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1.1 Introduction

Beginning from the pioneering paper by A. Floer and A. Weinstein [14], a
great deal of work has been devoted to the study of nonlinear Schrödinger
equations like {−ε2∆u + V (x)u = K(x)up,

u ∈ W 1,2(Rn), u > 0,
(NLSε)

where ε is a small parameter and where

1 < p <
n + 2
n− 2

.

For the applications to Quantum Mechanics, it is particularly relevant to
understand the behavior of the solutions of (NLSε) as ε → 0. In this respect,
one of the most characteristic features of (NLSε) is that its solutions uε

concentrate as ε → 0, in the sense that, out of a certain concentration set, the
function uε(x) decays uniformly to zero as ε → 0. When this concentration set
is a single point, resp. a finite (or infinite) collection of points, these solutions

? Supported by M.U.R.S.T within the PRIN 2004 ”Variational methods and non-
linear differential equations”.
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are usually called spikes, resp. multi-bump solutions. We anticipate that in
some cases it is also possible to find solutions concentrating at a manifold.

First, in section 1.2, we discuss the well studied case in which V is bounded
and such that infn

R V (x) > 0. An interesting open question is related with the
existence of solutions concentrating on manifolds. This actually arises in the
radial case, when there are solutions concentrating on a sphere, see section
1.3 (we also refer to the last section for more general results). In sections 1.4
and 1.5 we will outline some more recent results dealing with potentials such
that infRn V (x) = 0 and/or V (x) → 0 as |x| → ∞. A last section is devoted
to new perspectives and some open problems.

Some of the above topics, especially those contained in sections 1.2 and
1.3, are also discussed in the recent Monograph [3, Chapters 8 and 10], which
also contains a broad bibliography, where we address the reader for references
and for further details.

1.2 The case of potentials bounded away from zero

In this section we shortly outline the case in which V is smooth and satisfies

∃ a, b > 0 such that a ≤ V (x) ≤ b. (V1)

We also take p ∈
(
1, n+2

n−2

)
, and K(x) > 0 smooth and bounded. In order to

prove the existence of solution to (NLSε) it is convenient to introduce the
auxiliary potential

Q(x) = V θ(x)K−2/(p−1)(x), θ =
p + 1
p− 1

− n

2
.

The role of Q is highlighted by the fact that a necessary condition for the con-
centration of solutions of (NLSε) at a point x0 is that Q′(x0) = 0. Conversely,
one can prove:

Theorem 1.2.1 Let 1 < p < n+2
n−2 and K(x) > 0 be smooth and bounded, and

assume that V satisfies (V1) and

‖V (x)‖C2(Rn) < +∞. (V2)

Moreover let x0 be a stable stationary point of Q, in the sense that the local
degree of Q′ at x0 is different from zero. Then, for ε sufficiently small, (NLSε)
has a solution concentrating at x0 as ε → 0.

Remarks 1.2.2
(i) Maxima, minima and non-degenerate stationary points of Q are sta-

ble in the sense specified above. One could also suppose that Q possesses a
bounded set Q ⊂ Rn of critical points such that deg(Q′,Qδ, 0) 6= 0, for δ ¿ 1,
where Qδ denotes a δ-neighborhood of Q. In this case, however, one merely
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obtains the existence of a solution concentrating at some point of Q, but not
determined a priori.

(ii) One can be more precise about the behavior of uε near the concentra-
tion point x0. Actually, if U0 ∈ W 1,2(Rn) denotes the radial positive solution
of

−∆u + V (x0)u = K(x0)up, ∇u(0) = 0,

then uε(x) ∼ U0(x−x0
ε ), as ε → 0.

(iii) In the preceding theorem, the parameter ε is sufficiently small. Ex-
istence results for ε = 1 are different in nature and will not be discussed
here.

(iv) For p ≥ n+2
n−2 and, say, V ≡ K ≡ 1, the Pohozaev identity implies that

there are no solutions in W 1,2(Rn), for any ε > 0.
(v) Theorem 1.2.1 can be improved by considering the case in which V

satisfies (V1) and (V2), but possesses a smooth manifold M of critical points
which is non-degenerate, in the sense that Ker[V ′′(x)] = TxM, ∀x ∈ M.
In such a case one can show that (NLSε) has at least cuplong(M) (see e.g.
[3] for the definition) solutions concentrating on points of M. We believe it
is possible to establish the locations of these concentrations considering the
second-order derivatives of V or the geometry of M, although such a result
has never been explicitly carried out.

(vi) Another improvement is concerned with a nonlinearity more general
than a pure power up. See, e.g. [1, Section 6] and [11].

(vii) Further existence results are concerned with solutions that have many
peeks, namely multi-bump solutions. These solutions can be obtained gluing
together two or more spikes whose peeks are sufficiently far away each other
(usually at a scale bigger than ε).

1.3 Solutions concentrating on manifolds

It has been conjectured for some time (see e.g. [20]) that (NLSε) should admit
solutions concentrating at non-trivial sets (curves or manifolds) when ε → 0.
The same conjecture has been raised around the end of the 80’s by W.M. Ni
for the following related Neumann problem (concerning pattern formation in
chemistry or biology)




−ε2∆u + u = up in Ω ⊆ Rn;
∂u
∂ν = 0 on ∂Ω;
u > 0 in Ω.

(Pε)

The first general results on (Pε) are very recent.

Theorem 1.3.1 [16, 17] Let Ω ⊆ Rn be a smooth bounded set, and let p > 1.
Then there exists a sequence εj → 0 such that (Pεj ) possesses solutions uj

concentrating at ∂Ω.
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Theorem 1.3.2 [15] Let Ω ⊆ R3 be a smooth, bounded domain, and let p > 1.
Let h : S1 → ∂Ω be a simple closed non-degenerate geodesic. Then there exists
εj → 0 such that (Pεj ) possesses solutions uj concentrating at h.

Also in the case of (NLSε), very few results are known. They are concerned
with radial potentials: V (x) = V (r), r = |x|, and with radial solutions uε

concentrating at spheres. Here the counterpart of Q is played by a combination
of volume and potential energy, and is expressed by the auxiliary weighted
potential

M(r) = rn−1V `(r), ` =
p + 1
p− 1

− 1
2
.

It is possible to show that if a radial solution concentrates at a sphere of radius
r0, then M ′(r0) = 0. Conversely, there holds

Theorem 1.3.3 [4] Let V be radial and satisfy (V1), (V2). Moreover, let p > 1
and assume that r0 > 0 is a local maximum or a minimum of M . Then, for
ε small enough, (NLSε) has a radial solution concentrating at the sphere
{|x| = r0}.
Remarks 1.3.4

(i) For n = 1, the critical points of M coincide with those of V . On the
contrary, for n > 1 they are always different because

M ′(r) = 0 ⇔ V ′(r) = −n− 1
`

V (r)
r

6= 0.

Moreover, since M(r) ∼ rn−1 at 0 and at infinity, then generically solutions
arise in pairs.

(ii) The functions uε scale in one variable only, and their profile is asymp-
totic to the solution of the one-dimensional problem −v′′ + v = vp, where p
can be arbitrary. For this reason, any exponent p > 1 is allowed. In general,
one can prove the existence of solutions concentrating near a k-dimensional
sphere, 1 ≤ k ≤ n − 1. In such a case, the corresponding weighted auxil-
iary potential becomes Mk = rkV `k(r), where `k = p+1

p−1 − 1
2 (n − k) and the

solutions are asymptotic to those of −∆u + u = up, u ∈ W 1,2(Rn−k). As
a consequence, it turns out that the exponent p has to be taken subcritical
w.r.t. Rn−k, namely 1 < p < n−k+2

n−k−2 if n− k > 2, and p > 1 if n− k ≤ 2.
(iii) There is a plethora of non-radial solutions to (NLSε) bifurcating

from the radial ones. Roughly, let M possess a critical point r > 0 such that
M ′′(r) 6= 0, and let uε denote the radial solutions concentrating at {|x| = r}.
Then, for ε0 ¿ 1, Λε0 = {(ε, uε) : ε ∈ (0, ε0)} is a smooth curve and there
exists a sequence εl → 0 such that from every (εl, uεl

) ∈ Λε0 bifurcates a
family of non-radial solutions of (NLSε).

The proof of Theorem 1.3.3 is based on a finite-dimensional reduction.
The proof of the bifurcation result mentioned in Remark 1.3.4-(iii) relies on
the fact that along Λε0 the radial solutions uε have diverging Morse index (as
ε → 0) in W 1,2(Rn). For details, see [4] and [3, Ch. 10].
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1.4 The case of vanishing potentials

The first attempt to weaken the assumption (V1) has been made in [8] where
V is assumed to satisfy

V ∈ C(Rn), inf
Rn

V (x) = 0, and lim inf
|x|→∞

V (x) > 0. (V3)

In this case is no more possible to use the perturbation method used when
(V1) holds because, roughly, the limit equation −∆u+V (εξ)u = K(εξ)up can
have only (assuming decay at infinity) the trivial solution when εξ belongs to
the set

V := {x ∈ Rn : V (x) = 0}.
The new strategy consists in considering the constrained minimization prob-
lem

mε = inf{‖u‖2ε :
∫
Rn K(εx)|u|p+1dx = 1,

∫
Rn\Vδ

ε
K(εx)|u|p+1dx ≤ ε

3(p+1)
p−1 },

where Vε = {x ∈ Rn : εx ∈ V} and by Vδ
ε denotes the δ

ε -neighborhood of Vε.
One shows that mε > 0 is achieved and hence there exist vε ∈ W 1,2(Rn) and
λε, µε ∈ R such that

−∆vε + V (εx)vε = λεK(εx)vp
ε + µεχRn\V4δ

ε
K(εx)vp

ε , uε > 0. (1.1)

Using the fact that lim inf |x|→∞ V (x) > 0, it is possible to prove that vε decays
exponentially to zero as |x| → ∞ uniformly, and thus

∫

Rn\Vδ
ε

K(εx)|vε|p+1dx < ε
3(p+1)

p−1 . (1.2)

Then ṽε = m
1

p−1
ε vε is a solution of the equation

{−∆u + V (εx)u = K(εx)up,
u ∈ W 1,2(Rn), u > 0,

(ÑLSε)

obtained by the change of variable x 7→ εx. Scaling back, uε(x) = ṽε(ε−1x)
solves (NLSε). These arguments lead to prove:

Theorem 1.4.1 [8] Suppose that (V3) holds and let 1 < p < n+2
n−2 . Then for

ε sufficiently small, (NLSε) has a solution uε, concentrating at some point
x∗ ∈ V, as ε → 0. Moreover, there holds

lim
ε→0

‖uε‖∞ = 0, and lim inf
ε→0

ε
−2

p−1 ‖uε‖∞ > 0. (1.3)



6 Antonio Ambrosetti & Andrea Malchiodi

The last formula (1.3) relies on the fact that mε → 0 as ε → 0 and shows
that the case of a vanishing potential has features different from those seen
when inf V > 0. This is confirmed by a sharp analysis carried out in [8]
which permits to find the asymptotic profile of the solutions uε. Roughly,
if e.g. V = {0} and V (x) = |x|m + o(|x|m) as |x| → 0, then one proves
that for any εj → 0 there is a subsequence (denoted still by εj) such that

ε
− 2

p−1
m

m+2
j uεj

(ε
2

m+2
j x) converges uniformly to a ground state (i.e. a Mountain-

Pass) solution of
−∆w + |x|mw = K(0)wp. (1.4)

Other flatness condition on V are studied in [8], where we refer for more
details.

1.5 The case of potentials decaying to zero

In this section we are concerned with the case in which V > 0 is such that
lim|x|→∞ V (x) = 0. Precisely we will assume

∃α, a1, a2 > 0 such that
a1

1 + |x|α ≤ V (x) ≤ a2. (V4)

In addition, in Theorem 1.5.1 below, we will require that

∃β, a3 > 0 such that 0 < K(x) ≤ a3

1 + |x|β . (K1)

As before, one studies the scaled equation (ÑLSε) whose solutions are, for-
mally, the critical points of

Iε(u) = 1
2

∫

Rn

(|∇u|2 + V (εx)u2
)− 1

p+1

∫

Rn

K(εx)|u|p+1. (1.1)

Unfortunately, Iε is not well defined on W 1,2(Rn) and, to circumvent this
difficulty, one can work on the weighted Sobolev space

Hε = {u ∈ D1,2(Rn) :
∫

Rn

[|∇u(x)|2 + V (εx)u2(x)
]
dx < ∞},

endowed with scalar product and norm

(u|v)ε =
∫

Rn

[∇u(x) · ∇v(x) + V (εx)u(x)v(x)] dx, ‖u‖2ε = (u|u)ε. (1.2)

Let

σ = σn,α,β =

{
n+2
n−2 − 4β

α(n−2) , if 0 < β < α,

1 otherwise.
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If σ ≤ p ≤ n+2
n−2 , then Hε is embedded into the weighted Lebesgue space

Lq
K(Rn) = {u :

∫
Rn K(εx)|u|qdx < ∞}. Moreover the embedding is compact

provided σ < p < n+2
n−2 . Thus Iε is well defined (and smooth) on Hε and

the Mountain-Pass theorem yields a critical point vε ∈ Hε of Iε. The energy
of vε is smaller than any other critical point of Iε and, for this reason, will
be called a ground state. Moreover, if 0 < α < 2, there exists γ > 0 such
that ‖vε‖2Hε

≤ γ εn. From this fact and using some integral estimates, one
proves that vε ∈ L2(Rn), so that vε ∈ W 1,2(Rn). Finally, one shows that
vε has a pointwise exponential decay at infinity, depending on 0 < α < 2:
∃C, d, R > 0, such that

|vε(x)| ≤ C|x|d exp



−

1
4

∣∣log 3
4

∣∣
(
|x| 2−α

2 − (R
ε )

2−α
2

)

εα/2



 , ∀ |x| À 1. (1.3)

This allows us to prove that the rescaled solution uε concentrates at a global
minimum of Q.

Theorem 1.5.1 [2] If 0 < α < 2, β > 0, and σ < p < n+2
n−2 then (NLSε) has,

for every ε > 0. a ground-state uε. Furthermore, uε concentrates at a global
minimum of Q, as ε → 0.

Remark 1. The existence result is true for all ε > 0. Moreover, if σ < p < n+2
n−2 ,

Q is bounded below and tends to infinity as |x| → ∞ and hence has a global
minimum.

Theorem 1.5.1 holds for σ < p < n+2
n−2 . Actually, if 1 < p < σ, one shows that

there are no ground state at all. However, one could ask whether there are
solutions concentrating at a stable stationary point of Q for p in all the range
1 < p < n+2

n−2 . An answer to this question is given by the following result:

Theorem 1.5.2 [5] Suppose that (V4) holds with 0 < α ≤ 2, that K satisfies

K ∈ C1(Rn), and ∃ κ0 such that 0 < K(x) ≤ κ ∀x ∈ Rn, (K2)

and that 1 < p < n+2
n−2 . Then for any stationary point x0 of Q, (NLSε) has,

for every ε > 0. Moreover uε concentrates at x0, as ε → 0.

It is worth pointing out that we can handle the case α = 2, and we do not
need to require that K → 0 as |x| → ∞, namely we can take β = 0 in (K1).
On the other hand, in Theorem 1.5.2 the existence of a solution is proved for
ε sufficiently small, only.

The proof is based on an appropriate perturbation procedure, which we
are going to outline. Below we will proceed formally, in the sense that we
look for critical points of Iε, although Iε might be not well defined on Hε.
The argument can be made precise by means of a truncation. However, we
will find critical points such that Kup+1 ∈ L1(Rn). Let Uεξ denote the radial
positive solution (decaying to zero at infinity) of
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−∆u + V (εξ)u = K(εξ)up,

and consider the manifold

Zε = {zε,ξ = Uεξ(x− ξ) : ξ ∈ Rn}.

Since for ε small, Uεξ are approximate solutions of (ÑLSε), one can make
the Ansatz that there exists a critical point of Iε of the form u = zε,ξ + w,
with a suitable w (small) and an appropriate choice of ξ. To carry out this
procedure, one starts by using the Lyapunov-Schmidt reduction method to
split the equation I ′ε(zε,ξ + w) = 0 into the equivalent system

{
PεI

′
ε(zε,ξ + w) = 0, (Auxiliary equation)

P̂εI
′
ε(zε,ξ + w) = 0, (Bifurcation equation)

where P̂ε and Pε denote the projections onto the tangent space Tzε,ξ
Zε and to

its orthogonal (Tzε,ξ
Zε)⊥, respectively. The next step consists in solving the

Auxiliary equation. Expanding I ′ε, we get I ′ε(zε,ξ+w) = I ′ε(zε,ξ)+I ′′ε (zε,ξ)[w]+
R(ε, ξ, w). Since for ε small the operator Lε.ξ = Pε ◦ I ′′ε (zε,ξ) is shown to be
invertible for all ξ ∈ Rn such that |εξ| < 1, then the auxiliary equation takes
the form

w = Sε(w) := −L−1
ε,ξ [PεI

′
ε(zε,ξ) + PεR(ε, ξ, w)] . (1.4)

In order to show that Sε possesses a fixed point, a new device has been used.
Given R, γ > 0 and a function φ : R → R, let Wε denote the set of the
functions w ∈ Hε such that

|w(x + ξ)| ≤
{

γR
√

ε φ(|x|), if |x| ≥ R,√
ε, if |x| ≤ R,

(1.5)

and set, for c > 0,

Γε = {w ∈ Hε : ‖w‖ε ≤ c ε, w ∈ Wε ∩ (Tzε,ξ
)⊥, (|εξ| ≤ 1)}.

Our aim is to find R, γ, c and φ in such a way that Sε maps Γε into itself and
is a contraction, for ε ¿ 1. To understand which is a good choice of φ, one
can make an heuristic argument as follows. Setting w̃ = Sε(w), we need to
prove that w̃ satisfies estimates as in the definition of Γε. Let us focus on the
first of (1.5). From (1.4) it follows that w̃ solves an equation like (to simplify
notation, we take below K ≡ 1)

−∆w̃ + V (εx + εξ)w̃ − pzp−1
ε,ξ (x + ξ)w̃ = h,

where h depends upon w in an explicit way. More precisely, since w ∈ Wε it
follows that

0 < h ≤ √
ε φ2∧p(r), |x| ≥ R À 1. (1.6)
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Since, for any m > 0,

V (εx + εξ)− pzp−1
ε,ξ (x + ξ) ≥ m

|x|α ,

provided |x| À 1, it is convenient to consider, as comparison, the equation:



−∆u + m

|x|α u = f(|x|), |x| > R,

u(x) = 1 |x| = R,
u(x) → 0 |x| → ∞.

(1.7)

The corresponding homogeneous equation

−∆u +
m

|x|α u = 0

has two fundamental radial solutions given by

φ(r) = r−
n−1

2 φ1(r); ψ(r) = r−
n−1

2 ψ1(r),

where the functions φ1, ψ1 depend on α. If α < 2 they are expressed by means
of Bessel functions. Let us remark that, in such a case, φ has an exponential
decay of the form

φ ∼ r
α
4−n−1

2 e−
2
√

m
2−α r

2−α
2

.

If α = 2, φ1, ψ1 are given by

φ1(r) = r
1−
√

(n−2)2+4m
2 , ψ1(r) = r

1+
√

(n−2)2+4m
2 .

We will choose the preceding φ to be the function used in the definition of Wε

and Γε. To prove that w̃ satisfies the first of (1.5), provided that w ∈ Γε, the
following comparison lemma plays a key role.

Lemma 1.5.3 Let φ, ψ be defined as above, and let u be a solution of problem
(1.7), where f : (R, +∞) → R is a positive continuous function such that

∫ +∞

R

rn−1f(r)ψ(r) dr < +∞. (1.8)

Then there exists γ(R) > 0 such that u(r) ≤ γ(R)φ(r) for all r ∈ (R, +∞).

In view of (1.6), Lemma 1.5.3 is applied with f = φmax{2,p}. Let us point
out that if α = 2 the integrability condition (1.8) is satisfied provided we
choose m sufficiently large, while any m can be taken in the case α < 2.
In this way we prove that w̃ satisfies the first condition in (1.5). Without
entering in more details, let us say that it is also possible to choose R, c >
0 in such a way that Sε(Γε) ⊂ Γε and is a contraction, provided ε ¿ 1.
Hence Sε has a fixed point w = wε,ξ. Substituting wε,ξ into the bifurcation
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equation, we get P̂εI
′
ε(zε,ξ + wε,ξ) = 0. If we consider the reduced functional

Φε(ξ) = Iε(zε,ξ + wε,ξ), one finds that for any stationary point ξε of Φε, the
function uε = zε,ξε + wε,ξε is a solution of the bifurcation equation and hence
satisfies (ÑLSε). Finally, expanding Φε(ξ) we get Φε(ξ) = c0Q(εξ) + ρ(ε, ξ)
with |ρ(ε, ξ)| ≤ c1(|ε|Q′(εξ)|+ε2). This completes the proof of Theorem 1.5.2.

The preceding result can be improved in several directions. The first one is
concerned with the concentration on a sphere in the case in which V is radial
but decays to zero at infinity and can possibly vanish.

Theorem 1.5.4 [6] Let p > 1 and suppose that V ∈ C1(Rn) satisfies

V (r) ≥ 0, and ∃ r0, a1, a2 > 0 :
a1

r2
≤ V (r) ≤ a2, ∀ r > r0; (V5)

∃ V ′
1 > 0, : |V ′(x)| ≤ V ′

1 , ∀ r ∈ R+. (V6)

Moreover let us assume that there exists r∗ > r0 such that M has an isolated
local maximum or minimum at r = r∗. Then for ε ¿ 1, equation (NLSε) has
a solution that concentrates at the sphere |x| = r∗.

A second improvement deals with the case in which V also vanish and decays
to zero, but we look for ground states concentrating on points where V = 0.

Theorem 1.5.5 [7] Suppose that V satisfies

V ∈ C(Rn), inf
Rn

V (x) = 0, and ∃a1 > 0, α ∈]0, 2[, : V (x) ≥ a1

1 + |x|α , ∀|x| À 1.

(V7)
Moreover, let (K1) hold with β > 0 and let σ < p < n+2

n−2 . Then the same
conclusion of Theorem 1.4.1 holds true.

Remark 2. The two preceding theorems are different in nature. In the former,
the solutions concentrate at a sphere of radius r∗ such that V (r∗) > 0 and its
profile is like the one found in Theorem 1.3.3. In the latter, the concentration
occurs at a point x0 with V (x0) = 0, the profile being that of the solutions
found in Theorem 1.5.5. Some open problem related to these results are listed
in the next section.

1.6 New Perspectives

We collect in this section some possible further developments of the results
discussed above.

1. In the radial case V (x) = V (|x|), criticality of the function

M(r) = rn−1(V (r))`; ` =
p + 1
p− 1

− 1
2
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gives necessary and sufficient conditions for concentration at spheres.
Heuristically, the energy of a solution concentrating at a k-dimensional
manifold Σ is approximately

E(V, Σ) ' εn−k

∫

Σ

V `kdσ; `k =
p + 1
p− 1

− 1
2
(n− k).

Extremizing in Σ one finds

`k∇⊥V = V H,

where ∇⊥V denotes the component of ∇V perpendicular to Σ and where
H stands for the mean curvature vector of Σ.
We wonder if, under suitable non-degeneracy assumptions, this condition
is sufficient for concentration of solutions at Σ. This conjecture has been
verified for n = 2 (when Σ is a curve) by Del Pino, Kowalczyk and Wei
in [12].

2. As mentioned in Remark 1.3.4-(iii), from the solutions concentrating on
a sphere branch off solutions with different profile. We suspect that these
solutions oscillate along the sphere and that, following the bifurcation
branches, they concentrate on points or on lower dimensional manifolds.
This bifurcation analysis should be pursued also for solutions considered
in the previous item.

3. In [13] the authors studied, for n = 1 and 1 < p < 5, the case in which V
is negative in some interval (or intervals) of R. They are able to produce,
when ε → 0, solutions of (NLSε) (for K ≡ 1) which are highly oscillatory
in {V ≤ 0}, and which decay exponentially away from this region. They
also characterize the limit profile of the amplitude of the solutions in terms
of the potential V .
Their result relies on ODE techniques, but it is expectable that similar
result could be proven for the higher-dimensional case as well.

4. Among the equations that have not been studied intensively, we also men-
tion those in which the potential V has a singularity. For example, if
V ∼ |x|−a as x → 0 and satisfies at infinity either (V1) or (V4). The so
called Hardy potential, V = |x|−2, has been studied (with ε = 1 and p the
critical exponent), but we do not know any result dealing with potentials
that do not coincide exactly with that one. The concentration as ε → 0
has not been investigated, too.

5. In all the results discussed in Section 1.5 we have considered potentials
which decay to zero at infinity at most like |x|−2. Is it possible to handle
potentials with faster decay, or compactly supported? Moreover, what
happens if V is a potential well, e.g. V is defined in a bounded domain Ω
and V (x) → +∞ as x tends to the boundary ∂Ω? Clearly, the approach
used so far cannot be repeated. However, any result, positive or negative,
would be interesting.
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6. In the case in which V can vanish and tend to zero at infinity, there are
many open questions. The most natural one concerns an improvement of
Theorem 1.5.5, by taking 0 < α ≤ 2, any β ≥ 0 and any 1 < p < n+2

n−2 .
As we have seen in the results discussed in Section 1.5, we could expect,
roughly, that there exist solutions concentrating on a stable stationary
point of Q, whose profiles depend on the behavior of V near its zeros. The
proof should rely on an approximation procedure, with an appropriate
choice of the set Γε, which depends on the asymptotic behavior of V at
infinity.

7. Another natural question is to see if, in the case of Theorem 1.5.4, there
are solutions concentrating at some r̃ such that V (r̃) = 0. It would also be
useful to check if the ground state of (1.4) is non-degenerate. This might
lead to find solutions (not ground states) on any stable stationary point
of Q in a more direct fashion.

8. The case in which (NLSε) is replaced by a system of equations is of a great
importance. Among the very few results obtained so far on this topic, we
mention [18], see also [9, 10], where the following system has been studied:

{ −ε2∆u + u + Ψ(x)u = νup, x ∈ R3

−∆Ψ = u2, x ∈ R3.
(1.1)

After an appropriate choice of the parameter ν (depending on ε) and a
rescaling, (1.1) is transformed into

{ −∆u + u + Ψ(x)u = up, x ∈ R3

−∆Ψ = εu2, x ∈ R3.
(1.2)

It is proved that, if 1 < p < 11/7, (1.2) has a solution concentrating at
the sphere of radius

r =
1

m0

a

(a + 1)
5−p

2(p−1)

, m0 =
∫

R
U2

0 , a =
8(p− 1)
11− 7p

,

where U0 is the even, positive solution of −U ′′ + U = Up, which decays
to zero at infinity. It is worth pointing out that the value of r satisfies
M̃ ′(r) = 0, where

M̃(r) = rf(r)
[
3p− 7

4
f(r) + p− 1

]
,

f being the inverse of g(s) = m−1
0 s(1 + s)−(5−p)/2(p−1). Such a M̃ plays

the same role of the auxiliary weighted potential M introduced in Section
1.3.
On these class of equations, a lot of problems are still to be addressed.
For example, one can study the concentration of solutions of a Schrödinger
equation coupled with a nonlinear Poisson equation on, say R3,
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{ −ε2∆u + (V (x) + Ψ(x))u = up, x ∈ R3

−∆Ψ = u2, x ∈ R3, lim|x|→∞ Ψ(x) = 0,
(1.3)

with 1 < p < 5. Similarly, one can consider an equation with a non-local
term, such as

−ε2∆u + V (x)u = (Φ ∗ u2)u, x ∈ R3,

where Φ is an appropriate non-negative function. The aim would be the
extension of the results discussed in the preceding sections to these classes
of systems. For example, one should find the counterpart of the auxiliary
potential Q, etc. For some recent interesting results in this direction, we
mention [19], where (1.3) is studied, with V ≡ 1. This paper improves
previous results by other authors, see the bibliography of [19] showing,
among other things, that (1.3) has a radial solution iff 2 < p < 5. A list
of open questions is also presented.
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