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A B S T R A C T 

Observations with radio arrays that target the 21-cm signal originating from the early Universe suffer from a variety of systematic 
effects. An important class of these is reflections and spurious couplings between antennas. We apply a Hamiltonian Monte 
Carlo sampler to the modelling and mitigation of these systematics in simulated Hydrogen Epoch of Reionization Array (HERA) 
data. This method allows us to form statistical uncertainty estimates for both our models and the reco v ered visibilities, which is 
an important ingredient in establishing robust upper limits on the epoch of reionization (EoR) power spectrum. In cases where 
the noise is large compared to the EoR signal, this approach can constrain the systematics well enough to mitigate them down to 

the noise level for both systematics studied. Incoherently averaging the recovered power spectra can further reduce the noise and 

impro v e reco v ery. Where the noise lev el is lower than the EoR, our modelling can mitigate the majority of the reflections and 

coupling with there being only a minor level of residual systematics. Our approach performs similarly to existing filtering/fitting 

techniques used in the HERA pipeline, but with the added benefit of rigorously propagating uncertainties. In all cases it does not 
significantly attenuate the underlying signal. 

Key words: methods: data analysis – methods: statisticals – techniques: interferometric – dark ages, reionization, first stars. 
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 I N T RO D U C T I O N  

he Hydrogen Epoch of Reionization Array (HERA) is an interfer- 
meter located in the Karoo desert in South Africa. It was purpose-
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uilt to detect the statistical fluctuations in the brightness temperature 
f the redshifted 21-cm radio emission from the epoch of reionization
EoR; DeBoer et al. 2017 ). This signal is emitted by neutral hydrogen
uring a period when the first stars and galaxies were formed and
egan to ionize the intergalactic medium (IGM). Depending on the 
odel, the EoR is expected to occur over a redshift of 6 � z � 10

Furlanetto, Oh & Briggs 2006 ; Liu & Shaw 2020 ). Measuring the
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Figure 1. An illustration of the sources of the cable reflections and cross-coupling systematics in HERA. Antennas are connected via coaxial cables to housings 
next to the array. The solid blue line travelling towards the antenna denotes the reflecting signal in the cable, with the dashed blue line indicating the copy which 
is added to the o v erall data stream. The red solid line denotes the source of the cross-coupling. The sky signal measured by antenna 1 travels down the signal 
chain to the equipment in the housing, thereafter to a faulty connection point which was the likely source of the broadcasting signal. Antenna 2 picks up this 
broadcasted signal, resulting in a copy of antenna 1’s autocorrelation being added to antenna 2’s visibility. 
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patial and temporal evolution of this signal promises to greatly
mpro v e our understanding of the first gravitationally bound objects
ormed in the Universe, as well as their surrounding environment
Ewall-Wice et al. 2016a ; Kern et al. 2017 ). A number of other
 xperiments hav e also attempted to measure this 21-cm signal,
ncluding the Donald C. Backer Precision Array for Probing the
poch of Reionization (PAPER; Parsons et al. 2010 ; Kolopanis et al.
019 ), the Giant Meter Wave Radio Telescope (Swarup et al. 1991 ;
aciga et al. 2013 ), the Low Frequency Array (van Haarlem et al.
013 ; Mertens et al. 2020 ), the Long Wavelength Array (Eastwood
t al. 2019 ; Garsden et al. 2021 ), and the Murchison Widefield Array
MWA; Tingay et al. 2013 ; Rahimi et al. 2021 ). 

Recently, the upper limits on the EoR power spectrum at z = 7 . 9
nd z = 10 . 4 have been lowered to their most sensitive yet using
ERA Phase I data (The HERA Collaboration 2023 ), obtained by
bserving o v er 94 nights with 35 to 41 antennas. These limits are
n impro v ement of o v er a factor of 2 compared to the results in Ab-
urashidova et al. ( 2022b ). At z = 7 . 9, the upper limit on the power
pectrum has been placed at � 

2 ( k = 0 . 34 h Mpc −1 ) ≤ 457 mK 

2 ,
nd � 

2 ( k = 0 . 36 h Mpc −1 ) ≤ 3496 mK 

2 at z = 10 . 4. Using analysis
ethods from Abdurashidova et al. ( 2022a ), this allowed for a

umber of inferences on early-Universe properties and models.
 or e xample, the results suggest that the IGM had to be at least
lightly heated prior to reionization. This is contrary to what ‘cold-
eionization’ models propose, which is a much cooler IGM before
he majority of reionization occurs. It is expected that high-mass X-
ay binaries (HMXBs) are the primary source of this heating (Fragos
t al. 2013 ). HERA’s newest results agree best with low-metallicity
MXB models, as opposed to the high-metallicity counterparts. 
The data modelled here correspond to HERA Phase I, where

bservations were carried out with 35 to 41 antennas, and which
epurposed PAPER’s dipoles, correlator, and signal chains (The
ERA Collaboration 2023 ). A fully constructed Phase II array will

onsist of 350 dishes, replaces the correlator and signal chain, and
as Vi v aldi feeds which increase the observing bandwidth (Fagnoni
t al. 2021 ). This should result in more sensitive upper limits, and
mpro v ed constraints on early-Universe models, with the ultimate
oal being a direct detection of the EoR 21-cm signal. Forecasts
uggest that a fully constructed HERA should be sensitive enough
o make a � 30 σ detection of the EoR power spectrum when using
ven fairly basic analysis techniques. More sophisticated analysis
NRAS 534, 2653–2673 (2024) 
fore ground remo val, for e xample) could see an ev en greater increase
n sensitivity (Pober et al. 2014 ). 

Ho we ver, gi ven the faintness of the 21-cm signal, and by ex-
ension the sensitivity required for measurement, a great deal of
ork has been put into understanding the effects of performance-

imiting effects. Examples include radio frequency interference (RFI;
ilensky et al. 2020 ), errors in redundant calibration (Byrne et al.

019 ; Orosz et al. 2019 ), the effects of data flagging and in-painting
Offringa, Mertens & Koopmans 2019 ; Pagano et al. 2023 ), and
bsolute calibration errors (Kern et al. 2020b ). These, as well as
ther effects, can result in a loss of the 21-cm signal if not fully
ccounted for. For the analysis pipeline of The HERA Collaboration
 2023 ), redundant-baseline averaging results in a 1.9 per cent and
.4 per cent signal loss in frequency bands 1 and 2, respectively,
ue to slight non-redundancies and the corresponding decoherences.
edundant time averaging results in an additional 1.2 per cent and
.5 per cent signal loss due to the slight differences in sky signal
etween integrations. 

Most rele v ant to this work, ho we ver, is the ef fect of internal
nstrument coupling. Fig. 1 shows a schematic of the systematics
n HERA Phase I which are rele v ant to this work. As it is defined
n Kern et al. ( 2019 ), these systematics are signal chain reflections,
nd antenna cross-coupling. Reflections result from a portion of
he measured signal being reflected at either end of the coaxial
ables connecting the various components in the array, for example
he connections between antennas and correlators and/or digitizers.
able wear can also result in multiple reflections as a signal travels
long the cable, which is referred to as subreflections. In order to
o v e the reflection systematic towards higher delay modes (away

rom those of scientific interest), HERA Phase II lengthens the
onnection between the front end module (FEM) and post amplifier
odule (PAM) with a 500 m fibre cable (Berkhout et al. 2024 ). 
In 21-cm experiments, multiple systematics exist which act to

ouple antennas to one another, for example stray capacitance be-
ween adjacent wires, and o v er-the-air antenna-to-antenna reflections
mutual coupling, Josaitis et al. 2022 ). In this work, ho we ver, we
ocus only on the form of coupling seen in HERA Phase I, referred
o as cross-coupling. This systematic was hypothesized to be a
esult of signals originating from a leaking connection point. This
nintentionally broadcast voltages measured by the receivers, which
re then received again by the antennas, resulting in copies of the
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ata being added to the o v erall data stream. Ho we ver, the equipment
esponsible for this particular systematic is no longer in use, and so
his systematic is not present in recent data (The HERA Collaboration
023 ). Nevertheless, demonstrating that signal chain systematics 
uch as this can be modelled with a Bayesian approach is useful
or future Phase II observations. 

While foregrounds (mainly Milky Way emission) are up to 10 5 

imes stronger than the EoR signal in observations, they are ideally 
onfined to the so-called foreground wedge, leaving a foreground- 
ree window (Parsons et al. 2012a , b ; Vedantham, Shankar &
ubrahman yan 2012 ; Liu, P arsons & Trott 2014a , b ). Ho we ver,

hese systematics spread the foreground signal into the window, 
 v erwhelming the EoR signal. The aim is to model these systematics
o that they can be remo v ed from the observational data, allowing
or a reco v ery of the underlying EoR signal. 

For the systematics of interest in this work, the current removal 
trate gies hav e been sho wn to be ef fecti ve. K ern et al. ( 2019 ) model
nd simulate reflections and cross-coupling in 21-cm observations 
nd demonstrate associated removal strategies. They find that, in 
ealistic cases where there are many nearly o v erlapping systematics
n a single visibility, it is possible to mitigate these features while
 v oiding any significant attenuation of the underlying 21-cm signal. 
n Kern et al. ( 2020a ), these methods are applied to early HERA
hase I data (DeBoer et al. 2017 ), and are capable of reco v ering
ignal down to the noise floor. These methods for reflection and 
ross-coupling removal are still in use for the latest data (The HERA
ollaboration 2023 ). 
This paper aims to extend on the current systematic mitigation 

echniques by modelling them in a Bayesian framework, which 
aturally provides a measure of the statistical uncertainty. The 
ntention is that these uncertainties will be propagated into results 
urther down the analysis chain, providing a level of confidence that 
oR signal has not been inadvertently attenuated in observational 
ata and rigorously reflecting the additional uncertainties on the 
eco v ered signal arising from the systematics removal procedure. 

The paper is organized as follows: Section 2 describes the 
ystematics of interest in this work, and how they are currently 
emo v ed from observational data. Section 3 details the data used, and
he characteristics of the systematics added, and Section 4 discusses 
ur foreground model, Monte Carlo sampler set-up, the systematics 
ubtraction method, and the signal loss metric. Section 5 presents the 
esults, and Section 6 summarizes the work. 

 SYSTEMATIC  EFFECTS  

hree systematics present in the HERA Phase I instrument are 
odelled in this work. These are cable reflections, cable subreflec- 

ions, and cross-coupling arising from a leaking connection point. 
hese particular systematics have been modelled in previous works, 
amely Kern et al. ( 2019 ) and Aguirre et al. ( 2022 ), and so have
quations which describe their expected form in observational data. 
s detailed in Kern et al. ( 2019 ) and Kern et al. ( 2020a ), these

ystematics are also expected to be essentially time-stable. Cross- 
oupling systematics vary of the order of around 1 h, and so can
e treated as having constant amplitudes in HERA analysis which 
ime-averages visibilities to a cadence of 21.4 s prior to systematics
emoval (The HERA Collaboration 2023 ). The cross-coupling delays 
dependent on the antenna positions) and phases are not expected to 
e time-varying. 
While the conditions which give rise to reflections are unchanging, 

or example the length of the cables, these systematics are expected 
o vary slightly as a function of the foregrounds. Ho we ver, for the
ime-averaging cadences used in HERA analyses, reflections are also 
reated as time-stable. This, and the fact that these systematics can
ll be described by only three free parameters per individual feature,
eans that they lend themselves well to forward-modelling. Fig. 1 

rovides a diagrammatic description of the sources of these cable 
eflections and cross-coupling. 

All the considered systematics insert copies of observed signals 
nto the data, but at regions in Fourier space where they are not
ormally found. The foregrounds dominate these copies, and are 
he primary components which o v erwhelm the 21-cm signal. The
oR signal itself and the internal instrument coupling systematics 
lready present in the signal chain are copied as well, but these have
mplitudes weaker than the 21-cm signal, and so are not a concern
s they are second-order effects. While the systematics amplitudes 
an be up to six orders of magnitude smaller than the foreground
eak (for the power spectra in this paper), even this is enough
o o v erwhelm the 21-cm signal in regions of Fourier space which
re of most interest. This contamination of ideally foreground-free 
egions violates HERA’s foreground a v oidance strategy (Kerrigan 
t al. 2018 ; Morales et al. 2018 ), which attempts to localize all
oregrounds to the foreground wedge. Furthermore, poor attempts to 
emo v e these systematics and reco v er the true sky signal can result
n an o v ersubtraction, attenuating the already weak 21-cm power
pectrum. 

A number of radio and 21-cm experiments have been impacted by
imilar systematics, necessitating a thorough understanding of their 
ources and mitigation. In particular, early MWA data suffered from 

able reflection systematics which limited its sensitivity to the 21-cm 

ignal from the epoch of X-ray heating at a redshift of 12 � z � 18
Ewall-Wice et al. 2016b ), and the EoR ( z = 7 . 1; Beardsley et al.
016 ). By including a reflection term into the gain solutions, it was
ossible to mitigate these reflections (Jacobs et al. 2016 ). 
The low-frequency components of the Square Kilometre Array 

SKA1-Low) were designed with mutual coupling in mind. Mutual 
oupling refers to an o v er-the-air, antenna-to-antenna reflection 
ffect, and it is expected that HERA will suffer from this systematic
n future (see Section 2.3 ). Despite the fact that the level of mutual
oupling is expected to be higher for the SKA than for HERA, its
ffects in the SKA are reduced when the data are averaged by placing
he antennas in pseudo-random positions (de Lera Acedo et al. 2017 ).
evertheless, it is still expected to be a concern in future SKA1-Low
bservations, for example at the calibration step (Borg et al. 2020 ). 
The visibility measured by a baseline ( b ) formed by two antennas,

nd for a given frequency ( ν), is 

 ( b , ν) = 

∫ 
d 2 θ T( θθθ, ν) A p ( θθθ, ν)e −i2 πb ·θθθ/λ, (1) 

here T( θθθ ) is the sky brightness temperature, A p ( θθθ) the primary
eam, θθθ the coordinates on the sky in the flat-sky approximation, 
here θθθ ≡ ( θx , θy ), and λ is the wavelength of the radiation mea-

ured. Most rele v ant is the Fourier transform (or delay transform) of
his visibility: 

˜ 
 b ( τ ) ≡

∫ 
d νV ( ν) φ( ν)e −i 2 πντ , (2) 

here the delay ( τ ) is the Fourier dual of frequency and has units of
ime, and φ( ν) is a tapering function (Liu & Shaw 2020 ). 

The delay quantity is of interest in this work as rele v ant signal
hain systematics create copies of incoming radiation which arrives 
fter the primary radiation signal. This time delay of the systematics
s dependent on the geometry of the array, for example the lengths
f the connecting cables, or the distance between antennas. 
MNRAS 534, 2653–2673 (2024) 
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Figure 2. Left: an example of a cable reflection in an autocorrelation power spectrum. The true spectrum is the blue solid line, and the corrupted spectrum is 
the orange dashed line. The cable reflection was simulated with a delay of 700 ns and a relative amplitude of 5 × 10 −3 . The delay ( τ ) is the Fourier dual of 
frequency. Middle: a demonstration of 10 subreflections inserted (non-uniformly) between 200 and 1000 ns , with amplitudes ranging from 10 −3 to 10 −4 , for 
an autocorrelation power spectrum. Right: an example of five cross-coupling peaks added to a cross-correlation power spectrum, inserted at 900 –1300 ns , with 
relative amplitudes ranging from 10 −4 to 10 −6 . 
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.1 Cable reflections 

ig. 1 demonstrates the source of cable reflections with blue arrows.
ollowing signal collection by an HERA antenna, signal should

deally trav el a way from said antenna and towards the amplifiers,
igitizers, correlators, etc. Instead, a portion of this signal reflects at
he end of the connecting cable, travels back towards the antenna,
eflects again (blue dashed arrow), and is finally added to the o v erall
ata stream. This can occur for each cable connecting an antenna. 
This reflected signal’s amplitude is lower than the incident signal,

as a possible phase shift, and is delayed in time. This delay is equal
o twice the cable length divided by the speed of light in the cable.
ig. 2 (left) demonstrates the effect of a single cable reflection with
rbitrary amplitude and delay in a simulated autocorrelation power
pectrum. The true data contain only foregrounds and the EoR, but
he reflection systematic adds a copy of this power spectrum at higher
elays. While the po wer le vel of this copy is significantly lower than
hat of the true data, the relative strength of the foregrounds result in
his nevertheless overwhelming the EoR signal. 

As presented in Kern et al. ( 2019 ), reflections can be described
ith a coupling coefficient. In this case, reflections couple signals
ith themselves: 

11 ( ν) = A 11 e 
2 π i τ11 ν+ i φ11 . (3) 

ere, A refers to the relative amplitude of the reflection in comparison
o the foreground peak of the corrupted visibility, τ is its time delay,
nd φ is its phase offset, all for antenna 1. A reflection-corrupted
ross-correlation visibility can be described as 

 

′ 
12 = v 1 v 

∗
2 + ε11 v 1 v 

∗
2 + v 1 ε

∗
22 v 

∗
2 + ε11 v 1 ε

∗
22 v 

∗
2 , (4) 

here the first term is the fiducial cross-correlation visibility formed
y each antenna’s respective voltage spectrum. The second and third
erms are copies of this visibility, arising from antenna 1 (at positive
elays) and antenna 2 (at ne gativ e delays), respectiv ely. The final term
s a second-order effect. Depending on the strength of the coupling
oefficient, this may produce an additional non-negligible systematic
eature at higher delays, or it could result in a systematic which is
eaker than the 21-cm signal. 
For the systematics simulated in this work, first-order reflections

egin at 200 ns. With relative amplitudes of ∼ 10 −3 (in visibility-
pace), second-order reflections would begin at 400 ns, and would
e slightly stronger than the foregrounds and signal. Similar can
NRAS 534, 2653–2673 (2024) 
e said of the power of the second-order coupling systematics. It
 ould be f airly straightforw ard to include second-order reflections,

s the delays are simply dependent on both antenna one and antenna
wo’s cable lengths, and the relative amplitudes would be the product
f A 11 and A 22 . Ho we ver, noise and imperfect knowledge of the
nstrument would complicate matters, so distinct parameters for
rst- and second-order effects would possibly be required. It is
ertainly feasible, though, to use the model estimates for the first-
rder systematics to estimate the second-order parameters, rather
han sampling for the latter. At the very least the relation between the
ifferent orders can be used to inform the priors. We opt to neglect the
econd-order terms, ho we ver, in order to a v oid additional parameters
n an already high-dimensional model. 

Reflections produce a similar effect in the autocorrelations, but
nstead only add visibility copies of the singular antenna in question, 

 

′ 
11 = v 1 v 

∗
1 + ε11 v 1 v 

∗
1 + v 1 ε

∗
11 v 

∗
1 + | ε11 | 2 v 1 v ∗1 . (5) 

ere, copies of the same autocorrelation visibility are added at both
ositive and negative delays. 
Following the description of Aguirre et al. ( 2022 ), the total effect

f M cable reflections in a particular signal chain are modelled as the
roduct of the respective gain terms, 

˜  a = 

M ∏ 

j 

(1 + A a,j e 
i 2 πντa,j + i φa,j ) . (6) 

Here, antenna a is corrupted by M reflections. Gain terms account
or unintended variations in phase and amplitude introduced by the
ignal chain between the antenna and correlator (Kern et al. 2019 ).
n this case, it can be used to correct for the excess amplitude and
hase shifts produced by cable reflections. 
For a given uncorrupted visibility, the reflection gains are applied

ith 

 

refl
apbq,t = ˜ g a ̃  g ∗b V apbq,t , (7) 

here V apbq,t is the true visibility (Aguirre et al. 2022 ). This refers
o the visibility formed by antennas a and b, with feeds p and q,
espectively, across an integration time of t . 

Since reflections couple signals with themselves, and autocorrela-
ions have no imaginary component, in delay-space this systematic
s symmetric around τ = 0. This is not necessarily the case for the
ross-correlations, as the two first-order terms in equation ( 4 ) differ
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y their coupling coefficients, ε. For each coefficient, the specific 
mplitudes, delays, and phases can, in turn, differ for each antenna, 
esulting in distinct features on either side of τ = 0. 

.2 Cable subreflections 

mperfections, wear, and damage to connecting cables can result in 
dditional copies of a signal being added to the data stream. In this
ase, copies are made of a signal as it travels along the cable, rather
han being a result of reflections at either end (Kern et al. 2020a ).
hese subreflections are once again modelled as reflection terms 

i.e. using equations 6 and 7 ), but are more numerous, have lower
mplitudes, and are spread across a range of delays. These, too, are a
er-antenna effect. Fig. 2 (middle) provides an example of how these 
ubreflections affect an autocorrelation power spectrum. 

.3 Cross-coupling 

ross-coupling has multiple sources, but for the purposes here, we 
ocus on o v er-the-air effects. This includes the systematic present 
n HERA Phase I, which was a faulty connection point, as well
s mutual coupling wherein signal from the sky is reflected by one
ntenna and is in turn measured by another. This, again, adds copies of
isibilities to the data stream. In the simplistic, two-antenna regime, 
he interferometric visibility has autocorrelations from both antennas 
dded, as well as a copy of the cross-correlation (although this is a
econd-order term). As described in Kern et al. ( 2019 ), the corrupted
ross-correlation of antennas 1 and 2 (denoted by V 

′ ) is 

 

′ 
12 = v 1 v 

∗
2 + v 1 ε

∗
12 v 

∗
1 + ε21 v 2 v 

∗
2 + ε21 v 2 ε

∗
12 v 

∗
1 . (8) 

he first term is simply the uncorrupted cross-correlation. The 
econd and third terms are the autocorrelations for antennas 1 and 2,
espectively, both multiplied by the associated coupling coefficient. 
or ε12 , this describes the amplitude and delay of antenna 2’s voltage
hen coupled with antenna 1’s voltage. The fourth term is the second-
rder effect which can be neglected. 
Kern et al. ( 2019 ) model ε as a type of reflection systematic, for

implicity. As with reflections, the second term of equation ( 8 ) states
hat antenna 1’s autocorrelation is copied at positive delays in V 

′ 
12 ,

hile the third term is that of antenna 2, copied at ne gativ e delays. 
Autocorrelation data suffer from cross-coupling systematics as 

ell. From Kern et al. ( 2019 ), the corrupted autocorrelation visibility
f antenna 1 is 

 

′ 
11 = v 1 v 

∗
1 + v 1 ε

∗
21 v 

∗
2 + ε21 v 2 v 

∗
1 + | ε21 | 2 v 2 v ∗2 . (9) 

ere, the leading-order terms contain a copy of the cross-correlation 
etween antennas 1 and 2, while the copied autocorrelation of 
ntenna 2 is of second order. Ho we ver, cross-correlations are 
ypically lower in power than the corresponding autocorrelations. 

ith the additional amplitude suppression from ε21 and ε12 , this 
esults in cross-coupling systematics being significantly weaker in 
utocorrelations. 

Hence, to first order, cross-coupling adds copies of the autocorre- 
ations to the cross-correlation visibilities, and copies of the cross- 
orrelations to the autocorrelations. 

Fig. 2 (right) provides a demonstration for this final systematic 
n a cross-correlation power spectrum. The appearance would look 
imilar in an autocorrelation, although the dynamic range between 
he foregrounds and cross-coupling peaks would be larger. 

The second possible source of cross-coupling is capacitive 
rosstalk, wherein signal chains in close proximity to one another 
nteract electromagnetically, inducing voltages. This systematic can 
e mitigated at the hardware level (Chaudhari et al. 2017 ), and so
his source of coupling is not a concern in the current analysis, nor
n Kern et al. ( 2019 ), Kern et al. ( 2020a ), or Aguirre et al. ( 2022 ). 

In HERA Phase I observational data, mutual coupling (the 
ntenna-to-antenna reflections) was not of major concern, either. 
s was detailed previously, coupling systematics in Phase I were 

ttributed to a leaking connection point, which broadcast the voltage 
ignals of antennas in the array, and which were in turn measured
gain by the antennas (The HERA Collaboration 2023 ). This has
ince been fixed, so this particular source is no longer an issue.
o we ver, with an increase in the number of antennas as HERA
ears completion, as well as the introduction of Vi v aldi feeds for
hese antennas, mutual coupling considerations will become more 
mportant. This is due to the dishes only being spaced 60 cm from
ne another, and these new feeds having no cages surrounding 
hem which would otherwise limit this particular systematic effect 
Fagnoni et al. 2021 ; Josaitis et al. 2022 ). 

Whether cross-coupling spectra undergo cable reflections or not 
epends on where in the signal chain these effects occur, but reflected
ross-coupling is generally considered to be of a low enough order
hat it is expected to be below the noise level. In Aguirre et al. ( 2022 ),
he cross-coupling model is written as 

 

cc 
apbq,t = V 

refl
a pa p,t 

⎛ 

⎝ 

N ∑ 

j 

A 

d,j 

apbq exp 
(
i 2 πντ

d,j 

apbq + i φ
d,j 

apbq 

)⎞ 

⎠ 

d� t 

, (10) 

here N is the number of cross-coupling peaks present in the
isibility, and the free parameters are the amplitude (A), delay ( τ ),
nd phase ( φ). V 

cc 
apbq,t is the cross-coupling spectrum which corrupts

he true data, and V 

refl
a pa p,t is the copied autocorrelation which may

ossibly already contain cable reflection systematics. As with the 
eflections, the indices p and q refer to the feeds of antennas a 
nd b, respectively, and t the integration time. Since cross-coupling 
s expected to be time-stable over a night of observation, d refers
o a particular day. Equation ( 10 ) only includes the cross-coupling
ontribution from antenna a, which is located at positive delays. As
ith all systematics analysis in this work, we only focus on those at
> 0. 
This coupling visibility is added to the cross-correlation as 

˜ 
 

corrupt 
apbq,t = V 

refl
apbq,t + 

{
V 

cc 
apbq,t a �= b 

0 a = b 
. (11) 

 

refl
apbq,t is the coupling-free cross-correlation, which possibly contains 

eflection systematics. V 

cc 
apbq,t is only added in the case of antenna

 �= b, i.e. an antenna cannot couple with itself. 
The phases of the cross-coupling features are arbitrarily set by 

he coupling coefficient, ε, but are time-stable. The cross-coupling 
elays are also unchanging, with only the amplitudes changing as 
 function of the autocorrelation amplitudes. These, in turn, vary 
s a function of the beam crossing, which is around 1 h for HERA
Kern et al. 2019 ). For the 21.4 s cadence of HERA’s redundant time
veraging (which occurs prior to systematic removal; The HERA 

ollaboration 2023 ), cross-coupling can essentially be seen as being 
ime-stable o v erall for the purposes of modelling and mitigation. 

.4 Current mitigation methods 

ollo wing their modelling, K ern et al. ( 2019 ) calibrate simulated data
n order to reco v er the underlying signal. For the cable reflections,
he coupling coefficient (equation 3 ) of each individual reflection 
eak is solved for. 
MNRAS 534, 2653–2673 (2024) 
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The delay of the peak of the reflection ( τpeak ) is estimated in delay
pace via quadratic interpolation, where an initial estimate of the peak
s found by comparing the visibility amplitude at a particular delay
o the amplitudes at adjacent delays. The delay corresponding to the
reatest power is taken as the location of the peak. The amplitude of
he reflection peak (A) is then estimated by the ratio of the visibility
t τpeak and the visibility at τ = 0 (the foreground peak): 

 11 = 

| ̃  V ( τ = τpeak ) | 
| ̃  V ( τ = 0) | . (12) 

his reflection is then isolated by zeroing visibility modes on either
ide of this peak in order to obtain the filtered visibility V filt . The
hase is estimated by adjusting φ ∈ [0 , 2 π ) in order to minimize
he quantity | V filt − A exp (i2 πντ + i φ) | 2 . This provides estimates of
ll three parameters: A, τ , and φ. These estimates are then adjusted
ith a non-linear optimization method where they are continuously
erturbed, and the reflections are iteratively calibrated out of the data
sing these perturbed values until the reflection peaks are minimized
s much as possible. 

Kern et al. ( 2019 ) remo v e cross-coupling with a singular value
ecomposition (SVD) approach. In delay space, an SVD is applied to
he cross-correlation visibilities after downweighting the foregrounds
n order to maximize the contributions from the coupling systematics.

In essence, this method acts as a decomposition of the matrix
˜ 
 = TSD 

† . The matrix T contains the basis vectors across time, D
he basis vectors across frequency, and S the eigenvalues. 

The first few dominant modes following the SVD are chosen to
escribe the coupling. The eigenvalues, S , along with the correspond-
ng eigenmodes, T and D , are used to form a cross-coupling model.
his model is then subtracted from the data in order to reco v er the
nderlying visibility. 
To impro v e the resistance to signal loss, the T modes are low-

ass filtered, with a Gaussian process regression filter providing the
est results. This ensures that only low-fringe-rate modes (where the
oupling systematic is predominantly located) undergo subtraction,
hile the signal itself dominates high fringe rates. 
This could not be immediately replicated with our method as

e do not form similar modes in our model. We instead form
odel visibilities which are compared to the mock data. The closest

pproximation would be, for multiple integrations, to filter our
odel cross-coupling-only visibilities across time, and using these

o subtract this systematic from the mock data. This would possibly
liminate high-fringe-rate structure in our coupling model, as it does
n Kern et al.’s ( 2019 ) method. However, our intent is to assess
he viability of forward-modelling the systematics on a per-antenna,
er-time-inte gration basis, without an y additional filtering, SVD
pproaches, etc. 

In the single cable reflection regime (where there is only one
eflection peak, or peaks are clearly spaced out in delay), the
lgorithm of Kern et al. ( 2019 ) is capable of ef fecti vely suppressing
he reflection with almost no signal loss. In this single-reflection
egime, approximately 2 per cent of the foreground and EoR signal
s lost in reflection calibration. The signal loss metric is a ratio
etween the reco v ered power spectrum and the true power spectrum
s a function of delay. Wherever this ratio is < 1 is considered a
oss. This metric is calculated using an ensemble average of many
ealizations of a sky signal, and this value of 2 per cent is within the
 

− 1 
2 sample variance of the average. In other words, this calibration

oes not significantly attenuate the true sky signal. 
In the multireflection regime (when there are multiple reflections

resent, but they are widely distributed in delay space and do not
NRAS 534, 2653–2673 (2024) 
 v erlap), the algorithm can once again suppress the reflections with
ome signal loss in the autocorrelations. When this calibration is
pplied to the cross-correlations, there is essentially no signal loss
determined by plots of the signal loss metric as a function of delay).

Ho we ver, the reflections cannot be completely calibrated out
hen there is a significant number of almost o v erlapping peaks,

eaving non-negligible residual reflections. In the autocorrelation
ower spectrum, the reflections can only be suppressed by around
our magnitudes out of the required ∼ 10 (for Kern et al.’s 2019
xample). When these results are applied to the corresponding cross-
orrelations, this corresponds to a suppression of around four orders
f magnitude, where around six is needed. This is due to the confusion
etween individual systematics, which makes it difficult to discern
here individual peaks start and end, which in turn makes them
ifficult to model and calibrate out. Despite the lack of complete
eflection mitigation, there are again no significant levels of signal
oss in the cross-correlations. 

For cross-coupling, shorter cross-correlation baselines show some
esistance to systematics remo val. F or the shortest baseline (15 m
ast–west in Kern et al.’s 2019 example), the cross-coupling can
e mitigated, but the highest amplitude peaks leave approximately
 per cent too much po wer. Ho we ver, there is no significant signal
oss. There is better performance in longer baselines (29 m east–
est), as cross-coupling is more separated from the EoR signal in

ringe-rate space. While the systematic can again not be remo v ed
ompletely, especially the strongest features, there is about four
rders of magnitude impro v ement o v er the short baseline. Overall,
ny signal loss produced by Kern et al.’s ( 2019 ) cross-coupling
emoval is of the order of ∼ 1 per cent . 

These methods were applied to early HERA Phase I data (DeBoer
t al. 2017 ) in Kern et al. ( 2020a ). This consisted of a single 8 h
ight’s worth of data, recorded with 46 antennas. Reflections in
ndividual antennas arose from a 150 m cable connected to a post-
mplifier module, followed by a 20 m cable connected to a digitizer.
hese data were also subject to the coupling systematics described in
ection 2 . A ‘systematic tail’ was also observed, which was attributed

o possible subreflections. In addition to cross-coupling, Kern et al.
 2020a ) were able to mitigate these systematics down to the noise
oor in the power spectrum. 
The HERA Collaboration ( 2023 ) provides lowered upper limits

n the EoR power spectrum using 94 nights’ worth of Phase I
bservations, and again employs these mitigation methods for the
eflection and cross-coupling systematics, albeit with a number of
hanges to the application. In particular, it was found that the structure
f the cross-coupling changed as the array grew, while Kern et al.’s
 2019 ) method assumes stability. To account for this, the cross-
oupling and reflection calibrations were carried out on a per-epoch
asis, where an epoch is a period of observing runs uninterrupted by
hanges to the array, or malfunctions, for example. Additionally, the
et-up of the calibrations were changed to better suit the newer data.
 or e xample, the number of terms used in the reflection fitting was

ncreased to account for newer and longer cables, and the number of
elay modes used in the cross-coupling modelling was increased in
rder to impro v e the residuals. 

 SIMULA  TED  DA  TA  

his work uses the HERA Validation simulations (Aguirre et al.
022 ), which include simulated point source and diffuse foregrounds,
s well as simulated EoR signals. This data set was used to validate
he software pipeline used in Abdurashidova et al. ( 2022b ). We added
ystematics and instrumental bandpass gains to uncorrupted data sets
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ith HERA SIM . 1 The bandpass gains are randomly generated on a
er-antenna basis, and as a function of frequency. Starting with the 
efault HERA H1C bandpass in HERA SIM , randomized white noise 
ultiplied by a spread factor (10 per cent being the default) is then

dded. This spread factor is the standard deviation of the randomized 
ains from antenna to antenna, i.e. across all antennas in the array,
he generated bandpass gains vary by up to a factor of 0.1. 

These bandpass gains were not calibrated out, as we intend to 
ollow the general approach of Kern et al. ( 2019 ) and Kern et al.
 2020a ) as closely as possible. The methods presented in Kern et al.
 2019 ) make no assumption on whether instrumental bandpass has 
een corrected for, and Kern et al. ( 2020a ) apply these methods
o observational HERA data that contained bandpass. The authors 
o state, ho we ver, that bandpass calibration could lead to better
efined systematics in delay space, which would in turn impro v e
heir modelling and mitigation. Our bandpass is smooth as a function 
f frequency, and so should not adversely affect modelling to any 
ignificant degree. 

Throughout this work, then, the ‘true’ visibilities and power spec- 
ra we intend to reco v er contain foregrounds, signal, and bandpass. 

The Validation simulations consist of 1024 frequency channels 
o v ering 100–200 MHz. Only 512 frequency channels out of the total
024 are used in this work, to account for any possible trimming of
bservational data due to RFI, for example, and to a v oid requiring an
 xcessiv e number of model parameters. Maintaining 512 channels 
hould ensure that there are more data points than parameters in 
ur model. In total, our foreground and systematics models amount 
o ∼ 100 parameters. A detailed discussion is given in Section 4 .
deally, one would prefer even more observational data points in 
rder to help constrain these parameters, but 512 is a fair compromise
etween modelling performance and real-world considerations. 

In this work, true foreground and EoR visibilities are taken from
he validation data to construct the corresponding models, as well as
ur mock data which consist of the total foreground + EoR visibility
ontaminated by systematics and noise. Our noise estimates are also 
ormed with these data. 

Using HERA SIM , parameters similar to those in Aguirre et al.
 2022 ) were used to generate the systematics in our data. Aguirre et al.
 2022 ) simulated systematics matching those seen in the analysis of
ern et al. ( 2020a ). 
With reference to equation ( 6 ), there are two high-amplitude 

able reflections located at delays ( τ ) of 200 and 1200 ns, with
elative amplitudes (A) of 3 × 10 −3 and 8 × 10 −4 , respectively. In
he simulations, the delays are randomized to within 10 and 30 ns,
espectively, and the amplitudes are randomized to within 1 per cent. 
he phases ( φ) are randomized in the range [ −π, π ). 
20 cable subreflections are added, again using equation ( 6 ).

nitially, the y are ev enly spaced within the delay range 200–1000 ns,
ut are then randomized to within 30 ns. Relative amplitudes ranged 
rom 10 −3 to 10 −4 with a randomization within 1 per cent. Phases
re again randomized within [ −π, π ). 

Reflections appear at both positive and negative delays. They 
re symmetric in delay for autocorrelations, as the autocorrelations 
hemselves are fully real and this systematic couples antennas 
ith themselv es. The y are not necessarily symmetric in the cross-

orrelations, as these visibilities are formed from two antennas whose 
pecific signal chain characteristics might differ, for example slightly 
ifferent cable lengths or subreflection behaviour. We do, however, 
nly focus the analysis on positive delays for simplicity. 
 https:// github.com/ HERA-Team/ hera sim 

2

Finally, in keeping with equation ( 10 ), 10 cross-coupling spectra
re added uniformly between delays ( τ ) of 900–1300 ns, thereafter
andomized within 20 ns. Relative amplitudes (A) range from 

0 −4 to 10 −6 , randomized to within 0.01 per cent of the initial
alue. Phases ( φ) are randomized in the same manner as before.
gain, we only focus on positive delays. As it was observed and
itigated in the cross-correlations of HERA Phase I data (Kern et al.

020a ), ho we ver, cross-coupling was not symmetric, with there being
lear asymmetries between the positive and ne gativ e delay coupling
eaks. It was determined that antenna i contributed to the structure
t ne gativ e delays in the cross-correlations V ij , while antenna j 
ontributed to positive delays. The delays were a function of the
istance between the leaking connection point and the antenna, and 
he amplitudes a function of how much a surrounding antenna’s 
ignal was being broadcast, as well as the distance it had to travel to
he antenna in question. 

All these systematics are assumed to be time stable. The work
ere focuses on the shortest east–west baseline ( ∼ 14 . 7 m) which
s more susceptible to EoR signal loss when mitigating systematics 
han longer baselines. This is due to the o v erlap between the EoR
nd cross-coupling systematics in fringe-rate space. Cross-coupling 
ccupies lower fringe-rates as it varies slowly, and o v erwhelms a
ortion of the EoR. Shorter baselines suffer most from this, as the
oR occupies lower fringe-rates in this regime. As the baseline length 

ncreases, the EoR mo v es towards higher fringe-rates and away
rom this systematic (in turn making systematic mitigation without 
ignal loss easier). Moving from east–west baselines to north–
outh complicates this, ho we v er, as the EoR mo v es back towards
ower fringe-rates occupied by cross-coupling. For these north–south 
aselines, cross-coupling occupies all of the same fringe-rate modes 
s the EoR, possibly making mitigation of this systematic impractical 
ithout any significant signal loss (Kern et al. 2019 ). 

 M O D E L L I N G  

his section details the modelling of the foregrounds and EoR 

ignals, as well as the set-up of the Bayesian model estimation
roblem and model. 2 

.1 For egr ound model 

n order to a v oid ha ving to model observ ed fore grounds to high
recision, HERA uses a foreground-a v oidance technique in its 
bserv ations (K errigan et al. 2018 ; Morales et al. 2018 ), which aims
o retain only the Fourier modes outside of the foreground wedge, i.e.
egions where the foregrounds are less dominant. This foreground 
edge is typically defined in 2D Fourier space – the plane formed by
 ‖ and k ⊥ 

, where the former is dependent on the spectral resolution
nd bandwidth of the array, and the latter on the baseline distribution.
o we ver, in this work, an assumed foreground model is required,
oth to construct the visibilities, and to simulate the systematics 
hich produce copies of these foregrounds at higher delays. 
The simplified model used here is constructed from simulated 

ERA Validation foregrounds, which consist of the GaLactic and 
xtragalactic All-sky Murchison Widefield Array (GLEAM) point- 
ource catalogue (Hurley-Walker et al. 2017 ), with additional bright 
ources added, and a diffuse component based on the extended Global 
ky Model (eGSM, Zheng et al. 2017 ; Kim, Liu & Switzer 2018 ).
t was sufficient in our case (focusing on the shortest baselines) to
MNRAS 534, 2653–2673 (2024) 

 https:// github.com/ GeoffMurphy/ HMCSystematicsSampler/ 
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M

Figure 3. An example of 10 cross-correlation foreground eigenvectors for a 
14.7 m east–west baseline, with the top being the real components, and the 
bottom the imaginary. These 10 modes are the eigenvectors corresponding to 
the largest eigenvalues in the decomposition, with ‘Mode 0’ corresponding to 
eigenvalue 0 in Fig. 4 , ‘Mode 1’ to eigenvalue 1, etc. Furthermore, the y hav e 
the same units as the foregrounds in frequency space. The autocorrelation 
fore grounds e xhibit similar eigenv ector characteristics, albeit with only the 
real components being non-zero. 
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Figure 4. The first 50 cross-correlation foreground eigenvalues found 
through the eigenvalue decomposition. These are unitless, as they are 
factors multiplied with their corresponding fore ground eigenv ector, which 
subsequently forms a model foreground in units of Janskys. 
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onstruct the foreground model from the diffuse component only.
odelling the point-source components as well would likely require

 number of higher order modes, increasing the number of model
arameters. 
Using the available 17 280 times for a particular antenna or

aseline from the HERA Validation simulations, a frequency-space
oreground model is constructed by calculating a set of basis
ectors from an eigenvalue decomposition of the foreground visi-
ility frequenc y–frequenc y co variance matrix. With 512 frequenc y
hannels, the covariance of the (complex) 512 × 17 , 280 data matrix
 X ) is found with Cov ( X ) = XX 

† . The eigenvectors and eigenvalues
re then found using NUMPY ’s linear algebra routine EIGH . The
igenvectors corresponding to the largest eigenvalues are used in
he model, with the amplitudes of these vectors being used as free
arameters in the model. 
Fig. 3 plots the first 10 eigenvectors for the cross-coupling fore-

round model. Bandpass gains were applied to the foregrounds prior
o the eigendecomposition (but were not calibrated for). The strongest
odes model the most prominent features in the foregrounds, which

n this case is the smoothest structures across frequency. Fig. 4 shows
he first 50 eigenvalues from the decomposition. The behaviour is
s expected, with there being a decrease in eigenvalue amplitudes
owards higher modes. Fig. 5 shows the covariance and correlation
atrices for the simulated diffuse foregrounds from which our

igenmodes are constructed. Eight eigenvectors were required to
NRAS 534, 2653–2673 (2024) 
ufficiently reco v er the fore grounds, for both the autocorrelations
nd cross-correlations. 

.2 EoR model 

he model was also tested with and without an included signal
omponent. Initially, it was thought that the approximately constant
ower across delay needed to be accounted for (see Fig. 6 ), but it was
ound that the results were comparable between both cases. This is
ue to the power of the systematics, which are much higher than the
ignal, so the lack of a signal component does not adversely affect
odelling to any significant degree. The EoR model tested here is

ormed from the full-sky, full-bandwidth, and physically moti v ated
ock-EoR simulated in the HERA Validation simulations (Aguirre

t al. 2022 ), where it is modelled as a Gaussian random brightness
emperature field. 

For a particular baseline and polarization, an example EoR
isibility is Fourier transformed, and 200 complex Fourier modes
re uniformly sampled from the delay range ( −2000 , + 2000) ns,
hich contains the entirety of the foreground peak and all of the

ystematics considered in this work. Fewer modes would result in
aps in delay space. Our model simply fits each of the 200 Fourier
odes individually with 200 amplitude parameters. This is discussed

urther in the context of priors in Section 4.6 . 
It was found that in realistic, noisy data, the reco v ered power

pectra from the signal-free model was essentially equi v alent to that
ound with a model containing a signal. 

While the inclusion of a signal model slightly impro v ed modelling
n essentially noise-free cases (namely in the form of narrower
ncertainty estimates in some cases), as it is implemented here
ith 200 Fourier modes, the run-times became prohibitive. This

s due to a combination of the low noise, as well as the number of
dded parameters. This impro v ement also presented itself as better
eco v ery of the underlying power spectra, but for reflection modelling
his was a negligible gain in the very-low noise regime. For cross-
oupling mitigation with very-low noise, the recovery improved
y approximately half an order of magnitude with the inclusion
f a signal model. Overall, the benefits of the inclusion of this
omponent were outweighed by the performance loss in negligible-
oise scenarios, and its inclusion was not necessary in high noise
egimes. 
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Figure 5. The covariance and correlation matrices of the HERA Validation 
simulated foregrounds for a 14.7 m east–west baseline in units of Jy 2 . The top 
plot is the real component of the covariance matrix, the middle the imaginary 
component, and the bottom the correlation matrix. 
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Nevertheless, realistic-noise cases are more relevant. Here, the 
nclusion of a signal component provides comparable results to a 
ignal-free model. As such, we opt to exclude this component in our
nalysis, which also allows for faster sampling speed. 

.3 The systematics model 

ombining the foreground and systematics terms in equations ( 7 )
nd ( 11 ), respectively, we get the full systematics equation for our
odel: 

 

corrupt 
apbq,t = 

M fg ∑ 

m = 1 

λabm 

x abm 

+ 

{
˜ g a ̃  g ∗b V apbq,t ′ a = b 

˜ g a ̃  g ∗b V apbq,t ′ + V 

cc 
apbq,t a �= b 

, (13) 
here 

 

cc 
apbq,t = ˜ g a ̃  g ∗b V a pa p,t ′ 

⎛ 

⎝ 

N CC ∑ 

j 

A 

d,j 

apbq exp 
(
i 2 πντ

d,j 

apbq + i φ
d,j 

apbq 

)⎞ 

⎠ 

d� t 

. 

(14

Here, x abm 

are the fore ground eigenv ectors, and λabm 

the corre-
ponding free parameters for the foregrounds measured by antennas 
 and b, with there being a total of M fg = 8 such modes in our model.
s described in Section 2.1 , ˜ g a and ˜ g b are our reflection gain terms

written in full in equation 6 ), which includes both high-amplitude
able reflections and subreflections (i.e. M = 22 in equation 6 for
he fiducial model). 

A 

d,j 

apbq are the cross-coupling relative amplitudes described in 

etail in Section 2.3 . Along with the delay, τ d,j 

apbq , and phase, φd,j 

apbq ,
arameters, a total of N CC = 10 such features are modelled, where
nly the contribution from one of the two antennas are considered
n this work, i.e. the coupling features present at positive delays.

e also assume the coupling systematics undergo cable reflections, 
hich accounts for the g a g 

∗
b factors in equation ( 14 ). As in the

revious paragraph, there are 22 such reflection/gain terms. These 
re, ho we v er, typically v ery weak, with relativ e amplitudes of
0 −7 − 10 −10 , and so are negligible, but are still present in our model
s result of the order in which systematics are added, i.e. the model
dds coupling systematics first, followed by reflections, so reflected 
oupling is a natural by-product of this. 

Since we only model positive delays, we neglect the third term
or the a �= b case. This would consist of the visibility from the
econd antenna, V 

uncal 
b qb q,t ′ , with distinct amplitudes, delays and phases 

or the coupling model. There would also be a leading factor of ˜ g b ̃  g ∗a 
enoting the cable reflection of the coupling-affected visibility. 

.4 Noise 

ur thermal noise estimate is derived from the radiometer equa- 
ion (e.g. Choudhuri, Bull & Garsden 2021 ) as 

ij = 

√ 

V ii V jj 

�t�ν
, (15) 

here �ν = 97 . 7 kHz is the frequency resolution of the simulated
ata, with an integration time of �t = 10 . 73 s. V ii and V jj are
he autocorrelation visibilities for the two antennas in a particular 
aseline when analysing a cross-correlation. 
Using the noise estimate of equation ( 15 ), which is fully real, a

omplex noise visibility can be formed with 

 

 

 ( τ ) ij = 

1 √ 

2 
σσσ ij ( τ ) X 1 + i 

1 √ 

2 
σσσ ij ( τ ) X 2 , (16) 

here X 1 and X 2 ∼ N ( μ = 0 , σ = 1) - random draws from a normal
istribution with mean zero, and a standard deviation of 1. The
andom draws differ between the real and imaginary components. 
 

 

 ( τ ) ij is an array with shape 512. This is Fourier transformed and
quared in order to provide an estimate of the noise level in the power
pectrum regime. Fig. 6 provides examples of the autocorrelation 
nd cross-correlation power spectra and their associated noise power 
pectra for a single 10.73 s time integration. 

.5 The No-U-Turn Sampler 

ampling is carried out with PYMC3 (Salvatier , W iecki & Fonnes-
eck 2016 ), which allows models to be fit to data using a range
f methods, for example Markov Chain Monte Carlo (MCMC), 
MNRAS 534, 2653–2673 (2024) 
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Figure 6. Left: the autocorrelation power spectrum of the noise estimate (grey dashed line) for a single time integration in comparison to the true EoR (red 
dot–dashed line) and true foreground (blue solid line) power spectra across the delay range of interest. Right: a comparison with the noise estimate in the 
cross-correlation regime, in this case for a 14.7 m east–west baseline. The noise estimate is derived from equation ( 15 ). 
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amiltonian Monte Carlo (HMC), or Gaussian processes. A self-
uning implementation of HMC (Duane et al. 1987 ; Betancourt 2017 )
amed the No-U-Turn Sampler (NUTS) is the default and is used here
Hoffman & Gelman 2014 ). This is instead of the more commonly
sed MCMC algorithms, which are less ef fecti ve for models with
arameter numbers of the order of tens or more due to the ‘curse of
imensionality’ (Karamanis, Beutler & Peacock 2021 ). NUTS also
as the advantage of being self-tuning. The sampler automatically
ets a number of more complex model hyperparameters, allowing
or easier use in comparison to the HMC algorithm. For example,
UTS automatically adjusts the sampling step size, a hyperparameter

o which HMC is very sensitive. 
PYMC3 has built-in probability distributions, and automatically

orms the likelihood function from the chosen distribution. The user
herefore does not need to explicitly define their own likelihood
unctions. We use a normal distribution to e v aluate the agreement
etween our model and the mock data, which is simply defined as 

 ( x x x | d d d , σσσ ) = 

1 

σσσ
√ 

2 π
exp 

{
− 1 

2 σσσ 2 
( m 

m m ( x x x ) − d d d ) 2 
}

, (17) 

here d d d is the mock data, m 

m m ( x x x ) is the model as a function of the model
arameters, and σσσ our noise rms (Salvatier et al. 2016 ). The data,
odel, and noise are vectors of shape 512 (the number of frequency

hannels) for each baseline and time. 
For the most part, only a few changes are made to the default

ettings of the sampler . PYMC3 ’ s ADVI (Automatic Differentiation
ariational Inference, Kucukelbir et al. 2015 ) initializer is used, with

here being 10 6 initialization steps, although initialization completes
ong before reaching this limit. Having too few initialization steps
an interrupt this process before the loss value conv erges, adv ersely
ffecting sampling performance. This initializer sets up a scaling
atrix for NUTS, which approximates the posterior distribution and

nforms the size of the steps taken (Salvatier et al. 2016 ). 
Each chain in the sampler is then tuned for 5000 steps, and sampled

or a total of 10 000 steps with a target acceptance rate of 0.8. When
ampling, the step size used in the model is adjusted in order to
chie ve the gi ven target acceptance rate. A larger target acceptance
an help with sampling of complex posteriors (e.g. those which
NRAS 534, 2653–2673 (2024) 
eviate from a Gaussian in shape), but can also result in slower
ampling (Betancourt 2017 ). 

Two chains are sampled, and their results are combined. A chain is
ssentially a single sampling run, and PYMC3 allows multiple chains
o be run simultaneously. Sampling with multiple chains provides not
nly more samples, but also acts as a diagnostic tool. For example, if
he posterior distribution is problematic (such as being multimodal),

ultiple chains are more likely to sample this ef fecti vely. A single
hain might ‘get stuck’ in a region of relatively high likelihood, and
ight never explore other regions. Sampling with multiple chains can

elp ameliorate this, as the individual chains are typically initialized
n different regions of parameter space (Betancourt 2017 ). 

.6 Priors 

n this section we outline our prior choice methodology. These are
ur best estimates for the model parameters before sampling. When
enerating the mock data, a level of randomization was introduced in
ll systematics parameters. As such, it was assumed that we did not
ave perfect knowledge of the systematics’ characteristics. Coupled
ith the noise, estimates were chosen to take this randomization into

ccount. F or e xample, if a power spectrum was visually inspected,
nd a reflection systematic was estimated to be located at a delay
f 200 ns, the prior was set to be a normal distribution centred on
his delay, with a standard deviation which takes into account the
ncertainty of its true delay, the noise, and perhaps any confusion
etween closely neighbouring systematics. The sampler then e v alu-
tes these priors against the mock data in order to form the posterior
istributions, which will, ideally, be centred on the true delay. 
Table 1 describes the priors used in the sampler. When choosing

riors, the amplitude and delay of a particular systematic can be
airly easily estimated. By Fourier transforming an observational
isibility to delay space, the amplitude of the systematic peak can
e compared to the foreground peak, and a relative amplitude can be
nferred. Similar can be said of the delay of the systematic, where
ne can simply estimate the delay of the systematic peak visually, or
rom knowledge of the array’s geometry. In observational data, this
s naturally complicated by noise, data cuts, etc. 
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Table 1. A description of all the priors used in the model, as well as how many of each parameter there are, and their units. All priors are normal distributions. For 
brevity, only the ranges and orders of magnitudes of some parameters are given. This is to provide a broad idea of how the prior widths compare to the means, and 
is due to fact that an e xhaustiv e list would likely not be informativ e. The fore ground amplitude prior means were derived from a vector projection of the model 
eigenvectors. Systematic amplitudes are measured relative to the foreground peak, and delays are in units of seconds. All phase priors are N ( μ = 0 , σ = 1), 
which co v ers the [ −π, π ) range. Subreflection amplitude prior widths are wider than other systematics as it is not immediately evident through visual inspection 
how much of the amplitude at a given delay is from the subreflection in question, neighbouring subreflections, or the foreground and EoR components. Note 
that the prior means are not necessarily identical to the parameters used to generate the systematics. When generated, randomization is introduced, so the priors 
can be best initial guesses with this in mind. 

Parameter name (no. of parameters) [unit] Prior mean Prior std. dev. 
Autocorrelation foregrounds and EoR 

F ore ground eigenv ector amplitudes (8) – 10 2 –10 −3 5 per cent 
Cross-correlation foregrounds and EoR 

F ore ground eigenv ector amplitudes (8) – 10 −1 –10 −3 5 per cent 
Systematics 

Cable reflection amplitudes (2) – { 5 × 10 −3 , 8 × 10 −4 } 1 per cent 
Cable reflection delays (2) [ns] { 200 , 1300 } 5 
Cable reflection phases (2) [rad] 0 1 
Subreflection amplitudes (20) – 10 −3 –10 −4 10 per cent 
Subreflection delays (20) [ns] 200 –1000 1 
Subreflection phases (20) [rad] 0 1 
Cross-coupling amplitudes (10) – 10 −4 –10 −6 2 per cent 
Cross-coupling delays (10) [ns] 900 –1300 5 
Cross-coupling phases (10) [rad] 0 1 
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Phases cannot be quickly and easily estimated by visually 
nalysing the data, ho we ver. In delay-space, the phases act to broaden
r narrow the systematics peaks. One would, in theory, need to apply
ome fitting or optimization technique to get an initial guess of the
hases. Ho we ver, it is suf ficient, for our purposes, to simply set nor-
al priors on the phases with a mean of zero and a variance of O(1).
his provides acceptable coverage of the [ −π, π ) range. Uniform 

riors across this range w ould lik ely perform similarly (i.e. drawing
rom a flat distribution across −π to π ), but priors such as this
roduce sharp decreases in posterior space at values corresponding 
o the edges of the prior. Sampling generally performs better when the 
osterior space is ‘smooth’ and can be freely explored without strong
estrictions. While uniform phase priors are generally sufficient in 
odels with v astly fe wer parameters, the high dimensionality of

he model used here necessitates that we attempt to a v oid decisions
hich would otherwise adversely affect performance. 
In order to obtain reasonable means for the foreground eigenvector 

mplitude priors, the foreground eigenvectors, x FG , were projected 
n to one of the original simulated foregrounds, V FG , true . Specifically, 
his was λproj = x FG · V FG , true , as discussed in Section 4.1 . The 
esulting amplitudes, λproj , were used as the prior means in the 
ampling. 

Furthermore, fair knowledge of the foregrounds were assumed 
in terms of prior specificity). The amplitudes of the prior means 
or the autocorrelation foregrounds ranged from O(10 2 ) − O(10 −3 ). 
ormal prior standard deviation widths of 5 per cent the amplitudes 
ere chosen. Cross-correlations are lower in power, with the absolute 
alues of these amplitudes ranging from O(10 −1 ) − O(10 −3 ). The 
rior standard deviations were reduced in order to maintain a relative 
idth of 5 per cent. 
For the majority of systematic parameters, estimates of the delay 

nd amplitude were made by visually inspecting the mock data, and 
rior widths reasonably wide enough to account for randomization, 
oise, and confusion were chosen. In actual observ ations, ho we ver,
nowledge of the cable lengths used, and the separation of the 
ntennas could be used to estimate delays, but amplitudes would 
ikely still need to be inferred from the data itself. 
Given the number of parameters, however, priors for subreflections 
eeded to be somewhat specific in order to minimize the effect on
erformance. A prior width of order 1 ns was used for the delays.
his also helps to mitigate against confusion to an extent, as the
ubreflection peaks are typically very closely spaced. Limiting the 
arameter space forces a fit on a particular subreflection peak. 
Confusion typically results in the sampler struggling to constrain 

he contributions from each individual subreflection. When two or 
ore systematic features are situated near to one another in delay, the

esulting o v erall power can be attributed to multiple combinations
f amplitude, delay, and phase for these subreflections. This can be
meliorated with better and more specific priors, but confusion can 
lso make the initial prior selection difficult for the same reason. 

Therefore, as much effort as possible was put into identifying the
elays of the individual peaks before sampling, so that the prior width
ould be as specific as possible. Unfortunately, this means that if the
nitial guesses are poor or wrong, the sampler will struggle to find
cceptable parameters to describe the mock data. Nevertheless, the 
riors chosen here produced reasonable results. 
Lastly, for the systematics in question, our model consists of 66

ree parameters for the reflection systematics, and 30 for cross- 
oupling. When implementing the reflection calibrator of Kern et al. 
 2019 ), one supplies the upper and lower delay bounds of each
ndividual reflection peak, along with the number of iterations desired 
or its suppression. The coupling calibration requires the upper and 
ower bound of the entire coupling shelf, and the number of SVD

odes to be used. For the mock data in this work, we opted for 15
VD modes. 

.7 Systematics subtraction 

ollowing sampling, the parameter results from the model are used 
o remo v e the systematics from the mock data with the intention of
eco v ering the true power spectrum. 

For high-amplitude reflections and subreflections, this involves 
orming the gain terms (equation 6 ) from the sampler results for
MNRAS 534, 2653–2673 (2024) 
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Figure 7. A comparison between the autocorrelation mock data (black solid line) and the model results (orange region), which sampled for two cable reflections, 
20 subreflections, and 10 cross-coupling spectra in a single 10.73 s integration. The mock power spectrum consists of the foreground, signal, and systematics, 
with the noise (grey dotted line) being taken into account when sampling. No constraints can be placed on features below the noise (1000 � τ � 1200). The 
model is only centred on the mock power spectrum in this region because of the priors. Being below the noise level simply results in the model filling the 
prior space for these particular features. The model was run for 10 000 sampling steps, and the 95th percentile of these samples is shown here. The true power 
spectrum is denoted by the green dashed line, and contains only the foreground and EoR. 
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he amplitudes, delays, and phases. To reco v er the reflection-free
isibility, the inverse of equation ( 7 ) is applied to the mock data, i.e. 

 

reco v ered 
apbq,t ′ = ( ̃  g ∗b ) 

−1 ( ̃  g a ) 
−1 V 

refl
apbq,t . (18) 

his is done with all 10 000 samples from the model. This produces
0 000 reco v ered visibilities, from which the 95th percentile can be
ormed. 

For cross-coupling, two models are formed from the results: the
rst containing only model foregrounds, and the second containing
odel foregrounds and cross-coupling. More specifically, using

he foreground eigenvector amplitudes ( λModel ) from the sampling
esults, a systematics-free visibility is formed. With the foreground
igenvectors ( x FG ) from Section 4.1 , this is formed with 

 

Model 
FG = λModel x FG . (19) 

he second model visibility additionally contains the cross-coupling
ystematics, which are modelled with equation ( 10 ). 

 

Model 
Corrupt = λModel x FG + V 

Model 
CC (20) 

aking the difference of equations ( 19 ) and ( 20 ) produces a cross-
oupling-only visibility, 

 

Model 
CC Only = V 

Model 
Corrupt − V 

Model 
FG . (21) 

his is then subtracted from the mock visibility in order to reco v er
he underlying signal, 

 

Reco v ered = V 

Mock − V 

Model 
CC Only . (22) 

his is again done for all samples produced by the model, and
ercentile regions are formed from this collection of reco v ered
ignals. 

.8 Signal loss 

he following metric from Kern et al. ( 2019 ) was used to evaluate
he level of foreground and EoR signal loss following systematic
ubtraction: 

 3 ( τ ) = 

〈 P 3 ( τ ) 〉 
〈 P 1 ( τ ) 〉 . (23) 
NRAS 534, 2653–2673 (2024) 
n line with the notation in (Kern et al. 2019 ), a subscript of 1 indicates
 true signal, 2 indicates a systematics corrupted signal (not shown
ere), and 3 the reco v ered signal. Here, P 1 and P 3 are the delay
ower spectra of the true and reco v ered signals, respectiv ely, and the
atio of ensemble averages over multiple times are taken. Signal loss
s defined as when R 3 ( τ ) < 1, suggesting either foreground and/or
oR signal has been lost in reco v ering the true visibility. 

 RESULTS  

e present systematic modelling results in autocorrelations and
ross-correlations for varying noise levels: high-noise, corresponding
o a single time integration; reduced noise, which assumes there has
een some level of noise reduction prior to modelling; and very-low
oise, where the noise power spectrum level is approximately 10
er cent that of the EoR. In this last case, plots of the signal loss
etric as a function of delay are included, as we are able to mitigate

he systematics down to, or close to, the true power spectrum. For the
igher noise cases, we can ideally only mitigate down to this noise
evel, so it is not as informative to include plots of the respective
ignal loss metrics. Where possible, we compare our results to that
f Kern et al. ( 2019 ) when their methods are applied to the same
ata. 

.1 Autocorrelation systematics 

ig. 7 shows the sampling results for the full set of systematics
described in Section 3 ) in a single 10.73 s integration autocorrelation
ower spectrum using the priors and sampler settings described in
ections 4.5 and 4.6 , respectiv ely. F or this plot, 10 000 power spectra
re formed from the 10 000 samples, from which the 95 th percentile
s calculated, denoted by the orange region. 

Our priors are related to the noise-free mock data (black line),
hich is why the sampled power spectrum has features below the
oise level. The reasoning is that the priors would be informed by
he characteristics of the array, for example the length of cables for
eflections, or the positions of antennas for cross-coupling. Ho we ver,
hen sampling, we take the noise estimate into account using

quation ( 15 ) as the standard deviation in the likelihood function. 
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Figure 8. After mitigating the systematics in 30 time samples, each separated by 21.46 s, the incoherent time average of the reco v ered spectra are found, 
whereafter the percentile regions are formed, i.e. we go from 30 × 10 000 power spectra to 10 000 mean spectra. The results of Kern et al. ( 2019 ) also correspond 
to the averaged recovered spectra when applied to the same data. The grey dotted line denotes the noise level for a single integration, and shows that noise can 
be mitigated following systematics removal. 
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In the autocorrelation analysis, the full set of cable reflections, 
ubreflections, and cross-coupling spectra is added to the mock data. 

hile cross-coupling is much weaker in the autocorrelations than 
n the cross-correlations, the power is still non-negligible. Ho we ver, 
here was little to no constraint on the cross-coupling parameters in 
his case, which was expected as the majority of the peaks are below
he noise level. 

Both the high-amplitude reflections and the majority of the sub- 
eflections are well constrained. Subreflections at delays higher than 

800 ns and cross-coupling spectra between ∼ 900 and 1300 ns 
how a noticeable decrease in the level of constraint. This can be
ue to the confusion between systematics, but is mainly a result of
he decreasing power of the systematics which brings them closer to 
he noise level. 

The model used abo v e is applied to 30 visibilities each separated
y 21.46 s. The systematics are mitigated from these visibilities, 
roducing 10 000 reco v ered power spectra for each individual time
ample, which are then incoherently averaged across time. From 

hese 10 000 time-averaged recovered spectra, the 95th percentile is 
ound, and is shown in Fig. 8 . Here, the 30 mock and true power
pectra are time averaged as well, and are plotted against the noise
evel for a single integration. We are able to mitigate the systematics
own to the single integration noise level, and thereafter incoherently 
verage to further reduce the noise in our reco v ered spectra. Ideally,
he objective in this case is for the band/confidence region to match
he true power spectrum as closely as possible, where the true data
nly contain foregrounds, the EoR signal, and instrumental bandpass. 
The calibration results of Kern et al. ( 2019 ) when applied to the
ock data are also included in Fig. 8 . Again, the calibration is applied

o 30 time samples, and the power spectra are incoherently averaged 
cross time. We see essentially the same behaviour, i.e. the system-
tics being mitigated down to the single-integration noise level, with 
here being further reduction in the noise after time averaging. 

As it is done in Kern et al. ( 2019 ), we model the reflection
ystematics in the autocorrelation and subsequently apply the results 
o the corresponding cross-correlation. Ho we ver, a cross-correlation 
isibility with a noise level consistent with the autocorrelations (i.e. 
erived from a single time integration, see Fig. 6 ) sees no useful
esults when the reflections are subtracted. When the results are 
pplied, we ef fecti v ely only reco v er the noisy cross-correlation,
here the noise is of the order of 10 8 Jy 2 Hz 2 in the power spectrum.
he reflection systematics peak at approximately 10 5 Jy 2 Hz 2 . In this 
ase, the noise is too strong to see any noticeable difference between
he reflection corrupted and reco v ered power spectra, and so we do
ot present this particular result. 
We omit the results for reflection mitigation in a reduced-noise 

ase, where the noise is lower than in the abo v e results, but still abo v e
he EoR level. As before, the systematics can be mitigated down to
he noise level in the autocorrelation. In the cross-correlations, the 
oise is, again, well abo v e both the EoR power spectrum and the
eflection systematics, so there is not much to be learned in this case.

If, instead, the model is run on visibilities with very low noise,
here its power spectrum is ∼ 10 per cent the EoR’s level, we are

hen able to mitigate the systematics in the autocorrelations to a
evel closer to the true power spectrum (Fig. 9 ). We mainly test this
ase to assess the signal loss properties of our model, and whether
he mitigation remo v es primarily the systematics as it should, or
f it suppresses the signal to too great a degree. There remains
ome residual systematics with powers of up to three orders of
agnitude abo v e the true power spectrum. This is primarily due

o confusion between the systematics. Kern et al.’s ( 2019 ) method
ainly suffers from this as well, where it is difficult to differentiate

etween the contributions from individual systematic features to the 
 v erall power. 
While we retain the same number of samples for Fig. 9 , as

ell as the formation of the 95th percentile, the bands do become
uch narrower as a result of the minimal noise, leading to tighter

onstraints on the systematics. 
By taking these results for the systematics parameters and ap- 

lying them to the low-noise cross-correlation visibilities, we are 
ostly able to reco v er the true signal in Fig. 10 (top). With the

eduction in the noise and the subsequent narrowing of the percentile
ands, ho we ver, there are a number of delays where our results
ake somewhat poorer reco v ery, i.e. at ∼ 750 and ∼ 900 –1100 ns.
his is primarily a result of the performance in the corresponding
utocorrelation (Fig. 9 ) which carries o v er to the cross-correlation
ystematic mitigation. As detailed previously, the poor reco v ery in
he autocorrelation is a result of confusion between the closely spaced 
ystematics. The clearest example of this is at ∼ 900 –1100 ns in
ig. 9 . Here, both confused subreflections and confused coupling sys- 
MNRAS 534, 2653–2673 (2024) 
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Figure 9. The reco v ered autocorrelation power spectrum when applied to data with very low noise. Here, we simply set the noise level to approximately 10 
per cent the power of the EoR, rather than assume any particular integration time. As a result of the reduced noise, the width of the percentile bands becomes 
very narrow. 

Figure 10. Top: the reco v ered cross-correlation power spectrum (light-red band) when the results of Fig. 9 are used to subtract the reflections from the 14.7 m 

east–west cross-correlation mock data (grey dot–dashed line) in a low noise regime (denoted by the grey dotted line). We omit the results of Kern et al. ( 2019 ) 
for clarity and to prevent too many overlapping lines, but their model does perform similarly to ours, and their signal loss result is shown in the bottom plot. 
The objective, as before, is to reco v er the true power spectrum (black dashed line). The bottom plot, the signal loss metric, provides a comparison between our 
and Kern et al.’s ( 2019 ) results. The signal loss metric corresponding to our model is denoted by the light-red band, and that of Kern et al. ( 2019 ) by the blue 
dashed line. The R 3 ( τ ) = 1 line is the brown, dot–dashed line, and denotes perfect reco v ery. 
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ematics occupy the same delay range, leading to the largest amount
f residual systematics, approximately three orders of magnitude
bo v e the true power spectrum. This results in poorer reco v ery of
he corresponding cross-correlation at similar delays, i.e. residual
eflections or o v ersubtraction in Fig. 10 . 

Where there are fewer classes of o v erlapping systematics, perfor-
ance is impro v ed, for e xample at 200 –900 ns. While the model

s still confusion-limited, the effects are not as pronounced when
pplied to the cross-correlation. Overall, ho we ver, this ef fect of
NRAS 534, 2653–2673 (2024) 
onfusion is ultimately a result of being unable to efficiently explore
he parameter space. Normally one could choose wider, less-specific
riors at the cost of slower sampling speed. However, sampling
peeds already suffer as a result of the low noise, which produces
rohibitive run-times. The alternative approach to mitigate confusion
ould be to choose extremely specific priors, but that would imply
ery good knowledge of the parameters and would defeat the purpose
f sampling. Were the properties of the systematics known to such a
egree, then a non-statistical mitigation approach would be sufficient.
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Figure 11. The model results for cross-coupling systematics in a reduced noise 14.7 m east–west cross-correlation, where the integration time has been increased 
from 10.73 to 1073 s, i.e. we have not incoherently averaged multiple power spectra here, but simply reduced the noise prior to modelling, for testing purposes. 
As before, the noise is plotted separately from the mock data for illustration purposes. The orange region is the 95th percentile of the 10 000 model power 
spectra samples. As discussed in Section 4.2 , we omit a signal component, which is why the power spectrum is unmodelled at delays away from the foreground 
and systematics peaks. 
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Nevertheless, the model is capable of making a good recovery 
f reflection-corrupted cross-correlations. We opt not to include the 
esult of Kern et al.’s ( 2019 ) method for clarity, but the performance
s comparable in this case. The bottom plot of Fig. 10 , the signal loss
etric, does provide a direct comparison between the two results, 

o we v er. F or the most part, our 95th percentile band adheres very
losely to R 3 = 1, suggesting we are resilient to signal loss, much
ike Kern et al. ( 2019 ). We see noticeably more residual systematics
nd signal loss at 900 ns � τ � 1100 ns, a result of the o v erlapping
eflections and coupling in the autocorrelation, but o v erall, the signal
oss characteristics between the two results are very similar. 

.2 Cross-coupling systematics 

his section focuses on cross-coupling in the cross-correlation power 
pectrum. While reflections are present in cross-correlations, they are 
ypically very weak, and are instead modelled in the autocorrelations 
as was done in Section 5.1 ). We opt to only model cross-coupling
n this regime. 

For a single time integration, the noise is approximately as strong
s the highest amplitude cross-coupling peaks. With reference to 
ig. 6 , the noise power spectrum is of the order 10 8 Jy 2 Hz 2 . Cross-
oupling amplitudes in the power spectrum are of this order of
agnitude and lower. Essentially all of these systematic features 

herefore fall below the noise le vel, pre venting any constraints from
eing placed. 
This necessitates a reduction of the noise in order to constrain the

ross-coupling systematics to any appreciable degree. Fig. 11 shows 
he results when the integration time in equation ( 15 ) is increased
rom 10.73 to 1073 s, i.e. assuming that noise has been reduced prior
o systematics mitigation. While it is not so simple when considering 
bservational data, we do not e xplore an y complicating factors, such
s the changing sky signal over time, and instead assume a reduced
oise level so that we can test our model for this systematic. 
In this case, we are able to strongly constrain the highest amplitude

ross-coupling peaks, with the level of constraint reducing as the 
oise level is approached (Fig. 11 ). The peaks below the noise level
re not constrained at all, as is expected. Using these results, we can
itigate the cross-coupling systematics down to the noise level in a 
ingle integration, performing similarly to the method of Kern et al.
 2019 ) when the first 15 SVD modes are used. 

An integration time of 1073 s is considerably higher than the
 v erall time-av eraging cadence in HERA analysis, which is 214 s.
urthermore, systematics calibration is carried out on data averaged 

o a 21.4 s cadence, with the remaining coherent time averaging oc-
urring after the systematics are remo v ed (The HERA Collaboration
023 ). As such, this is not a representative example of noise reduction
n the analysis pipeline, but nevertheless noise needs to be reduced
n some manner in order to constrain cross-coupling systematics at 
ll. 

As with the reflection modelling, we apply the coupling model 
o 30 time integrations, mitigate this systematic, and incoherently 
ime average all of the samples. Ho we ver, follo wing the same
rocess as we did for the autocorrelations produced poor results, 
.e. sampling each integration individually, recovering the power 
pectra, and thereafter averaging did not produce a further reduction 
f the noise in the delay range of the systematics. This suggests
hat the model could constrain the coupling systematics only well 
nough to mitigate them down to the noise level ( ∼ 10 7 Jy 2 Hz 2 ), but
eft residual systematics hidden by this noise. Attempting to average 
he reco v ered spectra made this additional structure evident, and the
ncoherently averaged power spectrum remained at ∼ 10 7 Jy 2 Hz 2 at 
elays of 900 ns � τ � 1100 ns , while delays dominated by noise
aw a decrease in power. 

If, instead, we jointly model all 30 time integrations simultane- 
usly, then the results are impro v ed. Here, we hav e 30 terms in our
ikelihood function, and the systematics priors and parameters are 
hared between all of them. In other words, all integrations have
he same systematics solution solved for at once, rather than solving
or each visibility individually, which is what was described in the
aragraph abo v e. Using the result from the joint model, we subtract
he systematics from the 30 visibilities, and incoherently average the 
ower spectra. 
This is compared to the time-averaged mock and true power 

pectra, as well as the reco v ered spectra from the Kern et al. ( 2019 )
alibration in Fig. 12 . We can mitigate the systematics down to
he noise level for all 30 power spectra, and incoherently averaging
roduces a further reduction in the noise. Our result is comparable
o the result of Kern et al. ( 2019 ). Outside of differences in the
MNRAS 534, 2653–2673 (2024) 
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Figure 12. The power spectrum reco v ery when jointly modelling 30 time integrations separated by 21.46 s, reco v ering the underlying power spectra, and 
thereafter incoherently time averaging. Here, 10 000 samples are taken. The results of Kern et al. ( 2019 ), the true power spectra, and the mock power spectra 
have all been averaged as well. The noise power spectrum corresponds to the level prior to incoherent averaging, and is the power at which sampling takes place. 
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Figure 13. An example of the log posterior density during the tuning (burn- 
in) phase, corresponding to the sampling results of Fig. 12 . This plot shows 
the first 250 of 5000 tuning steps for the two chains, demonstrating that the 
model tunes fairly quickly for this particular result. Sampling commences 
after this stage. 
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ner features, the incoherently averaged recovered power spectra are
t a power of ∼ 10 5 Jy 2 Hz 2 , a reduction of around two orders of
agnitude from the initial noise level. Our result has the benefit of

n associated uncertainty, and for the most part there is agreement
etween the two results within this uncertainty. 

We also provide an example of the tuning/burn-in phase for this
articular result in Fig. 13 . PYMC3 tracks the log posterior density,
hich is proportional to the product of the likelihood and prior of

he model (Lynch 2007 ). The aim is for the model to maximize the
osterior density. As expected, there is an increase in this quantity
s the model explores, and eventually settles in, the posterior space.
here are 5000 tuning steps for both chains, and following this the
odel draws a total of 10 000 samples, corresponding to the results

f Fig. 12 . 
The cross-coupling modelling performance was also tested in

he very-low-noise regime, with the noise power spectrum being
10 per cent that of the EoR. Using noise levels this low slows

ampling severely, so it was opted not to reduce it further, and only
 single integration was modelled. 

We omit the comparison between the model and mock power
pectra, and instead only show the reco v ered power spectra in Fig. 14
top). Kern et al.’s ( 2019 ) SVD method performs well and is able to
ssentially remo v e the cross-coupling systematics completely. Our
ampling method performs similarly, although our model results in
 fair amount of residual systematics, while Kern et al.’s ( 2019 ) is
ore prone to o v ersubtraction. To produce our result, a different
odel initialization was required. Previous results all performed

est with the ADVI initializer (discussed in Section 4.5 ). When
odelling the cross-coupling in this low-noise cross-correlation, the

ystematics could only be mitigated by around two to four orders of
agnitude, leaving a significant level of residual systematics. Opting

nstead for the jitter + adapt diag initializer impro v ed this
ignificantly. Here, a mass matrix for the HMC is formed, and a
niform jitter is applied to the starting sampler’s points. This is an
 v erall simpler method of initialization in comparison to ADVI, and
t is not clear to us why performance is worse for the preferred
nitializer. 

The mitigation of the strongest cross-coupling peaks appears
omewhat easier for our model, given their strength and relative
ack of confusion. The weaker, more confused peaks show poorer

itigation, resulting in these residual systematics. Nevertheless, the
odel performs well in this regime. 
NRAS 534, 2653–2673 (2024) 
In terms of signal loss, both our and Kern et al.’s ( 2019 ) SVD
pproach perform similarly in terms of magnitude, although as
entioned, our method has a predisposition to incomplete mitigation,
hile Kern et al.’s ( 2019 ) tends to o v ersubtract more frequently. 

.3 Alternate/incorrect models 

e briefly discuss the results when the model for the mock visibilities
s incorrect. Our fiducial mock data consist of 20 subreflections and
0 coupling peaks. We e v aluate the results when: 

(i) Our fitting model contains too few or too many of these
ystematic features. Specifically, we test the cases of there being
ither 17 or 23 subreflections, and the cases of there being either 8
r 12 coupling peaks in our model. 
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Figure 14. Top: the reco v ered cross-correlation power spectrum (red region) in the very-low-noise regime (denoted by the grey dotted line), where we assume 
the noise is below the signal. This is for a single mock spectrum, and no incoherent averaging is carried out for this result. This is again compared to the SVD 

method of Kern et al. ( 2019 ) (blue dot–dashed line), and the true, systematics-free power spectrum (green dashed line). Bottom: the corresponding signal loss 
results, with ours being the red region, and Kern et al.’s ( 2019 ) being the blue dashed line. The brown, dot–dashed line denotes R 3 ( τ ) = 1 for perfect reco v ery. 
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(ii) There is the correct number of systematics features, but the 
arameters for them have been randomized to a degree, i.e. little 
ffort has been put into making accurate initial estimates. 

Overall, the results are fairly consistent regardless of whether too 
any , too few , or randomized systematics features are assumed. All

ases result in an excess of po wer follo wing systematics mitigation,
ather than an o v ersubtraction. Estimates of the systematics which 
re ‘near enough’ to the true values result in slight suppression, while
ery poor estimates result in an addition of power. This is a result of
he exponential terms in the systematics equations, equations ( 6 ) and
 10 ), which themselves contain phases. For poor delay estimates, 
n particular, subtraction of model systematics does not lead to 
uppression of power, but rather addition. 

Both reflection modelling in the autocorrelations and coupling 
odelling in the cross-correlations show the same general behaviour 

or scenario (i). When there are too few systematics features, e.g. 
ig. 15 (top), the reco v ered power spectra exhibit excess power at the
elays of the unmodelled systematics ( ∼ 1100 –1200 ns). When there 
re too many assumed systematics, this produces similar excesses in 
ower. Fig. 15 (middle) shows an excess of power in the reco v ered
pectra at delays where two too many coupling peaks are introduced 
 ∼ 900 –1000 ns). 

Assuming the correct number of systematics in the correct delay 
ange, but randomly placing the initial systematics peaks (with wider 
riors to account for this), produces somewhat more reasonable 
esults, but still results in insufficient reco v ery. F or most delays,
nd in the autocorrelations, reco v ery can be made down to the noise
evel for single time integrations when the subreflection peaks are 
andomly placed between ∼ 200 and 1000 ns. Ho we ver, attempting 
o incoherently average the reco v ered power spectra, as in Fig. 15
bottom), does not produce any meaningful level of noise reduction, 
uggesting there are significant amounts of residual subreflection 
ystematics. 

With randomized initial systematics parameters in the negligible 
oise scenario (not shown here), we see little to no mitigation of the
ystematics. This is mainly due to the low level of the noise, which
esults in the sampler less efficiently exploring the posterior space. 
evertheless, as before, we do not see any oversubtraction or signal

oss, but this does suggest that a fair amount of effort should be put
nto setting the priors. This is not unlike the requirements of Kern
t al.’s ( 2019 ) reflection mitigation method, which requires estimates
f the reflection peak delay. Ho we ver, K ern et al.’s ( 2019 ) coupling
itigation does have an advantage o v er ours, as only the delay range

f the coupling peaks is required, whereas we again need initial delay,
mplitude, and phase estimates. 

Generally, poor priors for the systematics in our model are unlikely
o result in o v ersubtraction, and are instead prone to induce excess
ower in the reco v ered spectra. It is not immediately obvious how to
istinguish from the reco v ered spectra if there are too many assumed
ystematics features in the model versus too few, but it was noticed
hat when too few were assumed, the excess power demonstrated 

ore of a typical peak shape. Assuming too many features resulted
n wider confidence intervals in the region of the additional features.

 DI SCUSSI ON  

n this work, we present statistical modelling results when applied to
he reflection and cross-coupling systematics in simulations of early 
ERA Phase I visibilities. These systematics serve to complicate 

he setting of upper limits on the EoR 21-cm signal by spreading
opies of the foregrounds into regions ideally only occupied by 
he signal. We mimic this by adding systematics with randomized 
arameters to visibilities containing foregrounds and the 21-cm 

ignal, where the initial, uncorrupted visibilities are sourced from 
MNRAS 534, 2653–2673 (2024) 
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Figure 15. Examples of the mean reco v ered power spectra when the 
assumed systematics model differs from that present in the mock data. 
The fiducial coupling model contains 10 peaks. The top plot shows the 
incoherently averaged recovered cross-correlation power spectra when only 
eight peaks are assumed, and the middle plot when 12 are assumed. The 
bottom plot shows the averaged recovered autocorrelations when the correct 
number of subreflections are assumed, but the initial delay estimates are 
randomly chosen. Similar results are observed across the different scenarios 
not shown here, i.e. too many/too few/randomized systematics in either the 
autocorrelations or cross-correlations. 
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he HERA Validation data (Aguirre et al. 2022 ), and the systematics
re added with HERA SIM . An HMC sampler is used to constrain
hese systematics, subject to noise, and attempts are made to remo v e
hem and reco v er the true fore ground + EoR signal. We consider
oth an autocorrelation case, as well as a short, 14.7 m east–west
ross-correlation. 

We test our model with and without an included signal model, and
nd that results are similar, though the signal-free model is preferred
or its gains in sampling speed. At best, including a signal model
rovides slightly narrower uncertainty estimates in some cases, but
NRAS 534, 2653–2673 (2024) 
his can lead to prohibitive runtimes, especially when noise is low or
egligible. 
The primary limitation of our method is the confusion between

ystematics, where nearly o v erlapping features make it difficult for
he model to accurately constrain the parameters, leading to residual
ystematics. This is most evident in cases where the noise is negligi-
le, and more so for subreflection modelling in the autocorrelations,
here multiple systematics peaks can occupy a small delay range.
his is also a limitation of Kern et al.’s ( 2019 ) method, the currently
mployed calibrator in the HERA pipeline. 

For autocorrelations, the 20 subreflections spread between ∼
00 and 1000 ns, and the coupling peaks at ∼ 900 –1300 ns, likely
ake it difficult for the sampler to disentangle the power con-

ributions from the multiple o v erlapping components, resulting in
ignificant residual systematics in visibilities with low noise (Fig. 9 ).
o reduce this effect would likely require very specific priors on

he systematics, something which is not al w ays feasible given slight
ariations in array geometry, noise, RFI, and other complications in
he observations. 

For cross-correlations, only 10 cross-coupling spectra are mod-
lled. Furthermore, these are high po wer relati ve to the foreground
eaks, and are relatively unconfused, resulting in only slight residual
ystematics in low noise visibilities (Fig. 14 ). Ho we ver, we only
onsider these unrealistic, essentially noise-free scenarios in order to
 v aluate signal loss. 

With higher noise levels, the model is less confusion-limited,
s a significant portion of the systematics are either equi v alent in
ower to, or below, the noise level. This leaves many of these
ystematics poorly constrained, which in this case is a non-issue,
s this still allows for mitigation down to this high noise level
although further av eraging/inte gration could cause them to emerge
gain). For low noise, these systematics require good constraints
n order to mitigate them to any significant de gree. F or stronger,

ore isolated systematics like high-amplitude cable reflections, this
s relatively easy to achieve, but for the more numerous, closely
paced systematics (e.g. subreflections and coupling), finding good
onstraints is more difficult. 

The difficulty in modelling the systematics in the low noise
cenario is further exacerbated by the reduction in computational
peed as a result of this noise level, which hinders quick tests of
riors and sampler hyperparameter settings, as well as the model’s
bility to efficiently explore the posterior space. 

In autocorrelation power spectra, cable reflections, cable subre-
ections, and cross-coupling are of concern. These are analysed in
ection 5.1 . When considering a single 10.73 s time integration,
e are able to constrain a number of high-amplitude reflection

ystematics (Fig. 7 ), and can mitigate down to the (relatively high)
oise level. We apply this model to 30 time integrations separated by
1.46 s, and the reco v ered power spectra are incoherently averaged
cross time (Fig. 8 ). This allows for a reduction in the noise
e vel follo wing systematics mitigation. These reflection systematics
re modelled in the autocorrelations and applied to their lower
mplitude counterparts in the corresponding cross-correlations. For
he same time integration, ho we ver, reflections in cross-correlations
re o v erwhelmed by the noise by around four orders of magnitude. As
uch, there is not much to be gained from calibrating out reflections
n the cross-coupling in this high noise case. 

This suggests that autocorrelations do not require complete noise
emoval in order to constrain the systematics, as even though the
ystematics mitigation is not perfect in this regime, it is ultimately
he cross-correlations which are of scientific interest. It is here where
oise would need to be minimized as much as possible. In other
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ords, most of the analysis effort can be focused on the averaging and 
leaning of cross-correlations, which requires a significant amount of 
ata. Reflection systematics can be modelled in the autocorrelations, 
hich themselves could perhaps be time averaged to a lower cadence, 
r undergo fewer or less intensive calibration, flagging, or cleaning 
teps, for example. The results from the autocorrelation systematics 
alibration can then be applied to the cross-correlations, with the 
nly drawback being broader statistical uncertainty estimates. 
When the model is run on visibilities with very low noise levels,

o we ver, the systematics in the autocorrelations can be mitigated 
uch that the reco v ered power spectrum is, at worst, around three
rders of magnitude abo v e the true power spectrum (Fig. 9 ). While
his is extreme, using these results to subtract the reflections from
he corresponding low noise cross-correlation results in essentially 
omplete reco v ery of the true power spectrum in Fig. 10 (top). In this
ow noise case, there is minimal signal loss or residual systematics
Fig. 10 , bottom). Furthermore, as a result of the low noise, the
onstraints placed on the systematics parameters become very strong, 
esulting in narrow statistical uncertainty estimates. 

In both the high noise and low noise cases, the non-linear 
ptimization method of Kern et al. ( 2019 ) performs similarly to our
ampler when mitigating reflections. In the former case, systematics 
re mitigated to the noise level, and the noise can be further reduced
y incoherently time averaging. In the latter case there are some 
esidual systematics in the autocorrelation power spectrum, but there 
s very good recovery of the cross-correlation with minimal signal 
oss. It is in the cases where noise is more realistic that the value of
 Bayesian approach is more evident, as it provides some measure 
f statistical uncertainty in the results. For lower noise levels, these 
stimates become narrower than is likely useful. 

Only cross-coupling is modelled in cross-correlations (Sec- 
ion 5.2 ), as this systematic is significantly stronger here than in
he autocorrelations, and it is sufficient to model the reflections in 
he single-antenna regime. Unfortunately, noise is also much stronger 
n the cross-correlations relative to the foreground peak. 

For a single time integration, the strongest cross-coupling peaks 
re about as strong as the noise, eliminating any possibility of
eaningful constraints being placed the systematics. Instead, some 

mount of noise reduction was required. Assuming a simple time 
ntegration increase from �t = 10 . 73 s to 1073 s reduces the noise
nough to allow constraints to be placed on the highest amplitude 
ross-coupling peaks in Fig. 11 , leading to their mitigation down 
o the noise level. This noise reduction is not representative of the
ethods used in HERA, but we take this approach to e v aluate the
odel in the relatively high noise regime. 
Once again mitigating the coupling systematics in 30 integrations 

eparated by 21.46 s and incoherently averaging results in a further
eduction of the noise level (Fig. 12 ). As with other results, our model
erforms comparably to the SVD method of Kern et al. ( 2019 ), within
ur uncertainty estimate. This required a different implementation 
f the sampler. All other results were found by sampling for a
ingle visibility at a time. This result required a joint modelling 
pproach, wherein the likelihood function had 30 terms, one for 
ach time integration. All of these terms shared the same coupling 
ystematics parameters as they are time-stable. By simultaneously 
odelling on additional data, the estimates on the parameters 

mpro v ed enough to allow for not only mitigation to the noise
evel, but further reduction of the noise after averaging, suggesting 
hat the level of residual systematics in the reco v ered data was not
ignificant. 

When we e v aluate a very lo w noise case in order to e v aluate the
odel in an ideal scenario, i.e. where the noise power spectrum is
round 10 per cent that of the EoR power spectrum, we are able to
itigate the cross-coupling spectrum down to, at worst, an order of
agnitude abo v e the true power spectrum, with there being reco v ery

t a fair number of delays (Fig. 14 , top). 
In this low noise modelling of the coupling systematic, Kern et al.’s

 2019 ) SVD method performs similarly to our result. Their approach
o deriving a cross-coupling model from the mock/observational 
ata results in essentially complete mitigation. Both methods show 

imilar levels of signal loss and residual systematics in terms of
bsolute dex (Fig. 14 , bottom), although our model is more prone to
ndersubtraction, while Kern et al.’s ( 2019 ) to o v ersubtraction. 
HMC samplers are ef fecti ve at modelling and mitigating reflection

nd cross-coupling systematics while also providing a statistical 
ncertainty estimate of the reco v ered fore ground and EoR signals. By
odelling corrupted visibilities containing realistic levels of noise, 

he systematics can be subtracted to this noise level, and incoherently
v eraging the reco v ered spectra can further suppress this noise. In
ssentially noise-free cases, true cross-correlation power spectra can 
e reco v ered with minimal signal loss and residual systematics,
ut the statistical uncertainty estimates are often narrower than is 
ikely useful. In most cases, ho we v er, sampling can pro vide similar
erformance to the current systematic mitigation techniques, while 
emaining resilient to signal loss and providing statistical uncertainty 
easures. This can be important in both placing upper limits on,

nd possibly directly detecting, the early-Universe 21-cm power 
pectrum should the noise be reduced sufficiently. Performance is 
ery dependent on a number of factors, ho we ver, such as priors and
nitialization, particularly in low noise cases. 

For HERA, the signal-chain systematics subtraction takes place 
fter the majority of the analyses, namely redundant calibration, 
bsolute calibration, RFI flagging, in-painting, etc. Only coherent 
ime-averaging takes place after systematics removal, and thereafter 
ower spectra are formed (Aguirre et al. 2022 ). As such, imple-
enting a method similar to what is presented here would be fairly

traightforward. Following systematics removal, instead of a single 
isibility for each time and each antenna, there would be ho we ver
any sample visibilities. One option is to pass all of these visibilities

hrough the pipeline and thousands of power spectra could be formed
or each time and each antenna, from which uncertainties could be
stimated. A less computationally e xpensiv e alternativ e is to form the
ncertainties on the reco v ered visibilities, as was done in this work,
nd propagate those through the pipeline. For example, one could 
eplace the observed visibilities with the upper and lower bounds of
he percentile regions, ef fecti vely only doubling the amount of data,
ather than increasing it by O(10 5 ) or more. 

While the signal chain systematics presented here will mostly 
o longer be an issue in HERA Phase II, this work was meant
o demonstrate that similar systematics which lend themselves to 
orward modelling can likely be mitigated in a similar manner. In
hase II, the cables connecting the FEM to the PAM are replaced by
nes with a length of 500 m, which pushes the reflections towards
igher delays. The systems associated with the leaking connection 
oint responsible for the cross-coupling are no longer in use, and so
his systematic is no longer of concern. Ho we ver, the introduction
f Vi v aldi feeds, and the lack of cages surrounding them, will likely
esult in o v er-the-air, antenna-to-antenna mutual coupling. Should 
his systematic be relatively time stable, and be capable of forward
odelling, then the techniques presented in this work may be useful

or their mitigation. 
This work has a number of opportunities for further development. 

or the realistic noise cases, reflection modelling in the autocorrela- 
ions takes approximately 60 min for each individual time snapshot, 
MNRAS 534, 2653–2673 (2024) 
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iven the large number of parameters and the use of the ADVI
nitializer. This time includes model initialization for two chains,
 total of 8000 tuning steps, and 10 000 sampling steps. Coupling
odelling in a single cross-correlation, and for a single integration,

s only of the order 10 min due to the reduced number of parameters
nd the use of a less computationally e xpensiv e initializer. Howev er,
ultiple integrations are included in the likelihood function for better

esults. Jointly modelling 30 integrations with two chains for a total
f 10 000 tuning steps and 10 000 sampling steps takes approximately
.5 h. 
For visibilities with negligible noise, run times extend into multiple

ours for an individual time snapshot with similar settings. While
evels of noise this low are not currently obtainable, for future data
his would be an unreasonably high runtime. This is mainly due to
he assumed noise level itself, where less noise typically results in
lower sampling. 

While we fully intended to model each of these components,
nferring them directly from mock/observational data, as is done for
ross-coupling in Kern et al. ( 2019 ), and thereafter adjusting them
ith a Bayesian approach, could be an alternative. Good knowledge
f the foreground components was also assumed beforehand, as
he focus was placed on assessing the feasibility of modelling the
ystematics in a Bayesian frame work. The ef fects of poor or incorrect
odels for the foregrounds and signal, and how these affect the
itigation of the systematics is another avenue which could be

xplored. Lastly, this work assumed a particular model for the sources
f these systematics. It is possible that alternative models could
esult in an impro v ement in the systematics mitigation, and testing
ifferent models against one another is something Bayesian methods
re ideally suited to. 
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