)
and therefore the general solution in the harmonic gauge takes the form

A=Air+4;, B=(p+1)A+@B-pC,
C=Cir+0Cy, p=¢17r+ d2, (A.2)
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where the A;, C;, ¢; are arbitrary constants. The constants A and Cy can be removed by
rescaling all coordinates, thus bringing the solution to the form

ds?* = 2N da® + 17 dr? + 2 dif?

e? — P12 7 (A.3)
where for simplicity we retain the same symbols, and where
p=p+1)A+ (@8 -p)Ci. (A.4)

The Hamiltonian constraint (2.16) reduces in this case to

qur(pr 1) AT+ (8 —p)Cf = [(p+ 1A + 8 —p)C1)* (A.5)

so that, away from the flat-space solution where A;, C; and ¢; are all zero, the parameter
w1 cannot vanish. Therefore, letting

A C
R Y (A.6)
f f I

the «; are determined by eq. (A.5)

2
(6%
(b+1)od + (8 —plad+ 2L =1, (A7)

which defines an ellipsoid, while the definition of y turns into
(p+1Daa+ (8 —plac=1, (A.8)

which describes a plane. The independent geometries in this class correspond to their
intersections, which are the points of the ellipse

9(p+1) N2 9,
8(8 - p) (‘“‘9) AT (49)

The end result is the family of solutions

d82 _ 620!A/“" de +62ur dT2 +62010l“” dﬂQ,

e = e nT P2 (A.10)
which comprises flat space when p = 0 and, when p # 0, take the Kasner-like form

ds® = (p)*** da® + dg” + (u¢)* " dj®,
e? = (ug)** e, (A11)

in terms of the proper length

iy (A.12)
0
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where clearly 0 < £ < oo. Using a standard parametrization for the ellipse, the three
constants can be related to an angle 6 according to

2
142 (8 ) cosf
(p+1

(+1)
— (p+1 COS
{1 e 47

Y
9
4 2
ap =73 s 0= o sinf. (A.13)

The solutions are thus parametrized by 6, by the constant ¢o that enters the dilaton profile
and by the scale p. Here

Yo = (A.14)

3
2
is precisely the critical exponent that enters the tadpole potential of orientifold models.

The two isotropic nine-dimensional solutions, with a4 = a, which are obtained for
¢ = £7, for which

ds® = € + (n€)" (do? +djf?) |
¢’ = (n&)*5 e, (A.15)

are important special cases, and play a role in several asymptotic regions considered in this
paper.

These Kasner-like solutions emerge in different asymptotic regions, around £ = 0 or
around £ = +00. The effect of the tension will be negligible with respect to the kinetic
contribution of the scalar field whenever

%4
7¢(£)2) —0 (A.16)
[¢" (€)]
in the limit. This expression is proportional to
As & — 0 (§ — o0), the ratio vanishes provided
1+-Lsind>0 (<0). (A.18)

Ve

Hence, for v < 7. the condition (A.16) can only hold as £ — 0, so that this Kasner-like
zero-tension behavior can only emerge close to boundaries at finite distance. On the other
hand, for v > 7, these zero-tension solutions can emerge in both cases, with values of 6
compatible with one or the other inequality.
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B A recurrent Newtonian system
Here we would like to review briefly the differential equation

Z”:€A2 eZZ’

(B.1)

where € = &1 and A is real and positive, which appears in various parts of the paper. This

equation has the first integral
(Z/)2 :E+6A2622,
and in order to proceed further one must distinguish a few cases.

1. Ife=1and F = p% > 0, letting

r
x=-
p
eq. (B.2) becomes
dZ\? 9
=) =14(A 2z
(%) =1+ @p? e,

and after the redefinition
Z =7 —log(Ap)

one is led to the reduced equation

~\ 2
dZ .
=) =14¢€%2.

Therefore, separating variables the solutions are finally

Z = —log {Ap sinh (7“1"0)] )
p

in the region r > rg, or

Z = —log {Ap sinh <r0r>] )
P

in the region r < rg.

2. Ife=1and E = —p% < 0, letting

Aol

eq. (B.2) becomes

dZ 2 2
— ) =—-1+(A 27
(dw) (Ap)” e,

and after a redefinition

Z =7 —log(Ap)
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one is led to the reduced equation

~\ 2
dz 97
— | =-1 B.12
<d$> +e*” ( )

and therefore finally to the solution

7Z = —log [Ap cos (T—'Oroﬂ , (B.13)

which is valid for |r — ro| < %2, and one can conveniently choose rg = %£, thus
recovering the solutions used in the main body of the paper. These solutions can be
obtained from those of the preceding case letting

r—ro—m(r—ro—g), A — —iA. (B.14)

. Ife=1and E =0, eq. (B.2) reduces to
7' =+Ae?, (B.15)

which can simply integrated and yields
e Z=FA(r—mr), (B.16)

where r( is another integration constant. Here clearly the upper sign is associated to
the region r < rg, where the real solution reads

Z =—logA(ro—r), (B.17)
while the lower one is associated to the region r > rg, where the real solution reads
Z =—logA(r—rp) . (B.18)

These types of solutions capture the limiting behavior of the preceding cases when F
is negligible with the respect to the exponential €24, and thus as p — .

. Finally, If e = —1 and F = p% > 0, letting

,
= - B.19
; (B.19)
eq. (B.2) becomes
<dZ>2—1—(A )2 e2% (B.20)
de) P ’ ’
and after a redefinition
Z =7 —log(Ap) (B.21)
one is led to the reduced equation
=\ 2
dz >
— ) =1-¢*7 B.22
() o1 o
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and therefore finally to the solution

Z = —log [Ap cosh (T—Toﬂ , (B.23)
p
for all real values of r. This can be continued to the first solution combining the two
transformations
r r o .
- = —+iz, A— —iA. (B.24)
p o p 2

C The AdS X S Vacua of [41, 42] in the harmonic gauge

In this appendix we describe the form that the AdS x S vacua that were obtained in [41, 42]
in the gauge B = 0, take in the harmonic gauge used in [38] and in this paper. Their key
properties are constant values for ¢ and C. The internal space is now a sphere, so that one
is to start from the complete equations of [38] with £ = 0 and k' = 1. The equations of C
and ¢ thus reduce to the algebraic constraints

0= L os-no+id (7=p) sia-per _ P+1) 25,0 H2,,.

8 o 16
0=T~ 2[(B-p)C+3 4] + B, €2Pr? Hp2+2, (C.1)

and making use of them the Hamiltonian constraint of [38], with £ = 0 and k' = 1, becomes

p(p + 1)(A)2 + T ¢ 2LrrDATE-P)0T3 ]

8- |
_ WPLM A 04T 1 L 2ot al g2, o, (C.2)
takes the form
(A')? = 7H5+2 [2 Po +7— p] ¢ 2l(p+1)A+5p9] (C.3)
6p+1) | o | |

These solutions require the two conditions

Po <0, p<T. (C.4)
Y
Different choices of k& would simply result in different AdS slicings, as discussed in [41, 42],
so that here we have set for brevity k = 0. Then the quantity

A2 — HZ,»(p+1) {2 Bp

“p _ 2Bpe
16 ) +7 p} e >0, (C.5)

is positive, and therefore

1

according to appendix B, while the harmonic gauge condition F' = 0 gives

B =—log(Ar)+(8—p)C. (C.7)
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In these vacua

o' T [2 —(p+1) %}
H?, ., = M e 16(7 —p) 8—10( )—[2ﬁp+(7—p)ﬂ (C.8)
p+2 — o Bp 9 _ (p+ 1)/8%, Js .
where
R=¢ and gs,=¢® (C.9)

are the radius of the internal sphere in units of o/ and the string coupling. As stressed
in [41, 42], large fluxes always translate into large sphere radii and weak string coupling.
In detail, for the USp(32) and U(32) orientifolds, with p =1, v = % and 3, = —%,

1 1
4 3 8
~ — ~ 1
R gs T2 ) gs H§ T6 ’ (C O)
while for the heterotic SO(16) x SO(16), with p =5, v = % and 3, = —%,
1 1
4 5 4
~ —— ~ A1
Rigs~ gy 95 H2T? (C.11)
and the first relation corrects a typo in [41, 42].
The resulting metrics read
2 2
ds? — dx . dr ; R2B-P) 4 o/ R 402, (C.12)
(Aryee1 (Ar)
and letting
R8P
z= log (A ) (C.13)
A
they take the standard Poincaré form for AdS,
ds? = e 2% dx - dx + d2* + o' R* dQ?, (C.14)
with A
= C.15
" )RS (C.15)
This identifies the AdS radius, in string units as the sphere radius, as
R 1 738—17 C.16
= + s .
AdS (p )A \/J ( )
and making use of eqs. (C.5) and (C.8), one can finally conclude that
2—=(+1)4%|(+1)
Rpas = R [ ﬁp] (C.17)

—2-(-pZ|(T-p)
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This gives, in particular,

R
R = C.18
AdS \/6 ( )
for the orientifolds, as in [41, 42], and
Rpqs = RV12 (C.19)

for the heterotic SO(16) x SO(16), which corrects a misprint in [41, 42].

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.

References

[1] P. Fayet and S. Ferrara, Supersymmetry, Phys. Rept. 32 (1977) 249 [INSPIRE].

[2] J. Wess and J. Bagger, Supersymmetry and supergravity, Princeton University Press,
Princeton, U.S.A. (1992).

[3] M. Shifman, Advanced topics in quantum field theory: A lecture course, Cambridge University
Press, Cambridge, U.K. (2012) [DOI].

[4] M.B. Green, J.H. Schwarz and E. Witten, Superstring Theory. Volume 1, Introduction
Cambridge University Press, Cambridge, U.K. (1987).

[6] M.B. Green, J.H. Schwarz and E. Witten, Superstring Theory. Volume 2, Loop Amplitudes,
Anomalies and Phenomenology Cambridge University Press, Cambridge, U.K. (1987).

[6] J. Polchinski, String theory. Volume 1: An Introduction to the Bosonic String, Cambridge
University Press, Cambridge, U.K. (1998).

[7] J. Polchinski, String theory. Volume 2. Superstring Theory and Beyond, Cambridge University
Press, Cambridge, U.K. (1998).

[8] C.V. Johnson, D-branes, Cambridge University Press, U.S.A. (2003).

[9] B. Zwiebach, A first course in string theory, Cambridge University Press, Cambridge, U.K.
(2004).

[10] K. Becker, M. Becker and J.H. Schwarz, String theory and M-theory: A modern introduction,
Cambridge University Press, Cambridge, U.K. (2007).

[11] E. Kiritsis, String theory in a nutshell, Princeton University Press, Princeton, NJ (2007).

[12] L.J. Dixon and J.A. Harvey, String Theories in Ten-Dimensions Without Space-Time
Supersymmetry, Nucl. Phys. B 274 (1986) 93 [INSPIRE].

[13] L. Alvarez-Gaumé, P.H. Ginsparg, G.W. Moore and C. Vafa, An O(16) x O(16) Heterotic
String, Phys. Lett. B 171 (1986) 155 [INSPIRE].

[14] A. Sagnotti, Open Strings and their Symmetry Groups, in NATO Advanced Summer Institute
on Nonperturbative Quantum Field Theory (Cargese Summer Institute), (1987)
[hep-th/0208020] [iNSPIRE].

[15] G. Pradisi and A. Sagnotti, Open String Orbifolds, Phys. Lett. B 216 (1989) 59 [INSPIRE].
[16] P. Horava, Strings on World Sheet Orbifolds, Nucl. Phys. B 327 (1989) 461 [INSPIRE].

~ 54 —


https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/0370-1573(77)90066-7
https://inspirehep.net/search?p=find+J%20%22Phys.Rept.%2C32%2C249%22
https://doi.org/10.1017/CBO9781139013352
https://doi.org/10.1016/0550-3213(86)90619-X
https://inspirehep.net/search?p=find+J%20%22Nucl.Phys.%2CB274%2C93%22
https://doi.org/10.1016/0370-2693(86)91524-8
https://inspirehep.net/search?p=find+J%20%22Phys.Lett.%2CB171%2C155%22
https://arxiv.org/abs/hep-th/0208020
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0208020
https://doi.org/10.1016/0370-2693(89)91369-5
https://inspirehep.net/search?p=find+J%20%22Phys.Lett.%2CB216%2C59%22
https://doi.org/10.1016/0550-3213(89)90279-4
https://inspirehep.net/search?p=find+J%20%22Nucl.Phys.%2CB327%2C461%22

[17]
[18]

[19]

[20]

[21]

22]

23]

[24]

[25]

[26]

[27]

28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

P. Horava, Background Duality of Open String Models, Phys. Lett. B 231 (1989) 251 INSPIRE].

M. Bianchi and A. Sagnotti, On the systematics of open string theories, Phys. Lett. B 247
(1990) 517 [INSPIRE].

M. Bianchi and A. Sagnotti, Twist symmetry and open string Wilson lines, Nucl. Phys. B 361
(1991) 519 [INSPIRE].

M. Bianchi, G. Pradisi and A. Sagnotti, Toroidal compactification and symmetry breaking in
open string theories, Nucl. Phys. B 376 (1992) 365 [INSPIRE].

A. Sagnotti, A Note on the Green-Schwarz mechanism in open string theories, Phys. Lett. B
294 (1992) 196 [hep-th/9210127] [INSPIRE].

E. Dudas, Theory and phenomenology of type-I strings and M-theory, Class. Quant. Grav. 17
(2000) R41 [hep-ph/0006190] [INSPIRE].

C. Angelantonj and A. Sagnotti, Open strings, Phys. Rept. 371 (2002) 1 [Erratum ibid. 376
(2003) 407 [hep-th/0204089] [INSPIRE].

A. Sagnotti, Some properties of open string theories, in International Workshop on
Supersymmetry and Unification of Fundamental Interactions (SUSY 95), pp. 473-484 (1995)
[hep-th/9509080] [INSPIRE].

A. Sagnotti, Surprises in open string perturbation theory, Nucl. Phys. B Proc. Suppl. 56 (1997)
332 [hep-th/9702093] [INSPIRE].

S. Sugimoto, Anomaly cancellations in type-I D9-D9 system and the USp(32) string theory,
Prog. Theor. Phys. 102 (1999) 685 [hep-th/9905159] [INSPIRE].

I. Antoniadis, E. Dudas and A. Sagnotti, Brane supersymmetry breaking, Phys. Lett. B 464
(1999) 38 [hep-th/9908023] [INSPIRE].

C. Angelantonj, Comments on open string orbifolds with a nonvanishing B(ab), Nucl. Phys. B
566 (2000) 126 [hep-th/9908064] [INSPIRE].

G. Aldazabal and A.M. Uranga, Tachyon free nonsupersymmetric type IIB orientifolds via
brane-antibrane systems, JHEP 10 (1999) 024 [hep-th/9908072] [INSPIRE].

C. Angelantonj, I. Antoniadis, G. D’Appollonio, E. Dudas and A. Sagnotti, Type I vacua with
brane supersymmetry breaking, Nucl. Phys. B 572 (2000) 36 [hep-th/9911081] [INSPIRE].

E. Dudas and J. Mourad, Consistent gravitino couplings in nonsupersymmetric strings, Phys.
Lett. B 514 (2001) 173 [hep-th/0012071] [INSPIRE].

G. Pradisi and F. Riccioni, Geometric couplings and brane supersymmetry breaking, Nucl.
Phys. B 615 (2001) 33 [hep-th/0107090] [INSPIRE].

N. Kitazawa, Brane SUSY Breaking and the Gravitino Mass, JHEP 04 (2018) 081
[arXiv:1802.03088] [INSPIRE].

J. Mourad and A. Sagnotti, An Update on Brane Supersymmetry Breaking,
arXiv:1711.11494 [INSPIRE}.

A. Sagnotti and J. Mourad, String (In)Stability Issues with Broken Supersymmetry,
arXiv:2107.04064 [INSPIRE].

I. Basile, Supersymmetry Breaking and Stability in String Vacua: brane dynamics, bubbles and
the swampland, Riv. Nuovo Cim. 1 (2021) 98 [arXiv:2107.02814] [INSPIRE].

J. Scherk and J.H. Schwarz, How to Get Masses from Eztra Dimensions, Nucl. Phys. B 153
(1979) 61 [INSPIRE].

— 55 —


https://doi.org/10.1016/0370-2693(89)90209-8
https://inspirehep.net/search?p=find+J%20%22Phys.Lett.%2CB231%2C251%22
https://doi.org/10.1016/0370-2693(90)91894-H
https://doi.org/10.1016/0370-2693(90)91894-H
https://inspirehep.net/search?p=find+J%20%22Phys.Lett.%2CB247%2C517%22
https://doi.org/10.1016/0550-3213(91)90271-X
https://doi.org/10.1016/0550-3213(91)90271-X
https://inspirehep.net/search?p=find+J%20%22Nucl.Phys.%2CB361%2C519%22
https://doi.org/10.1016/0550-3213(92)90129-Y
https://inspirehep.net/search?p=find+J%20%22Nucl.Phys.%2CB376%2C365%22
https://doi.org/10.1016/0370-2693(92)90682-T
https://doi.org/10.1016/0370-2693(92)90682-T
https://arxiv.org/abs/hep-th/9210127
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9210127
https://doi.org/10.1088/0264-9381/17/22/201
https://doi.org/10.1088/0264-9381/17/22/201
https://arxiv.org/abs/hep-ph/0006190
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F0006190
https://doi.org/10.1016/S0370-1573(02)00273-9
https://arxiv.org/abs/hep-th/0204089
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0204089
https://arxiv.org/abs/hep-th/9509080
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9509080
https://doi.org/10.1016/S0920-5632(97)00344-7
https://doi.org/10.1016/S0920-5632(97)00344-7
https://arxiv.org/abs/hep-th/9702093
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9702093
https://doi.org/10.1143/PTP.102.685
https://arxiv.org/abs/hep-th/9905159
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9905159
https://doi.org/10.1016/S0370-2693(99)01023-0
https://doi.org/10.1016/S0370-2693(99)01023-0
https://arxiv.org/abs/hep-th/9908023
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9908023
https://doi.org/10.1016/S0550-3213(99)00662-8
https://doi.org/10.1016/S0550-3213(99)00662-8
https://arxiv.org/abs/hep-th/9908064
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9908064
https://doi.org/10.1088/1126-6708/1999/10/024
https://arxiv.org/abs/hep-th/9908072
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9908072
https://doi.org/10.1016/S0550-3213(00)00052-3
https://arxiv.org/abs/hep-th/9911081
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9911081
https://doi.org/10.1016/S0370-2693(01)00777-8
https://doi.org/10.1016/S0370-2693(01)00777-8
https://arxiv.org/abs/hep-th/0012071
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0012071
https://doi.org/10.1016/S0550-3213(01)00441-2
https://doi.org/10.1016/S0550-3213(01)00441-2
https://arxiv.org/abs/hep-th/0107090
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0107090
https://doi.org/10.1007/JHEP04(2018)081
https://arxiv.org/abs/1802.03088
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1802.03088
https://arxiv.org/abs/1711.11494
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1711.11494
https://arxiv.org/abs/2107.04064
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2107.04064
https://doi.org/10.1007/s40766-021-00024-9
https://arxiv.org/abs/2107.02814
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2107.02814
https://doi.org/10.1016/0550-3213(79)90592-3
https://doi.org/10.1016/0550-3213(79)90592-3
https://inspirehep.net/search?p=find+J%20%22Nucl.Phys.%2CB153%2C61%22

[38]

[39]

[40]

[41]

[42]

=
=

=
o~

=
AN

[46]

J. Mourad and A. Sagnotti, On warped string vacuum profiles and cosmologies. Part I.
Supersymmetric strings, JHEP 12 (2021) 137 [arXiv:2109.06852] INSPIRE].

E. Dudas and J. Mourad, Brane solutions in strings with broken supersymmetry and dilaton
tadpoles, Phys. Lett. B 486 (2000) 172 [hep-th/0004165] [INSPIRE].

E. Dudas, N. Kitazawa and A. Sagnotti, On Climbing Scalars in String Theory, Phys. Lett. B
694 (2011) 80 [arXiv:1009.0874] [INSPIRE).

S.S. Gubser and I. Mitra, Some interesting violations of the Breitenlohner-Freedman bound,
JHEP 07 (2002) 044 [hep-th/0108239] [INSPIRE].

J. Mourad and A. Sagnotti, AdS Vacua from Dilaton Tadpoles and Form Fluxes, Phys. Lett. B
768 (2017) 92 [arXiv:1612.08566] INSPIRE].

J. Mourad and A. Sagnotti, A 4D IIB Flux Vacuum and Supersymmetry Breaking, to appear.
F. Lucchin and S. Matarrese, Power Law Inflation, Phys. Rev. D 32 (1985) 1316 [INSPIRE].

J.G. Russo, Exact solution of scalar tensor cosmology with exponential potentials and transient
acceleration, Phys. Lett. B 600 (2004) 185 [hep-th/0403010] [INSPIRE].

M.B. Green and J.H. Schwarz, Anomaly Cancellation in Supersymmetric D = 10 Gauge
Theory and Superstring Theory, Phys. Lett. B 149 (1984) 117 [INSPIRE].

W. Fischler and L. Susskind, Dilaton Tadpoles, String Condensates and Scale Invariance,
Phys. Lett. B 171 (1986) 383 [INSPIRE].

W. Fischler and L. Susskind, Dilaton Tadpoles, String Condensates and Scale Invariance. 2,
Phys. Lett. B 173 (1986) 262 [INSPIRE].

E. Dudas, G. Pradisi, M. Nicolosi and A. Sagnotti, On tadpoles and vacuum redefinitions in
string theory, Nucl. Phys. B 708 (2005) 3 [hep-th/0410101] [INSPIRE].

R. Rohm, Spontaneous Supersymmetry Breaking in Supersymmetric String Theories, Nucl.
Phys. B 237 (1984) 553 [INSPIRE].

C. Kounnas and M. Porrati, Spontaneous Supersymmetry Breaking in String Theory, Nucl.
Phys. B 310 (1988) 355 [INSPIRE].

S. Ferrara, C. Kounnas, M. Porrati and F. Zwirner, Superstrings with Spontaneously Broken
Supersymmetry and their Effective Theories, Nucl. Phys. B 318 (1989) 75 [INSPIRE].

I. Antoniadis, E. Dudas and A. Sagnotti, Supersymmetry breaking, open strings and M-theory,
Nucl. Phys. B 544 (1999) 469 [hep-th/9807011] [INSPIRE].

I. Antoniadis, G. D’Appollonio, E. Dudas and A. Sagnotti, Partial breaking of supersymmetry,
open strings and M-theory, Nucl. Phys. B 553 (1999) 133 [hep-th/9812118| [INSPIRE].

G. Bogna, J. Mourad, A. Sagnotti and Y. Tatsuta, work in progress.

E. Dudas, J. Mourad and A. Sagnotti, Charged and uncharged D-branes in various string
theories, Nucl. Phys. B 620 (2002) 109 [hep-th/0107081] [INSPIRE].

I. Basile, J. Mourad and A. Sagnotti, On Classical Stability with Broken Supersymmetry,
JHEP 01 (2019) 174 [arXiv:1811.11448] [INSPIRE].

C. Condeescu and E. Dudas, Kasner solutions, climbing scalars and big-bang singularity,
JCAP 08 (2013) 013 [arXiv:1306.0911] INSPIRE].

— 56 —


https://doi.org/10.1007/JHEP12(2021)137
https://arxiv.org/abs/2109.06852
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2109.06852
https://doi.org/10.1016/S0370-2693(00)00734-6
https://arxiv.org/abs/hep-th/0004165
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0004165
https://doi.org/10.1016/j.physletb.2010.09.040
https://doi.org/10.1016/j.physletb.2010.09.040
https://arxiv.org/abs/1009.0874
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1009.0874
https://doi.org/10.1088/1126-6708/2002/07/044
https://arxiv.org/abs/hep-th/0108239
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0108239
https://doi.org/10.1016/j.physletb.2017.02.053
https://doi.org/10.1016/j.physletb.2017.02.053
https://arxiv.org/abs/1612.08566
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1612.08566
https://doi.org/10.1103/PhysRevD.32.1316
https://inspirehep.net/search?p=find+%22Phys.Rev.%2CB32%2C1316%22
https://doi.org/10.1016/j.physletb.2004.09.007
https://arxiv.org/abs/hep-th/0403010
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0403010
https://doi.org/10.1016/0370-2693(84)91565-X
https://inspirehep.net/search?p=find+J%20%22Phys.Lett.%2CB149%2C117%22
https://doi.org/10.1016/0370-2693(86)91425-5
https://inspirehep.net/search?p=find+J%20%22Phys.Lett.%2CB171%2C383%22
https://doi.org/10.1016/0370-2693(86)90514-9
https://inspirehep.net/search?p=find+J%20%22Phys.Lett.%2CB173%2C262%22
https://doi.org/10.1016/j.nuclphysb.2004.11.028
https://arxiv.org/abs/hep-th/0410101
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0410101
https://doi.org/10.1016/0550-3213(84)90007-5
https://doi.org/10.1016/0550-3213(84)90007-5
https://inspirehep.net/search?p=find+J%20%22Nucl.Phys.%2CB237%2C553%22
https://doi.org/10.1016/0550-3213(88)90153-8
https://doi.org/10.1016/0550-3213(88)90153-8
https://inspirehep.net/search?p=find+J%20%22Nucl.Phys.%2CB310%2C355%22
https://doi.org/10.1016/0550-3213(89)90048-5
https://inspirehep.net/search?p=find+J%20%22Nucl.Phys.%2CB318%2C75%22
https://doi.org/10.1016/S0550-3213(98)00806-2
https://arxiv.org/abs/hep-th/9807011
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9807011
https://doi.org/10.1016/S0550-3213(99)00232-1
https://arxiv.org/abs/hep-th/9812118
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9812118
https://doi.org/10.1016/S0550-3213(01)00552-1
https://arxiv.org/abs/hep-th/0107081
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0107081
https://doi.org/10.1007/JHEP01(2019)174
https://arxiv.org/abs/1811.11448
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1811.11448
https://doi.org/10.1088/1475-7516/2013/08/013
https://arxiv.org/abs/1306.0911
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1306.0911

	Introduction and summary
	Symmetric profiles and equations of motion
	Vacuum solutions without form fluxes
	Vacuum solutions with gamma = gamma(c) = frac32
	The special case beta = 0
	Solutions with beta!= 0

	Vacuum solutions for gamma!= frac32
	Vacuum solutions for gamma < frac32
	Vacuum solutions for gamma > frac32
	Isotropic solutions for gamma!= frac32


	Cosmological solutions without form fluxes
	Cosmological solutions for gamma = frac32 and beta!= 0
	Cosmological solutions for gamma!= frac32
	Cosmological solutions for gamma < frac32
	Cosmological solutions for gamma > frac32


	Inclusion of form fluxes
	New variables for the general case: H-fluxes
	Special cases
	Usp(32) and U(32) orientifolds with p = 1 ``electric fluxes''
	SO(16) x SO(16) heterotic with p = 1 ``electric'' fluxes
	USp(32) and U(32) orientifolds with p = 5 ``magnetic fluxes''
	SO(16) x SO(16) heterotic with p = 5 ``magnetic'' fluxes
	U(32) orientifold with p = 3 ``dyonic'' flux


	Orientifolds with tension and flux: an exact solution
	The special vacua with x(1) = 0
	Properties of the solutions

	Vacua with x(1)!= 0
	Properties of the solutions

	Cosmological solutions
	Properties of the solutions


	Conclusions
	Kasner-like solutions of systems with T = 0
	A recurrent Newtonian system
	The AdS x S Vacua of [13] in the harmonic gauge

