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Pupil size variations have been associated with changes in brain activity patterns

related with specific cognitive factors, such as arousal, attention, and mental

effort. The locus coeruleus (LC), a key hub in the noradrenergic system of the

brain, is considered to be a key regulator of cognitive control on pupil size, with

changes in pupil diameter corresponding to the release of norepinephrine (NE).

Advances in eye-tracking technology and open-source software have facilitated

accurate pupil size measurement in various experimental settings, leading to

increased interest in using pupillometry to track the nervous system activation

state and as a potential biomarker for brain disorders. This review explores

pupillometry as a non-invasive and fully translational tool for studying cortical

plasticity starting from recent literature suggesting that pupillometry could be

a promising technique for estimating the degree of residual plasticity in human

subjects. Given that NE is known to be a critical mediator of cortical plasticity and

arousal, the review includes data revealing the importance of the LC-NE system in

modulating brain plasticity and pupil size. Finally, we will review data suggesting

that pupillometry could provide a quantitative and complementary measure of

cortical plasticity also in pre-clinical studies.
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Introduction

Neural plasticity refers to the ability of neural circuits to adapt and change in response
to internal or external stimuli. This ability allows neurons to adjust their molecular,
physiological, and morphological characteristics to respond quickly to salient environmental
changes. For appropriate responses to be executed, there must be a rapid reorganization
of the neural networks, resulting in increased or decreased activity across a significant
portion of the brain. The neuromodulator norepinephrine (NE) plays an important role in
optimizing these responses. The locus coeruleus (LC), a small bilateral nucleus located in the
brainstem, is the primary source of NE in the brain, (Poe et al., 2020) with broad projections
that pervade the cortex (Foote et al., 1983). Most neural innervation in the cerebral cortex
involving NE is non-synaptic, with molecules diffusing to nearby receptors. The diffuse
release of NE into the extracellular space is consistent with its role as a neuromodulator
and its wide range of effects on various cellular targets within the cerebral cortex (Séguéla
et al., 1990). Moreover, the NE-system functioning depends on the expression of different
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receptors in both neurons and glial cells throughout the central
nervous system (CNS) (O’Donnell et al., 2012). This complexity
enables the LC-NE system to induce significant changes in
neuronal activity, network connectivity and to mediate a broad
spectrum of brain functions, comprising wakefulness (Berridge
and Waterhouse, 2003), arousal, and high-order processes (e.g.,
attention, sensory processing, and learning) (McBurney-Lin et al.,
2019). Experiments in adult mice suggest that NE is necessary
for inducing changes in the receptive fields of cortical sensory
circuits, while brief NE increases alter neuronal tuning (Manunta
and Edeline, 2004; Shepard et al., 2015). The LC-NE system has
the potential to induce brain plasticity through multiple functional
mechanisms. For instance, when an arousing or emotionally
significant stimulus is presented, the LC discharges a burst of
NE throughout the brain, enhancing the sensitivity of sensory
responses to particular environmental features, and modifying the
overall network reactivity (Marzo et al., 2009).

It is commonly accepted that alterations in pupil size can serve
as a reliable indicator of activity in the LC, and fluctuations in pupil
diameter are thought to occur simultaneously with the release of
NE (Reimer et al., 2016). Pupillometry, the study of variation in
pupil diameter, is emerging as a promising tool to directly assess
the LC-NE system activity. Although changes in pupil size are
mainly influenced by light, they may also serve as an indicator of
cognitive processes and arousal states (Kahneman and Beatty, 1966;
Schmidt and Fortin, 1982; Granholm and Steinhauer, 2004; Nassar
et al., 2012). Higher cognitive and emotional processes can evoke
tonic or phasic pupillary changes in humans and animal models
(Lee and Margolis, 2016; Krebs et al., 2018). In humans, pupillary
dilations can be induced by endogenous factors such as attention
level, memory load, decision making and emotional processing
(Kahneman and Beatty, 1966; Bradley et al., 2008; Wierda et al.,
2012; Binda et al., 2013; de Gee et al., 2014; Lisi et al., 2015).
In mice, fluctuations in pupil constriction and dilation have been
shown to reliably reflect the sensory responsiveness of the cortex
to different stimuli (Lee and Margolis, 2016). In both mice and
humans, changes in pupil size are known to be linked to arousal
and vigilance levels (Murphy et al., 2011; Yüzgeç et al., 2018;
Martin et al., 2022).

Recent advancements in hardware technology and software
development have made it possible to measure pupil size in a variety
of experimental settings accurately (Mazziotti et al., 2021; Privitera
et al., 2021), leading to an increased interest in using pupillometry
as a tool for understanding the activity of the nervous system
and, potentially, as a biomarker for brain disorders. However, the
potential of pupillometry to provide insights into the role of the
LC-NE system in neural processes and plasticity needs to be better
understood. In this minireview, we will focus on the evidence
supporting the importance of the LC-NE system in modulating
brain plasticity. Given the close relationship between LC-NE tone
and pupil size (Joshi et al., 2016), we will also explore pupillometry
as a non-invasive method for studying cortical plasticity.

An overview of the LC-NE system

The LC is a small nucleus located in the dorsal tegmentum with
a high level of complexity in terms of its molecular, cellular, and

regional targets. As all neurons in the LC contain NE, the LC serves
as the foremost source of NE in the forebrain, projecting widely
to both cortical and subcortical regions (Szabadi, 2013; Benarroch,
2018; Figure 1A). The extensive distribution of noradrenergic
fibers in the neocortex suggests that the projections originating
from the LC broadly impact the neocortex (Morrison et al., 1979).
This extensive LC modulation of the cortex underlies the role of
the LC in controlling brain state, such as arousal (Carter et al.,
2010; Sara and Bouret, 2012), locomotion (Polack et al., 2013),
exploration (Gompf et al., 2010), and attention (Bouret and Sara,
2004). In addition to NE, noradrenergic neurons also release
various co-transmitters, including glutamate (Yang et al., 2021),
ATP (Poelchen et al., 2001), neuropeptide Y (Tsuda et al., 1989; Illes
and Regenold, 1990), the neuropeptide galanin (Tillage et al., 2020,
2021), and dopamine (Devoto and Flore, 2006; Kempadoo et al.,
2016). The co-transmitters could modulate the action of NE both
pre-synaptically and post-synaptically, with effects on NE release
and neurotransmission (Burnstock, 2009; Herring and Paterson,
2009). Although some noradrenergic boutons form direct synaptic
contacts with neurons, many are primarily non-synaptic without
any identifiable synaptic connection. This particular characteristic
of central noradrenergic neurons implies that NE may also exert
more widespread hormonal effects throughout the brain (Beaudet
and Descarries, 1978; Descarries and Mechawar, 2000; Figure 1B).
Studies have shown that NE is diffusely released in various
structures of the CNS, including the amygdala (Zhang et al.,
2013), the hypothalamus (Michaloudi et al., 1997), and the cerebral
cortex (Agster et al., 2013). This supports the idea that the LC-NE
system plays a role in the coordinated regulation of large brain
regions in response to significant stimuli. Central noradrenergic
neurons make contacts with neurons and with non-neuronal
elements of the CNS, such as glial cells (Figure 1B). Astrocytes
may act as intermediaries of NE impact on neuronal activity. When
glial adrenergic receptors are activated, astrocytes experience a
quick increase in calcium levels which enhances synaptic plasticity
(Gordon et al., 2005) or increases cAMP levels which modulate the
process of memory consolidation (Oe et al., 2020).

The effectiveness of the noradrenergic system is reliant on
the distinct expression of various receptor types in both neurons
and glial cells. There are three adrenoceptors families, β, α1,
and α2, each composed of multiple subtypes (Perez, 2020). The
adrenoreceptors are all known to be metabotropic receptors, and
the affinity to NE is higher for the α-receptors than for the β-
receptors (Wu et al., 2021; Figure 1B). The LC is characterized by
a phasic and a tonic activity mode (Vazey et al., 2018; Figure 1C).
The “adaptive gain theory,” proposed by Aston-Jones and Cohen
(2005), tries to explain this bimodal activation of the LC-NE
system (Aston-Jones and Cohen, 2005). According to this theory,
phasic activity is driven by decision processes related to the
task at hand and facilitates performance optimization (Clayton
et al., 2004). In contrast, during withdrawal from the current
task and the beginning of alternative behaviors, tonic activity
tends to prevail (Aston-Jones and Cohen, 2005; Figure 1C). By
employing “adaptive gain,” LC-NE activity enhances the balance
between focused and flexible behaviors by alternating between
phasic and tonic activity modes (Mathôt, 2018). Nonetheless, it
remains unclear which internal or external triggers prompt the LC
to shift between these two spiking pattern modes. The “network
reset theory,” which constitutes a second hypothesis, proposes
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FIGURE 1

The noradrenergic system complexity: from molecules to function. (A) LC efferent and afferent projections. The LC is a small bilateral nucleus in the
brainstem that widely innervates the brain with broad projections that pervade the cortex. All LC neurons contain NE, thus the LC serves as the
primary source of NE in the forebrain. NE released from LC is a ubiquitous neuromodulator that has been linked to multiple functions, including
arousal, action sensory gain, and learning (Szabadi, 2013). (B) Diffuse hormone-like action of NE release. NE α1- and β-receptors are thought to exist
primarily post-synaptically (heteroreceptors), whereas α2-receptors are present both pre- (autoreceptors) and post-synaptically (Szabadi and
Bradshaw, 1991). The autoreceptors of the α2 sub-class are inhibitory in action and are involved in the inhibition of neuronal firing (Bertolino et al.,
1997; Huang et al., 2012) or NE release (Starke, 2001) based on their location. α1-receptors are mainly excitatory, while β-receptors are excitatory or
inhibitory (Szabadi, 2013). In the CNS, adrenergic heteroreceptors have been identified on the terminals of serotonergic (Haj-Dahmane and Shen,
2014), dopaminergic (Mejias-Aponte, 2016), and glutamatergic (Mori-Okamoto et al., 1991) neurons, extending its action on different classes of
neurons well known to be involved in brain plasticity. Moreover, central noradrenergic neurons also make contacts with the CNS’s non-neuronal
elements, such as glial cells. (C) Tonic and phasic LC activity. Two theories are trying to explain the bimodal spiking activity of LC, the adaptive gain
theory, proposed by Aston-Jones and Cohen (2005) posits that phasic LC activity prevails during exploitation, facilitating task-specific decision
processes; tonic activity instead prevails during periods of exploration, making targeted circuits more responsive to any stimulus. However, this
theory does not explain which phenomenon is responsible for the shift from the two phases. A second theory, named network reset theory, posits
that the NE signal would have a general reset function. In particular, it has been demonstrated that LC responses undergo habituation in the absence
of reinforcement (Vankov et al., 1995), while when the predictive value of the stimulus is reversed, habituated LC neurons respond to the change.
PFC, prefrontal cortex; BF, basal forebrain; LC, locus coeruleus; NE, norepinephrine.

that NE signals facilitate the dynamic reorganization of targeted
neural networks, enabling swift behavioral adaptation to changing
environmental demands (Bouret and Sara, 2005). In particular,
Vankov et al. (1995) demonstrated that LC responses habituate in
the absence of reinforcement (Vankov et al., 1995). However, when
the stimulus-reinforcement relationship changes or the predictive
value of the stimulus is reversed, habituated LC neurons respond
to the change (Bouret and Sara, 2004). These findings indicate that
LC neurons exhibit a response to task-relevant stimuli in situations
where their incidence cannot be entirely predicted (unexpected

uncertainty), leading to a “reset in network activity” to facilitate
updating prior probabilities (Yu and Dayan, 2005; Dayan and Yu,
2006). These two theories are not mutually exclusive and overlap
with the role of NE in promoting cognitive shifts. Due to a strong
correlation between LC activity and pupil size (Joshi et al., 2016),
pupillometry has become a popular method for investigating the
phasic and tonic modes of LC-NE activity. Phasic LC activity is
linked to intermediate pupil size, while high tonic LC activity is
associated with large pupils. Conversely, low LC activity and small
pupils are indicative of sleepiness (Mathôt, 2018).
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The strong relationship between LC activity and pupil size
provides an attractive opportunity to use a straightforward and
non-invasive physiological measure for assessing the activity of
neuromodulators such as NE in specific regions of the brain.

Neuromodulatory control of pupil
size

Our pupils undergo a continuous fluctuation in size in response
to variations in ambient light levels to regulate the amount of
light that reaches the retina to optimize visual performance.
However, even under isoluminant conditions, pupil size can be
modulated by attention, working memory, perceptual and cognitive
processes (Kahneman and Beatty, 1966; Schmidt and Fortin, 1982;
Granholm and Steinhauer, 2004; Nassar et al., 2012). Two sets
of muscles control pupil size: the iris sphincter muscle, which
constricts the pupil, and the iris dilator muscle, which promotes
dilation. These two muscles are controlled, respectively, by the
parasympathetic constriction pathway and the sympathetic dilation
pathway (Figure 2A). In the pupillary light reflex (PLR), the retina
encodes and transmits changes in light levels to the brainstem
pretectal olivary nucleus, which mainly controls pupil size via
projections to the Edinger–Westphal nucleus (EWN). The EWN
nucleus contains cholinergic preganglionic motoneurons that
regulate the iris sphincter muscle. This preganglionic motoneurons
project to the ciliary ganglion of the third cranial nerve, which
controls the iris sphincter muscle through the ciliary nerve. The
activity of projecting neurons in the EWN nucleus triggers the
contraction of the iris sphincter muscle and constriction of the
pupil. Conversely, inhibition of EWN neurons causes relaxation
of the iris sphincter muscle, leading to dilation. The dilation
pathway, instead, is a subcortical pathway that originates in
the hypothalamus and the LC and connects to the iris dilator
muscle (Figure 2A).

There is extensive evidence of functional relationships between
LC activity and pupil dilation. In humans, fMRI studies combined
with pupillometry measures have shown that LC activity increases
together with pupil size during behavioral tasks and in resting
(de Gee et al., 2017). Another fMRI study, conducted on
humans performing an oddball task, pupil size changes have been
described to covary with blood-oxygen-level-dependent (BOLD)
signal localized to LC (Murphy et al., 2014). Moreover, the electrical
stimulation of LC in anesthetized and awake animals evokes
pupil dilation (Joshi et al., 2016; Reimer et al., 2016; Privitera
et al., 2021; Figure 2B). These data support the idea of a direct
coupling between the LC and pupil diameter. The LC could
act directly on neurons in the EWN, with NE (Breen et al.,
1983) binding the inhibitory α2-adrenergic receptors (Koss, 1986).
However, the existence of a direct pathway is still controversial
(Nieuwenhuis et al., 2011).

A recent study has investigated the accuracy by which pupil
size can be used to index LC activity in mice (Megemont et al.,
2022). The authors recorded spiking activity from LC neurons
optogenetically tagged and pupil diameter in head-fixed mice
trained to perform a tactile detection task. Although pupil diameter
was found to have a positive and monotonic relationship with LC
spiking activity, they found that identical optical LC stimulations
evoked variable pupil responses on each trial (Megemont et al.,

2022). This variability in the LC-pupil coupling may be linked
to the involvement of other brain areas or neuromodulatory
systems in controlling pupil fluctuations (Joshi et al., 2016; Reimer
et al., 2016; Figures 2C-E). For example, sustained activity in
cholinergic axons is observed during longer-lasting pupil dilations,
such as those occurring during locomotion (Reimer et al., 2016;
Figures 2D, E). In addition, phasic stimulation of the dorsal raphe
serotoninergic nuclei can also regulate pupil size and reactivity to
sensory stimulation (Cazettes et al., 2021). Other studies suggest
that pupil fluctuations can be influenced by hormonal changes
(Leknes et al., 2013; Prehn et al., 2013). These factors must be taken
into account when interpreting results, in particular in non-drug-
free clinical populations. Several medications and drugs of abuse
[such as selective serotonin reuptake inhibitors (SSRI) and Opioids]
may affect pupillary size and spontaneous fluctuations (Schmitt
et al., 2002; Dhingra et al., 2019).

Task-related variables can also influence pupillary variability.
Pupil dilation can occur in response to unexpected stimuli
(orienting response), expectation violation, and various cognitive
processes such as attention, memory load, and decision making
(Kahneman and Beatty, 1966; Qiyuan et al., 1985; Alnæs
et al., 2014; de Gee et al., 2014; Wang and Munoz, 2014;
Figure 2C). Transient pupil dilations are typically linked to
phasic LC firing (Aston-Jones et al., 1994), but some factors,
such as stimulus salience, are associated with shifts of attention
and likely also related to superior colliculus activation (Wang
et al., 2012). Additionally, other cortical regions like the anterior
cingulate cortex and the orbitofrontal cortex are involved in
pupil dynamics (Hayden et al., 2011; Padoa-Schioppa and Conen,
2017). However, LC activation reliably anticipates changes in
pupil diameter with an early latency compared with other regions
showing a similar relationship with pupil size (Joshi et al.,
2016). The interconnectivity between these regions and the LC
suggests that fluctuations in pupil size could be a result of
the LC regulation of neural activity across certain areas of the
brain.

Pupillometry as a quantitative
measure of cortical plasticity

Noradrenergic role in cortical plasticity

Norepinephrine has been extensively studied in the cortical
plasticity framework (Kasamatsu and Pettigrew, 1976; Bear and
Daniels, 1983; Marzo et al., 2009; Shepard et al., 2015), starting from
the discovery that NE plays a pivotal role in the developmental
plasticity of the visual cortex (Kasamatsu and Pettigrew, 1976,
1979; Kasamatsu et al., 1981). Monocular deprivation is an
experimental paradigm often used to study visual cortex plasticity
in mammals (Nys et al., 2015). In the binocular primary visual
cortex (V1), the neuronal response to a stimulus presented to the
contralateral eye is significantly greater compared to that of the
ipsilateral eye. In the critical period, occluding the contralateral
eye leads to a prompt decrease in the level of responsiveness
of V1 cells to stimulation of the contralateral eye (Gordon
and Stryker, 1996). Kasamatsu and Pettigrew (1976, 1979) first
investigated the role of NE in visual cortex plasticity using
monocular deprivation (Kasamatsu et al., 1981). They showed that
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FIGURE 2

(A) The pupil constriction and dilation pathways. The iris of the eye contains two muscles that control its size: the sphincter muscle and the dilator
muscle. The size of the iris is regulated by two interconnected neural pathways: the parasympathetic constriction pathway and the sympathetic
dilation pathway. The parasympathetic constriction pathway originates in the EWN, which via cholinergic preganglionic motoneurons, sends its
axons to synapse on the sphincter muscle. This pathway causes sphincter muscle contraction, leading to constriction of the pupil. The sympathetic
dilation pathway originates in the SCG and sends axons to synapse on the dilator muscle. This pathway causes the dilator muscle relaxation, leading
to pupil dilation. The LC plays a key role in regulating the sympathetic nervous system, including the sympathetic dilation pathway that controls pupil
size. The LC is responsible for releasing the neurotransmitter NE, which acts on the dilator muscle and regulates pupil size. Activation of the LC leads
to the dilation of the pupil, and inhibition of the LC leads to constriction of the pupil. Additionally, studies have shown that the LC-NE system
regulates the pupillary light reflex, which is the automatic response of the pupil to changes in light intensity. (B) LC-pupil relationship. The acute
electric stimulation of the LC is able to evoke pupillary dilations in mice. Redrawn from Privitera et al. (2021). (C) Exogenous factors influencing pupil
size. (D) The left panel shows ACh (orange) and NE (violet) dynamics during the dilation (values < 0) and constriction (values > 0) phases in the
absence of locomotion. The right panel illustrates NE and ACh activity during locomotion onset and offset. NE activity levels were higher and had a
shorter latency than ACh activity preceding the peak of dilation. These findings suggest that both neuromodulatory systems contribute to regulating
pupil size changes during quiet wakefulness, with NE playing a more prominent role in rapid and transient pupil responses. During locomotion,
phasic noradrenergic axonal activity (violet) is closely linked to rapid pupil dilations, while sustained cholinergic axonal activity (orange) is associated
with longer-lasting dilations (left). This figure is adapted from Reimer et al. (2016). (E) Coherence of NE and ACh in pupillary oscillations: NE levels
display coherence with pupillary fluctuations across a wide frequency range. In contrast, ACh exhibits coherence primarily at lower frequencies,
indicating distinct roles of the two neuromodulatory systems in the initiation and maintenance at different time scales. This figure is adapted from
Reimer et al. (2016). HYP, hypothalamus; LC, locus coeruleus; SC, superior colliculus; MCN, mesencephalic cuneiform nucleus; EWN,
Edinger-Westphal nucleus; CG, ciliary ganglion; ACh, acetylcholine; IML, intermediolateral cell column of the spinal cord; SCG, superior cervical
ganglion; NE, norepinephrine.

the infusion of 6-hydroxydopamine (6-OHDA), a neurotoxin that
destroys noradrenergic terminals in the visual cortex of kittens,
abolished ocular dominance plasticity. Monocular deprivation
in kittens causes an ocular dominance shift toward the non-
deprived eye (Hubel and Wiesel, 1962; Wiesel and Hubel, 1963).
However, when the deprived eye is re-opened after a short
period of monocular deprivation, neurons in the visual cortex will
gradually become binocular again (Hubel and Wiesel, 1962). The
intracortical infusion of NE was able to accelerate the recovery of
binocular cortical neurons from the effects of a brief monocular
deprivation (Kasamatsu et al., 1981). Moreover, in kittens in which
the visual cortex has been rendered aplastic by injections of 6-
OHDA or propranolol, an antagonist of β-adrenergic receptors

(Shirokawa and Kasamatsu, 1987) NE restored ocular dominance
plasticity (Pettigrew and Kasamatsu, 1978).

In the visual cortex, parvalbumin inhibitory interneurons
(PV) regulate the closure of developmental critical periods and
modulate experience-dependent plasticity in adulthood (Fagiolini
and Hensch, 2000). It has been demonstrated that the PV cells firing
rate is linked with the behavioral state and can be modulated by
the release of acetylcholine (ACh) and NE (Garcia-Junco-Clemente
et al., 2019). In particular, PV neurons establish functionally distinct
subnetworks in the neocortex. During locomotion, the activity of
basal forebrain cortical projections can independently modulate the
responses of these subnetworks. This modulation occurs through
the release of ACh, which suppresses the activity of one group
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of PV cells, and by NE released from the locus coeruleus during
periods of heightened arousal, which enhances the activity of
the other group of PV cells. According to the neuromodulatory
control of PV activity, it is also possible to distinguish the two
functional subnetworks of PV cells by looking at locomotion and
pupil diameter (Garcia-Junco-Clemente et al., 2019).

The establishment of long-term plasticity in the cortex
necessitates the presence of sensory experience and the
involvement of neuromodulatory systems that transmit
information about behavioral context to local cortical circuits
(Shulz et al., 2000; Froemke et al., 2007; Constantinople and
Bruno, 2011). Plasticity in the LC requires the activation of
NMDA receptors and can be induced by coupling tones with
the depolarization of LC single neurons (Martins and Froemke,
2015). Martins and Froemke (2015) demonstrated that LC
plasticity is necessary and sufficient for the induction and
maintenance of cortical plasticity in rats primary auditory cortex.
In particular, the LC pairing induced an increased response to
all the tones across the tuning curve and a long-lasting shift of
the tuning curve in the primary auditory cortex (A1). Moreover,
they found that LC pairing improved auditory perception in
an operant conditioning task. The authors conditioned rats
to nose-poke to obtain food rewards in response to 4-kHz
target stimuli at different intensities. After pairing the tone
at 30 dB with the LC stimulation, the response rate for the
20–40 dB stimuli was enhanced. LC pairing also promoted
the ability to distinguish between target and confounding
stimuli and accelerate reverse learning when the rewarded tone
was changed (Martins and Froemke, 2015). These findings
demonstrate that LC plasticity is critical for facilitating the
rapid onset and enduring persistence of cortical alterations as
a consequence of modifications in brain state and behavior,
such as those observed in one-trial learning or post-traumatic
stress disorder.

The diffused release of cortical NE to the extracellular space
allows NE to act on different cell targets simultaneously, integrating
and coordinating multiple cellular and molecular responses. It is
becoming evident that microglial cells play an important role as
an integral part of the synapse in addition to the neuronal pre-
and post-synaptic compartments and astrocytes (Schafer et al.,
2013). Microglia are the innate immune cells and phagocytes of the
CNS (Tremblay et al., 2010). In the context of injury or disease,
microglial cells exhibit a high sensitivity to perturbations in brain
homeostasis and are capable of rapid morphological changes in
response to inflammatory signals (Dheen et al., 2007). Within
the quad-partite synapse, microglial processes continuously survey
their environment and establish interactions with other neural cell
types such as neurons and astrocytes (Schafer et al., 2013), thereby
influencing synaptic remodeling and neural plasticity through
the secretion of growth factors, enzymes, and physical contacts
with synaptic structures (Schafer et al., 2012; Sipe et al., 2016).
Notably, microglia display a distinct and prominent expression
of the β2-adrenergic receptor (β2-AR) in the non-injured brain,
which distinguishes them from other cell types in the CNS
(Zhang et al., 2014). These findings imply that microglial cells
may exhibit distinct responses to NE, which potently modulates
processes such as plasticity, learning, sensory processing, and
attention to salient stimuli (Yang et al., 2014). Stowell et al. (2019)
demonstrated that cortical NE release is necessary for microglia

morphology changes through β2-ARs. During wakefulness, NE
suppresses the branching and movement of microglial cells, and
the inhibition of the β2-AR signaling results in an increase of
microglial process branching and surveillance, mimicking the
effects of anesthesia (Stowell et al., 2019). The activation of β2-
AR signaling not only reduces microglial surveillance in the
basal state but also attenuates microglial responses to sudden
injuries (Stowell et al., 2019). Furthermore, the activation of β2-
AR interferes with ocular dominance plasticity and microglial
interactions with dendritic spines, showing the critical roles of β2-
AR signaling and microglia in modulating experience-dependent
plasticity (Stowell et al., 2019).

These studies support the role of the LC-NE system in
enhancing cortical plasticity by acting on multiple cell targets.
Through increasing the level of waking and arousal, the LC-NE
system may participate in information processing, modulating
sensory collections and high-order cognition.

Exploring the relationship between pupil
size and visual cortical plasticity

Since pupil dilations coincide with changes in
neuromodulatory signaling, pupillometry appears to be a
promising technique for estimating the degree of residual
plasticity. In a recent study conducted on humans, Binda and
Lunghi (2017) demonstrated that monocular deprivation affects
spontaneous slow pupil oscillation at rest, called hippus (Diamond,
2001). The authors assessed pupillary oscillations prior to and
subsequent to monocular deprivation and observed a heightened
amplitude of hippus following visual deprivation. Additionally,
individuals with more prominent pupillary fluctuations exhibited
more robust alterations in ocular dominance during binocular
rivalry dynamics. In a binocular rivalry experiment, incompatible
images are presented to each eye simultaneously, but instead of
perceiving a combination of the two images, people typically
experience slow and irregular perceptual alternations of the two
stimuli. The binocular rivalry has become an essential index
to study ocular dominance plasticity in humans (Steinwurzel
et al., 2020). Because pupil dilations can non-invasively convey
NE release, pupil size has been used to study switches between
alternative percepts.

Previous findings suggest the occurrence of a transient dilation
of the pupil during perceptual switching, which may indicate an
increase in NE levels (Einhäuser et al., 2008; de Hollander et al.,
2018). In a recent study, Brascamp et al. (2021) reported that
changes in perception were accompanied by a complex pupillary
response that could be deconstructed into two components: a
dilation linked to task execution, plausibly reflecting an arousal-
mediated NE increase, and a concurrent constriction associated
with the perceptual transition, plausibly indicating alterations in
visual cortical representation. The amplitude of constriction, but
not dilation, was systematically modulated by the duration between
perceptual changes, offering a possible overt measure of neural
adaptation (Brascamp et al., 2021). The findings indicate that the
size of the pupil reflects the activity of interacting but dissociable
neural mechanisms during perceptual multistability and imply that
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the release of arousal-related neuromodulators affects behavior but
not perception.

Different studies support the involvement of NE in modulating
homeostatic plasticity, highlighting the potential utility of pupillary
fluctuations as a proxy for studying visual cortical plasticity in
humans. NE serves as a common source for this phenomena, due
to its established role in regulating both pupil diameter modulation
(Joshi et al., 2016) and visual cortical plasticity (Kasamatsu and
Pettigrew, 1979; Kasamatsu et al., 1981).

In the mouse, the oscillations of pupil constriction and
dilation provide an efficient means of monitoring the cortex’s
reaction to sensory stimuli (Reimer et al., 2014; Lee and Margolis,
2016). Specifically, the dilation of the pupil is associated with
desynchronized activity within neural populations and heightened
sensitivity toward visual/somatosensory stimulation, which are
both synchronized with the alteration of activity in various
categories of inhibitory interneurons (Reimer et al., 2014). These
responses are also linked to signaling within the NE and ACh
systems (Reimer et al., 2016). Jordan and Keller (2023) recently
have demonstrated that the LC-NE system in mice is involved
in prediction errors and that LC activity promotes learning by
contributing to sensorimotor cortical plasticity. The study also
found a significant correlation between LC axon activation in
different somatosensory cortical regions and changes in pupil size
(Jordan and Keller, 2023).

The close association between NE tone and pupil diameter
demonstrates the potential of pupillometry as a valuable tool to
study adult cortical plasticity in clinical populations.

Pupil size as a promising biomarker
for brain diseases

The dysregulation of the LC-NE system has been linked to the
development of various brain disorders. Decreased noradrenergic
activity, for instance, has been observed in individuals with
depression (Brunello et al., 2002). Conversely, an increase in
noradrenergic activity has been observed in patients with anxiety
(Vismara et al., 2020). Furthermore, the LC-NE system also
plays a role in the pathogenesis of other brain disorders
such as post-traumatic stress disorder, schizophrenia, substance
abuse, and neurodegenerative conditions like Alzheimer’s disease
(Weinshenker and Schroeder, 2006; Fitzgerald, 2014; Hendrickson
et al., 2018; David and Malhotra, 2022). In the following section
we will explore the potential role of the LC-NE system in
neurodevelopmental disorders characterized by abnormal brain
plasticity and its assessment using pupillometry as a non-
invasive biomarker.

Pupil alterations in neurodevelopmental
disorders

Brain development and maturation require incredible
plasticity. Such plasticity is particularly pronounced during
critical periods, specific temporal windows during which the
neural circuitry is highly sensitive to both internal and external
modulations (Wiesel and Hubel, 1963; Barkat et al., 2011). The

importance of NE in regulating neural development (Lovell, 1982;
Gustafson and Moore, 1987) is supported by studies that have
shown noradrenergic fibers developing prior to the emergence of
cortical neurons in the cerebral and cerebellar cortices (Lauder and
Bloom, 1974; Sievers et al., 1981; Kolk and Rakic, 2022). During
brain development, NE participates in the shaping and wiring of
the nervous system (Felten et al., 1982; Gustafson and Moore,
1987; Golovin and Ward, 2016) by creating an opportunity for
early life experiences to influence neuronal circuits and cause
permanent changes in performance (Herlenius and Lagercrantz,
2004). Early alterations in NE transmission have significant
implications for behavior, cognition, and mental health across the
lifespan. In rodents, for instance, modifications in the expression
of critical genes that regulate NE transmission during vulnerable
developmental stages can affect adult circuits involved in emotional
behavior, leading to the emergence of anxiety and depression-like
symptoms later in life (Schramm et al., 2001; Lähdesmäki et al.,
2002; Shishkina et al., 2002, 2004).

An increasing body of studies indicates that pupillometry has
the potential to serve as a biomarker for various neurological
and psychiatric conditions in both early development and adult
populations (Blaser et al., 2014; Frost et al., 2017; Chougule
et al., 2019; Iadanza et al., 2020; Winston et al., 2020; El
Ahmadieh et al., 2021). For example, the PLR in infancy can
predict the severity of autism spectrum disorders (ASDs) (Nyström
et al., 2018). In children with ASD, the degree of relative
constriction (but not latency) is associated with the extent of
sensory dysfunction (Nyström et al., 2018) and infants with
a high risk for ASD demonstrated larger PLR compared to
low-risk control infants with no family history of ASD. This
study shows a significant role of abnormal sensory processing
in the etiology of ASD, and proposes that measuring changes
in the size of the pupils may aid in identifying infants at
risk for ASD. Recent studies also suggest that pupil size may
be a potential biomarker for attentional states in individuals
with attention-deficit/hyperactivity disorder (ADHD), due to
the central role of the LC-NE system in regulating attention
(Wainstein et al., 2017). Pupil size variations have been found
to indicate alterations in performance during a visuospatial
working memory task, which is typically impaired in ADHD
patients (Wainstein et al., 2017). Additionally, changes in pupil
size have been observed during the presentation of attentionally
relevant cues, and have been shown to correlate with individual
performance variability and the administration of methylphenidate
(Wainstein et al., 2017).

The development of mouse models of neurodevelopmental
disorders is a crucial aspect for understanding the molecular and
cellular mechanisms involved in brain development, as well as
how genetic variance can impact the development of the CNS.
Animal models make it possible to study in depth the molecular
pathways involved in the pupillary alterations observed in patients.
In a recent study, Artoni et al. (2020) reported that mouse
models of idiopathic or monogenic ASD display a signature of
broadly distributed pupil sizes. Moreover, they have shown that in
cholinergic circuits the selective expression of MeCP2 could rescue
the pupillary deficit of MeCP2-deficient mice. Despite a direct
involvement of neuropathological changes of the LC-NE system
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in ASD remain controversial, there is numerous evidence that
supports the presence of autonomic dysregulation. Recently, we
assessed the presence of pupillary abnormalities in a mouse model
of cyclin-dependent kinase-like 5 (Cdkl5) deficiency disorder
(CDD), a severe neurodevelopmental disorder characterized by
early-onset seizures, intellectual disability, motor and cortical
visual impairment (Weaving et al., 2004; Moseley et al., 2012).
We found in both male and female mutant mice hyperactivity
associated with impairment in processes controlling general arousal
by measuring pupil size and locomotor behavior (Viglione et al.,
2022). We found that Cdkl5 mutants stay longer than wild-type
mice in a high arousal state characterized by a dilated pupil and
running, they also show alterations in pupillary response during
an orienting response visual task (Cohen and Douglas, 1972;
Harris et al., 1999; Boxhoorn et al., 2020). These data reveal a
global defect in arousal modulation in CDD mice opening to
further investigations about the role of NE in neurodevelopmental
disorders.

Conclusion

Pupil dilations have been associated with changes in
neuromodulatory signaling, specifically within the NE system,
which plays a critical role in regulating pupil diameter modulation
and visual cortical plasticity. Recent research suggests that
pupillometry is a promising technique for assessing residual
plasticity in both humans and mice. Furthermore, early
changes in NE transmission can have significant implications
for behavior, cognition, and mental health throughout the
lifespan. Pupillometry has the potential to serve as a biomarker
for various neurological and psychiatric disorders in both
early development and adult populations. The evaluation of
pupillary abnormalities in mouse models of neurodevelopmental
disorders indicates the potential involvement of NE in their
pathogenesis and highlights avenues for further investigation.
Recent advancements in pupillometry have facilitated the
measurement of pupillary responses using commercially available
eye trackers and open-source tools. The development of
pupillometry tools has also enabled measurements in freely
moving animals, allowing for research under more ecologically
relevant conditions while performing multiple physiological
recordings. The advancement of neuroscience techniques is
essential to expand our current knowledge on the LC-NE
system in plasticity and pupil size. Additionally, pupillometry
has demonstrated potential in telemedicine studies, allowing
for studies on how environmental factors affect pupil-
based biomarkers.
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