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We investigate the mechanics of an active droplet endowed with internal nematic order and
surrounded by an isotropic Newtonian fluid. Using numerical simulations we demonstrate that, due
to the interplay between the active stresses and the defective geometry of the nematic director, this
system exhibits two of the fundamental functions of living cells: spontaneous division and motility,
by means of self-generated hydrodynamics flows. These behaviors can be selectively activated by
controlling a single physical parameter, namely, an active variant of the capillary number.

The goal of understanding the machinery of life has led
in recent years to the ambitious idea of constructing syn-
thetic minimal cells: chemical machines capable of repro-
ducing some of the fundamental traits of living cells such
as self-maintaining, duplicating, and passing information
across generations [1, 2]. Whether the ultimate goal is
to design engineered cells for medical applications or to
reconstruct the history of life from its prebiotic origin
to its present complexity, understanding the architecture
and operation of minimal cellular machines represents a
fundamental step towards unraveling the transition from
inanimate to living matter [3].

The first challenge in this program is to identify the
crossover region between molecular self-assembly and
molecular operation [4], a task that has led to inves-
tigate the design principles and the mechanics of self-
dividing lipid vesicles [5, 6] and more recently the cou-
pling of self-dividing vesicles with self-replicating nucleic
acids enclosed in the interior of the vesicle [7, 8]. Mass
transfer due to hydrodynamic instabilities, such as the
Marangoni effect, has been recently invoked as a possible
route to motility in prebiotic structures [9].

In this article, we would like to propose the mechanics
of active liquid crystals as a possible framework to study
the transition between nonliving and living matter, pos-
sibly providing some principles for the design of artifi-
cial cells. Active liquid crystals are non-equilibrium flu-
ids composed of orientationally ordered self-driven parti-
cles. Each active particle is capable of converting stored
or ambient energy into systematic movement. The in-
teraction of active particles with each other and with
the surrounding medium gives rise to mechanical stresses
and highly correlated collective motion over large scales
[10–13]. Originally developed for modeling collections of
swimming [14] and crawling cells [15], and later extended
to the cytoskeleton and its components [10, 16, 17], the
mechanics of active liquid crystals has gained increasing
attention in the last decade thanks to its successes in
the modeling of cellular motility, intracellular movement
and transport [18]. Thus, a powerful tool for both under-
standing the behavior of biological systems and designing
novel, biologically inspired, materials has now become
available.

Here we consider a two-dimensional active droplet en-

dowed with internal nematic order and surrounded by
an isotropic Newtonian fluid. We demonstrate that, due
to the interplay between the active stresses and the ge-
ometry of the nematic director, which is constrained by
the droplet topology, this system exhibits two of the
defining functions of living cells: spontaneous division
and motility, by means of self-generated hydrodynamic
flows. These behaviors can be selectively activated by
controlling a single physical parameter corresponding to
an active variant of the capillary number. While the task
of implementing this strategy in synthetic biology is far
from trivial, the fact that two of the fundamental cellu-
lar processes can arise from a single physical mechanism
is remarkable and can possibly provide new insight on
the transition from prebiotic structures to living micro-
organisms.

The hydrodynamic equations of an active nematic
medium have been proposed based on phenomenologi-
cal arguments [10, 11, 19, 20], or derived from micro-
scopic models [21–23]. Apart from some unimportant
differences, these models agree in identifying the so called
“active stress” (proportional to the local nematic order)
as the fundamental non-equilibrium contribution due to
molecular activity. The degrees of freedom needed to
describe an active nematic fluid are then the flow ve-
locity field v and the nematic tensor field Q which,
for uniaxial nematics in two dimensions, is given by
Qij = S (ninj − δij/2), where n is the nematic direc-
tor and 0 ≤ S ≤ 1 is the order parameter representing
the local extent of nematic order. Here we consider the
case of an incompressible two-phase fluid consisting of a
nematic phase embedded in an isotropic phase. The two
phases have, for simplicity, the same density ρ, which is
then constant throughout the system.

In order to implement the mechanism of phase separa-
tion we use a diffuse interface method similar to that pro-
posed in Ref. [25] to simulate two-phase flows in complex
fluids. In this picture the two phases are described by a
phase field variable −1 ≤ φ ≤ 1 such that φ = −1 repre-
sents the isotropic phase, φ = 1 the nematic phase and
φ ≈ 0 the diffuse interface. The effective capillarity of
the interface can be described starting from a Ginzburg-
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Landau energy density of the form

fcap =
1

2
κ

[
|∇φ|2 +

1

2ε2
(φ2 − 1)2

]
. (1)

This functional favors the separation of the phases into
domains of pure components (i.e. φ = ±1). The clas-
sic surface tension Σ of the interface is related to the
parameters appearing in Eq. (1) by Σ =

√
8/3 (κ/ε)

[24–26]. Furthermore, the incompressibility of the fluid
phases implies

∫
dAφ = constant. The interfacial tension

contributes to the total mechanical stress with a term σc.
This can be found by equating the energy variation under
a small virtual displacement to the work of the restoring
forces [27]. This yields the following expression for the
body force due to capillarity f = ∇ · σc = −φ∇µ where
µ = δFcap/δφ = −κ

[
∆φ− φ(φ2 − 1)/ε2

]
is an effective

chemical potential. This force is experienced by the sys-
tem only along the diffuse interface where µ undergoes
an abrupt spatial variation. The hydrodynamic equa-
tions for the fields φ, Q, and the flow velocity v are then
given by [11, 20]:

Dφ

Dt
= Mκ

[
∆φ− φ(φ2 − 1)

ε2
+ ξ(φ)

]
, (2a)

ρ
Dvi
Dt

= η∆vi − ∂ip− φ∂iµ+ ∂jσij , (2b)

DQij
Dt

= λSuij +Qikωkj − ωikQkj + γ−1Hij , (2c)

where D/Dt = ∂t + v · ∇ is the material time derivative,
M is a mobility coefficient, η the viscosity (also assumed
to be the same in both fluids) and p the pressure. The
function ξ is a Lagrange multiplier that guarantees mass
conservation:

ξ(φ) = |φ2 − 1|
∫
dAφ(φ2 − 1)∫
dA |φ2 − 1|

. (3)

This form was recently introduced in Ref. [28] as
an alternative to the more classic non-local expression,∫
dAφ(φ2 − 1)/

∫
dA [29]. Eq. (3) leads to higher accu-

racy in mass conservation by combining both local and
non-local terms. In addition, we noticed that Eq. (3)
allows us to simulate smaller droplets compared its non-
local counterpart by hindering the stability of the trivial
solution where φ is uniform and the two phases mix. In
Eq. (2c) uij = (∂ivj + ∂jvi)/2 and ωij = (∂ivj − ∂jvi)/2
are the rate of strain and the vorticity tensors, respec-
tively, and represent the coupling between orientational
order and flow (with λ the flow alignment parameter
[30]). The molecular field Hij , on the other hand, drives
the relaxational dynamics of the nematic phase (with
γ a rotational viscosity) and can be obtained from the
variation of the total free energy of the nematic phase
Fnem =

∫
dA (fLdG + fanc) as Hij = −δFnem/δQij . Here

the Landau-de Gennes free energy density fLdG governs

the behavior of the bulk nematic phase:

fLdG =
1

2
K

[
|∇Q|2 +

1

δ2
trQ2

(
trQ2 − φ

)]
, (4)

where K is an elastic constant (proportional to the classic
Frank constant) and the second terms in Eq. (4) leads to
a second order isotropic/nematic phase transition con-
trolled by the phase-field φ. Since trQ2 = S2/2, Eq.
(4) implies that, where φ = −1, fLdG has a minimum
for S = 0, corresponding to the isotropic phase, and for
φ = 1, fLdG is minimized by S =

√
φ = 1.

The term fanc represents the anchoring energy at the
isotropic/nematic interface. Here we use a diffuse version
of the Nobili-Durand anchoring energy [31]:

fanc =
1

2
W tr(|∇φ|2Q−A)2 (5)

where Aij = ∂iφ∂jφ−|∇φ|2δij/2. The effect of fanc is to
favor a director field n parallel to ∇φ (hence normal to
the interface) and the value S = 1 for the nematic order
parameter.

Finally, the stress tensor σ = σc +σr +σa is the sum
of the capillary stress, the elastic stress due to nematic
elasticity σr

ij = −λSHij + QikHkj − HikQkj , and of an
active contribution σa

ij = αQij that describes contractile
(α > 0) and tensile (α < 0) stresses exerted by the active
particles in the direction of the director field.

We have integrated Eqs. (2) numerically in a square
L × L domain with periodic boundary conditions. The
initial configuration consists of a circular droplet of radius
R = L/10, with director field uniformly aligned along the
x−axis, and the flow velocity identically zero. The inte-
gration is performed by using the finite difference scheme
described in Refs. [11, 20]. To make Eqs. (2) dimension-
less, we normalize distance by R, time by τ = γR2/K
corresponding to the relaxation time scale of the nematic
phase over the length scale of the droplet, and stress by
the elastic stress σ = K/R2. All the other quantities are
rescaled accordingly.

We have focused on the interplay between the surface
tension Σ of the droplet and the active stress α and kept
the other parameters constant (λ = 0.1, η = M = 1,
W = 1.25, ε = δ = 0.15). It is well known that, in bulk
systems, contractile and tensile active stresses favor re-
spectively splayed and bent configurations of the nematic
director through feedback mechanisms mediated by the
flow [32]. As a consequence, a uniformly oriented ref-
erence configuration becomes unstable once the internal
active stress exceeds a critical value αc ∼ η/τ [11, 20].

In nematic droplets, however, the homeotropic anchor-
ing changes this picture significantly because it promotes
the formation of topological defects. As a consequence
of the disk topology and the normal orientation at the
interface, the director field in the interior of the droplet
is forced to form a defective texture whose total winding



3

FIG. 1: The three behaviors of an active nematic droplet for
fixed surface tension Σ = 2.6 and varying activity obtained
from a numerical solution of Eq. (2). (a-c) For small activ-
ity the droplet stretches under the effect of the quadrupolar
straining flow generated by the pair of +1/2 disclinations.
(d-f) For α = 16, the uniformly oriented director field in the
interior of the droplet is unstable to splay and the droplet de-
forms. Following the deformation of the droplet, the backflow
is no longer axially symmetry and this causes the droplet to
move. (g-i) For very large activity (α = 36), the capillary
forces are no longer sufficient to balance the initial straining
flow and the droplet divides.

number is ktot = 1/(2π)
∮
dθ = 1, where θ is the angle

between n and an arbitrary axis and the integral is cal-
culated along the droplet boundary. This is achieved by
forming two +1/2 disclinations approximately located at
a distance of order ε = δ

√
W/K from the droplet bound-

ary (see Fig. 1a). In passive nematic droplets, the defects
repel each other with a force inversely proportional to
their distance. This repulsion is in turn balanced by sur-

FIG. 2: (a) Extension of the droplet (measured as the distance
between the defects) versus activity for various Σ values. The
data collapse on the same master curve when rescaled with
respect to the active capillary number Caα = αR/Σ (inset).
(b) The velocity of a motile droplet versus activity for various
Σ value. When rescaled with respect to Caα the data intersect
at the critical capillary number Camot

α ≈ 4.5 (inset). The solid
lines shows the typical square-root law and are obtained from
a fit.

face tension leading to a slight elongation of the droplet
along the line joining the defects [25].

The scenario outlined above is dramatically altered by
the presence of activity. Fueled by the strong distortion
introduced by a defect, the active stresses give rise to a
flow whose magnitude and direction is controlled by the
activity constant α [33]. For a contractile droplet (α > 0)
with homeotropic boundary, the axisymmetric structure
of the director drives a typical quadrupolar straining flow,
causing a much more drastic elongation than that pro-
duced by the elastic repulsion alone (Fig. 1c).

To characterize the spontaneous deformation we have
measured the extension of the droplet as a function of the
activity parameter α, for various Σ values (Fig. 2a). This
shows a clear linear behavior except for small α values,
where the deformation is mainly dictated by the elastic
repulsion between the defects. This behavior is consistent
with the general picture of drop deformation in a strain-
ing flow [34, 35]. According to this, a neutrally buoyant
droplet placed in a shear flow experiences a strain that
scales linearly with the capillary number Ca = ηv/Σ,
where v is the typical flow velocity. Now, the velocity
of the flow generated by an active nematic disclination
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scales like v ∼ αR/η [33], hence the linear dependence
of the droplet extension on α. Moreover, by introduc-
ing an active variant of the capillary number, defined as
Caα = αR/Σ, one can rescale the numerical data and
collapse them on the same master curve (Fig. 2a, inset).
This indicates that the active capillary number Caα, ex-
pressing the ratio between active and capillary forces, is
the fundamental degree of freedom of active droplets in
this stationary regime.

For larger activity the droplet becomes motile. Like
in the case of active polar droplets [36, 37], motility is
achieved by means of a spontaneous splay deformation
arising from the instability of the configuration of lowest
nematic energy (for which Hij = 0). As for static defor-
mations, the droplet initially elongates as a consequence
of the quadrupolar straining flow driven by the defects
(Fig. 1d). In the configuration of maximal elongation,
the director field in the interior of the droplet is rather
uniform, but after some time this uniform configuration
starts to spontaneously splay (Fig. 1e). The splayed con-
figuration of the director field breaks the axial symmetry
of the systems and transforms the quadrupolar flow in
a dipolar flow consisting of two large vortices running
across the droplet and tilted in such a way to form a
V-pattern that follows the shape of the droplet. This
causes the droplet to move at constant velocity along
the axis of the V, where the two vortices meet and the
flow velocity is maximal, in the direction of the tip. Fig.
2b shows a plot of the center of mass velocity versus α
for various Σ values; due to the initial axial symmetry,
the onset of motion occurs as a supercritical bifurcation
and the velocity follows a typical square-root scaling law.
Unlike the extension curve, the velocity data do not col-
lapse on the same curve when rescaled with respect to
Caα, but they do intersect at the critical point (Fig. 2b,
inset). This implies that, while activity and surface ten-
sion independently affect the motion of active droplets,
the onset of motility is controlled uniquely by the active
capillary number Caα. With the choice of parameters
used here the motility transition occurs at Camot

α ≈ 4.5.

Motility occurs as the combination of two processes:
the initial elongation of the droplet, driven by the strain-
ing flow produced by the defects, and the instability of
this configuration to splay. The existence of the interme-
diate elongated configuration is guaranteed by the fact
that viscous and pressure forces exerted by the flow on
the droplet are balanced by the resistance due to interfa-
cial tension forces. For large capillary numbers, the capil-
lary forces are no longer sufficient to achieve this balance,
the droplet continuously stretches and eventually divides
before the splay instability can develop (Fig. 1g-i). Fig. 3
shows a phase diagram in the (α,Σ)−plane summarizing
the three behaviors described so far. The approximately
straight phase boundary between the motility and divi-
sion regimes, suggests that, like for the onset of motility,
division might also be controlled solely by Caα. Our nu-

FIG. 3: Phase diagram showing the three classes of behavior
exhibited by contractile active droplets for different α (activ-
ity) and Σ (surface tension) values obtained by numerically
solving Eqs. (2). For low activity, the quadrupolar strain-
ing flow generated by the pair of +1/2 disclinations leads
to a stationary elongated shape (white region, black circles).
When the activity is very strong, the active backflow causes
the droplet to spontaneously divide (black region, white tri-
angles). According to the strength of activity the division
can produce two or more daughter droplets. For intermedi-
ate activity and sufficiently large surface tension the director
spontaneously splays and the droplet moves as a consequence
of the associated backflow.

merical data indicate that division occurs at a critical
value 11.4 < Cadivα < 16. Once the parent droplet first
divides, the active capillary number drops due to the re-
duction in the droplet size R. Thus the two daughter
droplets remain stable unless the activity is large enough
that the new capillary number is itself larger than Cadivα ,
in which case multiple divisions occur. This mechanism
can in principle lead to a cascade of divisions that ter-
minates only once the size of the youngest generation of
droplets is such that Ca < Cadivα . A detailed analysis
of this phenomenon is however outside the scope of this
work. We note that the existence of spontaneous division
in active nematic droplets has the further consequence of
setting a limit speed for activity-driven motility as divi-
sion replaces motility at large enough activities.

In summary, we have investigated the mechanics of a
contractile active nematic droplet surrounded by a New-
tonian fluid. Due to the interplay between the active
stresses and the defective geometry of the nematic direc-
tor, the system exhibits two of the defining functions of
living cells: spontaneous division and motility, which can
be selectively activated by controlling a single physical
parameter: the active capillary number. While the phys-
ical mechanisms involved in these processes are far from
trivial, the fact that such a remarkable cell-like behav-
ior can be achieved autonomously and without a central
control could shed light on the transition from inanimate
to living matter and possibly inspire new principles for
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the design of artificial cells.
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this work.
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