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Abstract

We consider the problem of prescribing the Webster scalar curvature on the unit sphere of Cn+1.
Using a perturbation method, we obtain existence results for curvatures close to a positive constant
and satisfying an assumption of Bahri-Coron type.

1 Introduction

Let S2n+1 be the unit sphere of Cn+1 and let us denote by θ0 the standard contact form of the CR
manifold S2n+1. Given a smooth function R̄ on S2n+1, the Webster scalar curvature problem on S2n+1

consists in finding a contact form θ conformal to θ0 such that the corresponding Webster scalar curvature
is R̄. This problem is equivalent to solve the semilinear equation

(1) bn∆θ0v(ζ) + R̄0v(ζ) = R̄(ζ)v(ζ)bn−1, ζ ∈ S2n+1,

where bn = 2+ 2
n , ∆θ0 is the sublaplacian on (S2n+1, θ0) and R̄0 = n(n+1)

2 is the Webster scalar curvature

of (S2n+1, θ0). If v is a positive solution to (1), then (S2n+1, θ = v
2
n θ0) has Webster scalar curvature R.

Moreover, using the CR equivalence F (given by the Cayley transform, see definition (9) below) between
S2n+1 minus a point and the Heisenberg group Hn, equation (1) becomes, up to an uninfluent constant,

(2) −∆Hnu(ξ) = R(ξ)u(ξ)
Q+2
Q−2 , ξ ∈ Hn.

Here ∆Hn is the Heisenberg sublaplacian, Q = 2n + 2 is the homogeneous dimension of Hn and R
corresponds to R̄ in the equivalence F . We refer to [25] for a more detailed presentation of the problem.

Indeed in the papers [25], [26], [27], Jerison and Lee extensively studied the Yamabe problem on CR
manifolds (see also the recent papers by Gamara and Yacoub [20], [21] which treat the cases left open by
Jerison and Lee). On the contrary, at the authors’ knowledge, very few results have been established on
the Webster scalar curvature problem (see [10], [31], [37]), in spite of the wide interest on its Riemannian
analogue (see [3], [6], [12], [13], [14], [15], [24], [32], [33], [35] and references therein). In recent years there
has been a growing interest on equations of the same kind of (2) and various existence and non-existence
results inspired by this topic have been established by several authors (see [22], [16], [8], [7], [8], [8], [29],
[30], [36], [17]). On the other hand, these results are quite different in nature from the one we shall prove
in this paper and do not apply directly to the Webster scalar curvature problem, but are principally
related to the study of the Dirichlet problem for semilinear equations on bounded domains of Hn. Yet we
have to say that non-existence results for (2) can be obtained using the Pohozaev-type identities of [22]
under certain conditions on R. In particular it turns out that a positive solution u to (2) in the Sobolev
space S1

0(Hn) (with the notation of section 2) satisfies the following identity∫
Hn

〈(z, 2t),∇R(z, t)〉u(z, t)
2Q

Q−2 dzdt = 0
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provided the integral is convergent and R is bounded and smooth enough (see [22] and [37]). This implies
that there are no such solutions if 〈(z, 2t),∇R(z, t)〉 does not change sign in Hn and R is not constant.

In this note we shall give an existence result for positive solutions to equation (2), under suitable
assumptions on R (see Theorem 1 below). In particular we will assume that R is of the form

R(ξ) = 1 + εK(ξ)

for a small ε and a smooth Morse function K satisfying conditions (3)-(4) below. We remark that
our hypotheses on R are very different from the ones in [10], [31], [37] where R is assumed to satisfy
suitable decaying conditions at infinity. In particular in [10] it is required an estimate of the type
R1(ρ)∆Hnρ ≤ R ≤ R2(ρ)∆Hnρ (ρ is the homogeneous norm on Hn defined in (6) below) involving the
degenerate term ∆Hnρ, which allows to “radialise” the problem and to apply ODE methods.

In this note we give a contribution in the same direction as in the papers [3], [15], [34] concerning the
Riemannian case. As a matter of fact, the main tool in our proof is an abstract perturbation method due
to Ambrosetti and Badiale [1] which applies in our situation as well as in [3], [34]. In this paper we want
to give a first example of application of this powerful and versatile method to a non elliptic context.

The technique, see Theorem 3, consists in the reduction of the problem to the study of a finite
dimensional functional. In this study, see section 3, the positive solutions ωλ,ξ of the unperturbed
problem (7) below play a prominent role. In particular, in Lemma 5 we prove some uniqueness results
for the linearization of (7) at ωλ,ξ and in section 4 we study how the bubbles ωλ,ξ transform under a
Kelvin-type inversion.

Our main result is the following Theorem.

Theorem 1 Let K = K̄ ◦ F−1 : Hn → R be the composition of a smooth function K̄ on S2n+1 with
the CR equivalence F−1 (see (15)). Suppose that K is a Morse function satisfying the non-degeneracy
assumption

(3) ∆HnK(ξ) 6= 0 if K ′(ξ) = 0,

and the inequality

(4)
∑

K′(ξ)=0,∆HnK(ξ)<0

(−1)m(K,ξ) 6= −1,

where m(K, ξ) denotes the Morse index of K at ξ. Assume also that the south pole is not a critical point
of K̄. Then for |ε| sufficiently small and for R(ξ) = 1 + εK(ξ), problem (2) possesses a positive solution.

The condition on K̄ at the south pole of S2n+1 can be always achieved with a unitary transformation
in Cn+1 and does not affect the generality of the result. We also remark that the existence result in
Theorem 1 holds true for every dimension, as for the perturbative results in [15] and in [3] regarding the
Riemannian case. It is expectable that, in the non-perturbative case, the hypotheses for an existence
theorem should strongly depend on the dimension n.

Finally we would like to observe that the solution found in Theorem 1 satisfies the estimate (5) below,
by means of the following result, whose proof is essentially contained in [29] (see the proof of Theorem
1.1 of that paper).

Proposition 2 Let R ∈ L∞(Hn). If u is a non-negative solution to equation (2) in the Sobolev space
S1

0(Hn), then there exists a positive constant c such that

(5) u(ξ) ≤ c ω(ξ), ξ ∈ Hn,

where ω denotes the solution (defined in (8)) of the unperturbed problem (7) below.
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2 Notation

We denote by ξ = (z, t) = (x + iy, t) ≡ (x, y, t) the points of Hn = Cn × R ≡ R2n+1. The group law on
Hn is given by ξ ◦ ξ′ = (z + z′, t+ t′ + 2Im(zz̄′)). We also denote by τξ(ξ

′) = ξ ◦ ξ′ the left translations,
by δλ(ξ) = (λz, λ2t), λ > 0, the natural dilations, by Q = 2n+ 2 the homogeneous dimension and by

(6) ρ(ξ) = (|z|4 + t2)1/4

the homogeneous norm on Hn. The sublaplacian on Hn is the differential operator

∆Hn =
∑n
j=1(Xj

2 + Yj
2),

where Xj = ∂xj
+ 2yj∂t, Yj = ∂yj − 2xj∂t. We will work in the Folland-Stein Sobolev space S1

0(Hn),
which is defined as the completion of C∞0 (Hn) with respect to the norm

‖u‖2S1
0(Hn) =

∫
Hn

|∇Hnu|2.

Here ∇Hn = (X1, ..., Xn, Y1, ..., Yn) denotes the so-called subelliptic gradient on Hn. A remarkable result
of Jerison and Lee [27] states that all the positive solutions to the problem

(7)

{
−∆Hnu = uQ

∗−1

u ∈ S1
0(Hn)

(Q∗ = 2Q
Q−2 ) are in the form u = ωλ,ξ for some λ > 0, ξ ∈ Hn, where ωλ,ξ = λ

2−Q
2 ω ◦ δλ−1 ◦ τξ−1 and

(8) ω(z, t) = c0(t2 + (1 + |z|2)2)(2−Q)/4,

being c0 a suitable positive constant. We finally give the expression of the CR equivalence F : S2n+1 \
{(0, ..., 0,−1)} → Hn,

(9) F (ζ1, ..., ζn+1) =
( ζ1

1 + ζn+1
, ...,

ζn
1 + ζn+1

,Re(i
1− ζn+1

1 + ζn+1
)
)
,

that we shall use in section 4.

3 The abstract perturbation method

In this section we recall some abstract perturbation results, variational in nature, developed in [1] (see
also [2]), which we will use to obtain our existence results.

Let E be an Hilbert space, and consider a family of functionals fε : E → R of the form

(10) fε(u) = f0(u)− εG(u), u ∈ E.

Here f0 is the so-called unperturbed functional, and G is the perturbation of f0; both f0 and G are
assumed to be of class C2 on E. Moreover the functional f0 satisfies the following conditions:
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(i) f0 possesses a finite-dimensional manifold Z of critical points; we assume that Z is parameterized
by a function α : A→ Z, being A an open subset of Rd, d ≥ 1;

(ii) for all z ∈ Z, f ′′0 (z) is of the form Id−Kz, where Kz is a compact operator;

(iii) for all z ∈ Z there holds TzZ = Kerf ′′0 (z).

We define Γ : A→ R as Γ = G ◦ α.
The following Theorem is proved in [1], see in particular also Theorem 2.1 and Remark 2.2 in [3].

Theorem 3 Assume that properties (i) − (iii) above hold true, and suppose there exists an open set
Ω ⊆ A such that Γ′ 6= 0 on ∂Ω and

(11) deg(Γ′,Ω, 0) 6= 0.

Then for |ε| sufficiently small there exists a critical point uε of fε.

Remark 4 (a) The inclusion TzZ ⊆ Kerf ′′0 (z) is always true: (iii) is a non-degeneracy condition which
allows to apply the Implicit Function Theorem.

(b) The solution uε is close to Z in the sense that there exists zε ∈ Z, α−1(zε) ∈ Ω, such that
‖uε − zε‖ ≤ C|ε|, for some constant C depending on Ω, f0 and G.

The above abstract Theorem will be applied here to the following setting:

E = S1
0(Hn), f0(u) =

1

2

∫
Hn

|∇Hnu|2 − 1

Q∗

∫
Hn

|u|Q
∗
, G(u) =

1

Q∗

∫
Hn

K |u|Q
∗
.

In the reminder of this section we will show that conditions (i) − (iii) above hold true. In the next
sections, under hypotheses (3)-(4), we will show that condition (11) is satisfied for some suitable set Ω.

Let Z be defined as
Z = {ωλ,ξ : λ ∈ R+, ξ ∈ Hn}.

All the functions in Z are critical points of f0 and Z is clearly a (2n + 2)-dimensional manifold in E
parameterized by the map α : A = R+ ×Hn → E, α(λ, ξ) = ωλ,ξ.

About property (ii), one has

(f ′′0 (ωλ,ξ)[v], w) =

∫
Hn

(∇Hnv,∇Hnw)− (Q∗ − 1)

∫
Hn

ωQ
∗−2

λ,ξ v w, v, w ∈ S1
0(Hn).

Using the above formula, it is standard to check that f ′′0 (ωλ,ξ) is of the form Identity - Compact (as in
the Euclidean case, see [3]). Hence property (ii) follows.

By the invariance with respect to translations and dilations, it is sufficient to verify (iii) for (λ, ξ) =
(1, 0). This is the content of the following lemma.

Lemma 5 A function u ∈ S1
0(Hn) is a solution of the following equation

(12) −∆Hnu = (Q∗ − 1)ωQ
∗−2u in Hn

if and only if there exist some coefficients µ ∈ R and ν ∈ R2n+1 such that

(13) u = µ
∂ωλ,ξ
∂λ
|(λ,ξ)=(1,0) +

2n+1∑
i=1

νi
∂ωλ,ξ
∂ξi
|(λ,ξ)=(1,0).
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Proof. Since TωZ ⊆ Kerf ′′0 (ω), a function as in (13) satisfies (12). Let us prove the opposite implica-
tion. It is sufficient to prove that the vector space of the solutions to (12) has dimension 2n+ 2. Let us
consider the linear isometry ι : S1(S2n+1)→ S1

0(Hn) defined (up to some constant) by

ι(v)(ξ) = ω(ξ)v(F−1(ξ)), v ∈ S1(S2n+1), ξ ∈ Hn.

Here S1(S2n+1) denotes the completion of C∞(S2n+1) with respect to the norm

‖v‖2S1(S2n+1) =

∫
S2n+1

(bn|dv|2θ0 + R̄0v
2)θ0 ∧ dθn0

(see [25]). By means of this isometry, a function u ∈ S1
0(Hn) is a solution to (12) if and only if the

function v = ι−1u solves the linear equation

(14) −∆θv = µnv, in S2n+1,

for a suitable eigenvalue µn. The study of the eigenvalues of the operator −∆θ on S2n+1 has been
performed by G. B. Folland in [18]. In particular, it turns out that the eigenspace corresponding to the
eigenvalue µn is (2n+ 2)-dimensional and is spanned by the functions {Re ζj , Im ζj}j=1,...,n+1 restricted
to S2n+1. Indeed a direct computation shows that (up to some constant)

ι(Re ζj) =
∂ωλ,ξ
∂xj

|(λ,ξ)=(1,0), ι(Im ζj) =
∂ωλ,ξ
∂yj

|(λ,ξ)=(1,0), j = 1, . . . n;

ι(Re ζn+1) =
∂ωλ,ξ
∂λ
|(λ,ξ)=(1,0), ι(Im ζn+1) =

∂ωλ,ξ
∂t
|(λ,ξ)=(1,0)

(recall that ξ = (x, y, t)). This concludes the proof.

4 The Kelvin transform in Hn

In this section we study some features of a Kelvin-type inversion on Hn (see [28]). We first recall the
expression of the inverse F−1 of the CR equivalence F defined in (9):

(15) F−1(ξ) = F−1(z, t) =

(
2iz

t+ i(1 + |z|2)
,
−t+ i(1− |z|2)

t+ i(1 + |z|2)

)
.

We now define the Kelvin transform K : Hn \ {0} → Hn \ {0} to be the map conjugate to the inversion
in Cn+1 of S2n+1 through the equivalence F :

(16) K = F ◦ (−IdCn+1) ◦ F−1.

With some simple computations, one finds that K has the following expression

(17) K(z, t) =

(
−iz

t+ i|z|2
,− t

ρ4

)
.

Hereafter we simply denote ρ = ρ(ξ) = (|z|4 +t2)
1
4 . Our aim is to study the transformation of the bubbles

ωλ,ξ under this Kelvin-type transform. First of all, let us compute the Jacobian determinant JK of the
function K. Since K is obtained as the composition (16), the determinant of K is the product of the
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determinants of the above three maps. The first one is given by (ω(z, t))Q
∗
, the second one is just 1,

while the third is (ω(K(z, t)))−Q
∗
. In conclusion we get

JK(z, t) =


(

1 + |z|2
t2+|z|4

)2

+ t2

ρ8

(1 + |z|2)2 + t2


Q
2

=

(
1
ρ8

[
(ρ4 + |z|2)2 + t2

]
(1 + |z|2)2 + t2

)Q
2

(18)

=

(
1
ρ4 (ρ4 + 2|z|2 + 1)

(1 + |z|2)2 + t2

)Q
2

=
1

ρ2Q
.

Hence the natural transformation induced by K of a function u : Hn → R is given by

u 7→ A(u); A(u)(z, t) =
1

ρQ−2
u(K(z, t)).

Through the isometry ι, A is conjugated to the application

(19) S1(S2n+1) 3 v 7→ (ι−1 ◦ A ◦ ι)(v) = v(−·).

We are interested in the transformation under A of the function ωλ,ξ0 , which has the following expression

(20) ωλ,ξ0(ξ) = c0
[
λ2
(
λ−4(t− t0 + 2Im(zz0))2 + (1 + λ−2|z − z0|2)2

)]−Q−2
4 .

Applying the Kelvin transformation we find

A(ωλ,ξ0)(ξ) = c0

[
λ2ρ4

(
λ−4

(
− t

ρ4
− t0 + 2Im

(
−iz

t+ i|z|2
z0

))2

+

(
1 + λ−2

∣∣∣∣ −izt+ i|z|2
− z0

∣∣∣∣2
)2
−

Q−2
4

.

(21)

We have

Im

(
−iz

t+ i|z|2
z0

)
= − t(xx0 + yy0) + |z|2(x0y − y0x)

ρ4

and
iz

t+ i|z|2
+ z0 =

(x0t
2 + x0|z|4 − yt+ x|z|2) + i(y0t

2 + y0|z|4 + xt+ y|z|2)

ρ4
.

Using the last two equations and some elementary computations, the expression of A(ωλ,ξ0) in (21)
becomes

A(ωλ,ξ0)(z, t) =c0

[
λ−2

[
t+ t0ρ

4 + 2t(xx0 + yy0) + 2|z|2(x0y − y0x)
]2

ρ4

+ λ2

(
ρ4 + λ−2

[
|z|2 + ρ4|z0|2 + 2t(xy0 − yx0) + 2|z|2(xx0 + yy0)

])2
ρ4

]−Q−2
4

.

(22)

By means of the uniqueness result of Jerison and Lee [27], the above function must be of the form

(23) A(ωλ,ξ0)(z, t) = ωλ̃,ξ̃0(z, t) = c0

[
λ̃2
(
λ̃−4(t− t̃0 + 2Im(zz̃0))2 + (1 + λ̃−2|z − z̃0|2)2

)]−Q−2
4

,
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for some suitable λ̃, ξ̃0. Indeed a function u ∈ S1
0(Hn) is a solution to problem (7) iff v = ι−1(u) (or

equivalently v(−·)) is a solution to ∆θ0v+c1v = c2v
Q∗−1 in S2n+1 (for suitable constants c1, c2). Recalling

(19), we get that u is a solution to (7) iff A(u) is.
In order to find the explicit expression of λ̃, t̃0 and z̃0, we proceed in the following way. Choosing

z = 0 and letting t→ 0 in the expressions (22)-(23) above we get

1

λ̃2

[
t̃20 + (λ̃2 + |z̃0|2)2

]
=

1

λ2
,

which is

λ2 =
λ̃2

t̃20 + (λ̃2 + |z̃0|2)2
.

Since the transformation is involutive, we have also

λ̃2 =
λ2

t20 + (λ2 + |z0|2)2
.

The expressions in the square brackets in (22)-(23) are forth order polynomials in ξ (we consider t of
degree 2). Comparing the coefficients of t, ty and tx we find, with simple computations,

− 2

λ̃2
t̃0 =

2

λ2
t0;

x̃0

λ̃2
=
t0y0 − (λ2 + |z0|2)x0

λ2
;

ỹ0

λ̃2
= − t0x0 + (λ2 + |z0|2)y0

λ2
.

From the last four equations we deduce

(24) λ̃ =
λ√

t20 + (λ2 + |z0|2)2
; t̃0 = − t0

t20 + (λ2 + |z0|2)2
;

(25) x̃0 =
t0y0 − (λ2 + |z0|2)x0

t20 + (λ2 + |z0|2)2
; ỹ0 = − t0x0 + (λ2 + |z0|2)y0

t20 + (λ2 + |z0|2)2
.

In this way we have proved the following Lemma.

Lemma 6 For ξ0 ∈ Hn and λ > 0 there holds

A(ωλ,ξ0) = ωλ̃,ξ̃0 ,

where λ̃ and ξ̃0 are given in (24), (25).

5 Study of the function Γ

By our definition in Section 3, the explicit expression of Γ(λ, ξ) is the following

(26) Γ(λ, ξ) =
1

Q∗

∫
Hn

KωQ
∗

λ,ξ, λ > 0, ξ ∈ Hn.

Remark 7 We recall that K is taken to be equal to K̄ ◦ F−1 for some K̄ ∈ C∞(S2n+1). Hence K turns
out to be bounded on Hn together with any derivative.

The main features in the study of the function Γ are given in the following Proposition.
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Proposition 8 The function Γ is of class C2 in A and can be extended with C1 regularity to the hyper-
plane {λ = 0} by setting

(27) Γ(0, ξ) = c0K(ξ),

where c0 = 1
Q∗

∫
Hn ω

Q∗ . Moreover, for any compact set Σ ⊆ Hn, there exists a positive constant CΣ such
that

(28)

∣∣∣∣∂Γ

∂λ
(λ, ξ)− c1∆HnK(ξ)λ

∣∣∣∣ ≤ CΣλ
2 for all ξ ∈ Σ and for all λ > 0,

where c1 = 1
2nQ∗

∫
Hn |z|2ω(z, t)Q

∗
dz dt. In addition it turns out that

(29) ∇2
ξΓ(λ, ξ)→ c0∇2K(ξ) as λ→ 0 uniformly on the compact sets of Hn.

Proof. The first and the last part of the statement can be proved using the dominated convergence
theorem observing that, using a change of variables,

(30) Γ(λ, ξ0) =
1

Q∗

∫
Hn

K(ξ0 ◦ δλξ)ω(ξ)Q
∗
dξ

and recalling Remark 7. Let us now prove (28). Let us fix ξ0 ∈ Σ and let Kξ0 denote the function K ◦τξ0 .
Differentiating (30) with respect to λ we get

(31)
∂Γ

∂λ
(λ, ξ0) =

1

Q∗

∫
Hn

〈(Kξ0)′(δλξ), (z, 2λ t)〉ω(ξ)Q
∗
dξ.

Using the smoothness assumption on K and the boundedness of K ′, we deduce from a Taylor expansion

(32)

∣∣∣∣∣∂Kξ0

∂ξj
(η)− ∂Kξ0

∂ξj
(0)−

2n∑
l=1

∂2Kξ0

∂ξj ∂ξl
(0) ηl

∣∣∣∣∣ ≤ CΣ ρ(η)2, j = 1, . . . , 2n;

(33)

∣∣∣∣ ∂Kξ0

∂ξ2n+1
(η)− ∂Kξ0

∂ξ2n+1
(0)

∣∣∣∣ ≤ CΣ ρ(η),

for all η ∈ Hn and independently of ξ0 ∈ Σ.
From the invariance properties of the operator ∆Hn with respect to the left-translations, and using

its explicit expression in the origin, we obtain

∆HnK(ξ0) = ∆HnKξ0(0) =

2n∑
l=1

∂2Kξ0

∂ξ2
l

(0).

By oddness, we have

(34)

∫
Hn

ξjω
Q∗(ξ)dξ = 0, j = 1, . . . , 2n+ 1;

and

(35)

∫
Hn

ξj ξlω
Q∗(ξ)dξ = 0, j, l = 1, . . . , 2n, j 6= l.

We explicitly remark that the functions ρ(·)k ω(·)Q∗ belong to L1(Hn) for k < Q, and hence the above
integrals are well-defined.
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From (34) and (35) we deduce that
(36)

c1∆HnK(ξ0)λ =
1

Q∗

∫
Hn

 2n∑
j=1

(
∂Kξ0

∂ξj
(0) +

2n∑
l=1

∂2Kξ0

∂ξj ∂ξl
(0)λ ξl

)
ξj + 2λ ξ2n+1

∂Kξ0

∂ξ2n+1
(0)

ωQ∗(ξ)dξ.
Subtracting (36) from (31), using the estimates (32), (33) for η = δλξ, and taking into account that
ρ(δλξ) = λ ρ(ξ), we obtain∣∣∣∣∂Γ

∂λ
(λ, ξ0)− c1∆HnK(ξ0)λ

∣∣∣∣ ≤ CΣ λ
2

∫
Hn

 2n∑
j=1

|ξj | ρ(ξ)2 + |ξ2n+1| ρ(ξ)

ωQ
∗
(ξ)dξ

≤ CΣλ
2

∫
Hn

ρ(ξ)3ωQ
∗
(ξ)dξ ≤ CΣ λ

2.

This concludes the proof.

Using Proposition 8 and some properties of the Kelvin transform introduced in section 4, we can have
information about the degree of Γ′ on some suitably large subsets of A.

Proposition 9 Suppose that the function K satisfies the hypotheses of Theorem 1. Then there exists an
open set Ω ⊆ A such that Γ′ 6= 0 on ∂Ω and

deg(Γ′,Ω, 0) =
∑

K′(ξ)=0,∆HnK(ξ)<0

(−1)m(K,ξ) + 1.

Proof. Let Bs ⊆ R+ ×Hn denote the Euclidean ball

Bs =

{
(λ, ξ) : |(λ, ξ)− (s, 0)|2 <

(
s− 1

s

)2
}

with center (s, 0) and radius s − 1
s . We note that {Bs}s invade the whole Hn × R+ as s → +∞. We

claim that choosing Ω = Bs, with s sufficiently large, the properties in Proposition 9 will be satisfied. We
define also the Euclidean ball in Hn to be

Ar = {ξ ∈ Hn : |ξ| ≤ r} .

Since we have assumed that the south pole of S2n+1 is not a critical point of K̄ = K ◦ F , if r > 0 is
chosen large enough, the function K does not possess critical points in Hn \ Ar. We are going now to
apply Proposition 8 with Σ = A2r.

Let ξ1, . . . , ξl denote the critical points of K. By the non-degeneracy assumption (3) there exist small
numbers σ ∈ (0, r) and δ > 0 such that

(37) ∆HnK(ξ) > δ, for all ξ ∈ ∪li=1Bσ(ξi),

where Bσ(ξi) is the Euclidean ball of radius σ and center ξi. Fixing this number σ and applying Propo-
sition 8 we find, for s sufficiently large

(38) Γ′ 6= 0 on ∂Bs ∩
(
(0, σ)× ∪li=1Bσ(ξi)

)
.

On the other hand, Γ can be extended to {λ = 0} as a function of class C1 by (27), and moreover K ′ 6= 0
on A2r \ {ξ1, ..., ξl}. As a consequence we find

(39) Γ′ 6= 0 on ∂Bs ∩
(
(0, σ)× (A2r \ ∪li=1Bσ(ξi))

)
.
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From equations (38) and (39) we deduce

(40) Γ′ 6= 0 on ∂Bs ∩ ((0, σ)×A2r),

provided r and s are sufficiently large. Let us prove now that Γ′ 6= 0 on the reminder of ∂Bs. In order to
do this, it is convenient to use the Kelvin transform introduced above, see formula (17). We recall that
the determinant of K is given by (18).

Let K̃ : Hn → R be defined by K̃ = K̄ ◦ (−IdCn+1) ◦ F−1. Clearly K̃|Hn\{0} = K ◦ K. Since we are
assuming that the south pole of S2n+1 is not critical for K̄, the north pole is not critical for K̄ ◦(−IdCn+1),
and hence 0 ∈ Hn is also not critical for K̃. Using the change of variables induced by the transformation
K and taking into account Lemma 6 we get

(41) Γ(λ, ξ) =
1

Q∗

∫
Hn

KωQ
∗

λ,ξ =
1

Q∗

∫
Hn

K̃A(ωλ,ξ)
Q∗ =

1

Q∗

∫
Hn

K̃ωQ
∗

λ̃,ξ̃
=: Γ̃(λ̃, ξ̃),

where the parameters λ̃ and ξ̃ are given in (24) and (25), and where Γ̃ denotes the counterpart of Γ when
considering K̃ instead of K. We note in particular that, since the map (λ, ξ)→ (λ̃, ξ̃) is a diffeomorphism,
it is Γ′(λ, ξ) = 0 if and only if Γ̃′(λ̃, ξ̃) = 0. Since 0 ∈ Hn is not critical for K̃, and since also Γ̃ is of class
C1 up to the boundary of A (see Proposition 8), Γ̃′ 6= 0 in some neighborhood of (0, 0) ∈ [0,+∞[×Hn.
This implies that Γ′ 6= 0 in some neighborhood of infinity (see (24)-(25)) and hence

(42) Γ′ 6= 0 on ∂Bs \
(
(0, σ)×A2r

)
,

provided r and s are chosen to be sufficiently large. Hence, choosing Ω = Bs with s sufficiently large,
(40) and (42) imply Γ′ 6= 0 on ∂Ω.

The computation of the degree is standard. From property (29) and from the fact that K is a Morse
function, it follows that for s large Γ|∂Bs

possesses only non-degenerate critical points, which are in one-
to-one correspondence with those of K. Moreover from (28), the critical points of Γ|∂Bs

with entering
gradient are in correspondence with the critical points of K with ∆HnK > 0. Then the degree formula
follows from [23]. This concludes the proof.

Proof of Theorem 1. To prove the existence of a weak solution uε, it is sufficient to apply Theorem 3
and Proposition 9. By Remark 4 and by the positivity of the functions ωλ,ξ, it follows that ‖u−ε ‖Q∗ → 0
as ε→ 0, where u−ε denotes the negative part of uε. On the other hand, testing equation (2) on u−ε and
using the Sobolev-type embedding S1

0(Hn) ↪→ LQ
∗
(Hn) (see e.g. [27]), one finds

‖u−ε ‖2Q∗ ≤ C‖u−ε ‖2S1
0(Hn) = C

∫
Hn

R|u−ε |Q
∗
≤ C‖u−ε ‖

Q∗

Q∗ .

Hence, since ‖u−ε ‖Q∗ is small, it follows that u−ε ≡ 0 for |ε| small. Therefore uε ≥ 0 and uε 6≡ 0, again
by Remark 4. Moreover, using a standard regularization technique, based on the results of Folland and
Stein [19], it is easy to recognize that uε is also smooth. Then the positivity of uε follows from the strong
minimum principle for the solutions of ∆Hnu− Cu ≤ 0, see e.g. [9].
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