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Abstract. In this paper, we address the numerical solution of the quadratic optimal transport
problem in its dynamical form, the so-called Benamou-Brenier formulation. When solved using
interior point methods, the main computational bottleneck is the solution of large saddle point
linear systems arising from the associated Newton-Raphson scheme. The main purpose of this paper
is to design efficient preconditioners to solve these linear systems via iterative methods. Among
the proposed preconditioners, we introduce one based on the partial commutation of the operators
that compose the dual Schur complement of these saddle point linear systems, which we refer to as
the \bfitB \bfitB -preconditioner. A series of numerical tests show that the \bfitB \bfitB -preconditioner is the most
efficient among those presented, despite a performance deterioration in the last steps of the interior
point method. It is in fact the only one having a CPU time that scales only slightly worse than
linearly with respect to the number of unknowns used to discretize the problem.
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1. Introduction. Optimal transport deals with the problem of finding the op-
timal way to reallocate one nonnegative density into another by minimizing the total
cost of displacement in space. In recent years, numerous contributions have been made
to the study of this problem, on both the theoretical and the computational levels.
We suggest, for example, the monographs [50, 47, 4, 44] for a detailed presentation
of the subject. Due to these advances, optimal transport is nowadays an established
tool for many applications, including, for example, the analysis of partial differential
equations (PDEs) [5], physical modeling [47], data science and machine learning [44],
economics [28], and inverse problems [36].

When the cost of displacement per unit mass is given by the square of the Euclid-
ean distance, the problem can be recast dynamically, as shown by Benamou and
Brenier [8]. Consider a compact and convex domain \Omega \subset \BbbR d and two nonnegative
densities \rho in and \rho f in L1(\Omega ), with

\int 
\Omega 
\rho in dx =

\int 
\Omega 
\rho f dx. To transport the former to

the latter, we aim to find a time-dependent density \rho : [0,1]\times \Omega \rightarrow \BbbR \geq 0 and a velocity
field v : [0,1]\times \Omega \rightarrow \BbbR d that solve the following minimization problem:
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A1398 E. FACCA, G. TODESCHI, A. NATALE, AND M. BENZI

min
\rho ,v

\int 1

0

\int 
\Omega 

\rho | v| 2
2

dtdx :

\left\{     
\partial t\rho +div(\rho v) = 0 in [0,1]\times \Omega ,

\rho v \cdot \^n= 0 on [0,1]\times \partial \Omega ,

\rho (0, \cdot ) = \rho in\rho (1, \cdot ) = \rho f.

(1.1)

The total kinetic energy represents the cost of displacement. Thanks to a change
of variables (\rho , v) \rightarrow (\rho ,m = \rho v), (1.1) can be rewritten as a convex optimization
problem. From the optimality conditions, one can deduce that the optimal velocity
field is the gradient of a potential \phi : [0,1]\times \Omega \rightarrow \BbbR . The potential \phi and the density
\rho are given as the solution of the following system of PDEs:

 - \partial t\rho  - div (\rho \nabla \phi ) = 0,(1.2a)

\partial t\phi +
| \nabla \phi | 2

2
+ s= 0,(1.2b)

\rho \geq 0, s\geq 0, \rho s= 0,(1.2c)

with boundary conditions \rho (0, \cdot ) = \rho in, \rho (1, \cdot ) = \rho f, \rho \nabla \phi \cdot \^n = 0 on [0,1] \times \partial \Omega . The
auxiliary variable s : [0,1]\times \Omega \rightarrow \BbbR \geq 0 is related to the positivity constraint on \rho .

The Benamou--Brenier formulation offers several advantages. In addition to the
total displacement cost, it also directly shows how to continuously reallocate the mass.
This also constitutes a natural way to define interpolations between densities. Fur-
thermore, it draws a clear link between optimal transport and continuum mechanics,
and it is naturally suited for Eulerian discretizations. Finally, it can be easily general-
ized to other problems by penalizing/constraining the evolution \rho (such as variational
mean field games and planning problems [2], or unbalanced optimal transport [16, 6]).
On the other hand, the numerical solution of (1.1), or its system of optimality condi-
tions (1.2), poses significant challenges. Although it is a convex optimization problem,
it is nonlinear and, in general, nonsmooth for vanishing densities. Moreover, it is a
time-space boundary value problem and there is a positivity constraint on \rho to take
into account.

While different strategies have been proposed to discretize the Benamou--Brenier
formulation, most of these rely on staggered time discretization and a space discretiza-
tion which may be based on finite differences [8, 41], finite volumes [29, 38, 34, 32], or
finite elements [35, 39, 34]. Here, we focus on the framework considered in [38], where
one uses finite volumes in space with a two-level discretization of the domain \Omega , in
order to discretize the density \rho and the potential \phi separately, which alleviates some
checkerboard instabilities that may appear when the same grid is used to discretize
both variables (a strategy first used in [26, 27] when dealing with optimal transport
with unitary displacement cost given by the Euclidean distance). This choice is not
restrictive since such a framework constitutes a generalization of the finite volume
scheme studied in [29, 34] (in which a single grid is used for density and potential),
and it also contains as special cases the finite difference scheme in [41] (when a single
Cartesian grid is used in space) or the discrete transport models on networks studied
in [23] (by an appropriate reinterpretation of the space tessellation).

From a computational point of view, the numerical solution of the resulting dis-
crete optimization problem is generally tackled by iterative first-order primal-dual
optimization schemes (see, e.g., [8, 41]). The computational cost per iteration of
these methods is typically low, but the total number of iterations strongly depends on
the data and the tuning of the parameters, generally increasing with the problem size.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

05
/0

2/
24

 to
 1

92
.1

67
.2

04
.1

20
 . 

R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



PRECONDITIONERS FOR DYNAMICAL OPTIMAL TRANSPORT A1399

In this paper, we will consider instead a second-order approach, an interior point (IP)
method proposed in [38], where the optimization problem (1.1) is relaxed by adding a
logarithmic barrier function (we refer the reader to [51, 14, 30] for a broad introduc-
tion of IP methods). This perturbation provides smoothness by enforcing the strict
positivity of the density and uniqueness of the solution. The problem can then be
effectively solved by solving the relaxed optimality conditions via the Newton method,
and the original unperturbed solution is retrieved by repeating this procedure while
reducing the relaxation term to zero. Numerical experiments in [38] show that the
total number of Newton iterations remains practically constant, independently of the
number of unknowns.

The most demanding task in IP methods is the solution of a sequence of saddle
point linear systems in the following form:\biggl( 

\bfscrA \bfscrB T

\bfscrB  - \bfscrC 

\biggr) \biggl( 
\bfitx 
\bfity 

\biggr) 
=

\biggl( 
\bfitf 
\bfitg 

\biggr) 
,

generated by the Newton method. In our problem, all matrices \bfscrA , \bfscrB , and \bfscrC change at
each Newton iteration, but they are sparse, and hence iterative solvers are the natural
candidate for solving these linear systems. Iterative methods were not considered
in [38], and thus the goal of this paper is to determine whether one can devise a
preconditioning strategy such that, ideally, the total CPU time scales linearly with
the number of unknowns.

We consider three preconditioners: a preconditioner based on the approximation
of the inverse of the primal Schur complement \bfscrS p = \bfscrA + \bfscrB \bfscrC  - 1\bfscrB T , the SIMPLE
preconditioner [42], and one preconditioner inspired by the ideas in [20], where we
approximate the inverse of the dual Schur complement \bfscrS =  - \bfscrC  - \bfscrB \bfscrA  - 1\bfscrB T looking
at the differential nature of the operators that compose \bfscrS (note that, formally, we
cannot write \bfscrA  - 1 since in our problem the matrix \bfscrA will be singular). A series of
numerical experiments suggest that the latter, called the \bfitB \bfitB -preconditioner, is the
most efficient among those presented in this paper, despite some loss of robustness in
the last IP iterations.

Let us stress that, while we conducted our experiments using the scheme described
in [38], we do expect that the \bfitB \bfitB -preconditioner will provide good results when
adopting different discretization schemes even outside the framework considered here,
e.g., when finite elements are used. This is because it is entirely derived from the
differential operators involved in the continuous problem.

1.1. Related works. The literature on solving (1.2) using second-order and/or
Newton-based methods is relatively scarce. The most closely related works are [3, 32].
In the first paper, the authors study linear algebra approaches involved in the solution
of mean-field games systems via the Newton method. Problem (1.1) may in fact be
seen as the vanishing viscosity limit of a particular mean-field game. However, their
linear algebra approaches do not fit into the staggered temporal grids, which is gen-
erally required to discretize the Benamou--Brenier formulation. Moreover, they lose
efficiency with vanishing viscosity. In the second paper, the authors solved precisely
the Benamou--Brenier problem using an inexact Newton method combined with fi-
nite volumes on Cartesian grids. However, the discretization scheme is not designed
to handle densities \rho in and \rho f with compact support. The solution of the sequence
of saddle-point linear systems associated to the Newton method was performed us-
ing a preconditioning strategy that resembles the approach based on the approxima-
tion of the primal Schur complement, dropping some of the mixed time-space terms.
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A1400 E. FACCA, G. TODESCHI, A. NATALE, AND M. BENZI

However, this approach did not give satisfactory results in our experiments (more
details will be given in subsection 4.2).

1.2. Paper structure. In section 2, we summarize the discretization method
proposed in [38], the IP approach used to solve the optimization problem, and the
nonlinear problems associated to it. Then, in section 3, we present the linear system
studied in this paper. Finally, in section 4, we present the preconditioners described
in this paper, together with some numerical experiments where we solve a specific
test case for different time and space refinements. In particular, in subsection 4.5 we
compare the CPU time required by the preconditioners in solving different test cases.

2. Discrete problem and interior point method. In this section, we present
the discrete counterpart of system (1.2) considered in [38]. This combines the use of
finite volumes with staggered temporal grids. We further present the IP strategy
adopted for solving the problem.

2.1. Spatial discretization. In [38], the authors considered two different dis-
cretizations of the domain \Omega , which is assumed to be polygonal, both admissible for
two point flux approximation (TPFA) finite volumes, according to [24, Definition 9.1].
At each time t \in [0,1], the variable \rho (t) is discretized on a Delaunay triangulation,
with the further hypothesis that only acute angles appear. The variable \phi (t) is dis-
cretized on a finer grid obtained from the previous one by dividing each triangular
cell into three quadrilateral cells, joining the edges' midpoints to the triangle's cir-
cumcenter [38, Figure 1]. Both meshes consist of two sets (\scrT ,\scrE ), the set of cells c
and edges e, respectively. To distinguish the coarser mesh from the finer one, we
denote the former by (\scrT \prime ,\scrE \prime ), with the same notation for all its elements. Due to the
no-flux boundary condition, boundary edges are not relevant to the discrete model.
We will then consider, by convention, the sets \scrE and \scrE \prime without boundary edges. Let
us denote by N\scrT \prime and N\scrE \prime the total number of cells and (internal) edges of the coarser
mesh. The total number of cells and edges of the finer mesh are then N\scrT = 3N\scrT \prime and
N\scrE = 2N\scrE \prime + 3N\scrT \prime .

We define

\bfitM := Diag (| \bfitc | ) | \bfitc | := (| ci| )N\scrT 
i=1,

\bfitM \prime := Diag (| \bfitc \prime | ) | \bfitc \prime | := (| ci\prime | )N\scrT \prime 
i=1 ,

where | ci| denotes the area of the triangle ci. Since the discrete model involves two
different spatial discretizations, we also introduce the injection operator \bfitJ \in \BbbR N\scrT ,N\scrT \prime ,

\bfitJ [i, j] =

\Biggl\{ 
1 if ci \subset c\prime j ,

0 else .
(2.1)

The operator \bfitJ injects piecewise constant functions from the coarse grid to the fine
one. The operator (\bfitM \prime ) - 1\bfitJ T\bfitM is an averaging operator that acts in the opposite
direction. Both operators are the identity when the same grid is used for \phi and \rho .

In order to define the discrete differential operators associated to the finite volume
discretization, we fix an arbitrary orientation on the set of edges \scrE and define the
matrix \bfitE \in \BbbR N\scrT ,N\scrE given by

\bfitE [i, k] =

\Biggl\{ 
1 if cell ci is the left side of edge ek ,

 - 1 if cell ci is the right side of edge ek .
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PRECONDITIONERS FOR DYNAMICAL OPTIMAL TRANSPORT A1401

The discrete gradient and divergence, \bfnabla \in \BbbR N\scrE ,N\scrT and div \in \BbbR N\scrT ,N\scrE , are given by

\bfnabla =\bfnabla \scrE ,\scrT =Diag (| \bfitw | ) - 1
\bfitE T ,

div = div\scrT ,\scrE = - \bfnabla TDiag (| \bfitw | \odot | \bfite | ) = - \bfitE Diag (| \bfite | ) ,
where | \bfitw | \in \BbbR N\scrE and | \bfite | \in \BbbR N\scrE are the vectors of distances between the circumcenters
of adjacent cells and the lengths of the edges, respectively (we used the symbol \odot to
denote the pointwise multiplication of vectors).

The TPFA finite volume discretization and the two-level grids require the intro-
duction of two additional operators to match the dimension between the different
spaces. The first is a reconstruction operator \bfitR \scrE : \BbbR N\scrT \prime \rightarrow \BbbR N\scrE , mapping a positive
density \bfitrho defined on the cells of the coarse grid to a variable defined on the edges of
the finer one. In [38], this reconstruction first lifts the density \bfitrho into the finer space
via the operator \bfitJ and then averages the values of adjacent cells. The authors con-
sidered two types of averages, a weighted arithmetic mean and a weighted harmonic
mean (the latter is not considered in this paper to avoid complicating the exposition).
Using the former, the linear reconstruction operator explicitly writes

(\bfitR \scrE \bfitrho )e := \lambda e(\bfitJ \bfitrho )ci + (1 - \lambda e)(\bfitJ \bfitrho )cj

for the two cells ci, cj sharing the edge e, where \lambda e is a weight that depends on the
mesh geometry. Moreover, they introduced a further operator \bfitR \scrT :\BbbR N\scrE \rightarrow \BbbR N\scrT \prime that
maps the variables defined at the edges of the finer grid to the variables defined at the
cells of the coarser one. To preserve the variational structure of the discrete problem,
it is defined as

\bfitR \scrT := (\bfitR \scrE )
T
Diag (| \bfitw | \odot | \bfite | ) .

2.2. Temporal discretization. In [38], the temporal discretization is based on
staggered temporal grids. The time interval [0,1] is divided into K + 1 subintervals
[tk, tk+1] of equal length \Delta t = 1/(K + 1), for k = 0, . . . ,K \geq 1, with t0 = 0 and
tK+1 = 1. The variables \rho and s are defined at time tk for k = 1, . . . ,K, while \phi is
discretized at each instant (tk + tk+1)/2 for k= 0, . . . ,K.

Combining this temporal and spatial discretization, the discrete counterpart of
the potential \phi , the density \rho , and the slack variable s in (1.2) are the vectors \bfitphi \in 
\BbbR n, \bfitrho \in \BbbR m

\geq 0, and \bfits \in \BbbR m
\geq 0, with n=N\scrT (K + 1) and m=N\scrT \prime K given by

\bfitphi =
\Bigl( 
\bfitphi 1; . . . ;\bfitphi K+1

\Bigr) 
, \bfitphi k \in \BbbR N\scrT ,

\bfitrho =
\bigl( 
\bfitrho 1; . . . ;\bfitrho K

\bigr) 
, \bfitrho k \in \BbbR N\scrT \prime 

\geq 0 ,

\bfits =
\bigl( 
\bfits 1; . . . ;\bfits K

\bigr) 
, \bfits k \in \BbbR N\scrT \prime 

\geq 0 ,

where we use the symbol ; to denote the concatenation of vectors. Moreover, we will
denote by \bfitx k the k-slice of a concatenated vector \bfitx , which corresponds to its kth
time portion. The discrete counterparts of the initial and final densities are the two
vectors \bfitrho 0 and \bfitrho K+1 in \BbbR N\scrT \prime given by

\rho 0i =
1

| ci\prime | 

\int 
ci\prime 

\rho in dx, \rho K+1
i =

1

| ci\prime | 

\int 
ci\prime 

\rho f dx, i= 1, . . . ,N\scrT \prime .

2.3. Discrete nonlinear system of equations. With the aforementioned dis-
cretization, the discrete counterpart of the nonlinear system (1.2) is given by

F\bfitphi (\bfitphi ,\bfitrho ) :=
\Bigl( 
F 1
\bfitphi ; . . . ;F

K+1
\bfitphi 

\Bigr) 
= 0\in \BbbR N\scrT (K+1),

F\bfitrho (\bfitphi ,\bfitrho ,\bfits ) :=
\bigl( 
F 1
\bfitrho ; . . . ;F

K
\bfitrho 

\bigr) 
= 0\in \BbbR N\scrT \prime K ,

F\bfits (\bfitrho ,\bfits ) :=
\bigl( 
F 1
\bfits ; . . . ;F

K
\bfits 

\bigr) 
= 0\in \BbbR N\scrT \prime K ,

(2.2)
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A1402 E. FACCA, G. TODESCHI, A. NATALE, AND M. BENZI

where for k= 1, . . . ,K + 1 the functions F k
\bfitphi are given by

F k
\bfitphi (\bfitphi ,\bfitrho ) = - \bfitM \bfitJ 

\biggl( 
\bfitrho k  - \bfitrho k - 1

\Delta t

\biggr) 
 - div

\biggl( 
\bfitR \scrE 

\biggl( 
\bfitrho k + \bfitrho k - 1

2

\biggr) 
\odot \bfnabla \bfitphi k

\biggr) 
,(2.3)

while for k= 1, . . . ,K the functions F k
\bfitrho and F k

\bfits are given by

F k
\bfitrho (\bfitphi ,\bfitrho ,\bfits ) =\bfitM \prime \bfitJ T

\Biggl( 
\bfitphi k+1  - \bfitphi k

\Delta t

\Biggr) 
+

1

4
\bfitR \scrT 

\Bigl( \bigl( 
\bfnabla \bfitphi k

\bigr) 2
+
\bigl( 
\bfnabla \bfitphi k+1

\bigr) 2\Bigr) 
+\bfitM \prime \bfits k,(2.4)

F k
\bfits (\bfitrho ,\bfits ) = \bfitrho k \odot \bfits k,(2.5)

with the additional (componentwise) requirement \bfitrho ,\bfits \geq 0. System (2.2) is the system
of optimality conditions for the discrete counterpart of the problem in (1.1).

Remark 2.1. Thanks to the finite volume discretization, the conservative structure
of the continuity equation is preserved. Then, due to the no-flux boundary conditions,
which are encoded explicitly in the divergence operator, the equation F k

\bfitphi (\bfitphi ,\bfitrho ) = 0
implies

1TF k
\bfitphi = | \bfitc | T\bfitJ 

\bigl( 
\bfitrho k  - \bfitrho k - 1

\bigr) 
= | \bfitc \prime | T

\bigl( 
\bfitrho k  - \bfitrho k - 1

\bigr) 
= 0 \forall k= 1, . . . ,K .

Hence, at each intermediate time step, the discrete mass | \bfitc \prime | T\bfitrho k is preserved and is
equal to the mass of the discrete initial and final densities.

2.4. Interior point method. Due to the IP strategy, the discrete optimization
problem is perturbed by adding a logarithmic barrier function,

 - \mu 

K\sum 
k=1

\Delta t

N\scrT \prime \sum 
i=1

log(\rho ki )| ci| ,

tuned by a parameter \mu > 0. This turns the system of optimality conditions (2.2) into

F\bfitphi (\bfitphi ,\bfitrho ) = 0\in \BbbR N\scrT (K+1),

F\bfitrho (\bfitphi ,\bfitrho ,\bfits ) = 0\in \BbbR N\scrT \prime K ,

F\bfits (\bfitrho ,\bfits ) - \mu 1= 0\in \BbbR N\scrT \prime K ,

(2.6)

where the complementarity constraint between \rho and s in (2.5) is now relaxed. In this
way, the two variables are forced to be strictly positive, making the problem easier to
solve by using Newton methods.

The solution of the original problem is recovered in the limit \mu \rightarrow 0, and the
parameter \mu directly provides a bound on the suboptimality of the discrete solution
of (2.6) for the original unperturbed problem [38, section 4]. From the practical point
of view, it is computed via a continuation method: for each value of \mu l of a sequence of
relaxation parameters (\mu l)l\geq 0, the problem is solved with a Newton method initialized
with the previously computed solution. We refer the reader to [38] for the precise setup
of the algorithm. We stress only that for each value of \mu , problem (2.6) is solved up to
the relatively low tolerance 1e - 6, in order to obtain a more robust implementation.
Furthermore, within each Newton cycle, we ensure that any Newton update does not
introduce negative entries in the vectors \bfitrho and \bfits with a simple line-search procedure.
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PRECONDITIONERS FOR DYNAMICAL OPTIMAL TRANSPORT A1403

3. The linear algebra problem and the KKT system. The nonlinear sys-
tem of equations (2.6) is solved using an inexact Newton method. Each Newton
iteration requires the solution of a linear system (referred to as KKT system) in the
form \left(  \bfscrA \bfscrB T

\bfscrB \bfscrM \prime 

Diag (\bfits ) Diag (\bfitrho )

\right)  \left(  \bfitdelta \bfitphi 
\bfitdelta \bfitrho 
\bfitdelta \bfits 

\right)  =

\left(  \bfitf 
\bfitg 
\bfith 

\right)  = - 

\left(  \bfitF \bfitphi 

\bfitF \bfitrho 

\bfitF \bfits  - \mu 1

\right)  ,(3.1)

where the block matrix in (3.1) is the Jacobian matrix of (\bfitF \bfitphi ;\bfitF \bfitrho ;\bfitF \bfits  - \mu 1). We
denote by \bfscrM \prime and \bfscrM the matrices given by

\bfscrM \prime =Block Diag
\bigl( 
(\bfitM \prime )Kk=1

\bigr) 
, \bfscrM =Block Diag

\bigl( 
(\bfitM )K+1

k=1

\bigr) 
.

The matrices \bfscrA ,\bfscrB ,\bfscrB T in (3.1) are the finite-dimensional version of the following
differential operators (up to a multiplication by a mass matrix):

\bfscrA \approx  - div(\rho \nabla ) , \bfscrB \approx \partial t +\nabla \phi \cdot \nabla , \bfscrB T \approx  - \partial t  - div(\cdot \nabla \phi ) .

According to the discretization described in section 2, matrix \bfscrA \in \BbbR n,n is a sym-
metric block diagonal matrix with K + 1 blocks. Each block is a weighted Laplacian
matrix given by

\bfitA k = - divDiag
\Bigl( 
\~\bfitrho k
\Bigr) 
\bfnabla \in \BbbR N\scrT ,N\scrT , \~\bfitrho k :=\bfitR \scrE 

\biggl( 
\bfitrho k + \bfitrho k - 1

2

\biggr) 
,

which we can write equivalently as \bfscrA =  - \bfscrD \bfiti \bfitv \bfitx Diag
\Bigl( 
(\~\bfitrho 1; . . . ; \~\bfitrho k; . . . ; \~\bfitrho K+1)

\Bigr) 
\bfscrD \bfitx ,

where

\bfscrD \bfiti \bfitv \bfitx =Block Diag
\bigl( 
(div)K+1

k=1

\bigr) 
, \bfscrD \bfitx =Block Diag

\bigl( 
(\bfnabla )K+1

k=1

\bigr) 
.

Matrix \bfscrB is a block bidiagonal matrix in \BbbR m,n given by

\bfscrB =\bfscrJ T\bfscrD \bfitt \bfscrM +\bfscrH \bfscrG \bfscrD \bfitx ,

where the matrices\bfscrD \bfitt \in \BbbR KN\scrT ,(K+1)N\scrT ,\bfscrH \in \BbbR KN\scrT \prime ,(K+1)N\scrT \prime ,\bfscrJ \in \BbbR (K+1)N\scrT ,(K+1)N\scrT \prime ,
and \bfscrG \in \BbbR (K+1)N\scrT \prime ,(K+1)N\scrE 

\prime 
are

\bfscrD \bfitt =
1

\Delta t

\left(    - \bfitI N\scrT \bfitI N\scrT 

. . .
. . .

 - \bfitI N\scrT \bfitI N\scrT 

\right)   , \bfscrJ =Block Diag
\bigl( 
(\bfitJ )K+1

k=1

\bigr) 
,(3.2)

\bfscrH =
1

2

\left(   \bfitI N\scrT \prime \bfitI N\scrT \prime 

. . .
. . .

\bfitI N\scrT \prime \bfitI N\scrT \prime 

\right)   , \bfscrG =Block Diag
\Bigl( 
(\bfitG k)K+1

k=1

\Bigr) 
,(3.3)

with (\bfitG k)k=1,...,K+1 \in \BbbR N\scrT \prime ,N\scrE given by

\bfitG k :=\bfitR \scrT Diag
\Bigl( 
\bfnabla \bfitphi k

\Bigr) 
.

Remark 3.1. The kernel of the block diagonal matrix \bfscrA has dimension K + 1,
since each block \bfitA k has the constant vectors as kernel. On the other hand, Ker(\bfscrA )
is included in Ker(\bfscrH \bfscrG \bfscrD \bfitx ) and therefore

Ker(\bfscrA )\cap Ker(\bfscrB ) =Ker(\bfscrA )\cap Ker(\bfscrJ T\bfscrD \bfitt \bfscrM ) = \langle 1\rangle \in \BbbR n,

and thus the Jacobian matrix is singular. This singularity can be removed grounding
one entry of the solution \bfitdelta \bfitphi or via regularization techniques [13]. However, we pre-
fer avoiding these approaches in this paper, since iterative methods work also when
dealing with singular matrices [49, 22].
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3.1. Reduction to a saddle point linear system. In order to solve the linear
system in (3.1), it is convenient to eliminate the variable \bfitdelta \bfits writing

\bfitdelta \bfits = (Diag (\bfitrho )) - 1(\bfith  - Diag (\bfits )\bfitdelta \bfitrho )

and reduce it into the following saddle point system:

\bfscrJ 
\biggl( 
\bfitdelta \bfitphi 
\bfitdelta \bfitrho 

\biggr) 
=

\biggl( 
\bfscrA \bfscrB T

\bfscrB  - \bfscrC 

\biggr) \biggl( 
\bfitdelta \bfitphi 
\bfitdelta \bfitrho 

\biggr) 
=

\biggl( 
\bfitf 
\~\bfitg 

\biggr) 
,(3.4)

where the matrix \bfscrC \in \BbbR m,m and the vector \~\bfitg \in \BbbR m are given by

\bfscrC :=\bfscrM \prime Diag (\bfitrho )
 - 1

Diag (\bfits ) , \~\bfitg := \bfitg  - \bfscrM \prime Diag (\bfitrho )
 - 1

\bfith .

The matrix \bfscrJ in (3.4) typically has a higher conditioning number than the Jacobian
matrix in (3.1), in particular when approaching the optimal solution, i.e., as \bfits \odot \bfitrho \approx 
\mu 1 \rightarrow 0. However, designing an efficient preconditioner for the fully coupled system
in (3.1) can be harder than for the standard saddle point linear system in (3.4), for
which different preconditioning approaches are described in [9, 12, 37].

We adopt an inexact Newton approach, which means that we seek a solution
(\bfitdelta \bfitphi ,\bfitdelta \bfitrho ) such that

\| \bfscrJ (\bfitdelta \bfitphi ;\bfitdelta \bfitrho ) - (\bfitf ; \~\bfitg )\| \leq \varepsilon out\| (\bfitf ;\bfitg ;\bfith )\| .

The linear system residual is scaled by the right-hand side of the original system to
avoid oversolving issues we faced using \| (\bfitf ; \~\bfitg )\| . In our experiments, we use a fixed
tolerance \varepsilon out = 1e - 5. This value may be quite small compared to the literature for
an inexact Newton approach (see, for example, [7, 31]), but we want to avoid more
aggressive inexact strategies which could undermine the effectiveness of the nonlinear
solver and focus on the linear algebra only.

Remark 3.2. From Remark 2.1, we know the solution \bfitrho to (2.6) must satisfy
| \bfitc \prime | T\bfitrho k = | \bfitc \prime | T\bfitrho 0 for all k = 1, . . . ,K. If this condition is satisfied for the starting
point of the Newton scheme, then the increment \bfitdelta \bfitrho solution to equations (3.1) satisfies

| \bfitc \prime | T \bfitdelta \bfitrho k = 0 \forall k= 1, . . . ,K

at each Newton iteration. To see this, sum both sides of the first block of equations
of system (3.4), for each time step k, and use the no-flux boundary conditions in the
divergence operator. Due to our inexact Newton steps, this condition is not verified
exactly, but only up to the tolerance chosen. We impose it by renormalizing \bfitrho after
each Newton update.

4. Preconditioning approaches and numerical results. In this section, we
present three preconditioners to solve the linear system in (3.4) and a series of nu-
merical experiments used to measure their performance. All of these preconditioners
involve the usage of inexact inner solvers, and therefore they may not be linear and
must be applied as right preconditioners within an FGMRES cycle [46]. In all cases,
the inner solver we adopted is the AGgregation-based Algebraic MultiGrid (AGMG)
method described in [40].

We adopt three measures to evaluate the preconditioner performance for each
Newton cycle associated to each IP iteration:
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PRECONDITIONERS FOR DYNAMICAL OPTIMAL TRANSPORT A1405

1. Outer/Lin.sys.: the average number of outer FGMRES iterations. It is
calculated as the number of outer iterations divided by the number of linear
systems solved for each Newton cycle.

2. CPU/Lin.sys.: the average CPU time (measured in seconds) required for
the solution of the linear systems. It is computed as the total CPU time
required to solve all linear systems within a Newton cycle divided by the
number of linear systems solved (all experiments were conducted single core,
on a machine equipped with an Intel Xeon 2.8GHz CPU and 128 GiB of
RAM memory).

3. Inner/Outer: the average number of inner iterations per preconditioner
application. It is computed by dividing the cumulative number of AGMG
iterations required to solve the linear systems involved in the preconditioner
application (for each preconditioner, we will specify the linear systems to
which we will refer) by the total number of outer iterations for each Newton
cycle.

4.1. Test cases. The IP algorithm and the linear solver strategies described
in the next sections are tested on four numerical experiments adapted from [38,
section 5.2]. The first three are set in \Omega = [0,1]2, whereas the fourth one, three-
dimensional, is set in \Omega = [0,1]3. They are the following:

1. Gaussian densities \rho in and \rho f centered at (0.3,0.3) and (0.7,0.7), respectively,
with variance 0.1. This ensures that \rho in and \rho f are lower bounded by 1e - 3.

2. Translation of a compactly supported smooth sinusoidal density \rho in.
3. Compression of a compactly supported smooth sinusoidal density \rho in. This

test case has been shown experimentally in [38] to exhibit severe instabilities
in the discrete solution, and this, in turn, has a negative effect on the discrete
solver.

4. The same as test 1 but in three dimensions. The Gaussian densities \rho in and
\rho f are centered at (0.3,0.3,0.3) and (0.7,0.7,0.7).

Test cases 1, 2, and 3 are discretized using four different meshes, taken from
[1], having N\scrT \prime = 224,896,3584,14336 cells, where each mesh is a refinement of the
other. These meshes will be denoted by \scrT 0,\scrT 1,\scrT 2,\scrT 3. The corresponding number of
subcells is N\scrT = 672,2688,10752,43008. For each grid, we consider \Delta t = 1/(K + 1),
with K+1= 16,32,64,128. The typical mesh size h of the mesh \scrT 0 is approximately
1/16, so that the diagonal pairing of the space and time steps provides a uniform
discretization of the time-space domain [0,1]\times \Omega . The total number of \phi and \rho degrees
of freedom for these sequence of problems is n+m\approx (1.4e4,1.1e5,9.1e5,7.3e6), which
is the size of the linear system in (3.4). The last test case is solved on Cartesian grids
with cubic cells. In this case, the operator \bfitJ in (2.1) is simply the identity. We
consider two refinements (both in time and in space) of an initial experiment set on
an 8 \times 8 \times 8 grid and using \Delta t = 1/(K + 1), with K + 1 = 8. In this case, the
total number of \phi and \rho degrees of freedom for a uniform time-space refinement is
n+m\approx (7.7e3,1.3e5,2.0e6).

Convergence is achieved when the relaxation parameter \mu is below 1e - 6, which
corresponds to 10 iterations of IP, with the choice of parameters described in [38].
The nonlinear system (2.6) is solved with rather tight tolerance 1e  - 6, in order to
have a robust implementation for the IP solver. Each IP step requires between three
and seven inexact Newton iterations. These numbers are practically insensitive to
the mesh and the time step adopted. The total number of Newton steps (which
corresponds to the number of linear systems to be solved) ranges between 40 and 50.
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The preconditioning approaches used to solve these linear systems are described in
the following sections.

For each preconditioner, we will present a table reporting the metrics mentioned
above, while the relaxation parameter \mu is reduced for all combinations of spatial and
temporal discretizations. We will show these detailed results only for the second test
case, since it captures the main challenges involved in the linear algebra problems.
The numerical results for the other three cases will be summarized in subsection 4.5,
where we will compare the performance of the preconditioners in terms of total CPU
time.

The code is written in MATLAB, and its source code is available online from
https://github.com/gptod/OT-FV, where it is possible to reproduce the experiments
presented in this paper. The AGMG solver is interfaced via MEX.

4.2. Preconditioner based on the primal Schur complement. In this sec-
tion, we consider a preconditioner for the linear system in (3.4) based on the primal
Schur complement \bfscrS p =\bfscrA +\bfscrB T\bfscrC  - 1\bfscrB , similarly to the approach used in [25] for the
solution of the optimal transport problem on graphs with cost equal to the shortest
path distance. It is given by

\bfitP  - 1 =

\biggl( 
\bfitI 

\bfscrC  - 1\bfscrB \bfitI 

\biggr) \biggl( 
\bfscrS  - 1

p

 - \bfscrC  - 1

\biggr) \biggl( 
\bfitI \bfscrB T\bfscrC  - 1

\bfitI 

\biggr) 
.(4.1)

The application of the preconditioner in (4.1) requires the inversion of \bfscrC , which
is diagonal, and the (approximate) solution of the linear system

\bfscrS p\bfitx = \bfitb ,(4.2)

with \bfitx ,\bfitb \in \BbbR n. Using this preconditioner is essentially equivalent to reducing the
linear system in (3.4) to the variable \bfitdelta \bfitphi only, an approach referred to in the literature
as fully reduced [10] or condensed [18]. The matrix \bfscrS p is a block tridiagonal matrix.
It can be written as

\bfscrS p =

\bfscrA \underbrace{}  \underbrace{}  
 - \bfscrD \bfiti \bfitv \bfitx Diag (\~\bfitrho )\bfscrD \bfitx 

=:\bfscrS xx\underbrace{}  \underbrace{}  
 - \bfscrD \bfiti \bfitv \bfitx \bfscrG T\bfscrH T\bfscrC  - 1\bfscrH \bfscrG \bfscrD \bfitx +

=:\bfscrS tt\underbrace{}  \underbrace{}  
\bfscrM \bfscrD \bfitt 

T\bfscrJ \bfscrC  - 1\bfscrJ T\bfscrD \bfitt \bfscrM 
+\bfscrM \bfscrD \bfitt 

T\bfscrJ \bfscrC  - 1\bfscrH \bfscrG \bfscrD \bfitx + (\bfscrM \bfscrD \bfitt 
T\bfscrJ \bfscrC  - 1\bfscrH \bfscrG \bfscrD \bfitx )

T\underbrace{}  \underbrace{}  
=:\bfscrS tx+\bfscrS T

tx

,

and it may be seen as the discretization of an elliptic time-space operator. In fact, it is
the sum of a \rho -weighted spatial Laplacian matrix \bfscrA , an anisotropic spatial Laplacian
\bfscrS xx \approx  - div(\rho /s\nabla \phi \otimes \nabla \phi \nabla ), a weighted temporal Laplacian with Neumann bound-
ary condition \bfscrS tt, and a time-space operator \bfscrS tx +\bfscrS T

tx. We adopt the AGMG solver
to solve the linear system in (4.2), with relative accuracy \varepsilon in = 1e - 1> \varepsilon out = 1e - 5.
The value of the inner tolerance \varepsilon in has been determined experimentally to distribute
the workload between the inner and outer solvers in a balanced way.

In Table 1, we summarize the results obtained using the preconditioner presented
in this section for different combinations of time and space discretizations. We use the
metrics described in section 4, where the average number of inner iterations, denoted
by Inner/Outer, refers to the linear system in (4.2).

The number of average outer iterations, denoted by Outer/Lin.sys., remains
practically constant only for the coarsest and most uniform combinations of grids and
time steps. However, in some cases, also Outer/Lin.sys. increases when the average
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Table 1
Numerical results using the preconditioner based on the primal Schur complement. Each

subtable reports the results for a given mesh, from the coarsest (top) to the finest (bottom), and
for different time discretizations (\Delta t = 1/(K + 1)). Each subtable reports, while \mu is reduced (left-
most column), the averaged outer iteration and CPU time per linear system (Outer/Lin.sys. and
CPU/Lin.sys.) and the averaged inner iterations per outer iteration Inner/Outer for solving the
linear system in (4.2) (metrics defined in section 4). A final row summarizes the averages on the
whole simulation. We highlighted in gray the time-space combination providing the uniform dis-
cretization. The \dagger symbol denotes those IP steps where the linear solver failed.

K+1 16 32 64 128 16 32 64 128 16 32 64 128

µ Outer/Lin.sys. CPU/Lin.sys. Inner/Outer

T 0(NT = 224, NT = 672) #DOF=(1.4e4, 2.8e4, 5.7e4, 1.1e5)

1 4 4 4 2 1.8e-1 3.1e-1 9.7e-1 2.3e1 2.2 2.1 2.7 1.5
2e-1 4 4 3 1 2.1e-1 6.1e-1 5.8e0 1.9e1 2.7 2.3 2.6 1.0
4e-2 5 5 4 1 3.3e-1 1.1e0 7.4e0 2.0e1 1.9 2.3 1.9 1.0
8e-3 6 4 4 1 4.8e-1 1.7e0 9.0e0 1.8e1 1.6 2.0 1.8 1.0
2e-3 5 5 4 2 5.9e-1 1.9e0 8.8e0 2.0e1 1.6 1.8 1.8 1.1
3e-4 5 4 4 2 6.4e-1 2.1e0 8.4e0 1.9e1 1.7 2.0 1.7 1.2
6e-5 5 4 4 2 6.8e-1 2.1e0 8.8e0 2.2e1 1.7 1.8 2.0 1.2
1e-5 4 4 4 2 7.0e-1 2.2e0 9.1e0 2.4e1 1.7 2.1 1.9 1.2
3e-6 4 4 4 2 7.1e-1 2.4e0 7.9e0 2.5e1 1.8 1.8 1.7 1.0
5e-7 4 4 4 2 7.8e-1 2.5e0 9.2e0 2.3e1 1.7 1.9 1.9 1.1

4.5 4.2 4.0 1.7 4.9e-1 1.6e0 7.4e0 2.1e1 1.9 2.0 2.0 1.1

T 1(NT = 896, NT = 2688) #DOF=(5.6e4, 1.1e5, 2.3e5, 4.6e5)

1 4 4 4 4 5.7e-1 1.4e0 2.6e0 1.4e1 2.7 2.3 2.1 3.5
2e-1 3 3 3 3 6.5e-1 1.7e0 1.2e1 5.8e2 2.7 2.7 2.9 2.9
4e-2 5 5 5 4 1.1e0 3.8e0 5.1e1 9.0e2 2.6 2.1 2.3 2.2
8e-3 5 6 5 4 1.9e0 8.6e0 1.0e2 1.1e3 3.3 2.1 1.9 1.7
2e-3 7 6 5 4 3.4e0 1.3e1 1.4e2 1.0e3 6.0 2.0 1.8 1.6
3e-4 6 6 5 4 6.3e0 1.5e1 1.5e2 1.0e3 14.6 2.1 2.0 1.9
6e-5 6 5 4 4 1.1e1 1.8e1 1.6e2 1.0e3 32.2 2.5 2.1 1.9
1e-5 6 5 4 4 3.0e1 1.9e1 1.7e2 1.1e3 95.0 2.5 2.1 1.8
3e-6 6 5 4 4 4.2e1 2.2e1 1.7e2 1.0e3 122.8 2.3 1.9 1.9
5e-7 9 5 4 4 7.9e1 2.7e1 1.9e2 1.1e3 151.4 2.5 2.1 2.7

5.5 4.8 4.3 3.7 1.5e1 1.2e1 1.0e2 8.6e2 49.0 2.3 2.1 2.2

T 2(NT = 3584, NT = 10752) #DOF=(2.3e5, 4.6e5, 9.1e5, 1.8e6)

1 3 3 4 4 2.3e0 5.0e0 1.0e1 2.2e1 3.2 2.9 2.4 2.3
2e-1 3 3 3 3 2.9e0 6.3e0 1.5e1 2.1e3 3.4 3.2 3.1 3.3
4e-2 4 4 5 9 4.9e0 2.6e1 2.1e2 1.3e3 4.0 4.2 2.5 128.5
8e-3 5 5 6 20 1.1e1 9.6e1 1.2e3 2.0e3 4.2 5.0 2.4 160.1
2e-3 6 6 6 55 1.9e1 1.3e2 1.5e3 6.2e3 3.1 7.7 2.0 198.8
3e-4 6 8 6 † 2.5e1 2.0e2 2.3e3 † 3.3 18.1 2.2 †
6e-5 6 6 4 † 3.1e1 3.8e2 2.2e3 † 6.4 65.2 2.6 †
1e-5 6 7 4 † 4.5e1 7.1e2 1.7e3 † 13.1 133.8 2.7 †
3e-6 6 9 4 † 7.3e1 1.1e3 1.7e3 † 28.9 161.5 2.9 †
5e-7 5 16 4 † 1.3e2 2.1e3 1.8e3 † 70.9 179.3 2.6 †

4.7 6.3 4.6 † 2.7e1 4.1e2 1.1e3 † 12.2 79.4 2.5 †

T 3(NT = 14336, NT = 43008) #DOF=(9.0e5, 1.8e6, 3.7e6, 7.3e6)

1 3 3 3 3 9.3e0 2.0e1 5.0e1 9.8e1 3.5 3.4 2.9 2.8
2e-1 2 3 3 3 1.1e1 2.5e1 6.0e1 4.7e2 4.0 3.9 3.6 3.3
4e-2 4 4 4 7 2.7e1 1.5e2 3.4e3 1.8e3 5.6 4.6 22.9 84.2
8e-3 5 5 9 12 7.4e1 5.0e2 2.6e3 3.7e3 5.7 5.2 154.9 105.4
2e-3 6 7 18 26 1.4e2 2.4e3 4.9e3 1.1e4 4.5 3.3 182.5 152.1
3e-4 6 6 58 59 2.1e2 2.7e3 1.5e4 3.6e4 4.0 3.2 199.0 198.9
6e-5 5 6 † 162 2.6e2 2.1e3 † 9.5e4 4.3 4.1 † 200.0
1e-5 5 5 † † 3.2e2 2.4e3 † † 4.5 7.1 † †
3e-6 5 5 † † 3.5e2 2.7e3 † † 4.4 14.9 † †
5e-7 5 5 † † 3.6e2 3.7e3 † † 4.6 41.8 † †

4.3 4.7 † † 1.5e2 1.4e3 † † 4.6 7.9 † †
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A1408 E. FACCA, G. TODESCHI, A. NATALE, AND M. BENZI

number of inner iterations Inner/Outer gets closer to 200 (the limit we fixed for
the inner solver), which means that, in some cases, the inner solver did not reach the
accuracy \varepsilon in = 1e - 1. For the cases with more degrees of freedom, this led to a huge
CPU time (almost 1e5 seconds per linear system) and to failures occurring as \mu is
reduced.

The average number of inner iterations Inner/Outer is strongly influenced by the
relationship between the mesh and the time step \Delta t= 1/(K + 1). The phenomenon
is particularly evident for mesh \scrT 2. For K + 1 = 32, the average number of inner
iterations increases progressively while \mu is reduced, reaching \approx 179 at the last IP
iteration. For K + 1 = 128, Inner/Outer increases, reaching the 200 iterations
limit. For K + 1 = 64 instead, which corresponds to the most balanced time-space
scaling, this number remains between 2.0 and 2.7. The same phenomenon occurs
using \scrT 1, passing from K + 1 = 16 to K + 1 = 32. We attribute this to an improper
construction of the coarse matrix sequence used by the multigrid solver due to the
poor scaling of the temporal and spatial components of \bfscrS p. The AGMG is based on an
aggregation-based coarsening approach; hence, if these components are unbalanced,
the coarse matrices may not reflect the infinite-dimensional operators discretized by
our problem, compromising the performance of the multigrid solver.

This phenomenon can only get worse in the last IP iterations due to the presence
of the term \bfscrC  - 1 = \bfscrM \prime  - 1

Diag (\bfitrho )Diag (\bfits )
 - 1

in \bfscrS p = \bfscrA + \bfscrB \bfscrC  - 1\bfscrB T . In fact, the
term \bfscrC  - 1 contains entries varying by several orders of magnitude due to the relaxed
complementarity condition \bfits \odot \bfitrho \approx \mu 1. This also means that, on those entries where
\bfitrho remain strictly positive, the anisotropic Laplacian \bfscrS xx scales like 1/\mu , making the
linear system (4.2) more difficult to solve since this anisotropic term becomes the
dominant part of \bfscrS p. Similar matrices and analogous considerations can be found in
[10, 11, 32, 37].

Furthermore, even in best-case scenarios, we experimented with the preprocessing
phase being the most demanding in terms of CPU time. Typically, more than 50\%
of the time is spent building the sequence of coarse matrices, reaching peaks of 90\%
during the last IP steps using the finest discretization.

In order to cope with all the issues presented so far, we tried to neglect some
components of \bfscrS p. We tried to remove the extra-diagonal or lower-diagonal part
of \bfscrS p, or the time-space operator \bfscrS tx + \bfscrS T

tx, so that the remaining terms form a
weighted time-space Laplacian (similarly to what done in [32]). However, none of
these approaches worked. All numerical experiments suggest that none of these terms
can be neglected without altering the spectral property of the matrix and consequently
affecting the effectiveness of the preconditioner.

Summarizing the results obtained in this section, the preconditioner based on
the primal Schur complement \bfscrS p = \bfscrA + \bfscrB T\bfscrC  - 1\bfscrB lacks both in efficiency and in
robustness, due to the complexity of the PDE behind the linear system in (4.2), in
particular when the relaxation parameter \mu goes to zero.

4.3. The SIMPLE preconditioner. In this section, we recall the classical
SIMPLE preconditioner described in [42, 43] and based on the approximation of the
inverse of the dual Schur complement \bfscrS = - (\bfscrC +\bfscrB \bfscrA  - 1\bfscrB T ) (we recall that, formally,
we cannot write \bfscrA  - 1 since the matrix \bfscrA is singular). The SIMPLE preconditioner is
given by

\bfitP  - 1 =

\Biggl( 
\bfitI  - \^\bfscrA 

 - 1
\bfscrB T

\bfitI 

\Biggr) \Biggl( 
\^\bfscrA 
 - 1

\^\bfscrS 
 - 1

\Biggr) \Biggl( 
\bfitI 

 - \bfscrB \^\bfscrA 
 - 1

\bfitI 

\Biggr) 
,
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PRECONDITIONERS FOR DYNAMICAL OPTIMAL TRANSPORT A1409

where

\^\bfscrA =Diag (\bfscrA ) , \^\bfscrS = - (\bfscrC +\bfscrB \^\bfscrA 
 - 1

\bfscrB T ) .

This preconditioner is referred to as the constraint preconditioner in the literature
studying linear solvers for IP methods [37]. The main computational cost of applying
this preconditioner is to solve linear systems in the form

\^\bfscrS \bfity = \bfitc .(4.3)

The matrix \^\bfscrS can be formed explicitly and is block tridiagonal.
During the latest steps of the IP method, when \mu \rightarrow 0, linear system (4.3) may

become ill-conditioned since the diagonal matrix \bfscrC =\bfscrM \prime Diag (\bfitrho )
 - 1

Diag (\bfits ) can con-
tain terms that vary by several orders of magnitude since \bfitrho \odot \bfits \approx \mu 1 \rightarrow 0. To cope
with this issue, we scale both sides of (4.3) by Diag (\bfitrho ) and we solve the linear system

 - (\bfscrM \prime Diag (\bfits ) +Diag (\bfitrho )\bfscrB \^\bfscrA 
 - 1

\bfscrB T )\bfity =Diag (\bfitrho )\bfitc .(4.4)

This scaling may seem a dangerous procedure if small entries appear in \bfitrho ; however,
it is used within the preconditioner application, where the potential inaccuracies do
not affect the convergence of FGMRES to the solution of the linear system. We use
the AGMG solver with tolerance \varepsilon in = 1e - 1 to solve the linear system in (4.4) and

denote by \^\bfscrS 
 - 1

\varepsilon \mathrm{i}\mathrm{n} the resulting (nonlinear) operator. We found experimentally that this
value provided the best performance. Further reductions of \varepsilon in led only to an increase
in the number of inner iterations but no reduction in the outer loop iterations.

The results for the SIMPLE preconditioner are summarized in Table 2. Despite
its simplicity, the proposed preconditioner turned out to be robust (in particular for
small values of \mu ) but not particularly efficient. Some failures occurred only at the
initial IP steps using the finest grid. In this case, we restarted the solver using the data
obtained with the \bfitB \bfitB -preconditioner in order to study the behavior of the SIMPLE
preconditioner close to the optimal solution. The average number of inner iterations
Inner/Outer increases only sightly as \mu \rightarrow 0, independently of the time step and
the mesh size used or the IP step considered. The preprocessing time required by the
AGMG solver is limited, approximately accounting for 1\% of the CPU time spent in
the linear system solution. The average number of outer iterations Outer/Lin.sys.
is affected only mildly by the number of time steps K + 1.

Remarkably, the preconditioner becomes more efficient as the IP relaxation term
\mu goes to zero. However, Outer/Lin.sys. more than doubles at each mesh refine-
ment. Both phenomena can also be explained by looking at the structure of the
preconditioned matrix, which is given by\biggl( 

\bfscrA \bfscrB T

\bfscrB  - \bfscrC 

\biggr) 
\bfitP  - 1 =

\Biggl( 
\bfitI + (\bfscrA \^\bfscrA 

 - 1 - \bfitI )(\bfitI +\bfscrB T \^\bfscrS 
 - 1

\varepsilon \mathrm{i}\mathrm{n}\bfscrB \^\bfscrA 
 - 1

) (\bfitI  - \bfscrA \^\bfscrA 
 - 1

)\bfscrB T \^\bfscrS 
 - 1

\varepsilon \mathrm{i}\mathrm{n}

(\bfitI  - \^\bfscrS \^\bfscrS 
 - 1

\varepsilon \mathrm{i}\mathrm{n} )\bfscrB \^\bfscrA 
 - 1 \^\bfscrS \^\bfscrS 

 - 1

\varepsilon \mathrm{i}\mathrm{n}

\Biggr) 
and estimating its eigenvalues. In order to do this, let us first observe that the precon-
ditioned matrix is approximately a block upper triangular matrix, whose bottom-right
block becomes close to the identity plus a perturbation of order \varepsilon in = 1e - 1, and hence
there are m eigenvalues close to one.

The upper left block is the identity plus a perturbation matrix (which should
be as small as possible to have an ideal preconditioner) given by the product of two
factors. The first factor is

\bfscrA \^\bfscrA 
 - 1  - \bfitI =Block Diag

\biggl( 
\bfitA kDiag

\Bigl( 
\bfitA k
\Bigr)  - 1

 - \bfitI N\scrT 

\biggr) 
.
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A1410 E. FACCA, G. TODESCHI, A. NATALE, AND M. BENZI

Table 2
Numerical results using the SIMPLE preconditioner. Each subtable reports the results for a

given mesh, from the coarsest (top) to the finest (bottom), and for different time discretizations
(\Delta t = 1/(K + 1)). Each subtable reports, while \mu is reduced (leftmost column), the averaged outer
iteration and CPU time per linear system (Outer/Lin.sys. and CPU/Lin.sys.) and the averaged
inner iterations per outer iteration Inner/Outer for solving the linear system in (4.4) (metrics
defined in section 4). A final row summarizes the averages on the whole simulation. We highlighted
in gray the time-space combination providing the uniform discretization. The \dagger symbol denotes those
IP steps where the linear solver failed.

K+1 16 32 64 128 16 32 64 128 16 32 64 128

µ Outer/Lin.sys. CPU/Lin.sys. Inner/Outer

T 0(NT = 224, NT = 672) #DOF=(1.4e4, 2.8e4, 5.7e4, 1.1e5)

1 108 110 106 107 3.8e-1 7.3e-1 1.6e0 4.1e0 1.0 1.0 1.8 2.1
2e-1 72 72 73 74 3.1e-1 6.3e-1 1.4e0 3.4e0 1.1 1.6 2.4 2.9
4e-2 65 65 66 66 3.1e-1 6.4e-1 1.5e0 3.5e0 1.7 2.7 3.5 4.2
8e-3 56 58 60 60 2.9e-1 6.4e-1 1.5e0 3.8e0 2.2 3.1 4.0 4.8
2e-3 52 54 48 52 2.9e-1 6.4e-1 1.4e0 3.7e0 2.3 3.1 4.2 5.2
3e-4 52 43 47 48 3.1e-1 5.8e-1 1.4e0 3.8e0 2.5 3.4 4.4 6.5
6e-5 42 41 41 39 3.0e-1 5.8e-1 1.3e0 3.1e0 2.9 4.4 5.6 7.3
1e-5 41 42 40 43 2.8e-1 6.3e-1 1.3e0 3.8e0 3.8 5.5 6.6 8.5
3e-6 43 55 50 68 3.2e-1 2.0e0 1.8e0 6.5e0 3.8 19.5 7.9 9.7
5e-7 54 72 67 74 3.8e-1 2.0e0 2.7e0 9.7e0 3.8 14.0 8.7 14.1

60 63 61 65 3.2e-1 8.6e-1 1.6e0 4.4e0 2.1 5.0 4.3 5.7

T 1(NT = 896, NT = 2688) #DOF=(5.6e4, 1.1e5, 2.3e5, 4.6e5)

1 250 230 229 230 3.1e0 5.9e0 1.2e1 2.8e1 1.0 1.0 1.1 1.9
2e-1 136 144 147 148 1.9e0 4.3e0 9.8e0 2.3e1 1.0 1.2 1.6 2.4
4e-2 114 116 119 119 1.7e0 4.0e0 9.7e0 2.3e1 1.4 1.8 3.0 3.9
8e-3 90 107 107 106 1.5e0 4.0e0 9.9e0 2.4e1 1.8 2.2 3.8 4.7
2e-3 89 91 89 91 1.6e0 3.8e0 9.5e0 2.4e1 2.0 2.9 4.3 5.3
3e-4 102 85 84 79 1.9e0 3.8e0 9.7e0 2.3e1 2.0 3.0 4.5 5.4
6e-5 105 97 82 74 2.0e0 4.7e0 1.0e1 2.3e1 2.0 3.1 4.8 5.9
1e-5 100 86 79 78 2.1e0 4.2e0 1.1e1 2.6e1 2.2 3.2 6.1 7.1
3e-6 91 74 78 85 2.1e0 4.2e0 1.2e1 3.4e1 2.7 4.7 7.9 10.2
5e-7 88 74 96 115 2.1e0 4.7e0 1.6e1 5.2e1 3.1 5.3 8.3 12.3

120 118 118 119 2.0e0 4.4e0 1.1e1 2.7e1 1.7 2.2 3.4 4.7

T 2(NT = 3584, NT = 10752) #DOF=(2.3e5, 4.6e5, 9.1e5, 1.8e6)

1 516 459 497 475 2.6e1 4.8e1 1.2e2 2.7e2 1.0 1.0 1.0 1.0
2e-1 300 298 319 317 1.7e1 3.5e1 8.4e1 2.1e2 1.0 1.0 1.1 1.6
4e-2 206 222 234 221 1.3e1 2.9e1 7.2e1 1.8e2 1.5 1.4 1.9 3.0
8e-3 190 164 167 169 1.3e1 2.4e1 5.8e1 1.5e2 1.8 1.8 2.4 4.0
2e-3 185 161 150 154 1.4e1 2.5e1 5.6e1 1.6e2 2.6 2.0 3.2 4.8
3e-4 223 170 168 139 1.8e1 2.8e1 6.9e1 1.6e2 3.0 2.5 3.5 5.2
6e-5 228 222 157 141 2.0e1 3.8e1 7.1e1 1.8e2 3.0 2.6 3.7 5.5
1e-5 255 183 156 145 2.3e1 3.4e1 7.4e1 1.9e2 3.0 2.7 3.9 5.7
3e-6 250 189 162 136 2.4e1 3.8e1 8.1e1 1.9e2 3.1 2.9 4.1 6.2
5e-7 252 160 140 140 2.5e1 3.3e1 7.4e1 2.2e2 3.1 3.0 4.2 6.9

272 236 237 224 1.9e1 3.4e1 7.8e1 2.0e2 1.9 1.7 2.1 3.1

T 3(NT = 14336, NT = 43008) #DOF=(9.0e5, 1.8e6, 3.7e6, 7.3e6)

1 1003 919 959 1045 2.2e2 4.9e2 1.1e3 3.8e3 1.0 1.0 1.0 1.0
2e-1 1124 † † † 2.7e2 † † † 1.0 † † †
4e-2 † † 540 503 † † 6.9e2 2.0e3 † † 1.4 1.8
8e-3 368 388 404 347 1.1e2 2.5e2 5.6e2 1.5e3 1.8 1.8 1.8 2.4
2e-3 397 313 279 318 1.6e2 2.5e2 4.2e2 1.5e3 2.8 2.8 2.1 3.5
3e-4 578 348 297 290 3.2e2 2.9e2 4.8e2 1.5e3 3.3 3.0 2.7 3.9
6e-5 419 483 327 319 3.1e2 4.3e2 5.7e2 1.7e3 3.9 3.3 3.0 4.0
1e-5 407 364 395 284 3.6e2 3.6e2 7.2e2 1.6e3 4.2 3.8 3.0 4.2
3e-6 389 301 318 251 3.8e2 3.1e2 6.0e2 1.5e3 4.4 3.9 3.0 4.6
5e-7 410 305 411 253 3.5e2 3.3e2 8.1e2 1.6e3 4.9 4.0 3.0 5.0

† † † † † † † † † † † †
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PRECONDITIONERS FOR DYNAMICAL OPTIMAL TRANSPORT A1411

Since the matrices (\bfitA k)k=1,...,K+1 are weighted Laplacian matrices, a diagonal pre-
conditioner becomes a poor preconditioner for large\bfitA k (see [33] for precise estimates).
Hence, the largest eigenvalue of the first factor will increase while refining in space, but
not in time, by the block diagonal structure of matrix \bfscrA . The second factor, which
we would like to keep as small as possible to compensate the first one, is \bfitI +\bfitQ , with

\bfitQ = \bfscrB T \^\bfscrS 
 - 1

\varepsilon \mathrm{i}\mathrm{n}\bfscrB \^\bfscrA 
 - 1

. Using the formula in (4.4) and the complementarity condition
\bfitrho \odot \bfits \approx \mu 1, we can approximate it as follows:

\bfitI +\bfitQ = \bfitI  - \bfscrB T (\bfscrM \prime Diag (\bfits ) +Diag (\bfitrho )\bfscrB \^\bfscrA 
 - 1

\bfscrB T ) - 1Diag (\bfitrho )\bfscrB \^\bfscrA 
 - 1

\approx \bfitI  - \bfscrB T (\bfscrM \prime \mu +Diag (\bfitrho )
2\bfscrB \^\bfscrA 

 - 1
\bfscrB T ) - 1Diag (\bfitrho )

2\bfscrB \^\bfscrA 
 - 1

.

If we set \mu = 0 in this formula, the resulting matrix has 0 or 1 eigenvalues since it
is idempotent. This gives a qualitative explanation of why the SIMPLE precondi-
tioner performs better as \mu \rightarrow 0. Nevertheless, this approach is not viable to tackle
large problems due to the quadratic complexity with respect to the number of spatial
degrees of freedom.

4.4. The \bfitB \bfitB -preconditioner. We present now the third preconditioner con-
sidered in this paper. Its design started from the idea of using the following block
triangular preconditioner (see, for example [9]),

\bfitP t =

\biggl( 
\bfscrA \bfscrB T

 - \^\bfscrS 

\biggr) 
,

where \^\bfscrS should ideally equal the dual Schur complement \bfscrS =  - (\bfscrC + \bfscrB \bfscrA  - 1\bfscrB T ) or
some approximation of it (we again recall that, formally, we cannot write \bfscrA  - 1 since
the matrix \bfscrA is singular). Given a vector (\bfitc ;\bfitd ) \in \BbbR n+m, one application of this
preconditioner requires us to compute the vector (\bfitx ;\bfity )\in \BbbR n+m solving

 - \^\bfscrS \bfity = \bfitd ,(4.5)

\bfscrA \bfitx = \bfitb = \bfitc  - \bfscrB T\bfity .(4.6)

This approach is particularly attractive from the computational point of view since
matrix \bfscrA in (4.16) is block diagonal and each block \bfitA k is a weighted Laplacian. Thus,
we can efficiently get the solution \bfitx by solving separately K+1 linear systems in the
form \bfitA k\bfitx k = \bfitb k using multigrid solvers. However, two issues arise.

The first one is due to the fact that each block \bfitA k is singular, and thus we need
to ensure that

\bfitb k \in Im(\bfitA k) =Ker(\bfitA k)\bot =
\bigl\{ 
1\in \BbbR N\scrT 

\bigr\} \bot 
, k= 1, . . . ,K + 1 ,(4.7)

for the linear systems to be admissible. This condition may not hold for the right-hand
side \bfitb = \bfitc  - \bfscrB T\bfity in (4.6) for any application of the preconditioner because Im(\bfscrB T )
is not orthogonal to Ker(\bfscrA ) (see Remark 3.1). Even if the orthogonality condition in
(4.7) is satisfied, or imposed by orthogonalization, there are multiple solutions, which
differ by an additive constant, and thus we also need a criterion to select one. This is
not trivial since the solution \bfitdelta \bfitphi of (3.4) must also solve the second block of equations,
\bfscrB \bfitdelta \bfitphi  - \bfscrC \bfitdelta \bfitrho = \~\bfitg . In the next section, we describe how to deal with this compatibility
issue with a reformulation of the continuous nonlinear system in (1.2).
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A1412 E. FACCA, G. TODESCHI, A. NATALE, AND M. BENZI

A second, harder, issue is the design of a good approximation of the inverse of the
matrix \bfscrS =  - (\bfscrC +\bfscrB \bfscrA  - 1\bfscrB T ), used in the solution of the linear system (4.5). First,
\bfscrS is not well defined since \bfscrA is singular and Im(\bfscrB T ) is not orthogonal to Ker(\bfscrA ).
Moreover, even overcoming this problem, the matrix \bfscrS is block tridiagonal but with
dense blocks, due to the presence of the pseudo-inverse of the Laplacian matrices \bfitA k,
and thus too costly to form and invert. This second issue is addressed in subsection
4.4.3.

4.4.1. Splitting formulation. In order to cope with the first issue, we split the
solution \phi of (1.2) into two components, a new potential \=\phi : \Omega \times [0,1]\rightarrow \BbbR satisfying
the constraint

\int 
\Omega 
\=\phi (t)dx= 0 for all t\in [0,1] and a correction term,

\phi (t, x) = \=\phi (t, x) +

\int t

0

\lambda (s)ds,(4.8)

where \lambda : [0,1] \rightarrow \BbbR depends only on the time variable. In the new unknowns
(\=\phi ,\rho , s,\lambda ), the system of PDEs (1.2) becomes

 - \partial t\rho  - divx
\bigl( 
\rho \nabla x

\=\phi 
\bigr) 
= 0,

\partial t \=\phi +
| \nabla x

\=\phi | 2
2

+ s+ \lambda = 0,

\rho \geq 0, s\geq 0, \rho s= 0,\int 
\Omega 

\=\phi dx= 0.

(4.9)

Following the same steps described in section 2, the (relaxed) discrete counterpart
of the equation in (4.9) is a nonlinear system of equations with unknowns (\=\bfitphi ,\bfitrho ,\bfits ,\bfitlambda )\in 
(\BbbR n \times \BbbR m \times \BbbR m \times \BbbR K) given by

F\bfitphi (\=\bfitphi ,\bfitrho ) =
\Bigl( 
F 1
\bfitphi ; . . . ;F

K+1
\bfitphi 

\Bigr) 
= 0\in \BbbR n ,

\=F\bfitrho (\=\bfitphi ,\bfitrho ,\bfits ,\bfitlambda ) =
\bigl( 
\=F 1
\bfitrho ; . . . ; \=F

K
\bfitrho 

\bigr) 
= 0\in \BbbR m ,

F\bfits (\bfitrho ,\bfits ) =
\bigl( 
F 1
\bfits ; . . . ;F

K
\bfits 

\bigr) 
 - \mu 1= 0\in \BbbR m ,

F\bfitlambda (\=\bfitphi ) =
\bigl( 
F 1
\bfitlambda ; . . . ;F

K
\bfitlambda 

\bigr) 
= 0\in \BbbR K+1,

where F k
\bfitphi and F k

\bfits are defined in (2.3) and (2.5), while \=F k
\bfitrho and F k

\bfitlambda are given by

\=F k
\bfitrho (\=\bfitphi ,\bfitrho ,\bfits ,\bfitlambda ) := F k

\bfitrho (\bfitrho , \=\bfitphi ,\bfits ) + | \bfitc \prime | \bfitlambda k, k= 1, . . . ,K,

\=F k
\bfitlambda (\=\bfitphi 

k
) := | \bfitc | T \=\bfitphi 

k
, k= 1, . . . ,K + 1,

with F k
\bfitrho as given in (2.4). Note that there are n+2m+K+1 equations and n+2m+K

unknowns. The additional equation fixes the global constant for the potential \=\bfitphi . The
linear system arising from the Newton method becomes\left(    

\bfscrA \bfscrB T

\bfscrB \bfscrM \prime \bfscrM \prime \bfscrE \prime T

Diag (\bfits ) Diag (\bfitrho )
\bfscrE \bfscrM 

\right)    
\left(    
\bfitdelta \=\bfitphi 
\bfitdelta \bfitrho 
\bfitdelta \bfits 
\bfitdelta \bfitlambda 

\right)    =

\left(    
\bfitf 
\=\bfitg 
\bfith 
\bfiti 

\right)    = - 

\left(    
\bfitF \bfitphi 
\=\bfitF \bfitrho 

\bfitF \bfits  - \mu 1
\bfitF \bfitlambda 

\right)    ,(4.10)

where matrices \bfscrE \in \BbbR K+1,(K+1)N\scrT and \bfscrE \prime \in \BbbR K,KN\scrT \prime are given by

\bfscrE =

\left(   1T
N\scrT 

. . .

1T
N\scrT 

\right)   , \bfscrE \prime =

\left(   1T
N\scrT \prime 

. . .

1T
N\scrT \prime 

\right)   .
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PRECONDITIONERS FOR DYNAMICAL OPTIMAL TRANSPORT A1413

Once the vectors \bfitdelta \=\bfitphi and \bfitdelta \bfitlambda in (4.10) are found, \bfitdelta \bfitphi can be retrieved in the original
system (3.4) using the formula

\bfitdelta \bfitphi k = \bfitdelta \=\bfitphi 
k
+

k\sum 
i=1

\Delta ti\bfitdelta \bfitlambda i,

which is the finite-dimensional counterpart of (4.8).

4.4.2. New saddle point linear system. After eliminating the unknown \bfitdelta \bfits 
as in subsection 3.1, the linear system in (4.10) becomes\left(  \bfscrA \bfscrB T

\bfscrB  - \bfscrC \bfscrM \prime \bfscrE \prime T

\bfscrE \bfscrM 

\right)  \left(  \bfitdelta \=\bfitphi 
\bfitdelta \bfitrho 
\bfitdelta \bfitlambda 

\right)  =

\left(  \bfitf 
\~\bfitg 
\bfiti 

\right)  .(4.11)

The variable \bfitdelta \bfitlambda can be eliminated as well by multiplying by \bfscrE \prime the second block of
equations in (4.10), yielding

\bfscrE \prime (\bfscrB \bfitdelta \=\bfitphi  - \bfscrC \bfitdelta \bfitrho ) + \bfscrE \prime \bfscrM \prime \bfscrE \prime T\underbrace{}  \underbrace{}  
| \Omega | \bfitI K

\bfitdelta \bfitlambda = \bfscrE \prime \~\bfitg .

Plugging this expression in (4.11), the linear system in the unknowns (\bfitdelta \=\bfitphi ;\bfitdelta \bfitrho ) becomes\left(  \bfscrA \bfscrB T

\bfscrP \bfscrB  - \bfscrP \bfscrC 
\bfscrE \bfscrM 

\right)  \biggl( \bfitdelta \=\bfitphi 
\bfitdelta \bfitrho 

\biggr) 
=

\left(  \bfitf 
\bfscrP \~\bfitg 
\bfiti 

\right)  ,(4.12)

where the matrix \bfscrP , which is given by

\bfscrP := \bfitI  - 1

| \Omega | \bfscrM 
\prime \bfscrE \prime T\bfscrE \prime ,

is a projector (indeed, \bfscrP 2 =\bfscrP ). Moreover, its transpose \bfscrP T is the discretization of
the zero mean-projector, which maps a function g : [0,1]\times \Omega \rightarrow \BbbR to g - 

\int 
\Omega 
g/| \Omega | .

The linear system in (4.12) is not overdetermined since Ker(\bfscrA )\subset Ker(\bfscrP \bfscrB ) and
the rows of \bfscrE \bfscrM are K + 1 vectors linearly independent from the rows of \bfscrA or \bfscrP \bfscrB .
Recalling Remark 3.2, \bfitdelta \bfitrho \in Ker(\bfscrP ) or equivalently \bfitdelta \bfitrho \in Im(\bfscrP T ) and, since \bfscrP T is
also a projector, we can write \bfitdelta \bfitrho =\bfscrP T \bfitdelta \bfitrho . Thus, we can rewrite system (4.12) as\biggl( 

\bfscrA \bfscrB T\bfscrP T

\bfscrP \bfscrB  - \bfscrP \bfscrC \bfscrP T

\biggr) \biggl( 
\bfitdelta \^\bfitphi 
\bfitdelta \bfitrho 

\biggr) 
=

\biggl( 
\bfitf 
\bfscrP \~\bfitg 

\biggr) 
,(4.13)

where we neglect the constraints \bfscrE \bfscrM \bfitdelta \=\bfitphi = \bfiti . For any solution (\bfitdelta \^\bfitphi ;\bfitdelta \bfitrho ), the solution
(\bfitdelta \=\bfitphi ;\bfitdelta \bfitrho ) of (4.12) can be recovered by simply correcting the mean of \bfitdelta \^\bfitphi .

The linear system in (4.13) does not suffer from the first issue mentioned above
associated to the singularity of matrix \bfscrA . In fact, note that Im(\bfscrB T\bfscrP T ) \bot Ker(\bfscrA )
since Ker(\bfscrA )\subset Ker(\bfscrP \bfscrB ). This ensures that the dual Schur complement \bfscrS = - \bfscrP (\bfscrC +
\bfscrB \bfscrA +\bfscrB T )\bfscrP T (where \bfscrA + denotes the Moore--Penrose pseudo-inverse of \bfscrA ) is well
defined. Moreover, the following (ideal) block triangular preconditioner
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A1414 E. FACCA, G. TODESCHI, A. NATALE, AND M. BENZI

\bfitP t =

\biggl( 
\bfscrA \bfscrB T\bfscrP T

 - \bfscrS 

\biggr) 
(4.14)

is well defined as well. In fact, given a vector (\bfitc ;\bfitd ) with \bfitc \in Ker(\bfscrA )\bot and \bfitd \in Im(\bfscrP ),
the application of this preconditioner requires one to compute the vector (\bfitx ;\bfity ) solving
the following two linear systems:

 - \bfscrS \bfity = \bfitd ,(4.15)

\bfscrA \bfitx = \bfitb = \bfitc  - \bfscrB T\bfscrP T\bfity .(4.16)

The linear system in (4.16) is now well defined since \bfitb \in Ker(\bfscrA )\bot at any precondi-
tioner application. In fact, both vectors \bfscrB T\bfscrP T\bfity and \bfitc belong to Ker(\bfscrA )\bot , the first
vector because Im(\bfscrB T\bfscrP T ) \subset Ker(\bfscrA )\bot and the second vector because it is a linear
combination of the vector \bfitf in (4.13) and vectors in Im(\bfscrA )\cup Im(\bfscrB T\bfscrP T ), all belonging
to Ker(\bfscrA )\bot .

4.4.3. Approximating the inverse of the dual Schur complement. We
turn now to the issue of approximating the Schur complement. Our first attempt was
to approximate it with \bfscrP (\bfscrC +\bfscrB (Diag (\bfscrA )) - 1\bfscrB T )\bfscrP T , but it led to poor performance.
We tried to apply the algebraically stabilized least squares commutator proposed in
[21, section 4.2], but this leads to poor results for different combinations of the relax-
ation parameters that appear in such an approach. We attribute this phenomenon to
the fact that the matrix \bfscrC is not a stabilization operator for the saddle point system,
as assumed in [21].

In order to devise a better approximation of the Schur complement, here we follow
the idea in [20, 21, 19] of looking at the infinite-dimensional differential operators
associated to the matrices that compose it and try to deduce a possible approximation
of its inverse. The following proposition shows a differential identity that goes in this
direction.

Proposition 1. Let \rho : [0,1] \times \Omega \rightarrow \BbbR >0, \phi : [0,1] \times \Omega \rightarrow \BbbR , smooth enough.
Denoting  - \Delta \rho = - div(\rho \nabla ), the following operator identity holds:

(\partial t +div(\cdot \nabla \phi )) ( - \Delta \rho ) = - \Delta \rho (\partial t +\nabla \phi \cdot \nabla ) - div ((\partial t\rho +div(\rho \nabla \phi ))\nabla )

+2div(\rho \nabla 2 \phi \nabla ) .
(4.17)

Proof. Consider any function g0 : [0,1]\times \Omega \rightarrow \BbbR , such that
\int 
\Omega 
g0(t, \cdot ) = 0 for all

t\in [0,1], and let us define u : [0,1]\times \Omega \rightarrow \BbbR given by

 - div(\rho \nabla u) = g0(4.18)

with zero Neumann boundary conditions. Multiplying both sides of (4.18) by \partial i\phi 
(where \partial i = \partial xi) and taking the divergence, we obtain

 - 
\sum 
i,j

\partial i (\partial i\phi \partial j(\rho \partial ju)) = div(g0\nabla \phi ).
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PRECONDITIONERS FOR DYNAMICAL OPTIMAL TRANSPORT A1415

Using the identity \partial i\phi \partial j(\rho \partial ju) = \partial j(\partial i\phi \rho \partial ju) - \partial j(\partial i\phi )\rho \partial ju, we get

div(g0\nabla \phi ) = - 
\sum 
i,j

\partial i (\partial j(\partial i\phi \rho \partial ju) - \partial j,i\phi \rho \partial ju)

= - 
\sum 
j,i

\partial j (\partial i,ju\rho \partial i\phi ) - 
\sum 
j,i

\partial j (\partial i(\rho \partial i\phi )\partial ju) + div(\rho \nabla 2 \phi \nabla u)

= - 
\sum 
j

\partial j

\Biggl( \sum 
i

\partial i,ju\rho \partial i\phi 

\Biggr) 
 - 
\sum 
j

\partial j

\Biggl( \sum 
i

\partial i(\rho \partial i\phi )\partial ju

\Biggr) 
+div(\rho \nabla 2 \phi \nabla u)

= - div(\rho \nabla 2 u\nabla \phi ) - div(div(\rho \nabla \phi )\nabla u) + div(\rho \nabla 2 \phi \nabla u) .

Using the identity \nabla (\nabla \phi \cdot \nabla u) =\nabla 2 \phi \nabla u+\nabla 2 u\nabla \phi , we obtain

div(g0\nabla \phi ) = - div(\rho \nabla (\nabla \phi \cdot \nabla u)) - div(div(\rho \nabla \phi )\nabla u) + 2div(\rho \nabla 2 \phi \nabla u) .(4.19)

Now, differentiating with respect to time the expression in (4.18), we obtain

 - div (\partial t\rho \nabla u+ \rho \nabla \partial tu) = \partial tg0 .(4.20)

Combining (4.19), (4.20), we obtain

\partial tg0 +div(g0\nabla \phi ) = - div(\rho \nabla (\partial tu+\nabla \phi \cdot \nabla u)) - div ((\partial t\rho +div(\rho \nabla \phi ))\nabla u)

+ 2div(\rho \nabla 2 \phi \nabla u) .

Since g0 = - \Delta \rho u by (4.18), we proved (4.17).

Our approximation of the Schur complement is based on neglecting the terms
 - div ((\partial t\rho +div(\rho \nabla \phi ))\nabla and 2div(\rho \nabla 2 \phi \nabla ) on the right-hand side of (4.17). The
first term may be assumed to be small since it contains the continuity equation, which
is the first nonlinear equation in the system (1.2a). This term is small at the initial and
final Newton steps within each IP iteration, and experimental observations showed
that it remains small during the intermediate Newton iterations. The second term
can be neglected under certain assumptions. If the optimal transport is a translation,
this term is null. When the transported measures \rho in and \rho f are Gaussian [48], or
more generally log-concave probability densities [15, 17], the largest eigenvalue of
\nabla 2 \phi (0, x) is bounded. However, note that in general this term may be non-null, as,
for example, in test case 3. Supposing that both terms can be neglected, we get the
following approximate identity:

(\partial t +div(\cdot \nabla \phi )) ( - \Delta \rho )\approx  - \Delta \rho (\partial t +\nabla \phi \cdot \nabla ) .

In our finite-dimensional problem, this expression translates into the approximate
matrix identity

 - \bfscrB T\bfscrM \prime  - 1 \~\bfscrA \approx \bfscrA \bfscrM  - 1 \~\bfscrB ,(4.21)

where \~\bfscrA \in \BbbR m,m and \~\bfscrB \in \BbbR n,m discretize the operators  - \Delta \rho and \partial t + \nabla \phi \cdot \nabla ,
respectively, similarly to the matrices \bfscrA and \bfscrB but with different dimensions. The
scaling factors \bfscrM \prime  - 1

and \bfscrM in (4.21) are introduced to match the scaling dimensions
of the matrices\bfscrA , \bfscrB , and \bfscrB T . The most natural definition of \~\bfscrA and \~\bfscrB is the following:

\~\bfscrA =Block Diag

\biggl( \Bigl( 
\~\bfitA 
k
\Bigr) K
k=1

\biggr) 
, \~\bfitA 

k
:= div\bfscrT \prime ,\bfscrE \prime Diag

\bigl( 
\bfitR \scrE \prime 

\bigl[ 
\bfitrho k
\bigr] \bigr) 

\bfnabla \bfscrE \prime ,\bfscrT \prime ,

\~\bfscrB := - \bfscrM \bfscrJ \~\bfscrD \bfitt 
T
+\bfscrG \~\bfscrD \bfitx \bfscrJ T\bfscrH T ,
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A1416 E. FACCA, G. TODESCHI, A. NATALE, AND M. BENZI

where the matrices \bfscrJ , \bfscrH , and \bfscrG are defined in (3.2) and (3.3), while the matrices
\~\bfscrD \bfitt \in \BbbR KN\scrT \prime ,(K+1)N\scrT \prime and \~\bfscrD \bfitx \in \BbbR KN\scrE 

\prime ,KN\scrT \prime are

\~\bfscrD \bfitt =
1

\Delta t

\left(    - \bfitI N\scrT \prime \bfitI N\scrT \prime 

. . .
. . .

 - \bfitI N\scrT \prime \bfitI N\scrT \prime 

\right)   , \~\bfscrD \bfitx =Block Diag
\bigl( 
(\bfnabla \scrE \prime ,\scrT \prime )Kk=1

\bigr) 
.

Using the approximate identity in (4.21), the linear system in (4.15) becomes

 - \bfitd =\bfscrS \bfity =\bfscrP 
\Bigl( 
\bfscrC +\bfscrB \bfscrA +\bfscrB T

\Bigr) 
\bfscrP T\bfity \approx \bfscrP (\bfscrC  - \bfscrB \bfscrM  - 1 \~\bfscrB \~\bfscrA 

+
\bfscrM \prime )\bfscrP T\bfity .(4.22)

Since Ker(\bfscrP \bfscrM \prime ) = Im(\bfscrE T ) are discrete functions constant in space, we have that
Im(\bfscrM \prime \bfscrP T )\subset Im( \~\bfscrA ) and the last expression is equal to

 - \bfitd =\bfscrP (\bfscrC \bfscrM \prime  - 1 \~\bfscrA \~\bfscrA 
+
\bfscrM \prime  - \bfscrB \bfscrM  - 1 \~\bfscrB \~\bfscrA 

+
\bfscrM \prime )\bfscrP T\bfity .

Hence, we only have to solve the linear system

 - \bfitd =\bfscrP (\bfscrC \bfscrM \prime  - 1 \~\bfscrA  - \bfscrB \bfscrM  - 1 \~\bfscrB ) \~\bfscrA 
+
\bfscrM \prime \bfscrP T\bfity ,

which is compatible since \bfitd \in Im(\bfscrP ). Note that the dense matrix (\bfscrC +\bfscrB \bfscrA +\bfscrB T ) in

(4.22) is replaced by the operator (\bfscrC \bfscrM \prime  - 1 \~\bfscrA  - \bfscrB \bfscrM  - 1 \~\bfscrB ) \~\bfscrA 
+
\bfscrM \prime , which is dense by

the presence of the pseudo-inverse of \~\bfscrA . But now this operator is composed by two
factors. This means that we can approximate the action of their respective inverses
by solving a sparse linear system followed by a matrix-vector product. In fact, since
the solution \bfitdelta \bfitrho in (4.13) belongs to the image of \bfscrP T , we may look for a solution
\bfity \in Im(\bfscrP T ). By setting

\bfitz = \~\bfscrA 
+
\bfscrM \prime \bfscrP T\bfity = \~\bfscrA 

+
\bfscrM \prime \bfity ,

we can compute \bfity by first solving the linear system

 - \bfitd = (\bfscrC \bfscrM \prime  - 1 \~\bfscrA  - \bfscrB \bfscrM  - 1 \~\bfscrB )\bfitz (4.23)

and then computing \bfity =\bfscrM \prime  - 1 \~\bfscrA \bfitz .
Moreover, in order to cope with the ill-conditioning derived from the presence of

the matrix \bfscrC = \bfscrM \prime Diag (\bfits /\bfitrho ), we scale (4.23) by Diag (\bfitrho ) and we solve the linear
system

(Diag (\bfits ) \~\bfscrA  - Diag (\bfitrho )\bfscrB \bfscrM  - 1 \~\bfscrB )\bfitz = - Diag (\bfitrho )\bfitd ,(4.24)

similarly to what is done in (4.4) for the SIMPLE preconditioner.
We refer to the resulting preconditioner as the ``\bfitB \bfitB -preconditioner"" due to the

presence of this composed operator in the approximate factorization of the Schur
complement. This choice was done in analogy with the ``\bfitB \bfitF \bfitB t-preconditioner"" in-
troduced in [19], where the ideas of its author inspired the preconditioner described
in this section.

4.4.4. Numerical results. In this section, we present the results obtained on
test case 2 using the preconditioner described in subsection 4.4.3. Its application
requires the approximate solution of the linear systems in (4.16) and (4.24). The
first is solved using the AGMG solver with inner tolerance \varepsilon \bfscrS in = 1e - 1 (determined
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PRECONDITIONERS FOR DYNAMICAL OPTIMAL TRANSPORT A1417

experimentally). The second involves the solution of K + 1 weighted Laplacian sys-
tems. We solved them with the AGMG solver with tolerance \varepsilon \bfscrA in = 5e - 2. This value,
slightly smaller than those adopted in previous cases, improves the robustness of the
preconditioner. The number of multigrid iterations for these systems ranges between
two and three in all cases.

In Table 3, we summarized the results for the metrics defined in section 4 that
we used to measure the preconditioner performance. The number of averaged inner
iterations Inner/Outer refers to the solution of the linear system (4.24). This number
remains bounded between 2.1 and 8.5 iterations per preconditioner applications; it
tends to increase slightly with \mu \rightarrow 0 but it is not affected by the size of the problem.

Unfortunately, the number of outer iterations Outer/Lin.sys. tends to increase
as \mu \rightarrow 0, exceeding in some cases the 400 limit we fixed for the FGMRES iterations.
This phenomenon is more pronounced when the temporal scale is finer than the spatial
one to. This loss in efficiency for \mu \rightarrow 0 is more evident in test cases 2 and 3, whose
solutions have compact support, while for test case 1 it is less pronounced. This
suggests that this phenomenon can be related to the degeneracy of the linear system
(4.24), which becomes underdetermined due to the presence of terms that go to zero
on both sides of the equation.

Nevertheless, for \mu \approx 1e - 5, this preconditioner is the only one scaling well with
respect to the temporal and spatial discretization. The number of averaged outer
iterations Outer/Lin.sys. increases only slightly when the mesh is refined or the
time step is halved. This results in a CPU time that scales slightly worse than linearly
with respect to the number of degrees of freedom used to discretize the problem.

4.5. Summary of numerical results. In this section, we summarize the nu-
merical results to compare the pros and cons of the preconditioning approaches pro-
posed in this paper. In Figure 1, we compare the total CPU time (y-axis) required to
achieve IP relaxation \mu \approx 1e - 5 (eight IP iterations) with respect to the total number
of degrees of freedom used, while halving the time step and the mesh size used. This
summarizes the data in Tables 1 to 3 with gray background color. We included in
this comparison the results obtain for test cases 1, 3, and 4.

The behavior of the preconditioner based on the primal Schur complement de-
scribed in subsection 4.2 is determined by the inner solver used to solve the block lin-
ear system (4.2), which is the finite-dimensional counterpart of a time-space weighted
and anisotropic Laplacian. This linear system was solved efficiently with the AGMG
solver only for the smallest test cases during the initial IP steps, when the relaxation
\mu is relatively high. In fact, it did not reach the threshold \mu \approx 1e  - 5 in the finest
discretizations for all test cases.

The SIMPLE preconditioner is rather robust with respect to different time steps
and relaxation parameters \mu . However, it becomes inefficient when large grids are
used. In fact, the number of outer iterations and the CPU time approximately scale
linearly with respect to the number of time steps and the number of interior point
steps, but quadratically with respect to the number of cells. Moreover, it had some
failures in the first IP steps for all test cases in the finest discretization. However, the
SIMPLE preconditioner is the only one that becomes faster in the last IP iterations.
Thus, it may be the only one providing a viable option when accurate solutions of
the optimal transport problem are required, possibly combined with more efficient
approaches for the initial IP steps.

The \bfitB \bfitB -preconditioner described in subsection 4.4 is the only one able to tackle
large scale problems efficiently since the number of inner iterations required per each
Krylov step remains rather constant, while the number of outer iterations increases
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A1418 E. FACCA, G. TODESCHI, A. NATALE, AND M. BENZI

Table 3
Numerical results using the \bfitB \bfitB -preconditioner. Each subtable reports the results for a given

mesh, from the coarsest (top) to the finest (bottom), and for different time discretizations (\Delta t =
1/(K+1)). Each subtable reports, while \mu is reduced (leftmost column), the averaged outer iteration
and CPU time per linear system (Outer/Lin.sys. and CPU/Lin.sys.) and the averaged inner
iterations per outer iteration Inner/Outer for solving the linear system in (4.2) (metrics defined in
(4.23)). A final row summarizes the averages on the whole simulation. We highlighted in gray the
time-space combination providing the uniform discretization. The \dagger symbol denotes those IP steps
where the linear solver failed.

K + 1 16 32 64 128 16 32 64 128 16 32 64 128

µ Outer/Lin.sys. CPU/Lin.sys. Inner/Outer

T 0(NT = 224, NT = 672) #DOF=(1.4e4, 2.8e4, 5.7e4, 1.1e5)

1 7 9 10 12 1.2e0 2.5e0 5.4e0 1.4e1 2.1 2.3 2.6 3.2
2e-1 8 9 9 10 1.3e0 2.6e0 5.5e0 1.3e1 2.6 3.2 3.9 4.8
4e-2 12 13 14 15 1.3e0 2.8e0 5.7e0 1.4e1 2.8 3.6 4.5 5.5
8e-3 17 18 21 25 1.4e0 3.0e0 6.4e0 1.8e1 3.1 4.1 5.0 6.3
2e-3 20 25 33 44 1.5e0 3.3e0 7.5e0 2.3e1 3.6 4.4 5.1 6.2
3e-4 30 42 63 88 1.6e0 3.9e0 1.0e1 3.4e1 3.7 4.5 4.7 5.4
6e-5 46 72 117 180 1.9e0 4.9e0 1.5e1 5.9e1 3.9 4.1 4.4 4.4
1e-5 76 127 248 † 2.4e0 6.8e0 2.8e1 † 4.1 4.3 4.0 †
3e-6 136 324 † † 3.5e0 1.5e1 † † 4.1 4.8 † †
5e-7 297 † † † 6.2e0 † † † 4.3 † † †

58 † † † 2.1e0 † † † 4.0 † † †

T 1(NT = 896, NT = 2688) #DOF=(5.6e4, 1.1e5, 2.3e5, 4.6e5)

1 7 8 9 10 1.7e0 3.4e0 8.1e0 2.1e1 2.9 2.3 2.5 3.2
2e-1 8 8 9 10 1.6e0 3.4e0 8.0e0 2.1e1 2.4 2.8 3.6 4.3
4e-2 13 15 15 15 1.8e0 4.0e0 1.0e1 2.6e1 2.3 3.3 4.2 5.4
8e-3 17 20 21 21 1.9e0 4.7e0 1.2e1 3.3e1 2.6 3.6 4.8 5.8
2e-3 22 26 27 30 2.2e0 5.5e0 1.5e1 4.4e1 2.9 4.1 5.4 5.8
3e-4 29 34 38 44 2.6e0 6.5e0 2.0e1 5.9e1 3.2 4.4 5.7 6.0
6e-5 37 46 61 86 3.1e0 8.7e0 2.8e1 1.1e2 3.7 4.7 5.8 6.3
1e-5 52 65 88 157 4.0e0 1.3e1 4.3e1 2.0e2 4.2 5.4 8.1 7.7
3e-6 72 100 188 395 5.0e0 1.7e1 1.0e2 4.9e2 4.5 5.8 11.0 8.1
5e-7 100 154 † † 6.7e0 2.5e1 † † 4.9 6.0 † †

32 43 † † 2.9e0 8.4e0 † † 4.0 5.1 † †

T 2(NT = 3584, NT = 10752) #DOF=(2.3e5, 4.6e5, 9.1e5, 1.8e6)

1 6 7 8 10 2.7e0 6.6e0 1.7e1 5.6e1 3.5 2.9 2.4 2.6
2e-1 9 9 10 10 3.0e0 7.3e0 1.9e1 5.9e1 2.6 2.5 2.9 3.6
4e-2 14 16 18 17 3.9e0 1.0e1 2.9e1 8.6e1 2.9 2.6 3.5 4.4
8e-3 19 22 25 25 4.9e0 1.3e1 4.0e1 1.2e2 3.3 2.7 3.9 4.9
2e-3 25 28 32 30 7.0e0 1.6e1 5.0e1 1.5e2 3.8 2.9 4.3 5.7
3e-4 32 34 42 41 8.7e0 2.0e1 6.5e1 2.0e2 4.4 3.2 4.3 5.8
6e-5 44 43 53 58 1.2e1 2.5e1 8.0e1 2.8e2 4.8 3.4 4.4 6.2
1e-5 62 61 84 103 1.6e1 3.6e1 1.3e2 4.9e2 5.4 3.9 4.7 6.4
3e-6 92 94 130 186 2.5e1 5.8e1 2.0e2 9.6e2 6.7 4.3 5.5 8.8
5e-7 125 143 211 † 3.6e1 9.5e1 3.5e2 † 7.3 5.2 6.5 †

35 41 54 † 9.7e0 2.6e1 8.7e1 † 5.5 4.0 5.2 †

T 3(NT = 14336, NT = 43008) #DOF=(9.0e5, 1.8e6, 3.7e6, 7.3e6)

1 7 7 8 9 8.3e0 2.1e1 5.7e1 2.2e2 4.3 3.6 2.9 2.4
2e-1 9 9 10 11 9.8e0 2.5e1 7.0e1 2.6e2 3.1 2.8 2.7 2.8
4e-2 16 17 18 20 1.5e1 4.0e1 1.1e2 4.4e2 3.3 3.2 2.9 3.7
8e-3 25 29 30 32 2.7e1 6.3e1 1.7e2 7.3e2 4.2 3.4 2.7 3.8
2e-3 34 36 39 48 5.0e1 8.1e1 2.3e2 1.1e3 4.8 3.7 2.9 4.2
3e-4 47 43 52 58 7.6e1 1.0e2 3.0e2 1.3e3 4.9 4.0 2.9 4.3
6e-5 70 54 59 73 1.2e2 1.4e2 3.4e2 1.6e3 5.1 4.7 3.2 4.5
1e-5 110 68 72 100 1.9e2 2.0e2 4.3e2 2.3e3 5.6 5.6 3.7 4.6
3e-6 146 105 107 149 2.8e2 3.2e2 6.5e2 3.4e3 6.4 6.4 4.1 4.9
5e-7 190 162 161 237 3.9e2 6.1e2 1.0e3 5.6e3 7.3 8.5 5.1 5.5

55 44 52 68 9.4e1 1.3e2 3.2e2 1.6e3 5.8 5.7 3.9 4.8
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µ µ

T 0 K + 1 = 16 T 1 K + 1 = 32 T 2 K + 1 = 64 T 3 K + 1 = 128

µ

T 0 K + 1 = 16 T 1 K + 1 = 32 T 2 K + 1 = 64 T 3 K + 1 = 128

µ µ

T 0 K + 1 = 16 T 1 K + 1 = 32 T 2 K + 1 = 64 T 3 K + 1 = 128

T 0 = 8× 8× 8
K + 1 = 8

T 1 = 16× 16× 16
K + 1 = 16

T 2 = 32× 32× 32
K + 1 = 32

Fig. 1. Comparison of CPU time spent in solving linear algebra problems to reach an IP re-
laxation \mu \approx 1e - 5 using the preconditioner approaches presented in this paper. They are denoted
by Prim. (the preconditioner based on the primal Schur complement in subsection 4.2, Simp. (the
SIMPLE preconditioner in subsection 4.3), and BB (the \bfitB \bfitB -preconditioner). The results refer to
test cases 1, 2, 3, and 4 (from top to bottom panel) and using different time-space discretization
(left to right). The column's height is normalized by the maximum among the three preconditioners.
The gray portion of the column denotes the part of the preprocessing time of each preconditioner. If
\mu \approx 1e - 5 was not achieved, we report the value \mu reached. For the SIMPLE preconditioner, some
intermediate IP steps failed. We report the failure number, and we do not sum any CPU time to
the total cost since the \bfitB \bfitB -preconditioner appears to be the best among the three presented anyway.
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only slightly using smaller time steps and finer grids. This holds as long as the IP
tolerance is approximately 1e  - 5. Using smaller values, the number of inner and
outer iterations tends to increase, leading in some cases to the solver's failure. What
is causing this performance degradation is not clear and needs further investigations.

5. Conclusions. We presented different preconditioners for solving via itera-
tive methods the saddle point linear systems arising when computing solutions of
the Benamou--Brenier formulation using an IP method. The first preconditioner pre-
sented, based on the primal Schur complement, is neither efficient nor robust since
its application requires the solution of a complicated linear system involving an an-
isotropic weighted Laplacian in the time-space domain. The second preconditioner,
called SIMPLE, was shown to be remarkably robust but with a CPU time that scales
quadratically with respect to the number of spatial degrees of freedom. The most effi-
cient approach turned out to be a block triangular preconditioner where the inverse of
the dual Schur complement is approximated, exploiting a partial commutation of its
components, which we called the \bfitB \bfitB -preconditioner. Although this approach loses
efficiency in the latest IP steps, it is the only one scaling well with respect to the time
and space discretization size, both in two- and three-dimensional problems. Up to a
reasonable value \mu \approx 1e  - 5 for the IP relaxation parameter, our numerical experi-
ments showed that the problem can be solved with a good scaling of the CPU time
with respect to the number of degrees of freedom. Combining it with further tuning
strategies of the IP method (e.g. predictor-corrector methods, multilevel approach,
parallelization), we believe it has the potential to provide highly efficient solvers for
the dynamical optimal transport problem. Moreover, we remark that the same strat-
egy can be applied to variations of the problem which consider further penalization
of the density in (1.1) (such as those considered in [45]) without major modifica-
tions. The deterioration of the preconditioner for smaller values of \mu requires further
investigation, and it is left for future works.
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