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A B S T R A C T

Nowadays, Deep Learning is drastically revolutionizing financial research as well as industry. Many methods
have been discussed in the last few years, mainly related to option pricing. In fact, traditional approaches such
as Monte Carlo simulation or finite difference methods are seriously harmed by multi-dimensional underlying
and path dependency. Thus, dealing with particular contracts such as American multi-asset options is still
rough. This paper addresses such a problem by pricing said put options with a novel meshless methodology,
named Physics-Informed Neural Networks (PINNs), based on Artificial Intelligence. PINN paradigm has been
recently introduced in Deep Learning literature. It exploits the theoretical background of the universal
approximation theorem for neural networks to solve Partial Differential Equations numerically. This Deep
Learning meshless method incorporates the equation and its initial and boundary conditions thanks to a
specially designed loss function. We develop a suitable PINN for the proposed problem by introducing an
algorithmic trick for improving the convergence of the free boundary problem. Furthermore, the worthiness
of the proposal is assessed by several experiments concerned with single and multi-asset options. Finally, a
parametric model is built to benefit further studies of option value behaviour related to particular market
conditions.
1. Introduction

Nowadays, Finance dramatically benefits from the introduction of
Artificial Intelligence and Deep Learning methodologies. In fact, the
growth of financial data gathered through the years and the subsequent
development of considerable literature concerned with their analysis
has supported the growth of extensive literature in this field. Fur-
thermore, this subject has attracted researchers and practitioners with
different backgrounds, such as computer scientists, mathematicians or
statisticians, thanks to its strong interconnections with the real-world
financial industry. In particular, among the several topics discussed in
the last years, we deal with numerical methods for option pricing.

Option pricing is concerned about the study and development of
different type methods to estimate the fair value (under some particular
assumptions) of financial option contracts, or simpler options, based on
current market conditions (such as asset price and interest rate). Al-
though there are different types of financial options, the most important
styles are European and American. Both of them give the holder the
right to do a specific action in the future. In particular, a call option
gives the holder the right to buy a specific (underlying) asset at a
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fixed price, while a put option gives the right to sell. The option style
is considered European if the holder can exercise such right only at
option maturity. Otherwise, if such right is exercisable whenever until
maturity (early exercise), the option is said to be American. In other
words, European options look only to maturity price, when American
ones also consider price evolution from the contract start to maturity.
This characteristic is also known as path dependency. Despite being
quite similar from a theoretical point of view, the two types are very
different from a mathematical point of view. In particular, under the
so-called Black–Scholes model, for European options, it is possible to
obtain an explicit pricing formula [1]. Instead, no explicit solution
exists for American options, and their pricing strategies principally rely
on numerical methods.

In this paper, we deal with multi-asset American put options. We
select this particular kind of contract as it has been shown that, under
some general hypothesis, an American call is equivalent to the Euro-
pean one. Nonetheless, put options have great practical relevance in
that they are also used for insurance purposes [2]. Moreover, multi-
asset options are not just a mere theoretical exercise, but they are
vailable online 7 March 2023
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worth studying in that they also introduce diversification for derivative
contracts [3]. We apply a Partial Differential Equations (PDE) method to
each our goal. That is, we compute the price function as the solution of
PDE. We work on the framework of the Black–Scholes model, where
parabolic nonlinear PDE is used to describe option price dynamics.

urthermore, specific initial and boundary conditions are exploited
o represent some contract features mathematically, e.g. call or put,
uropean or American. More specifically, the American put option pric-
ng problem is a free boundary problem with Dirichlet and Neumann
onditions. The approaches developed to solve this kind of PDEs can be
lustered into several groups. Among them, Finite Difference Methods
FDMs), Finite Element Methods (FEMs), and Finite Volume Methods
FVMs) are numerical schemes generally adopted [4].

In this paper, the option pricing problem is addressed by applying
recent Deep Learning strategy for the numerical resolution of PDE,

amely the Physics-Informed Neural Networks (PINNs) [5]. PINNs
xploit neural networks to approximate the solution and incorporate
he physics of the problem by carefully designing the loss function,
hich is made up in such a way to represent the PDE, the initial,
nd the boundary conditions as well. Thus, we aim to overcome the
tandard limitations of the well-established methods in the literature,
articularly the difficulties in handling path dependency and multiple
imensions, by relying on a powerful universal approximator, the
eural networks. In fact, as stated by the universal approximation
heorem [6,7], conveniently designed networks can approximate any
ontinuous function on a compact domain. Further details about PINNs
re provided in the following sections, which examine this topic in
epth. As for the experimental stage, we carry out different experiments
n one-dimensional and multi-dimensional equations. That is, we con-
ider options with one and multiple underlying assets. Furthermore, we
lso develop a parametric model that could be useful for simulations
ith different market conditions or to extract implicit parameters from

eal, observed market prices.
Numerical Methods for Option Pricing Historically, the most widely

used methods for American option pricing are binomial models, Monte
Carlo simulations, and FDMs. Binomial models exploit binomial trees to
approximate asset price dynamics over time and evaluate the option
price. These models create a partition on the time interval and represent
asset price movements as jumps from one time in the partition to
another. Each jump can assume only two values, either up or down, of
fixed magnitude. Although these models have been historically used for
pricing single asset options, there are also some attempts to generalize
pricing formulas for multi-dimensional options, such as [8]. On the
other hand, Monte Carlo methods evaluate option price by simulating
several possible paths and then averaging the option value in each sim-
ulation [9]. Moreover, this approach makes it possible also to compute
other quantities related to the price estimator, such as its variance.
Furthermore, it can easily work also for multi-dimensional options. In
contrast, it exhibits a big drawback in handling path dependency, so
they are not naturally suited for American options [10]. As for the
FDMs, they have been introduced to overcome some limitations of
binomial models and Monte Carlo simulations, especially related to
inaccuracies when working with high volatility assets [11]. The FDMs
are numerical methods designed to solve PDE. By solving appropriate
PDEs whose unknown function is the option price, these methods can
evaluate options as a function of variables such as time and underlying
asset value. Usually, the Black–Scholes equation is considered. As bi-
nomial models, also FDMs rely on time interval partitioning. Then, the
derivatives are approximated with finite differences, and the starting
PDE is turned into a linear system and finally solved. Methods of this
type are widely used in financial engineering at whole [12]. Specifically
concerned with option pricing, there is [13]. In [13], the author studies
American put options with one and two underlying assets by using
explicit and implicit finite difference schemes. Furthermore, the author
69

est the Brennan–Schwartz model [14], which is a log transformation
of the standard Black–Scholes model in such a way to obtain constant
coefficients.

Despite their wide diffusion in the early stage, it has been re-
ported that FDMs have drawbacks when working with multiple dimen-
sions [10]. So, further research has been carried out on other model
classes. One example are the FEMs [15]. In contrast to finite difference,
FEMs exploit a variational formulation of the problem to approximate
the solution. Specifically, the whole domain is partitioned into sub-
regions, where the equation can be locally approximated. Then, such
local approximations are gathered together to find the overall numeri-
cal solution. An application of this method can be found, for example,
in [2]. In this work, the author exploits a particular class of finite
difference method, namely the method of lines, to price American put
option defined on multiple underlying assets. In this case, the geometric
mean of asset values is considered for the computation of the payoff
function. Furthermore, a comparison with a finite difference method is
carried out.

Meshless and Deep Learning Methods in Finance All the approaches
shown till now are also referred to as Mesh-based methods, in that
they need the construction of a specific mesh. That is, two steps are
required: (i) the generation of grid points or elements, usually obtained
as the discretization of differential formulas (ii) the solution of discrete
equations, often by using iterative algorithms. Unfortunately, these
numerical methods have several issues to be addressed. For example,
we can mention the shape complexity of the computational domain
where the grid generation itself could become very difficult or even
infeasible; moreover, the problem discretization could introduce a bias
between the mathematical nature of the PDE and its approximating
model. To overcome the difficulties and limitations related to the
adoption of standard mesh-based approaches, recently novel meshless
strategies, mainly based on Artificial Intelligence and Deep Learning
methodologies, have been proposed [16].

For example, [17] propose the Deep Galerkin Method for high-
dimensional PDEs. The proposal exploits a neural network to approxi-
mate the solution instead of basis functions as in the standard Galerkin
method. Furthermore, the training points are re-sampled at each itera-
tion so that there is no need for a fixed mesh. Instead, [18] introduces
a novel iterative Deep Learning approach for semi-linear PDE based
on Backward Stochastic Differential Equation (BSDE) representation
and carries out an intensive experimental stage by comparing it with
other methods in literature on different benchmarks equations, such as
Black–Scholes one. A similar approach has been proposed in [19,20],
where the case study is on a slightly modified version of the Black–
Scholes equation to take into account also default possibility. Another
approach is [21], which deals with the European and American option
pricing problem by using radial basis point interpolation and different
numerical tricks to improve accuracy. Similarly, also [22] exploits a
meshless radial basis method for multi-asset European and American
option pricing. Finally, [23] proposes another Deep Learning approach,
which the authors claim can work up to 10000 dimensions. The method
works by splitting PDE into linear and nonlinear parts, which are
locally approximated for small time intervals. Then, a neural network is
trained to return conditional expectations within each interval. Again,
the Black–Scholes equation is one of the study cases for the proposal.

PINN Approaches in Finance The applications of PINNs for Finance
are, to the best of our knowledge, still little studied and related to
standard European option pricing. There are just a few works which
address this problem. In particular, [24] deals with applying PINNs for
European option pricing under the Black–Scholes and Heston models.
This work faces both forward and inverse problems and shows the
contribution of automatic differentiation in computing the Greeks.
Furthermore, multi-asset options are studied, and the capability of
PINNs to alleviate the course of dimensionality is emphasized. Another
interesting contribution is [25]. In this case, the original problem
addressed is the American call option pricing under the Black–Scholes

model. Actually, it is assessed that the American call option pricing
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problem can be turned into a European one if no dividends are paid
by the underlying. So, the authors assume no dividends are paid and
what they really solve is a European call option pricing problem. This
study highlights the error growth in space regions close to the strike
price or in time regions far away from the expiration date. The authors
also solve these issues by introducing a supervised loss obtained by
knowing the true solution of the problem. However, for the cases when
no real solution is known, some ideas to overcome these limitations are
found in a more conveniently weighted loss function. Improved PINNs
(IPINNs) are proposed by [26] to improve standard PINNs in different
aspects, mainly stability, accuracy and convergence speed. Both two
methods are compared in the European option pricing problem under
the Black–Scholes and Ivancevic models. The experimental results seem
to confirm the worthiness of the IPINN method, even if several limita-
tions have to be solved, as stated by the authors in their Conclusion.
Finally, the authors in [27] combine a PINN-based approach with a
Convolutional Transformer to predict the dynamics of the volatility
surface. Transformers are a cutting-edge neural architecture based on
Autoencoder that has shown promising performances in different fields,
such as Natural Language Processing. The proposed methodology is
compared against different benchmarks using European call options
data.

Main Contribution The contributions of this paper can be summa-
rized as follows:

• We apply a cutting-edge framework, namely the PINNs, to solve
the American put option pricing problem from a numerical per-
spective. This innovative meshless method exploits neural net-
works flexibility to approximate PDEs solution. Furthermore, its
applications in financial problems are still little studied.

• We introduce a novel algorithmic trick for free boundary PINN
training. To the best of our knowledge, this strategy has not
been used in the PINN context. It consists in performing multiple
steps of the solution network against a single step of the free
boundary. In this way, the convergence and the network’s overall
performance are enhanced.

• We assess the worthiness of our proposal in one and multi-
dimensional cases in the experimental stage. Moreover, we also
provide insight into a parametric model, which could greatly
benefit the parametric study of the solution.

• We publicly share the code developed in the experimental stage
to help researchers analyze the American option pricing problem
deeper.

Roadmap The following of this paper is organized as follows. Section 2
provides an overview of PINNs, the main results in the literature, and
the works that apply them in financial contexts. Section 3 describes
the American put option problem we face up from a mathematical
point of view by describing the PDE, the initial and boundary con-
ditions, and the reasoning behind them. Section 4 formally describes
the specific models we develop to price American options in uni and
multi-dimensional frameworks. Furthermore, also an insight into para-
metric models is provided. Section 5 shows the experiments and results
obtained. Finally, Section 6 concludes this work by highlighting the
strengths and weaknesses of our proposal and by suggesting possible
directions for further studies.

2. Background on PINNs

Big data availability supports Machine Learning (ML) solve chal-
lenging science and engineering problems. Despite numerous papers
in the literature, there is still room for improvement for product-
level ML applications. One of the most promising principles is to
combine physical models and Machine Learning techniques. In this
direction, [28] reviewed informed ML and explained how to assist
the ML algorithm with physical knowledge. Their paper shows that
70

physical knowledge can be mathematically represented in many ways,
such as algebraic equations, differential equations, simulation results,
logic rules, and probabilistic relations. Combining physics and Machine
Learning can help accuracy and data efficiency (e.g., reducing data
amount). Physics-informed Machine learning (PIML) based neural net-
work was introduced in [5] and later reviewed in [29], where the
authors presented the term PINN to indicate a Deep Learning frame-
work for addressing forward and inverse problems involving nonlinear
PDEs.

Deep Learning techniques are increasingly able to handle complex
physics-driven problems; in fact, combining physical rules with Ma-
chine Learning techniques gives rise to PINN approaches that integrate
PDEs into the neural network’s loss function, constraining the training
based on observable data or mathematical models. Still, the develop-
ment and implementation of PINN require great processing capacity, as
with the development of other AI systems. Different terminology such
as science-informed neural networks, physics-inspired neural networks,
and physics-constrained neural networks have been used to express
similar ideas [30]. For consistency, we use Physics Informed Neural
Network (PINN), although, in the context of Finance, we could call
it Finance Informed Neural Networks (FINNs), which would reflect
the fact that we could use fewer physics-inspired models and other
information from human behaviours.

PINN generally requires choosing a network class 𝑛 and loss
function, given 𝑁-training data (called collocations points). Quantity
and quality of training data affect 𝑛; therefore, the goal is to minimize
the loss by finding a 𝑢𝜃∗ ∈ 𝑛. However, even if 𝑛 contains the exact
DE solution 𝑢, there is no guarantee that the minimization output
𝜃∗ and the solution 𝑢 will coincide. The entire learning process of a
INN can be considered a statistical learning problem, and it involves
athematical foundations aspects for the error analysis [31].

Finally, as mentioned in [32,33], the global error between the
rained deep neural network 𝑢̂∗𝜃 and the right solution function 𝑢 of
differential problem can be bounded by the sum of three errors an

ptimization error, a generalization error, and an approximation error:

[𝑢̂∗𝜃] ≤ 𝑂 + 2𝐺 + 𝐴 (1)

here ̂(⋅)𝜃 denotes a NN approximation achieved with parameters 𝜃,
selected among all the possible NN encoding 𝛩, and

[𝑢̂∗𝜃] ≤ ̂[𝑢̂∗𝜃] − inf
𝜃∈𝛩

̂[𝑢𝜃]
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Optimization error

+2 sup
𝜃∈𝛩

|[𝑢𝜃] − ̂[𝑢𝜃]|

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Generalization error

+ inf
𝜃∈𝛩

[𝑢𝜃].
⏟⏞⏞⏞⏟⏞⏞⏞⏟

Approximation error

(2)

considering that ̂[𝑢𝜃] is the empirical risk, which represents how
effectively the NN predicts the exact value of the problem, and its
continuum counterpart is the risk [𝑢̂𝜃] of using an approximation
𝑢̂𝜃 , where the 𝐿2-norm is used to calculate the distance between the
approximation and the solution 𝑢. Among all the possible networks
used in literature for generating 𝑛, here we recall some of the most
used neural network frameworks, in particular Feedforward Neural
Networks (FNN), Convolutional Neural Networks (CNN) or Recurrent
Neural Networks (RNN). As for the optimizer used to minimize PINN’s
nonconvex and nonlinear loss functions, the most popular choices
are Adam, RMSprop, and BFGS. An extensive review on such topics
regarding the application, mathematical formalization, and network
architectures can be found in [30].

3. Black–Scholes equation for American put option

This section describes the Black–Scholes equation for American put
option pricing in univariate and multivariate settings. Furthermore, we
discuss the initial and boundary conditions and also the assumptions

we make.
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3.1. Univariate setting

The first case we discuss is the univariate setting. In this situation,
which is the most common one, we consider an option with only one
underlying asset. Thus, there is only one spatial dimension.

3.1.1. The American put option pricing problem
In the univariate setting, an American put option is a contract which

gives the possibility to sell a certain underlying asset at a fixed price
𝐾, also known as strike, in every moment in the time domain 𝛺𝑡 =
[0, 𝑇 ], where 0 is the present time and 𝑇 is also referred to as the
maturity of the option. Usually, the option price 𝑃 is represented as a
function of the underlying asset price 𝑆 and the time 𝑡, while the other
quantities, such as the strike price 𝐾 or the maturity 𝑇 , are considered
s parameters. So, 𝑃 = 𝑃 (𝑆, 𝑡). Actually, the asset price 𝑆 is itself a

function of the time, that is, 𝑆 = 𝑆(𝑡). However, we often omit time
dependence in 𝑆 in the following. As for the domain 𝛺 of function
𝑃 , observe that the price domain 𝛺𝑆 is straightforwardly defined as
[0,+∞]. So, 𝛺 must be a subset of 𝛺∗ = 𝛺𝑆 ×𝛺𝑡 = [0,+∞] × [0, 𝑇 ].

Evaluate 𝑃 at maturity is a straightforward task, as 𝑃 (𝑆, 𝑇 ) has to
be equal to max(𝐾 − 𝑆, 0). In fact, if the price goes below 𝐾, then the
option holder exercises the option and gains the difference between the
current market value 𝑆(𝑇 ) and 𝐾. In contrast, if 𝑆(𝑇 ) > 𝐾, the holder
does not exercise the option, so the total cash flow is 0. However, we
stress the fact that American options can be exercised every time before
maturity 𝑇 . Thus, from an analytical point of view, this implies a free
boundary domain 𝛺. In fact, it is reasonable to assume that if the asset
price 𝑆 is sufficiently low, i.e. 𝑆 ≪ 𝐾, the holder exercises the option
to immediately sell the underlying at a favourable price, thus gaining
the difference 𝐾 − 𝑆. The concept mentioned above of ‘‘sufficiently
low price’’ can be mathematically represented by a function 𝐵(𝑡), also
known as free boundary. Thus, 𝐵(𝑡) splits 𝛺∗ into two subsets, namely
𝛺∗

1 and 𝛺∗
2 , respectively known as continuation region and stopping

egion. In formula:

∗
1 =

{

(𝑆, 𝑡) ∈ 𝛺∗ 𝑠.𝑡. 𝑆 > 𝐵(𝑡)
}

𝛺∗
2 =

{

(𝑆, 𝑡) ∈ 𝛺∗ 𝑠.𝑡. 𝑆 ≤ 𝐵(𝑡)
}

(3)

n other words, 𝐵(𝑡) can be considered the max price that makes it con-
enient to early exercise the option. So, in literature, it is also referred
o as optimal exercise boundary. Note that 𝐵(𝑡) should always be less or
qual to 𝐾, as it is not convenient for the holder to exercise the option
hen the current market price is above the strike 𝐾. Furthermore,
bserve that in the domain 𝛺∗

2 , the option pricing problem is trivial,
s in the stopping region, the option is exercised and its value overlaps
ith its payoff, that is, 𝐾 − 𝑆. So, the real problem is to estimate the
merican put option price in the domain:

= 𝛺∗
1 = [𝐵(𝑡),+∞] × [0, 𝑇 ] (4)

.1.2. The mathematical model
The Black–Scholes equation for American put options is a free

oundary parabolic Partial Differential Equation (PDE). In more detail,
he Black–Scholes model describes the option price dynamic as:

1
2
𝜎2𝑆2 𝜕2𝑃

𝜕𝑆2
+ (𝑟 − 𝑞)𝑆 𝜕𝑃

𝜕𝑆
− 𝑟𝑃 + 𝜕𝑃

𝜕𝑡
= 𝑓 (𝑆, 𝑡) = 0 𝑆 > 𝐵(𝑡); 0 ≤ 𝑡 ≤ 𝑇

(5)

where 𝑃 = 𝑃 (𝑆, 𝑡) is the option price at time 𝑡 and with underlying asset
price 𝑆; 𝑟 is the risk-free rate; 𝑞 is the asset dividend yield; 𝜎2 is the
asset variance; 𝐵(𝑡) is an unknown auxiliary function that represents
the free boundary. The domain is as in Eq. (4). Furthermore, we can
define the differential operator 𝛬 as in Eq. (6).

𝛬𝑃 = 1𝜎2𝑆2 𝜕2𝑃 + (𝑟 − 𝑞)𝑆 𝜕𝑃 − 𝑟𝑃 + 𝜕𝑃 (6)
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2 𝜕𝑆2 𝜕𝑆 𝜕𝑡 𝛺
ollowing the above considerations, the initial condition is formalized
y Eq. (7).

(𝑆, 𝑇 ) = (𝐾 − 𝑆)+ 𝑆 ≥ 0 (7)

he Dirichlet boundary condition is:

lim
→+∞

𝑃 (𝑆, 𝑡) = 0 0 ≤ 𝑡 ≤ 𝑇 (8)

s for the free boundary 𝐵(𝑡), the initial condition is:

(𝑇 ) = 𝐾 (9)

he free boundary is also related to Dirichlet and Neumann boundary
onditions, as reported in Eqs. (10) and (11).
(

𝐵(𝑡), 𝑡
)

= 𝐾 − 𝐵(𝑡) 0 ≤ 𝑡 ≤ 𝑇 (10)

𝜕𝑃
𝜕𝑆

(

𝐵(𝑡), 𝑡
)

= −1 0 ≤ 𝑡 ≤ 𝑇 (11)

Observe that, in the previous equations, there are four parameters:
risk-free rate 𝑟, maturity 𝑇 , strike price 𝐾 and asset volatility 𝜎2.
Furthermore, there are two unknown functions, as both the option price
𝑃 (𝑆, 𝑡) and the free boundary 𝐵(𝑡) have to be approximated.

Finally, we underline that, from a computational point of view,
he non-limited domain 𝛺 causes some issues. To overcome these
ifficulties, we exploit a bounded version of 𝛺, namely 𝛺𝑏𝑜𝑢𝑛𝑑𝑒𝑑 =
𝐵(𝑡), 𝑆𝑚𝑎𝑥] × [0, 𝑇 ]. With a slight abuse of notation, in the following,
e use 𝛺 also to indicate 𝛺𝑏𝑜𝑢𝑛𝑑𝑒𝑑 . As for the constant 𝑆𝑚𝑎𝑥, we use the

hree times rule, that is we consider 𝑆𝑚𝑎𝑥 = 3𝐾. This is a well-established
pproach in the literature (see, for example, [34]).

.2. Multi-dimensional setting

The discussion in the previous subsection is now extended to the
ulti-dimensional setting. We consider options with multiple underly-

ng assets in this case, so the spatial dimension is 𝑑 ∈ N. This implies
more complex model. Furthermore, several contracts are possible, so
e restrict our study to a particular case.

.2.1. The pricing problem
In literature, there are several contracts with multiple underlying

ssets, each one with its own peculiarities. Firstly, we indicate the
imension with 𝑑 and the assets value with the vector 𝐒 = (𝑆1,… , 𝑆𝑑 ) ∈
𝑑 . Furthermore, we do not make any assumptions about asset cor-

elation. So, all assets are related to each other, and we indicate
he covariance matrix with 𝛴 ∈ R𝑑×𝑑 . In particular, we write 𝛴 =
𝜎𝑖,𝑗}𝑖,𝑗∈{1,…,𝑑}. Finally, each asset 𝑖 has its own dividend yield 𝑞𝑖.

In the following, we consider the contract whose payoff 𝜓 = 𝜓(𝐒) is
escribed in Eq. (12).

(𝐒) = 𝐾 − min(𝐒) = 𝐾 − min(𝑆1,… , 𝑆𝑑 ) (12)

e have chosen this type of contract as it is the natural generalization
o the multi-dimensional setting of the one-dimensional put option dis-
ussed in the previous subsection. Furthermore, we are still considering
n American option, so there are two unknown functions, namely the
ption price 𝑃 (𝐒, 𝑡) and the early exercise boundary 𝐁(𝑡). In this case,
(𝑡) =

(

𝐵1(𝑡),… , 𝐵𝑑 (𝑡)
)

is a function from [0, 𝑇 ] to [0,+∞]𝑑 . The domain
∗ = [0,+∞]𝑑×[0, 𝑇 ] is split into the continuation and stopping regions
∗
1 , 𝛺∗

2 in this way:

∗
2 =

{

(𝑆1,… , 𝑆𝑑 , 𝑡) ∈ 𝛺∗
| ∀𝑗, 𝑆𝑗 > 𝐵𝑗 (𝑡)

}

∗ { ∗ }
1 = (𝑆1,… , 𝑆𝑑 , 𝑡) ∈ 𝛺 | ∃𝑗 𝑠.𝑡. 𝑆𝑗 ≤ 𝐵𝑗 (𝑡) (13)
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3.2.2. The mathematical model
In the following, we extend the Black–Scholes model, as described

in Eqs. (5)–(11), to the multi-dimensional case. We assume Eq. (14)
describes the dynamic of each asset:

𝑑𝑆𝑖 = 𝑆𝑖𝜇𝑖𝑑𝑡 + 𝑆𝑖
𝑑
∑

𝑗=1
𝜎𝑖𝑗𝑑𝑊𝑗 (14)

where 𝑊𝑗 are independent one-dimensional Brownian motions whose
increments have 0 mean and variance equal to 𝑑𝑡. In the multi-
dimensional framework, the Black–Scholes equation is represented in
(15):

1
2

𝑑
∑

𝑖,𝑗=1

( 𝑑
∑

𝑘=1
𝜎𝑖𝑘𝜎𝑗𝑘

)

𝑆𝑖𝑆𝑗
𝜕2𝑃

𝜕𝑆𝑖 𝜕𝑆𝑗

+
𝑑
∑

𝑖=1
(𝑟 − 𝑞𝑖)𝑆𝑖

𝜕𝑃
𝜕𝑆𝑖

− 𝑟𝑃 + 𝜕𝑃
𝜕𝑡

= 𝑓 (𝐒, 𝑡) = 0 (15)

The differential operator 𝛬 becomes:

𝛬𝑃 = 1
2

𝑑
∑

𝑖,𝑗=1

( 𝑑
∑

𝑘=1
𝜎𝑖𝑘𝜎𝑗𝑘

)

𝑆𝑖𝑆𝑗
𝜕2𝑃

𝜕𝑆𝑖 𝜕𝑆𝑗
+

𝑑
∑

𝑖=1
(𝑟 − 𝑞𝑖)𝑆𝑖

𝜕𝑃
𝜕𝑆𝑖

− 𝑟𝑃 + 𝜕𝑃
𝜕𝑡

(16)

According to Eq. (13), the domain is defined as:

𝛺 =
𝑑
∏

𝑖=1

[

𝐵𝑖(𝑡),+∞
]

×
[

0, 𝑇
]

(17)

Regarding the initial condition, analogously to the 1D case, we write:

𝑃 (𝐒, 𝑇 ) = max
(

𝐾 − min
(

𝑆𝑖
)

, 0
)

(18)

The Dirichlet boundary condition now is far more complicated. In
fact, even if one asset approaches infinity, the others may keep near
to the exercise price. So, the option is not worthless, as it happens
in the 1D case. To solve this issue, we exploit the so-called time-
discounted payoff boundary condition, as in other works in literature,
for example, [35]. Thus, we approximate the boundary condition with
the payoff function whose strike is discounted to the current time 𝑡,
as shown in Eq. (19). Observe that Eq. (19) can be viewed as a multi-
dimensional generalization of Eq. (8), as when 𝑆 approach to infinity,
then the time-discounted payoff approaches to 0.

lim
𝑆𝑖→+∞

𝑃 (𝐒, 𝑡) = max
(

𝐾𝑒−𝑟(𝑇−𝑡) − min(𝑆1,… , 𝑆𝑑 ), 0
)

∀𝑖 ∈ {1,… , 𝑑}

(19)

The free boundary initial condition does not show relevant changes, so:

𝐁(𝑇 ) = (𝐾,… , 𝐾) (20)

Also, for the Dirichlet boundary condition related to the free boundary,
the situation is almost the same:

𝑃
(

𝐁(𝑡), 𝑡
)

= 𝐾 − min
(

𝐁(𝑡)
)

0 ≤ 𝑡 ≤ 𝑇 (21)

As for the Neumann condition, we have to consider that only the lowest
component of the price vector affects the exercise value. So, Eq. (11)
is generalized to the multi-dimensional case as in Eq. (22).

𝜕𝑃
𝜕𝑆𝑖

(

𝐁(𝑡), 𝑡
)

=
{

−1 𝑖𝑓 𝑖 = argmin
(

𝐁(𝑡)
)

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
0 ≤ 𝑡 ≤ 𝑇 (22)

inally, observe that, as already discussed above, also in this multi-
imensional case, we consider a bounded domain 𝛺𝑏𝑜𝑢𝑛𝑑𝑒𝑑 instead of
, with:

𝑏𝑜𝑢𝑛𝑑𝑒𝑑 =
𝑑
∏

𝑖=1

[

𝐵𝑖(𝑡), 𝑆𝑚𝑎𝑥
]

×
[

0, 𝑇
]

(23)

bserve that 𝑆𝑚𝑎𝑥 is not dependent on 𝑖. In fact, as the strike price 𝐾 is
ssumed to be the same for each asset, also the upper bound 𝑆𝑚𝑎𝑥 is the
ame along all spatial axes. Furthermore, the same abuse of notation of
72

he 1D case is done, so in the following, we refer to 𝛺𝑏𝑜𝑢𝑛𝑑𝑒𝑑 as 𝛺.
4. PINN model

This section describes the general model developed for solving the
American put option pricing problem. In particular, the general details
about the models exploited are given. We refer to the next section for
further detail about the specific network architecture used within each
experiment.

4.1. Feedforward neural networks for PINN

As already discussed above, the problem we face up is a free bound-
ary problem. This means there are two unknown functions, namely the
solution 𝑃 (𝐒, 𝑡) ∶ R𝑑+1 → R and the free boundary 𝐁(𝑡) ∶ R → R𝑑 . Fol-
owing a promising approach in the literature, see, for example, [36],
wo FNNs are exploited, one to approximate each unknown.

A FNN can be thought of as a collection of vectors, named layers
𝑗 , weights matrices and bias vectors 𝑊𝑗 and 𝑏𝑗 , and usually non-linear
ctivation functions 𝜙𝑗 . More formally:

𝑗 ∈ N, 𝑗 ∈ {0, 1,… , 𝐿} 𝑙𝑗 ∈ R𝑛𝑗 , 𝑗 ∈ {0, 1,… , 𝐿}

𝑊𝑗 ∈ R𝑛𝑗×𝑛𝑗−1 , 𝑗 ∈ {1,… , 𝐿} 𝑏𝑗 ∈ R𝑛𝑗 , 𝑗 ∈ {1,… , 𝐿} (24)

The layers are linked to each other as described in Eq. (25).

𝑙𝑗 = 𝜙𝑗 (𝑊𝑗 𝑙𝑗−1 + 𝑏𝑗 ) 𝑗 ∈ {1,… , 𝐿} (25)

The first layer, also known as input layer, contains problem input.
The last layer, or output layer returns model outputs. For the solution
network 𝐹𝑁𝑁𝑠𝑜𝑙 and for the free boundary network 𝐹𝑁𝑁𝑓𝑏, the input
and output layers are as follows:

𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑙𝑠𝑜𝑙0 = (𝐒, 𝑡) ∈ R𝑑+1 𝑙𝑠𝑜𝑙
𝐿𝑠𝑜𝑙

≈ 𝑃 (𝐒, 𝑡) ∈ R

𝐹𝑟𝑒𝑒 𝐵𝑜𝑢𝑛𝑑𝑎𝑟𝑦 𝑙𝑓𝑏0 = (𝑡) ∈ R 𝑙𝑓𝑏
𝐿𝑓𝑏

≈ 𝐁(𝑡) ∈ R𝑑 (26)

In the previous equation, the approximation ≈ is intended to be after
the convergence of the learning process by minimizing a convenient
loss function. The number of layers 𝐿𝑠𝑜𝑙 and 𝐿𝑓𝑏, their dimension 𝑛𝑠𝑜𝑙𝑗 ,
𝑛𝑓𝑏𝑗 , and also the activation functions 𝜙𝑠𝑜𝑙𝑗 and 𝜙𝑓𝑏𝑗 make up the so-called
network architecture and they are treated as hyperparameters. So, they
are considered fixed within each experiment, and their value is often
heuristically determined. Instead, the weights matrices and bias vectors
𝑊 𝑠𝑜𝑙
𝑗 , 𝑏𝑠𝑜𝑙𝑗 , 𝑊 𝑓𝑏

𝑗 and 𝑏𝑓𝑏𝑗 are obtained through an optimization process,
also known as backpropagation, by minimizing an appropriately defined
loss function, namely 𝑠𝑜𝑙 for 𝐹𝑁𝑁𝑠𝑜𝑙 and 𝑓𝑏 for 𝐹𝑁𝑁𝑓𝑏. Such a
type of minimization process iteratively updates network weights. Each
complete updating cycle is also referred to as epoch. Usually, these loss
functions act on the output layers by evaluating some quantities related
to them. In fact, observe that the output layers 𝑙𝑠𝑜𝑙

𝐿𝑠𝑜𝑙
and 𝑙𝑓𝑏

𝐿𝑓𝑏
can be

written as function of the input layers 𝑙𝑠𝑜𝑙0 and 𝑙𝑓𝑏0 . That is:

𝑙𝑠𝑜𝑙𝐿𝑠𝑜𝑙 = 𝜙𝑠𝑜𝑙𝐿𝑠𝑜𝑙
(

𝑊 𝑠𝑜𝑙
𝐿𝑠𝑜𝑙𝜙

𝑠𝑜𝑙
𝐿𝑠𝑜𝑙−1

(

𝑊 𝑠𝑜𝑙
𝐿𝑠𝑜𝑙−1 ⋯ 𝜙𝑠𝑜𝑙1 (𝑊 𝑠𝑜𝑙

1 𝑙𝑠𝑜𝑙0 + 𝑏𝑠𝑜𝑙1 ) ⋯ + 𝑏𝑠𝑜𝑙𝐿𝑠𝑜𝑙−1
)

+ 𝑏𝑠𝑜𝑙𝐿𝑠𝑜𝑙
)

= 𝐹𝑁𝑁𝑠𝑜𝑙(𝑙𝑠𝑜𝑙0 ;𝑊 𝑠𝑜𝑙
1 ,… ,𝑊 𝑠𝑜𝑙

𝐿𝑠𝑜𝑙 , 𝑏
𝑠𝑜𝑙
1 ,… , 𝑏𝑠𝑜𝑙𝐿𝑠𝑜𝑙 ) (27)

𝑙𝑓𝑏𝐿𝑓𝑏 = 𝜙𝑓𝑏𝐿𝑓𝑏

(

𝑊 𝑓𝑏
𝐿𝑓𝑏𝜙

𝑓𝑏
𝐿𝑓𝑏−1

(

𝑊 𝑓𝑏
𝐿𝑓𝑏−1 ⋯ 𝜙𝑓𝑏1 (𝑊 𝑓𝑏

1 𝑙𝑓𝑏0 + 𝑏𝑓𝑏1 ) ⋯ + 𝑏𝑓𝑏𝐿𝑓𝑏−1
)

+ 𝑏𝑓𝑏𝐿𝑓𝑏

)

= 𝐹𝑁𝑁𝑓𝑏(𝑙𝑓𝑏0 ;𝑊 𝑓𝑏
1 ,… ,𝑊 𝑓𝑏

𝐿𝑓𝑏 , 𝑏
𝑓𝑏
1 ,… , 𝑏𝑓𝑏𝐿𝑓𝑏 ) (28)

In particular, observe that the two resulting functions 𝐹𝑁𝑁𝑠𝑜𝑙 and
𝐹𝑁𝑁𝑓𝑏 in Eqs. (27) and (28) can be also viewed as functions of
the weights and biases sets. So, the backpropagation aims to find the
sets that minimize the loss function. For example, the parameters of
𝐹𝑁𝑁𝑠𝑜𝑙 are obtained as in Eq. (29), and the situation for 𝐹𝑁𝑁𝑓𝑏 is
almost the same.

𝑠𝑜𝑙 𝑠𝑜𝑙 𝑠𝑜𝑙 𝑠𝑜𝑙 𝑠𝑜𝑙 𝑠𝑜𝑙
(𝑊 , 𝑏 ) = (𝑊1 ,… ,𝑊
𝐿𝑠𝑜𝑙

, 𝑏1 ,… , 𝑏
𝐿𝑠𝑜𝑙

)
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= argmin
{

𝑠𝑜𝑙(𝑊 𝑠𝑜𝑙 , 𝑏𝑠𝑜𝑙) 𝑠.𝑡. 𝑊 𝑠𝑜𝑙 ∈
𝐿𝑠𝑜𝑙
∏

𝑗=1
R𝑛𝑗×𝑛𝑗−1 , 𝑏𝑠𝑜𝑙 ∈

𝐿𝑠𝑜𝑙
∏

𝑗=1
R𝑛𝑗

}

(29)

The peculiarity of PINN models is that the problem physics gives the
loss function. In other words, the loss function is defined in such a
way as to combine the PDE formulation and the initial and boundary
conditions. The following subsection clarifies this point.

4.2. Collocation points & loss functions

The definition of the loss function plays a crucial role in adequately
training an FNN. PINN models exploit it to incorporate PDE and initial
and boundary conditions in the neural network. This is done by creating
an appropriate training set  = {𝑥𝑖}𝑖∈𝑁 made up of several collocation
points belonging to different types. As pointed out by Equations from
(15) to (22), in our experiments, we face up with: (i) PDE (ii) initial
condition for the solution (iii) Dirichlet condition for the solution (iv)
initial condition for the free boundary (v) Dirichlet condition at the free
boundary (vi) Neumann condition at the free boundary. Accordingly,
the train set is divided into several subsets.

Firstly, we analyze the free boundary training set 𝑓𝑏 =
{𝑥𝑓𝑏𝑖 }𝑖∈{1,…,𝑁𝑓𝑏}, 𝑥

𝑓𝑏
𝑖 ∈ [0, 𝑇 ] ∀𝑖 ∈ {1,… , 𝑁𝑓𝑏}. We can write:

𝑓𝑏 = 𝑓𝑏
𝑖𝑛𝑖𝑡 ∪ 𝑓𝑏

𝐷𝑖𝑟 ∪ 𝑓𝑏
𝑁𝑒𝑢 (30)

n particular, the initial condition given by Eq. (20) requires one
ollocation point and it is represented by 𝑓𝑏

𝑖𝑛𝑖𝑡 = {𝑥𝑓𝑏1 } = {𝑇 }. Instead,
irichlet and Neumann conditions at the free boundary (Eqs. (21) and

22)) require several collocation points, and they are respectively rep-
esented by 𝑓𝑏

𝐷𝑖𝑟 ⊂ [0, 𝑇 ] and 𝑓𝑏
𝑁𝑒𝑢 ⊂ [0, 𝑇 ]. Clearly, we have: 𝑁𝑓𝑏 = 1+

𝑓𝑏
𝐷𝑖𝑟| + |𝑓𝑏

𝑁𝑒𝑢|. As for the solution training set 𝑠𝑜𝑙 = {𝑥𝑠𝑜𝑙𝑖 }𝑖∈{1,…,𝑁𝑠𝑜𝑙},
ach collocation point 𝑥𝑠𝑜𝑙𝑖 is in the domain 𝛺. Furthermore, we can
plit 𝑠𝑜𝑙 as follows:
𝑠𝑜𝑙 = 𝑠𝑜𝑙

𝑃𝐷𝐸 ∪ 𝑠𝑜𝑙
𝑖𝑛𝑖𝑡 ∪ 𝑠𝑜𝑙

𝐷𝑖𝑟 ∪ 𝑠𝑜𝑙
𝐹𝑏_𝐷𝑖𝑟 ∪ 𝑠𝑜𝑙

𝐹𝑏_𝑁𝑒𝑢 (31)

n more detail, the PDE is formed by the collocation points 𝑠𝑜𝑙
𝑃𝐷𝐸 ⊂ 𝛺.

egarding the initial condition in Eq. (18) and the Dirichlet condition
iven by Eq. (19), we have:

𝑠𝑜𝑙
𝑖𝑛𝑖𝑡 ⊂

𝑑
∏

𝑖=1
[𝐵𝑖(𝑡), 𝑆𝑚𝑎𝑥] × {𝑇 }

𝑠𝑜𝑙
𝐷𝑖𝑟 = {(𝑆1,… , 𝑆𝑑 , 𝑡) ∈ 𝛺|∃𝑖 𝑠.𝑡. 𝑆𝑖 = 𝑆𝑚𝑎𝑥} (32)

inally, the boundary conditions at the free boundary are strongly
elated to the estimate of the free boundary provided by 𝐹𝑁𝑁𝑓𝑏, so the
olution collocation points are obtained from the free boundary ones as
escribed in Eq. (33):

𝑠𝑜𝑙
𝐹𝑏_𝐷𝑖𝑟 =

{

(

𝐹𝑁𝑁𝑓𝑏(𝑡), 𝑡
)

∈ 𝛺|𝑡 ∈ 𝑓𝑏
𝐷𝑖𝑟

}

𝑎𝑛𝑑

𝑠𝑜𝑙
𝐹𝑏_𝑁𝑒𝑢 =

{

(

𝐹𝑁𝑁𝑓𝑏(𝑡), 𝑡
)

∈ 𝛺|𝑡 ∈ 𝑓𝑏
𝑁𝑒𝑢

}

(33)

fter defining the collocation points, we discuss how to exploit them
o define the correct loss function. Regarding the solution network
𝑁𝑁𝑠𝑜𝑙, its loss function can be viewed as the sum of the contribution
f PDE, initial and boundary conditions in this way:
𝑠𝑜𝑙 = 𝑠𝑜𝑙𝑃𝐷𝐸 + 𝑠𝑜𝑙𝑖𝑛𝑖𝑡 + 𝑠𝑜𝑙𝐷𝑖𝑟 + 𝑓𝑏𝐷𝑖𝑟 + 𝑓𝑏𝑁𝑒𝑢 (34)

et analyze individually the components in Eq. (34). 𝑠𝑜𝑙𝑃𝐷𝐸 takes into
ccount the PDE. In particular, as from Eqs. (15) and (16) we have
𝑃 (𝐒, 𝑡) = 𝑓 (𝐒, 𝑡) = 0, then 𝑠𝑜𝑙𝑃𝐷𝐸 is defined as the norm of the
ector obtained by evaluating 𝛬 in the collocation points 𝑠𝑜𝑙

𝑃𝐷𝐸 , under
convenient metric ‖ ⋅ ‖. So:

𝑠𝑜𝑙
𝑃𝐷𝐸 =

‖

‖

‖

(

𝛬𝐹𝑁𝑁𝑠𝑜𝑙(𝐒, 𝑡)
)

‖

‖

‖

(35)
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‖ (𝐒,𝑡)∈𝑠𝑜𝑙𝑃𝐷𝐸
‖

s for the initial and boundary conditions, we have an analytical
xpression of the desired output, so the respective losses are computed
s the distance between the 𝐹𝑁𝑁𝑠𝑜𝑙 output and the expected target,
nder the same metric ‖ ⋅ ‖. In more detail:

𝑠𝑜𝑙
𝑖𝑛𝑖𝑡 =

‖

‖

‖

‖

(

𝐹𝑁𝑁𝑠𝑜𝑙(𝐒, 𝑇 ) − 𝑃 (𝐒, 𝑇 )
)

(𝐒,𝑇 )∈𝑠𝑜𝑙𝑖𝑛𝑖𝑡

‖

‖

‖

‖

(36)

𝑠𝑜𝑙
𝐷𝑖𝑟 =

‖

‖

‖

‖

(

𝐹𝑁𝑁𝑠𝑜𝑙(𝐒, 𝑡) − 𝑃 (𝐒, 𝑡)
)

(𝐒,𝑡)∈𝑠𝑜𝑙𝐷𝑖𝑟

‖

‖

‖

‖

(37)

𝑓𝑏
𝐷𝑖𝑟 =

‖

‖

‖

‖

(

𝐹𝑁𝑁𝑠𝑜𝑙(𝐒, 𝑡) − 𝑃 (𝐒, 𝑡)
)

(𝐒,𝑡)∈𝑠𝑜𝑙𝑓𝑏_𝐷𝑖𝑟

‖

‖

‖

‖

=
‖

‖

‖

‖

(

𝐹𝑁𝑁𝑠𝑜𝑙(𝐹𝑁𝑁𝑓𝑏(𝑡), 𝑡) − 𝑃 (𝐹𝑁𝑁𝑓𝑏(𝑡), 𝑡)
)

𝑡∈𝑓𝑏𝐷𝑖𝑟

‖

‖

‖

‖

(38)

𝑓𝑏
𝑁𝑒𝑢 =

𝑑
∑

𝑖=1

‖

‖

‖

‖

(

𝜕𝐹𝑁𝑁𝑠𝑜𝑙

𝜕𝑆𝑖
(𝐒, 𝑡) − 𝜕𝑃

𝜕𝑆𝑖
(𝐒, 𝑡)

)

(𝐒,𝑡)∈𝑠𝑜𝑙𝑓𝑏_𝑁𝑒𝑢

‖

‖

‖

‖

=
𝑑
∑

𝑖=1

‖

‖

‖

‖

(

𝜕𝐹𝑁𝑁𝑠𝑜𝑙

𝜕𝑆𝑖
(𝐹𝑁𝑁𝑓𝑏(𝑡), 𝑡) − 𝜕𝑃

𝜕𝑆𝑖
(𝐹𝑁𝑁𝑓𝑏(𝑡), 𝑡)

)

𝑡∈𝑓𝑏𝑁𝑒𝑢

‖

‖

‖

‖

(39)

here the equivalences contained in Eqs. (18), (19), (21) and (22)
ave been used. Finally, we remark that PDE loss is also referred to
s Unsupervised loss. In fact, for PDE collocation points, there is not a
eal target output, as it happens for initial and boundary conditions. So,
t can be viewed as an example of Unsupervised Learning. In contrast,
ll the other losses are defined jointly with a target result. That is, each
bservation is individually labelled. This is an example of Supervised
earning. In this view, PINNs are an example of a mixed Unsupervised
nd Supervise Learning problem.

As for the free boundary, its loss can be defined as the sum of the
osses related to the initial, Dirichlet and Neumann condition, that is:
𝑓𝑏 = 𝑓𝑏𝑖𝑛𝑖𝑡 + 𝑓𝑏𝐷𝑖𝑟 + 𝑓𝑏𝑁𝑒𝑢 (40)
𝑓𝑏
𝐷𝑖𝑟 and 𝑓𝑏𝑁𝑒𝑢 have already been discussed above. Instead, as for 𝑓𝑏𝑖𝑛𝑖𝑡,

he reasoning is the same as in Eq. (36):
𝑓𝑏
𝑖𝑛𝑖𝑡 =

‖

‖

‖

𝐹𝑁𝑁𝑓𝑏(𝑇 ) − (𝐾,… , 𝐾)‖‖
‖

(41)

o, the loss on the free boundary is strictly related to the estimate of the
olution provided by 𝐹𝑁𝑁𝑠𝑜𝑙, and vice-versa the loss of the solution
s strongly related to the estimate 𝐹𝑁𝑁𝑓𝑏 of the free boundary. In
ther words, the two neural networks are trained concurrently to reach
he same goal, i.e. the minimization of the losses 𝑓𝑏𝐷𝑖𝑟 and 𝑓𝑏𝑁𝑒𝑢. Till
ow, to the best of our knowledge, no attempts have been made to
refer one of the two networks over the other, and in all the works
oncerning free boundary problems (see, for example, [37] applied to
he Heat equation, which can be transformed into the Black–Scholes
DE) at each epoch 𝐹𝑁𝑁𝑠𝑜𝑙 and 𝐹𝑁𝑁𝑓𝑏 are updated once each. So, we
ave studied what happens if we give more relevance to one network.
n other words, we have modified PINN training to perform multiple
teps of 𝐹𝑁𝑁𝑠𝑜𝑙 against a single step of 𝐹𝑁𝑁𝑓𝑏 at each epoch and
ice-versa. The experimental results (the next section provides the full
escription of the experimental setting) show that performing more
teps of 𝐹𝑁𝑁𝑠𝑜𝑙 at each epoch could benefit the model convergence
nd final loss. Instead, performing multiple steps of 𝐹𝑁𝑁𝑓𝑏 seems
o degrade overall performance. So, the algorithmic trick we propose
s to perform more training steps of the solution network against a
ingle step of the free boundary at each epoch. It is not a novel
lgorithmic trick in that it is already used in other examples of con-
urrent or adversarial training (for example, it is common to exploit
ore Discriminator steps for each Generator step in the Generative
dversarial Training [38]). However, to the best of our knowledge, it is

he first time this trick has been applied to PINNs. Finally, the training
rocedure is summarized in Algorithm 1 and in Fig. 1.
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Algorithm 1 PINN Training Process
Require: Networks 𝐹𝑁𝑁𝑠𝑜𝑙, 𝐹𝑁𝑁𝑓𝑏; Epochs number epochs; Optimiz-

ers opt𝑠𝑜𝑙, opt𝑓𝑏; Number of sol steps N_steps.
1: Initialize networks weights and biases 𝑊 𝑠𝑜𝑙

𝑗 , 𝑏𝑠𝑜𝑙𝑗 , 𝑊 𝑓𝑏
𝑗 and 𝑏𝑓𝑏𝑗 .

2: for epoch = 0,⋯ ,epochs do
3: Compute free boundary values 𝐹𝑁𝑁𝑓𝑏(𝑡) on the sets 𝑓𝑏

𝐷𝑖𝑟,
𝑓𝑏
𝑁𝑒𝑢.

⊳ More 𝑠𝑜𝑙 steps for each 𝑓𝑏
4: for iter = 1,⋯ ,N_steps−1 do
5: Exploit the free boundary estimate on 𝑓𝑏

𝐷𝑖𝑟 and 𝑓𝑏
𝑁𝑒𝑢 to

obtain the sets 𝑠𝑜𝑙
𝐹𝑏_𝐷𝑖𝑟 and 𝑠𝑜𝑙

𝐹𝑏_𝑁𝑒𝑢.
6: Estimate 𝐹𝑁𝑁𝑠𝑜𝑙 and its derivatives on the training sets

𝑠𝑜𝑙
𝑃𝐷𝐸 ,

𝑠𝑜𝑙
𝑖𝑛𝑖𝑡,

𝑠𝑜𝑙
𝐷𝑖𝑟,

𝑠𝑜𝑙
𝐹𝑏_𝐷𝑖𝑟,

𝑠𝑜𝑙
𝐹𝑏_𝑁𝑒𝑢.

7: Compute solution loss 𝑠𝑜𝑙 = 𝑠𝑜𝑙𝑃𝐷𝐸+𝑠𝑜𝑙𝑖𝑛𝑖𝑡+𝑠𝑜𝑙𝐷𝑖𝑟+𝑓𝑏𝐷𝑖𝑟+𝑓𝑏𝑁𝑒𝑢.
8: Update solution weights 𝑊 𝑠𝑜𝑙

𝑗 , 𝑏𝑠𝑜𝑙𝑗 = opt𝑠𝑜𝑙(𝑠𝑜𝑙 ,𝑊 𝑠𝑜𝑙
𝑗 , 𝑏𝑠𝑜𝑙𝑗 ) .

9: end for
10: Estimate free boundary values 𝐹𝑁𝑁𝑓𝑏(𝑡) on the sets

𝑓𝑏
𝑖𝑛𝑖𝑡,

𝑓𝑏
𝐷𝑖𝑟,

𝑓𝑏
𝑁𝑒𝑢. ⊳ Last step 𝑓𝑏 and 𝑠𝑜𝑙 jointly

11: Exploit the free boundary estimate on 𝑓𝑏
𝐷𝑖𝑟 and 𝑓𝑏

𝑁𝑒𝑢 to obtain
the sets 𝑠𝑜𝑙

𝐹𝑏_𝐷𝑖𝑟 and 𝑠𝑜𝑙
𝐹𝑏_𝑁𝑒𝑢.

12: Evaluate 𝐹𝑁𝑁𝑠𝑜𝑙 and its derivatives on the training sets 𝑠𝑜𝑙
𝐹𝑏_𝐷𝑖𝑟

and 𝑠𝑜𝑙
𝐹𝑏_𝑁𝑒𝑢 to obtain the losses 𝑓𝑏𝐷𝑖𝑟 and 𝑓𝑏𝑁𝑒𝑢.

13: Compute free boundary loss 𝑓𝑏 = 𝑓𝑏𝑖𝑛𝑖𝑡 + 𝑓𝑏𝐷𝑖𝑟 + 𝑓𝑏𝑁𝑒𝑢.
14: Update free boundary weights 𝑊 𝑓𝑏

𝑗 , 𝑏𝑓𝑏𝑗 = opt𝑓𝑏(𝑓𝑏,𝑊 𝑓𝑏
𝑗 , 𝑏𝑓𝑏𝑗 ).

15: Estimate 𝐹𝑁𝑁𝑠𝑜𝑙 and its derivatives on the training sets
𝑠𝑜𝑙
𝑃𝐷𝐸 ,

𝑠𝑜𝑙
𝑖𝑛𝑖𝑡,

𝑠𝑜𝑙
𝐷𝑖𝑟 to obtain 𝑠𝑜𝑙𝑃𝐷𝐸 + 𝑠𝑜𝑙𝑖𝑛𝑖𝑡 + 𝑠𝑜𝑙𝐷𝑖𝑟.

16: Compute solution loss 𝑠𝑜𝑙 = 𝑠𝑜𝑙𝑃𝐷𝐸 + 𝑠𝑜𝑙𝑖𝑛𝑖𝑡 + 𝑠𝑜𝑙𝐷𝑖𝑟 + 𝑓𝑏𝐷𝑖𝑟 + 𝑓𝑏𝑁𝑒𝑢.
17: Update solution weights 𝑊 𝑠𝑜𝑙

𝑗 , 𝑏𝑠𝑜𝑙𝑗 = opt𝑠𝑜𝑙(𝑠𝑜𝑙 ,𝑊 𝑠𝑜𝑙
𝑗 , 𝑏𝑠𝑜𝑙𝑗 ) .

18: end for

Fig. 1. Graphical Abstract in one dimension - The values generated by 𝐹𝑁𝑁𝑠𝑜𝑙 and
𝐹𝑁𝑁𝑓𝑏 are used to compute the losses, which are fed back to train the networks.
Furthermore, more iterations of the solution network are performed to enhance result
quality (in the figure, 4 iterations).

Finally, observe that, sometimes, Eqs. (34) and (40) are rewritten
to allow for weighted losses, that is:

𝑠𝑜𝑙 = 𝜆𝑠𝑜𝑙𝑃𝐷𝐸
𝑠𝑜𝑙
𝑃𝐷𝐸 + 𝜆𝑠𝑜𝑙𝑖𝑛𝑖𝑡

𝑠𝑜𝑙
𝑖𝑛𝑖𝑡 + 𝜆

𝑠𝑜𝑙
𝐷𝑖𝑟

𝑠𝑜𝑙
𝐷𝑖𝑟 + 𝜆

𝑓𝑏
𝐷𝑖𝑟

𝑓𝑏
𝐷𝑖𝑟 + 𝜆

𝑓𝑏
𝑁𝑒𝑢

𝑓𝑏
𝑁𝑒𝑢 (42)

𝑓𝑏 = 𝜆𝑓𝑏𝑖𝑛𝑖𝑡
𝑓𝑏
𝑖𝑛𝑖𝑡 + 𝜆

𝑓𝑏
𝐷𝑖𝑟

𝑓𝑏
𝐷𝑖𝑟 + 𝜆

𝑓𝑏
𝑁𝑒𝑢

𝑓𝑏
𝑁𝑒𝑢 (43)

Where the 𝜆s are positive scalars. However, from the early experimental
stage, it results that no significant changes occur in the final result if
we change loss weights. So, according to the parsimonious principle for
neural networks, in the following we consider equally-weighted losses,
as those in Eqs. (34) and (40).

4.3. Equation parameters and parametric model

As already mentioned in Section 3, there are four parameters in
the Equations considered till now, namely assets volatility 𝜎, strike
𝐾, maturity 𝑇 and risk-free rate 𝑟. These parameters are fixed in the
experiments and do not interact in the PINN model. In other words,
74
we can say that our model is tailored to these parameters. So, to price
options under different market conditions, that is, with a different com-
bination of parameters, we have to train another PINN. As we discuss
in the experimental part, see Section 5.8, although the computational
time to price an option with an already-trained PINN (i.e. by varying
asset price 𝐒 and time 𝑡) is minimal, training is usually an expensive
operation. This can represent a strong limitation for PINN applications
in a real-world context.

To overcome this problem, we also propose a parametric model, i.e. a
model that contains the market conditions and work on them as input
for option pricing. As we aim to provide the first step in this direction,
we develop and test such a solution only for the 1D case. So, the input
layers of 𝐹𝑁𝑁𝑠𝑜𝑙 and 𝐹𝑁𝑁𝑓𝑏 defined in Eq. (26) are modified as
in Eq. (44). No changes occur in the outputs.

𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑙𝑠𝑜𝑙0 = (𝑆, 𝑡, 𝑟, 𝜎, 𝑇 ,𝐾) ∈ R6

𝐹𝑟𝑒𝑒 𝐵𝑜𝑢𝑛𝑑𝑎𝑟𝑦 𝑙𝑓𝑏0 = (𝑡, 𝑟, 𝜎, 𝑇 , 𝐾) ∈ R5 (44)

So, by modifying the inputs, we are also allowing the network to handle
the parameters, which now become model variables. This approach
dramatically benefits by allowing a parametric study and several simu-
lations with different market conditions with just one PINN training.
Furthermore, as stated in Section 5.8, the computational time for
pricing an option with an already-trained PINN is negligible. This
could make such a study and simulation possible within a relatively
short time. For example, the development of reliable parametric models
could help in the computation of the so-called implied volatility, i.e. the
volatility obtained by looking at options prices in the real market. In
fact, with a parametric model as fast in the prediction as PINN, it is
sufficient to use any root-finding algorithm, such as Newton–Raphson,
to compute implied volatility straightforwardly. It could be a significant
advantage in the financial industry. So, its study for further applications
is undoubtedly noteworthy. In fact, calibration of pricing models is
critical in modern financial engineering [39]. However, the problem
becomes far more complex as input dimensions in both networks are
bigger. So, including also the parameters as model input could lead to
an increase in computational time and degradation in performance.

One possible way to limit this drawback of a parametric model is
to restrict the analysis only to some interesting parameters. In other
words, while in the non-parametric model we consider all four pa-
rameters as fixed, and in the parametric model we consider the four
parameters as input variables for the network, we can build a model
which treats some parameters as fixed and the other ones as network
inputs. We refer to this kind of model as semi-parametric model. A
concrete example can be the following: we consider 𝑇 and 𝑟 as fixed
and 𝜎 and 𝐾 as variables. Undoubtedly, 𝜎 is the most critical parameter,
at least accordingly to most of the existing financial literature, so it is
helpful to study it. Moreover, also studying the price behaviour as 𝐾
changes can be interesting in the plot of the so-called volatility smile.
The volatility smile represents the dependence of implied volatility with
respect to the strike price (or the ratio 𝐾

𝑆 ). It is empirically shown that
this relationship is not constant [40]. This is due to several reasons,
mainly related to the asset type. However, some general reasons are:
(i) price variations are often discontinued and exhibit extreme variation
due to certain news (this is especially true for stocks, where it is referred
to with the term crash-fobia); (ii) volatility often is not constant, either
with respect to the time and the underlying asset value (in contrast
to the assumption in Eq. (14)). Understanding this phenomenon is a
crucial task in different aspects of financial engineering, such as the
computation of the implied distribution of the underlying asset [41]. So,
such a semi-parametric model could be a valuable ally in studying this
particular pattern.
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Table 1
The number of collocation points used in each experiment. Note that, for construction,
𝑠𝑜𝑙
𝑓𝑏_𝐷𝑖𝑟 and 𝑠𝑜𝑙

𝑓𝑏_𝑁𝑒𝑢 have the same number of collocation points of 𝑓𝑏
𝐷𝑖𝑟 and 𝑓𝑏

𝑁𝑒𝑢,
espectively. So, we have neglected these sets in the Table. Furthermore, observe how
he training set dimension increases as the input dimension becomes bigger. Finally,
ote that the initial condition for the free boundary requires just one point if the
aturity 𝑇 and strike 𝐾 are fixed. This is what happens in the non-parametric models.

nstead, in the (semi-)parametric model, as at least one between 𝑇 and 𝐾 is considered
s a variable of the network, we use more than one collocation point in 𝑓𝑏

𝑖𝑛𝑖𝑡.

Model 𝑠𝑜𝑙
𝑃𝐷𝐸 𝑠𝑜𝑙

𝑖𝑛𝑖𝑡 𝑠𝑜𝑙
𝐷𝑖𝑟 𝑓𝑏

𝑖𝑛𝑖𝑡 𝑓𝑏
𝐷𝑖𝑟 𝑓𝑏

𝑁𝑒𝑢

1D 30,000 300 300 1 300 300
2D 60,000 1500 1500 1 1500 1500
3D 120,000 4000 9000 1 9000 9000
4D 120,000 12,000 12,000 1 12,000 12,000
1D - SemiPar. 80,000 9000 9000 4500 9000 9000
1D - Parametric 100,000 10,000 10,000 5000 10,000 10,000

5. Experimental results

In this section, we describe the experimental setting and the results
obtained. Furthermore, we discuss some properties of the approximated
solution and show the computational time of our proposal.

5.1. Experimental setting

In describing the experimental setting, we start with the non-
parametric models and then discuss the parametric models. To give
an overview of PINN performance in the univariate and multivariate
framework, we conduct experiments in 1 dimension (1D), that is, one
spatial dimension and the time, and 2, 3, and 4 dimensions (2D, 3D,
and 4D). In both cases, the maturity is 𝑇 = 3, the strike is 𝐾 = 10, the
dividend yield 𝑞 is 0 for every asset, and the risk-free rate is 𝑟 = 0.01.
As for the variance matrix 𝜎, in the 4D case, it is:

⎛

⎜

⎜

⎜

⎜

⎝

0.050.01 0.1 0
0.01 0.06 −0.03 0
0.1 −0.03 0.4 0.2
0 0 0.2 0.3

⎞

⎟

⎟

⎟

⎟

⎠

or lower dimensions, the first rows and columns are considered.
nstead, for the parametric models, the domain of the parameters is
he following one:

𝑝𝑎𝑟 =
{

(𝑟, 𝜎2, 𝑇 , 𝐾) 𝑠.𝑡. 𝑟 ∈ [0.001, 0.03],

𝜎2 ∈ [0.001, 0.005], 𝑇 ∈ [2, 5], 𝐾 ∈ [8, 12]
}

n the semi-parametric model, 𝑇 and 𝑟 are fixed as in the non-
arametric models, and 𝜎2 and 𝐾 vary in the above interval.

As for the number and type of collocation points, some consid-
rations have to be made. Firstly, as 𝛺 as described in Eq. (23) is
trictly related to the free boundary, which is unknown, we initially
ample points for 𝑠𝑜𝑙

𝑃𝐷𝐸 in the hypercube [0, 𝑆𝑚𝑎𝑥]𝑑 × [0, 𝑇 ]. Then,
ollowing the procedure described by [36], at each iteration of the free-
oundary networks, only the points in the continuation region are used
o compute the loss. Secondly, as for the sampling criterion we use, we
xploit the so-called Sobol sequences [42]. Thirdly, the dimension of the
raining sets 𝑠𝑜𝑙 and 𝑓𝑏 should be directly related to the dimension
f the problem we face up. In other words, the more dimensions we
onsider, the more collocation points we should use to guarantee the
etwork’s convergence and a sufficient generalization capability of the
odel. Finally, the number of collocation points, i.e., the dimension of

he training sets, is summarized in Table 1.
The network architecture and the hyperparameters of the model are

mpirically determined. As for the network architecture, the solution
as 8 hidden layers of dimension 20, and the free boundary has 3
idden layers of dimension 100. The activation functions are hyper-
olic tangents for every layer except output layers, where the identity
unction is used. As for the weights initialization, the well-known
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Table 2
Summary of the optimizer features. All the experiments use RMSprop as the optimizer
and the same initial learning rate, which is 1e−2. The number of steps until decay and
its magnitude are reported in the table. For multidimensional experiments, an optimizer
is used for the solution and one for the free boundary network. In the 1D experiment,
only one optimizer is used. Finally, the number of epochs for each model and the
number of steps in the algorithmic trick are shown.

1D 2D 3D 4D Param Semi

lr Step 500 400 320 640 320 320
lr Dec 0.9 0.9 0.975 0.975 0.975 0.975
lr Step – 100 80 160 80 80
lr Dec – 0.9 0.975 0.975 0.975 0.975
Epochs 4000 10,000 15,000 25,000 15,000 15,000
n_steps 20 4 4 4 4 4

Glorot normal initializer is used [43]. The architecture is summarized
in Eq. (45).

𝐿𝑠𝑜𝑙 = 9 𝑛𝑠𝑜𝑙𝑗 = 20 ∀𝑗 ∈ {1,… , 8}

𝐿𝑓𝑏 = 4 𝑛𝑓𝑏𝑗 = 100 ∀𝑗 ∈ {1,… , 3} 𝜙𝑠𝑜𝑙𝑗 = 𝜙𝑓𝑏𝑗 = 𝑡𝑎𝑛ℎ ∀𝑗 (45)

Regarding the loss function, the square of the L2 norm is used, i.e. the
well-known Mean Square Error (MSE). Although in our code we have
implemented the possibility for different-weighted loss functions, from
empirical tests, it seems that, in our context and for the problem we
deal with, there are no significant benefits from using a particular
weighting system different. So, in the following, it is implied that all
the loss weights are equal to 1. As for the optimizer used for the
backpropagation, we carried out experiments by using two popular
algorithms, namely Adam and RMSprop [44]. From some early results,
mainly related to the 1D case, it seems that RMSprop performs much
better than Adam, so we use the former in all our experiments. As for
the network learning rate, the initial one is indicated with lr, and it
is set to 1e−2. Then, it decreases over iterations with an exponential
behaviour. This means that the learning rate function against the
number of iterations is a staircase function. After each iteration, there
is a little decrement in the learning rate, computed in such a way that
after lr Step iterations, the total decrement is equal to lr Dec. This kind
of strategy, which is common in deep learning applications, allows us
to use a bigger learning rate for a faster convergence at the first epochs
and a small learning rate, for fine-tuning, at the last epochs. Moreover,
we report that for multi-dimensional and parametric experiments, two
different optimizers are used: one for the solution network and the
other for the free boundary. The notation for the hyperparameters is
adjusted accordingly. Finally, we indicate with n_steps the number of
𝐹𝑁𝑁𝑠𝑜𝑙 iterations against each 𝐹𝑁𝑁𝑓𝑏 step. Table 2 shows a summary
about optimizer features.

The training of the network is performed on Google Colab. GPU
hardware accelerator is used.

As mentioned above, there is no closed-form solution for American
put options under the Black–Scholes model. Thus, we cannot compare
the PINN solution with the real one, and we must find another way
to assess model performance. This task is accomplished by generating
another set of collocation points (by using a random sampler in the
domain [0, 𝑆𝑚𝑎𝑥]𝑑 × [0, 𝑇 ] and then filtering the points in 𝛺, as already
explained before). This new set of points is also referred to as test set.
In more detail, we generate 1000000 points for the PDE (10000 for the
parametric models) and 1000 for each condition (except for the free
boundary initial one in the non-parametric model, which requires only
1 point). Finally, we compute model performance in the test set, and we
look at the obtained loss as an estimate of the generalization capability
of PINN.

It is well-known that neural networks strongly depend on random
weight initialization. So, it can also be interesting to study the net-
work’s behaviour related to the random seed. Thus, we perform 10

iterations for each model by using the first 10 prime numbers as the
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Table 3
Losses values for the launches of the 1D model, approximated to the first 6 decimal places.
Seed Unsupervised Initial Dirichlet FB_Init FB_Dir FB_Neu Free boundary Solution

2 0.001272 0.000295 0.000000 0.000031 0.000031 0.000004 0.000067 0.001603
3 0.000659 0.000247 0.000000 0.000011 0.000020 0.000003 0.000036 0.000931
5 0.000556 0.000173 0.000000 0.000008 0.000030 0.000006 0.000045 0.000766
7 0.001105 0.000201 0.000000 0.000024 0.000027 0.000003 0.000056 0.001338
11 0.001444 0.000430 0.000000 0.000034 0.000035 0.000006 0.000076 0.001916
13 0.000821 0.000139 0.000000 0.000020 0.000027 0.000005 0.000053 0.000995
17 0.000536 0.000183 0.000000 0.000011 0.000033 0.000005 0.000051 0.000759
19 0.000655 0.000113 0.000000 0.000012 0.000018 0.000018 0.000049 0.000805
23 0.000867 0.000158 0.000000 0.000021 0.000025 0.000002 0.000049 0.001054
29 0.001445 0.000231 0.000000 0.000004 0.000038 0.000008 0.000051 0.001724

Mean 0.000936 0.000217 0.000000 0.000018 0.000028 0.000006 0.000053 0.001189
Median 0.000844 0.000192 0.000000 0.000016 0.000029 0.000005 0.000051 0.001024
Fig. 2. Free Boundary - Early Exercise in the 1D experiment. The left plot shows the mean curve and the confidence interval, with the latter being obtained as the Bollinger
bands with 1 standard deviation up and down. Furthermore, the continuation region is highlighted. The right plot shows the free boundary of the best model (i.e. with the lowest
error in the test set, that is, random seed equal to 5).
random seed. As the following subsections show, noticeable differences
among different random seeds exist only in the multi-dimensional
experiments.

5.2. 1D model - result and discussion

The 1D model works in the standard uni-dimensional case. That is,
the American option has just one underlying asset, so that it can be
viewed as a function of only two variables: the asset value 𝑆 and time
𝑡. As already explained in the previous subsection, the parameters are
fixed to the following values: maturity 𝑇 = 3; risk-free rate 𝑟 = 0.01;
strike 𝐾 = 10; asset standard deviation 𝜎 = 0.05. Furthermore, 10 trials
with equally random seeds are carried out. The results of launches for
the 1D experiment are reported in Table 3.

As shown in the table, the error seems to be relatively stable across
the different iterations. Furthermore, most of the error is related to the
solution losses, especially PDE (Unsupervised) and initial conditions. In
fact, the Dirichlet condition is almost perfectly learned by the network,
with a negligible error in the first 6 digital places. Also, the sum of free
boundary losses is relatively restrained, about two orders of magnitude
lower than solution one. For the free boundary, the primary error
drivers are initial and Dirichlet conditions, while Neumann one is one
order of magnitude smaller than the others.

In this particular case, the exact shape of the free boundary is
shown in Fig. 2. As reported in the figure, the shapes of the two
curves (the mean and the optimal one) are pretty similar. Both of them
are monotonically increasing until they approach the initial condition
𝐵(𝑇 ) = 𝐾. Instead, the optimal is slightly up-shifted.

Furthermore, the solution obtained by the PINN is visualized as a
heatmap in Fig. 3.
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5.3. Comparison with finite difference methods

This subsection has two main purposes: (i) we ensure that the option
values predicted by the PINN are consistent, i.e., the computed values
are close to ones obtained by finite-difference methods, and (ii) we
show how the NN architecture design affects the learning process in
terms of loss.

It has been shown that not always low losses values 𝑠𝑜𝑙 and 𝑓𝑏
mean the closeness of the approximated solution to the correct one (see,
for example, [45,46]). So, the PINN numerical solution is compared
to a MATLAB code [47] by using an Euler-based explicit/implicit
method, used to value dividend-paying American options. The algo-
rithm uses explicit and implicit finite-difference methods to solve the
Black–Scholes partial differential problem, accounting for early exercise
and dividend payments in dividend-paying stocks. The test was carried
out by gradually increasing the mesh points and selecting the same
subset of 120 × 120 each time. The mesh for the explicit and implicit
methods begins with a grid of 2000 × 500 (2k) and is doubled three
times before reaching 8000 × 2000 (8k). The results can be seen in
Table 4. The L2 norm is used to report all errors.

According to the theoretical considerations reported in Eq. (1) and
by looking at the first column in the 2k setting against the columns
of the losses, we observe that despite the growth of the loss values, a
deeper and wider NN can better mimic the option values computed
with implicit and explicit numerical methods. In other words, the
optimization error (𝑂) is growing but overall does not impact the
global error. Indeed, by using a larger network, the approximation error
𝐴 is decreasing, while the generalization error 𝐺 should increase.
However, in this case, as the total error is decreasing, we presume that
the sum of generalization and optimization errors 𝐺 + 𝑂 increases

slower than the approximation one 𝐴.
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Table 4
The table shows how the error varies according to the network dimension. In particular, four architectures are compared. Starting from that
described in Eq. (45), we modify 𝑛𝑠𝑜𝑙𝑗 and 𝑛𝑓𝑏𝑗 . Accordingly to the difference in the architecture, also the PINN losses 𝑠𝑜𝑙 and 𝑓𝑏 (in the MSE
sense) vary, as described in the column Losses (observe that the error is reported in the scale 10−3). Finally, the comparison with the numerical
methods, that is the L2 distance between PINN and numerical solutions, is shown. Three different resolutions are considered: 2000 (2k), 4000
(4k), and 8000 (8k). Furthermore, explicit and implicit methods have been used for each resolution.
Neural architecture Losses (MSE) 10−3 2k - L2 distance 4k- L2 distance 8k- L2 distance

Sol Fb Expl Impl Expl Impl Expl Impl

5 × 25 0.9406 0.0101 0.0109 0.0109 0.0139 0.0138 0.0159 0.0157
10 × 50 0.4564 0.0485 0.0184 0.0184 0.0153 0.0153 0.0142 0.0141
20 × 100 1.024 0.051 0.0069 0.0069 0.0178 0.0178 0.0214 0.0212
40 × 200 7.5492 6.0605 0.0058 0.0058 0.0205 0.0205 0.0248 0.0245
Fig. 3. PINN Solution - The solution found by the PINN zoomed for 𝑆 values between 0 and 15. The green line represents the free boundary value.
Fig. 4. Comparison of the results obtained in the test set with and without the algorithmic trick. On the left side, there is the model configuration that exploits several solution
iterations for each free boundary step. On the right side, there is model 1 vs 1. The results are on a logarithmic scale.
Moreover, we found that the difference between the PINN and the
finite difference technique grew when the mesh was refined (columns
4k and 8k). This is more due to the generalization error (𝐺) and
could be balanced by optimizing the collocation points distribution.
Furthermore, to make comparable observations, we consistently noted
that the difference between the implicit method and the PINN was
slightly lower than the difference between explicit methods and the
PINN.

5.4. Algorithmic trick explanation

As stated in the previous section, increasing the number of 𝐹𝑁𝑁𝑠𝑜𝑙

iterations at each epoch helps improve PINN performance. In this sub-
section, we provide some evidence for this. In fact, early experiments
highlight that it is possible to obtain better results both in training and
in the test simply by performing multiple solution steps at each epoch.
For example, Fig. 4 shows the box plots of the error in the test set of
the 1D model obtained by changing the random seed. In particular,
two different configurations are compared: on the left side, there is that
with 20 𝐹𝑁𝑁𝑠𝑜𝑙 iterations at each epoch; on the right side, there is the
standard one with just 1 iteration.

The plot clearly shows better results for the model exploiting the
algorithmic trick. This finding can be further analyzed by comparing
77
Table 3 with Table 5, which shows the results obtained by the 1
iteration model. As shown, most of the error is related to the Neumann
free boundary condition, which is not well approximated by the model.
However, the other losses are also far from the results obtained with
the algorithmic trick, showing, in the end, the advantage of using
the algorithmic trick. This means that 𝐹𝑁𝑁𝑓𝑏 requires an accurate
estimate of 𝐹𝑁𝑁𝑠𝑜𝑙 to work correctly. This could be because, while
𝑠𝑜𝑙 is made up of different components, some of them completely
independent from 𝐹𝑁𝑁𝑓𝑏, 𝑓𝑏 is almost entirely linked to the outputs
of 𝐹𝑁𝑁𝑠𝑜𝑙. So, to enhance the final performance, it can be helpful to
exploit the ‘‘independence property’’ of the solution network to improve
model quality in an early stage and then use this solution to train the
free boundary.

As for the number of steps to exploit, Fig. 5 describes the loss be-
haviour as the number of steps changes. The figure shows the variation
in the error with respect to the number of 𝐹𝑁𝑁𝑠𝑜𝑙 steps. Observe
that, as the independent variable is defined as the number of 𝐹𝑁𝑁𝑠𝑜𝑙

iterations for each 𝐹𝑁𝑁𝑓𝑏, we indicate with a negative value the
case where multiple 𝐹𝑁𝑁𝑓𝑏 iterations are performed against a single
𝐹𝑁𝑁𝑠𝑜𝑙 step.

The plot shows a minimum point near the value of 10 iterations.
However, in the experimental stage, we have exploited 20 iterations.
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Table 5
Results obtained in the 1D experiment without using the algorithmic trick. In addition to the free boundary Neumann loss, which absorbs most
of the error, the other losses are also considerable.
Seed Unsupervised Initial Dirichlet FB_Init FB_Dir FB_Neu Free boundary Solution

2 0.001185 0.002067 0.000765 0.001167 0.008013 0.927812 0.936993 0.939844
3 0.007435 0.002488 0.000324 0.005496 0.021174 0.882764 0.909435 0.914187
5 0.001562 0.005792 0.001443 0.000798 0.003142 0.947291 0.951232 0.959232
7 0.001093 0.001922 0.000555 0.009569 0.002094 0.953169 0.964833 0.958835
11 0.016059 0.001687 0.000488 0.006557 0.036044 0.856507 0.899110 0.910788
13 0.003254 0.004141 0.001464 0.000000 0.002567 0.962209 0.964777 0.973637
17 0.001395 0.015225 0.003493 0.001597 0.007564 0.927944 0.937105 0.955622
19 0.000241 0.002165 0.000320 0.000717 0.000380 0.983726 0.984824 0.986835
23 0.002310 0.004868 0.001023 0.000835 0.002508 0.941294 0.944638 0.952006
29 0.013918 0.001320 0.000157 0.015796 0.024725 0.885708 0.926230 0.925830

Mean 0.004845 0.004167 0.001003 0.004253 0.010821 0.926842 0.941918 0.947682
Median 0.001936 0.002327 0.000660 0.001382 0.005353 0.934619 0.940872 0.953814
Fig. 5. Loss behaviour as the number of 𝐹𝑁𝑁𝑠𝑜𝑙 and 𝐹𝑁𝑁𝑓𝑏 iterations per epoch changes. A positive number means more 𝐹𝑁𝑁𝑠𝑜𝑙 iterations are executed against a single 𝐹𝑁𝑁𝑓𝑏

iteration. A negative number indicates more 𝐹𝑁𝑁𝑓𝑏 steps and just one 𝐹𝑁𝑁𝑠𝑜𝑙 iteration at each epoch. For example, 20 iterations mean 20 𝐹𝑁𝑁𝑠𝑜𝑙 and 1 𝐹𝑁𝑁𝑓𝑏 iterations at
each epoch. Instead, −5 iterations mean 1 𝐹𝑁𝑁𝑠𝑜𝑙 and 5 𝐹𝑁𝑁𝑓𝑏 steps at each epoch.
Fig. 6. Box plot of the logarithmic test losses. In the 1D case, the median value for the solution and free boundary networks are 0.000051 and 0.001024, respectively. As we can
see, the loss increases as the dimension increase. Furthermore, it seems that also the uncertainty has become bigger.
This is because we have found this value more stable to variations in the
other hyperparameters. For example. by changing the weights initial-
ization to the so-called Glorot Uniform initialization, the performance
for the model with 20 steps is nearly the same, with free boundary
and solution losses equal to 7.8𝑒 − 5 and 1.8𝑒 − 3, respectively. Instead,
there is a bigger degradation in the 10 steps model, whose errors are
𝑓𝑏 = 5𝑒−4 and 𝑠𝑜𝑙 = 2.3𝑒 − 3.

5.5. Multidimensional models - result and discussion

Fig. 6 shows the box plot of the test losses related to the solution
and the free boundary networks, respectively 𝑠𝑜𝑙 and 𝑓𝑏.

As we can see, both the error and the uncertainty, at least for the
solution network, grow as the dimension increases. We report each type
of loss for every launch for 2D, 3D, and 4D models in Tables 6, 7, and
8, respectively. Furthermore, also the mean and median values for each
experiment are shown.

In the 2D case, regarding the total solution error, we can observe
how all launches give a loss in the order of 10−3. The only exception is
that random seed 11 gives an error one order bigger. This is mainly due
to the Neumann condition at the free boundary, which exhibits a huge
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error. Instead, regarding the free boundary losses, the situation is more
heterogeneous, with errors order between 10−5 and 10−3. In general,
for the 2D model, the error seems to be quite stable across epochs.

As for the 3D model, an increase in uncertainty is noticed. In fact,
the error is considerably heterogeneous among different seeds. This is
clear by looking at the solution loss, which we use as a benchmark
as it is the sum of almost all the losses except 𝑓𝑏𝑖𝑛𝑖𝑡, which is usually
negligible. 𝑠𝑜𝑙 can vary by several orders of magnitude between one
seed and another. In this direction, it is particularly symbolic that the
mean value of the loss is equal to 100, while the median value is just
0.01. Indeed, it is possible to identify just three anomalous launches.
Two of them are characterized by an abnormal unsupervised loss, while
for the third one, most of the error is related to the Neumann condition
at the free boundary, which sometimes could be particularly hard to
approximate, as also seen for the 2D case.

Finally, the 4D case confirms the trend previously observed, with
a clear rise in the error uncertainty. In fact, the solution loss in some
launches is very low, in the order of 0.01, while in others, it explodes
up to 1000. By deeply looking into the errors, it can be noticed that in
this case, too, the main error driver for the disastrous launches is the
unsupervised loss.
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Table 6
Summary of the losses regarding the 2D model.
Seed Unsupervised Initial Dirichlet FB_Init FB_Dir FB_Neu Free boundary Solution

2 0.001313 0.000570 0.000199 0.000000 0.000029 0.000008 0.000037 0.002120
3 0.001349 0.001619 0.000377 0.000000 0.000030 0.000016 0.000046 0.003393
5 0.000775 0.001436 0.000325 0.000001 0.000021 0.000052 0.000076 0.002611
7 0.000731 0.000580 0.000265 0.000000 0.000058 0.000006 0.000065 0.001643
11 0.001206 0.002278 0.000274 0.000117 0.001298 0.007064 0.008480 0.012123
13 0.001925 0.002310 0.000269 0.000002 0.000250 0.000486 0.000739 0.005242
17 0.001043 0.001180 0.000254 0.000000 0.000057 0.001971 0.002028 0.004507
19 0.001189 0.000788 0.000224 0.000002 0.000122 0.000015 0.000139 0.002339
23 0.000796 0.001120 0.000188 0.000000 0.000033 0.000007 0.000041 0.002146
29 0.003092 0.000929 0.000407 0.000004 0.000030 0.000018 0.000053 0.004478

Mean 0.001342 0.001281 0.000278 0.000013 0.000193 0.000964 0.001170 0.004060
Median 0.001198 0.001150 0.000267 0.000001 0.000045 0.000017 0.000070 0.003002
Table 7
Errors in the 3D experiments.
Seed Unsupervised Initial Dirichlet FB_Init FB_Dir FB_Neu Free boundary Solution

2 0.000228 0.005354 0.001135 0.000142 0.000140 0.000146 0.000428 0.007005
3 0.001368 0.007969 0.000558 0.000003 0.000125 0.000071 0.000200 0.010093
5 4.755147 0.009160 0.001154 0.000040 0.000124 0.001469 0.001633 4.767055
7 0.003328 0.008617 0.001089 0.000057 0.000113 0.000204 0.000375 0.013354
11 0.000975 0.011386 0.001243 0.000073 0.000465 0.001207 0.001746 0.015278
13 0.003540 0.004172 0.001396 0.000146 0.000756 0.000273 0.001176 0.010139
17 1001.154 0.008811 0.001946 0.003124 0.054935 0.931168 0.989228 1002.150
19 0.000205 0.009785 0.000803 0.000023 0.000166 0.000052 0.000243 0.011014
23 0.039958 0.016549 0.001872 0.000032 0.000557 0.001233 0.001823 0.060171
29 0.000138 0.017036 0.001465 0.000035 0.001274 0.130187 0.131497 0.150102

Mean 100.5959 0.009884 0.001266 0.000367 0.005866 0.106601 0.112835 100.7195
Median 0.002348 0.008986 0.001198 0.000048 0.000316 0.000740 0.001404 0.014316
Table 8
Test set values for the 4D models.
Seed Unsupervised Initial Dirichlet FB_Init FB_Dir FB_Neu Free boundary Solution

2 0.000215 0.012743 0.003536 0.000045 0.000444 0.000173 0.000662 0.017113
3 0.006100 0.007089 0.003504 0.000382 0.000967 0.000678 0.002028 0.018339
5 0.074205 0.018106 0.003108 0.000059 0.001411 0.001128 0.002598 0.097959
7 0.119458 0.015205 0.008666 0.002461 0.000103 0.000205 0.002771 0.143640
11 0.001475 0.019099 0.003976 0.000134 0.000900 0.000851 0.001886 0.026303
13 133.0739 0.030052 0.011353 0.000126 0.081407 0.118090 0.199625 133.3148
17 1448.024 0.013883 0.005416 0.002588 0.119397 0.678356 0.800342 1448.841
19 0.000872 0.027174 0.009227 0.001819 0.001265 0.009992 0.013077 0.048532
23 0.093390 0.017579 0.007845 0.000000 0.001218 0.001088 0.002308 0.121124
29 127.1520 0.019168 0.012434 0.000627 0.074705 0.190620 0.265953 127.4489

Mean 170.8545 0.018010 0.006906 0.000824 0.028182 0.100118 0.129125 171.0078
Median 0.083797 0.017843 0.006630 0.000258 0.001242 0.001108 0.002684 0.109541
5.6. Multidimensional models - theoretical notes

Understanding how a network correctly approximates a function as
the dimension rises is connected to how well a network can approxi-
mate a function. Here we want to show that our PINN architecture can
still provide a good approximation as the dimension of the problem
grows. Regarding the theory of neural network approximation, the
main issue is understanding what size a neural network 𝑢̂ should have
to obtain a target error 𝜖. Starting from the papers [48,49], we know
that shallow (depth-3) networks with smooth activation (such as 𝑡𝑎𝑛ℎ)
complexity scales as ∼ 𝜖−𝑑∕𝑛. These results were extended by [50], and
a first rough estimate is that for every 𝜖 > 0 and given a function
𝑓 ∈ 𝑛,∞([0, 1]𝑑 ) ⊂ 𝐶2([0, 1]𝑑 ), for 𝑛 > 2, there is a neural network
𝑓 with 𝑂(𝜖−𝑑∕𝑛) neurons such that 𝑓 approximates 𝑓 .

However, the provided estimates in the literature are dependent on
the dimension 𝑑. In fact, high-dimensional PDEs solutions cannot be ap-
proximated due to the curse of dimensionality, which means the neural
network size scales exponentially in the input dimension. Nevertheless,
for some PDEs, the solution at a fixed time can be approximated with a
network of polynomial size. More recently [51] have demonstrated that
a PINN can overcome the curse of dimensionality for linear Kolmogorov
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PDEs, which include the heat equation and the Black–Scholes equation.
Even though the paper’s hypotheses are not valid in our architecture,
the results show that the error does not grow exponentially for each
best-case scenario, implying that similar properties may hold true for
other hypotheses and similar Black–Scholes equations.

We eventually evaluated and updated the optimizer in our test,
specifically for the multidimensional scenario, to better understand the
optimization error (1), i.e., the greater loss values that may be detected.
We noticed in our studies that even if the loss is more significant as an
absolute value greater than 1D, this does not necessarily imply that
the global error is increasing. Indeed, by using Adam as an optimizer,
the magnitude of the loss is 7.7 ∗ 10−3, against 3 ∗ 10−3 obtained with
RMSprop (see Table 3) and so more than doubled. The numerical value
of the loss function impacts on the global error. So, in this framework,
it is strongly suggested a proper optimizer choice.

Moreover, the authors in [52] prove that the global error exponen-
tially grows as the problem dimension increases. In our tests, we let
the NN have the same size in all the dimensions, so it is reasonable
that the loss increases exponentially with the dimension, as in Fig. 6.
However, more investigations are needed in the case of the American
option pricing problem.
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Fig. 7. Box plot of the logarithmic test losses. As we can see, the loss increases as the complexity increase. Furthermore, it seems that also the uncertainty has become more
significant.
Table 9
Test result regarding the semi-parametric model.
Seed Unsupervised Initial Dirichlet FB_Init FB_Dir FB_Neu Free boundary Solution

2 0.004564 0.001568 0.000001 0.001256 0.012349 0.005589 0.019195 0.024073
3 0.003025 0.002985 0.000001 0.001131 0.019425 0.005643 0.026200 0.031081
5 0.007274 0.001623 0.000000 0.000351 0.010848 0.004547 0.015747 0.024294
7 0.003391 0.001998 0.000000 0.001697 0.012157 0.005460 0.019315 0.023009
11 0.004189 0.001868 0.000002 0.000580 0.012227 0.004893 0.017701 0.023180
13 0.006404 0.002659 0.000002 0.000641 0.009433 0.006350 0.016425 0.024850
19 0.003016 0.001333 0.000000 0.000582 0.011739 0.007168 0.019489 0.023257
23 0.004506 0.002790 0.000000 0.000229 0.017123 0.008327 0.025679 0.032747
29 0.019027 0.001769 0.000001 0.000108 0.014384 0.004530 0.019023 0.039714

Mean 0.006155 0.002066 0.000001 0.000730 0.013298 0.005834 0.019864 0.027356
Median 0.004506 0.001868 0.000001 0.000582 0.012227 0.005589 0.019195 0.024294
Table 10
Result obtained in the test set by the parametric model.
Seed Unsupervised Initial Dirichlet FB_Init FB_Dir FB_Neu Free boundary Solution

2 0.006199 0.001715 0.000004 0.000599 0.014236 0.005781 0.020618 0.027939
3 0.004264 0.002243 0.000000 0.001448 0.018906 0.004794 0.025149 0.030210
5 0.010786 0.001908 0.000000 0.000497 0.011879 0.009859 0.022236 0.034434
7 0.004182 0.001890 0.000001 0.001611 0.013991 0.009255 0.024858 0.029321
11 0.005101 0.001703 0.000001 0.000726 0.016519 0.005201 0.022447 0.028527
13 0.004694 0.002054 0.000003 0.000348 0.010483 0.006320 0.017152 0.023556
17 0.005508 0.001964 0.000003 0.000463 0.015245 0.009160 0.024870 0.031882
19 0.003898 0.001917 0.000000 0.000647 0.013734 0.005116 0.019498 0.024665
23 0.012714 0.002355 0.000000 0.001236 0.027062 0.003963 0.032263 0.046096
29 0.007378 0.002292 0.000001 0.000421 0.017068 0.005851 0.023341 0.032593

Mean 0.006472 0.002004 0.000001 0.000800 0.015912 0.006530 0.023243 0.030922
Median 0.005304 0.001940 0.000001 0.000623 0.014741 0.005816 0.022894 0.029765
5.7. Parametric models - result and discussion

Now, we report the result obtained when working with the para-
metric (Par) and semi-parametric (Semi) models, as described in the
previous section. The box-plot in Fig. 7 describes error evolution when
moving from the standard 1D model to semi-parametric and parametric
models.

The figure, as expected, clearly shows a considerable decline in per-
formance when moving from the non-parametric to the semi-parametric
model. Instead, the difference between semi-parametric and parametric
models is far more contained. This can be explained by considering
that the two most sensible parameters are asset volatility and strike,
particularly the first. In other words, the network’s main difficulties
are in understanding how volatility affects option price. So, most of
the error is related to 𝜎. As both the models investigate 𝜎, there is not
a big difference between them.

Tables 9 and 10 show the test result across the seed and the mean
and median values.

Regarding the single losses, most of the error is related to the
Dirichlet condition for the free boundary. In fact, the free boundary
initial condition is two orders of magnitude lower, while the Neumann
condition is less than one-half the Dirichlet error. Furthermore, the free
boundary loss is more than one-half the solution error. In other words,
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the contribution given by 𝑓𝑏𝐷𝑖𝑟+𝑓𝑏𝑁𝑒𝑢 is greater than 𝑠𝑜𝑙𝑃𝐷𝐸+𝑠𝑜𝑙𝑖𝑛𝑖𝑡+𝑠𝑜𝑙𝐷𝑖𝑟.
This is a turnaround with respect to the non-parametric model, where
the free boundary error is about two orders of magnitude lower than
the total solution loss. This means that the mobility of the parameters,
especially 𝐾, causes more difficulties for the network to understand
such conditions.

5.8. Computational time

We record the computational time in every experiment. Fig. 8 shows
median time performance.

In particular, three plots are shown, concerning train time, train
time per epoch and test time. The first observation is related to the
difference between the computational time per epoch required in the
1D and 2D experiments. The first case is far more expensive. This is due
to the number of steps per epoch. In fact, while in the 1D case, there are
20 steps of solution for each free boundary, in the multi-dimensional
cases, there are just 4. Then, the computational time required per epoch
between 2D, 3D, and 4D experiments seems nearly linear. It increases
not so much for the number of parameters (which are very close
in that only solution input and free boundary output layers change)
but mainly for the computation complexity at each stage and for the
number of collocation points. In fact, the differential operator involves
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Fig. 8. Computational time. The median time (across the seed) is shown for each experiment. The figure gives information about training time, training per epoch, and test time.
As reported on the 𝑦-axis, test times are drastically lower than training times. Thus, most of the computational effort has to be put only in the training stage, and a properly
trained model can be easily used to perform multiple simulations by varying input vectors.
more operations as the number of underlying assets increases, and the
training sets become even bigger, as shown in Table 2.

The exponential growth in the total training time is given by the
above reasons and the increase in the number of epochs. Finally, as for
the test time, it should be noted that they are dramatically lower than
the training time. This is a general peculiarity of neural networks. In
particular, by looking at the 𝑦-axis and keeping in mind the dimension
of the test set, it can be noticed that in the worst case, about 1
millisecond for 100 points evaluation is needed. This makes PINNs
extremely useful if the aim is to perform multiple evaluations once the
model is trained. Instead, the computational time is more severe and
prohibitive if just a few evaluations have to be performed.

6. Conclusion

In this work, we apply a recent Deep Learning paradigm, namely
the Physical-Informed Neural Network, to study the American option
pricing problem. Currently, no analytical solution exists for this prob-
lem, so its study has attracted both academics and practitioners, giving
rise to increasing literature. Our strategy relies on the neural network
universal approximation property, which theoretically justifies exploit-
ing Deep Learning to approximate the price function. In particular,
the American option pricing problem is mathematically described as
a parabolic partial differential equation with free boundary conditions,
whose solution is the unknown price function. Two concurrent neural
networks are used to approximate the solution and the boundary. This
is because American options are path-dependent, and in particular,
not only the solution but also the domain boundary is unknown. The
training process is enhanced thanks to an algorithmic trick, for the first
time, exploited in the PINN context. The trick consists in applying more
solution training steps for each free boundary iteration.

The experimental stage aims to assess the reliability of the proposed
models. Firstly, the one-dimensional case is studied, also by providing
evidence for the algorithmic trick’s usefulness. Then, the analysis is gen-
eralized to multi-asset options. Finally, parametric models are discussed
and developed. The idea behind the latter class of models is to give
up accuracy and computational time in order to allow the networks to
understand the parameters’ role. In this way, the PINN should be able
to handle risk-free rate, asset volatility, maturity, and strike, as well as
the underlying asset price or time. So, we expect to find PINNs that are
easily exploitable to perform model calibration.

The last consideration is about possible further directions of anal-
ysis. Firstly, the study of the parametric model should be examined
in depth, also by comparison with real-market data. Then, it would
be interesting to analyze this framework also with different contracts
or pricing models. Indeed, both affect the underlying problem, adding
new features, such as the curse of dimensionality, strongly non-linear
PDE, more complex boundary conditions, or different types of path
dependency. Dealing with all these issues is helpful to have a more
exhaustive overview of the power of PINNs in Finance, as there is still
little literature on this way. Finally, from a theoretical point of view,
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our proposal can benefit, without doubt, from a deeper analysis of the
approximation error and its relationship with the computational time,
maybe also increasing the number of considered dimensions.
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