PHYSICAL REVIEW A 100, 052309 (2019)

Time-polynomial Lieb-Robinson bounds for finite-range spin-network models
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The Lieb-Robinson bound sets a theoretical upper limit on the speed at which information can propagate in
nonrelativistic quantum spin networks. In its original version, it results in an exponentially exploding function of
the evolution time, which is partially mitigated by an exponentially decreasing term that instead depends upon
the distance covered by the signal (the ratio between the two exponents effectively defining an upper bound on
the propagation speed). In the present paper, by properly accounting for the free parameters of the model, we
show how to turn this construction into a stronger inequality where the upper limit only scales polynomially with
respect to the evolution time. Our analysis applies to any chosen topology of the network, as long as the range
of the associated interaction is explicitly finite. For the special case of linear spin networks we present also an
alternative derivation based on a perturbative expansion approach which improves the previous inequality. In the
same context we also establish a lower bound to the speed of the information spread which yields a nontrivial

result at least in the limit of small propagation times.
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I. INTRODUCTION

When dealing with communication activities, information
transfer speed is one of the most relevant parameters in order
to characterize the communication line performances. This
statement applies both to quantum communication, obviously,
and to quantum computation, where the effective ability to
carry information, for instance from a gate to another one,
can determine the number of calculations executable per
unit of time. It appears therefore to be useful being able
to estimate such speed or, whenever not possible, bound it
with an upper value. In the context of communication via
quantum spin networks [1] a result of this kind can be obtained
exploiting the so-called Lieb-Robinson (L-R) bound [2,3]:
defining a suitable correlation function involving two local
spatially separated operators A and B, a maximum group
velocity for correlations and consequently for signals can
be extrapolated. In more recent years this bound has been
generalized and applied to attain results in a wider set of cir-
cumstances, including for the Lieb-Schultz-Mattis theorem in
higher dimensions [4], for the exponential clustering theorem
[5], to link spectral gap and exponential decay of correlations
for short-range interacting systems [6], for the existence of
the dynamics for interactions with polynomial decay [7], for
the area law in one-dimensional (1D) systems [8], for the
stability of topological quantum order [9], for information and
entanglement spreading [10—13], and for black holes physics
and information scrambling [14,15]. Bounds on correlation
spreading, remaining in the framework set by L-R bounds,
have been then generalized to different scenarios such as, for
instance, long-range interactions [16-20], disordered systems
[21,22], and finite temperature [23-25]. After the original
work by Lieb and Robinson the typical shape found to de-
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scribe the bound has been one that is exponentially growing
in time ¢ and depressed with the spatial distance between the
supports of the two operators d(A, B), namely,

ITA@), Bl < eV fld(A, B)], (1)

with v a positive constant and f(-) a suitable decreasing func-
tion, both depending upon the interaction considered, the size
of the supports of A and B, and the dimensions of the system
[4—7]. More recently instances have been proposed [25,26] in
which such behavior can be improved to a polynomial one,

d(A,B)
e

at least for Hamiltonian couplings which have an explicitly
finite range, and for short enough times. The aim of the present
paper is to set these results on a firm ground providing an
alternative derivation of the polynomial version (2) of the
L-R inequality which, as long as the range of the interactions
involved is finite, holds true for arbitrary topology of the spin
network and which does not suffer from the short-time limi-
tations that affect previous approaches. Our analysis yields a
simple way to estimate the maximum speed at which signals
can propagate along the network. In the second part of the
paper we focus on the special case of single sites located at
the extremal points of a 1D linear spin chain model. In this
context we give an alternative derivation of the 7-polynomial
L-R bound and discuss how the same technique can also be
used to provide a lower bound on || [A(r), B]||, which at least
for small # is nontrivial.

The paper is organized as follows. We start in Sec. II by
presenting the model and recalling the original version of the
L-R bound. The main result of the paper is hence presented
in Sec. III, where by using a simple analytical argument we
derive our f-polynomial version of the L-R inequality. In
Sec. IV we present the perturbative expansion approach for

i), B]|| <
IA@), Bl <d(A,B)
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1D linear spin chain models. In Sec. V we test results achieved
in previous sections by comparing them to the numerical
simulation of a spin chain. Conclusions are presented finally
in Sec. VL.

II. THE MODEL AND SOME PRELIMINARY
OBSERVATIONS

Adopting the usual framework for the derivation of the L-R
bound [5] let us consider a network N of quantum systems
(spins) distributed on a graph G := (V, E) characterized by
a set of vertices V and by a set E of edges. The model is
equipped with a metric d(x,y) defined as the shortest path
(least number of edges) connecting x, y € V (d(x, y), being set
equal to infinity in the absence of a connecting path), which
induces a measure for the diameter D(X) of a given subset
X C V and adistance d(X, Y) among the elements X, Y C V:

D(X) := max min{d(x, y)|x,y € X},
x,y
dX,Y) :=min{d(x,y)lx € X,y e Y}. 3)

Indicating with #, the Hilbert space associated with spin
that occupies the vertex x of the graph, the Hamiltonian of N/
can be formally written as

A=Y Ay, )

XxXcv

where the summation runs over the subsets X of V with Hy
being a self-adjoint operator that is local on the Hilbert space
Hx = Qyex Hyx, 1.€., it acts nontrivially on the spins of X
while being the identity everywhere else. Consider then two
subsets A, B C V which are disjoint, d(A, B) > 0. Any two
operators A := A, and B := Bj that are local on such subsets
clearly commute, i.e., [A, l?] = 0. Yet as we let the system
evolve under the action of the Hamiltonian A this condition
will not necessarily hold due to the building up of correlations
along the graph. More precisely, given U(t) := e~ M1 the
unitary evolution induced by (4), and indicating with

A@) :=UTOAU (1) (5)

the evolved counterpart of A in the Heisenberg representation,
we expect the commutator [A(r), B] to become explicitly
nonzero for large enough ¢; the faster this happens, the
stronger the correlations that are dynamically induced by H
(hereafter we set i = 1 for simplicity). The Lieb-Robinson
bound puts a limit on such behavior, that applies for all A
which are characterized by couplings that have a finite-range
character (at least approximately). Specifically, indicating
with |X| the total number of sites in the domain X C V, and
with

My = max dim[H,] (6)
xeX
the maximum value of its spins’ Hilbert-space dimension, we

say that A is well behaved in terms of long-range interactions,
if there exists a positive constant A such that the functional

IE |15 == sup Y 1X|M*1e*PX) || Hy | (7)

x€V ¥ox

is finite. In this expression the symbol

1ol = max I ®)

represents the standard operator norm, while the summation
runs over all the subset X C V that contains x as an element.
Variant versions [5,6,27] or generalizations [3,28] of Eq. (7)
can be found in the literature; however, as they express the
same behavior and substantially differ only by constants, in
the following we shall gloss over these differences. The L-
R bound can now be expressed in the form of the following
inequality [5]:

ITAG), BlIl < 2|AlBIIA] 1B (2 1H1: — 1)e=*4AB) - (9)

which holds nontrivially for well-behaved Hamiltonian H
admitting finite values of the quantity ||H||;. It is worth
stressing that Eq. (9) is valid irrespective of the initial state
of the network and that, due to the dependence upon |f| on
the right-hand side (rhs) term, exactly the same bound can be
derived for ||[A, B(1)]]|, obtained by exchanging the roles of A
and B. Finally we also point out that in many cases of physical
interest the prefactor |A||B| on the rhs can be simplified: for
instance, it can be omitted for one-dimensional models, while
for nearest-neighbor interactions one can replace this by the
smaller of the boundary sizes that A and B support [28].

For models characterized by interactions which are explic-
itly not finite, refinements of Eq. (9) have been obtained under
special constraints on the decaying of the long-range Hamil-
tonian coupling contributions [5,6]. For instance, assuming
that there exist (finite) positive quantities s; and p; (s; being
independent from the total number of sites of the graph G),
such that

sup > IX|[| A [[1 + DEOI < s, (10)

xeV Xox

one gets

vile] _

4@, B < CAIBIATIB oo

(1)

with C; and v; positive quantities that only depend upon the
metric of the network and on the Hamiltonian. In contrast,
if there exist (finite) positive quantities w, and s, (the latter
being again independent from the total number of sites of G),
such that

sup > |X || Ay [|e=PX < s, (12)

xeV Xox

we get instead
IIA@), Bl < G|AIIBIIA| 1Bl — 1)e#24@B) - (13)

where once more C, and v, are positive quantities that only
depend upon the metric of the network and on the Hamilto-
nian. The common trait of these results is the fact that their
associated upper bounds maintain exponential dependence
with respect to the transferring ¢ in Eq. (1).
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III. CASTING THE LIEB-ROBINSON BOUND INTO A
t-POLYNOMIAL FORM FOR (EXPLICITLY)
FINITE-RANGE COUPLINGS

The inequality (9) is the starting point of our analysis: it
is indicative of the fact that the model admits a finite speed
v =~ 2||H ||, /* at which correlations can spread out in the spin
network. As |f| increases, however, the bound becomes less
and less informative due to the exponential dependence of
the rhs: in particular, it becomes irrelevant as soon as the
multiplicative factor of IANBI gets larger than 2. In this limit
in fact Eq. (9) is trivially reduced by the inequality

IFAG), BII < 21A@ 1B = 2114118, (14)

that follows by simple algebraic considerations. One way
to strengthen the conclusions one can draw from (9) is to
consider X as a free parameter and to optimize with respect to
all the values it can assume. As the functional dependence of
|H ||;. upon A is strongly influenced by the specific properties
of the spin model, we restrict the analysis to the special
(yet realistic and interesting) scenario of Hamiltonians H 4)
which are strictly short ranged. Accordingly we now impose
Hy = 0 to all the subsets X C V which have a diameter D(X)
that is larger than a fixed finite value D, i.e.,

DX)>D = Hy=0, (15)

which is clearly more stringent than both those presented in
Egs. (10) and (12). Under this condition H is well behaved for
all A > 0 and one can write

1A, < e, Va0, (16)

with ¢ being a finite positive constant that for sufficiently
regular graphs does not scale with the total number of spins
of the system. For instance, for regular arrays of nearest-
neighbor coupled spins we get ¢ = 2CM* |A|l, where C is the
maximum coordination number of the graph (i.e., the number
of edges associated with a given site),

2] := sup || Hyll (17)
Xcv

is the maximum strength of the interactions, and M :=
max,cy dim[H,] is the maximum dimension of the local
spins’ Hilbert space of the model. More generally for graphs
G characterized by finite values of C it is easy to show that ¢
cannot be greater than comc’ IAll.

Using (16) we can now turn (9) into a more treatable
expression,

IAG), BII < 21A1BIIAN|IB](e276” — 1)e 4B (18)

the rhs of which can now be explicitly minimized in terms of
A for any fixed r and d(A, B). As shown in Sec. III the final
result is given by

_ d(A,B)
SR . . (2etD|t]\ D.[/d(A,B)
A@), Bl < 21A11BlIIA11B) [ —=— u
I[A(), B]| |A[|B]||A]l ”(d(A,B)) f( b )
_ d(A,B)
< 21A[[BIIIA] 1B 2¢LDI P (19)
= d(A, B) ’

1.0

0.81

— 0.6

0.41

Q|

0.21

0.0

FIG. 1. Plot of the function F(x) entering into the derivation of
Eq. (19): for x = % > 1 it is monotonically increasing, reaching
the value 1/e >~ 0.37 for x = 1 and quickly approaching the asymp-
totic value 1 for large enough x.

where in the second inequality we used the fact that the
function F(x) defined in Eq. (31) below and plotted in Fig. 1
is monotonically increasing and bounded from above by its
asymptotic value 1. At variance with Eq. (9), the inequal-
ity (19) contains only terms which are explicit functions of
the spin-network parameters. Furthermore the new bound is
polynomial in ¢ with a scaling that is definitely better than
the linear behavior one could infer from the Taylor expansion
of the rhs of Eq. (9). Looking at the spatial component of
(19) we notice that correlations still decrease with distance
as well as in bounds (9), (11), and (13) but with a scaling
(1/x)* = e*'°2* that is more than exponentially depressed.
Also, fixing a (positive) target threshold value R, < 1 for the
ratio

R@t) == |I[A@t), B1ll/2|Al|BIIAIIBID), (20)

Eq. (19) predicts that it will be reached not before a time
interval

_d(A,BR)ID

2e¢D 1)

has elapsed from the beginning of the dynamical evolution.
Exploiting the fact that lim,_, o R}k/ “ =1, in the asymptotic
limit of very distant sites [i.e., d(A, B) > D], this can be
simplified to
_d(A,B)
T 2etD’

(22)
that is independent from the actual value of the target R, # O,
leading us to identify the quantity

Vmax = 2eD (23)

as an upper bound for the maximum speed allowed for the
propagation of signals in the system.

Explicit derivation of Eq. (19)

We start by noticing that by neglecting the negative contri-
bution —e~*¢4-B) we can bound the rhs of Eq. (18) by a form
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which is much easier to handle, i.e.,

ILA@), Bl <

One can observe that for ¢ > d(A, B)/(2¢D) the approach
yields an inequality that is always less stringent than (14).
In contrast, for |t| < d(A, B)/(2¢ D), imposing the stationary
20 PN0N|-1d(AB)) —

< 20A|IBI[A]| | Bl HdAB) (24

condition on the exponent term, i.e., 9 (e
0, we found that the optimal value for A is provided by

_ 1. (dAB)
Dopt = Dln(zng)’ 25)

which plugged into Eq. (24) yields directly (19). More gener-
ally, we can avoid passing through Eq. (24) by looking for
minima of the rhs of Eq. (9), obtaining the first inequality
given in Eq. (19), i.e.,
__dAB)
2e¢DJt]\ D
d(A, B)

xf(d(A_’ B)>. (26)
D

For this purpose we consider a parametrization of the
coefficient X in terms of the positive variable z as indicated

here:
= Ln (M). 27)
D \2u¢cD

With this choice the quantity we are interested in becomes

IA@), Bl < 2Iz‘\llBIIIAIIIU@II(

~ A 1D _
2|A1BIIAN B (215 — 1)e *4AB)

ett
= 2|A||B||A|| ||B||< ) fx(2), (28)

where in the rhs term for ease of notation we introduced x =
d(A, B)/D and the function
e —1

ZX ex

(@) = (29)

For a fixed value of x > 1 the minimum of Eq. (29) is attained
for z = zZop, fulfilling the constraint

x=_1n(1_—Z°P‘)‘ (30)

Zopt

By formally inverting this expression and by inserting it into
Eq. (28) we hence get (26) with

Zopt (x) < 1 ) (31)

1 — Zopt (x) \ ezopt ()

F(x):=

being the monotonically increasing function reported in
Fig. 1.

IV. PERTURBATIVE EXPANSION APPROACH

An alternative derivation of a z-polynomial bound similar
to the one reported in Eq. (19) can be obtained by adopting a
perturbative expansion of the unitary evolution of the operator
A(r) that allows one to express the commutator [A(7), B] as a
sum over a collection of “paths” connecting the locations A
and B [see, e.g., Eq. (41) below]. This derivation is somehow

analogous to the one used in [25,26]. Yet in these papers the
number of relevant terms entering in the calculation of the
norm of [A(t), B] could be underestimated by just considering
those paths which are obtained by concatenating adjacent
contributions and resulting in corrections that are negligible
only for small times ¢. In what follows we shall overcome
these limitations by focusing on the special case of linear
spin chains, which allows for a proper account of the relevant
paths. Finally we shall see how it is possible to exploit the
perturl:zativeAexpansion approach to also derive a lower bound
for [[A(7), Bl

While in principle the perturbative expansion approach can
be adopted to discuss arbitrary topologies of the network, in
order to get a closed formula for the final expression we shall
restrict the analysis to the case of two single sites (i.e., |A| =
|B| = 1) located at the end of a N-long, 1D spin chain with
nearest-neighbor interactions (i.e., d = N — 1). Accordingly
we shall write the Hamiltonian (4) as

N-1
1:=Y b (32)

with &; operators acting nontrivially only on the ith and (i +
1)th spins, hence fulfilling the condition

lhi,hj1=0, VY]i—j|> 1. (33)

A. Upper bound
Adopting the Baker-Campbell-Hausdorff formula we write

(zt)k 1 AL B
[At), B] = +Z (A, AL, Bl, (34

where fork > 1

k times
(H,Al :=[H,[H, [, [H[HA]--]] (35)

indicates the kth-order nested commutator between A and A.
Exploiting the structural properties of Egs. (32) and (33) it
is easy to check that the only terms which may give us a
nonzero contribution to the rhs of Eq. (34) are those with
k > d. Accordingly we get

Q @ s o g
[ (”’B]‘;W“H’ I, B1, (36)
which leads to
k
IFA@), Bl < Zull[[H Alw, Blll, (37)
k=d

via subadditivity of the norm. To proceed further we observe
that

LA, ALk, BlIl < 21 A1IBI2H |1, (38)
which for sufficiently small times ¢ yields

L conay CIAIED
IAG), Bl =~ —II[[H Alg, Bl < ZIANBI——

d
20A1IBIl (2el Al ]
< , (39)

2nd d
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where in the last passage we adopted the lower bound on d'!
that follows from Stirling’s inequalities:

(d/e)!Ne2d > d! > (d/e)!2nd. (40)

Equation (39) exhibits a polynomial behavior similar to the
one observed in Eq. (19) (notice that if instead of nearest-
neighbor interaction we had next-D-neighbor interaction the
first not null order will be the {%]th one and accordingly,
assuming d /D to be an integer, the above derivation will still
hold with d replaced by d/D). Yet the derivation reported
above suffers from two main limitations: first of all it only
holds for sufficiently small # due to the fact that we have
neglected all the terms of (37) but the first one; second the rhs
of Eq. (39) has a direct dependence on the total size N of the
system carried by ||H ||, i.e., on the distance d connecting the
two sites. Both these problems can be avoided by carefully
considering each “nested” commutator ([H, A, B] entering
(37). Indeed, given the structure of the Hamiltonian and the
linearity of commutators, it follows that we can write

N—-1
A Al Bl= > [CN _.,A.B. @D
il,iz,“-,ik:l
where for iy, ir, - -+ , i €{1,2,---, N — 1} we have
CflkL W A= [hi [hi o (B, [ A ] 42)

Now taking into account the commutation rule (33) and the
fact that A and B are located at the two opposite ends of the
chain, it turns out that only a limited number

k k! dk—
g < = (43)
d T dlk—d)!

of the N* terms entering (41) will have a chance of being
nonzero. For the sake of readability we postpone the explicit
derivation of this inequality (as well as the comment on
alternative approaches presented in [25,26]) to Sec. IV C: here
instead we observe that using

I[E% . ), B]| < 21ABICIAI, (44)
where now ||h|| != max; ||fzi||, allows us to transform Eq. (37)
into
. QlelAl)* |||h||)"
IA@), Bl 2||A||||B||Z
s QUEADT o @t 1Ald)F
<2AANBI=—— > —
I & !
o QIUNRIDE S
= 2 E i,

which presents a scaling that closely resembles the one ob-
tained in [29] for finite-range quadratic Hamiltonians for har-
monic systems on a lattice. Invoking hence the lower bound
for d! that follows from (40) we finally get

A " d
2\ ANNIBII [ 2ellhll 2] G2l (45)
V2md d

ITA@), Bl <

which explicitly shows that the dependence from the system
size present in (39) is lost in favor of a dependence on the in-
teraction strength ||fz|| similar to what we observed in Sec. III.
In particular for small times the new inequality mimics the
polynomial behavior of (19): as a matter of fact, in this regime,
due to the presence of the multiplicative term 1/+/d, Eq. (45)
tends to be more strict than our previous bound (a result which
is not surprising as the derivation of the present section takes
full advantage of the linear topology of the network, while the
analysis of Sec. III holds true for a larger, less regular, class
of possible scenarios). At large times, in contrast, the new in-
equality is dominated by the exponential trend 21714 which,
however, tends to be overruled by the trivial bound (14).

B. Lower bound

By properly handling the identity (36) it is also possible
to derive a lower bound for ||[A(?), B]||. Indeed, using the
inequality |0y + Oz = 011l — |02 we can write

k
Z Q[[H Al B]

k=d

IA@), Bl =

lr|
—II[[H Ay, Bll—

(46)

(notice that the above bound is clearly trivial if [[H,Al,, B]
is the null operator: when this happens, however, we can
replace it by substituting d on it with the smallest k > d for
which [[H, Al;, B] # 0). Now we observe that the last term
appearing on the rhs of the above expression can be bounded
by following the same derivation of the previous paragraphs,
ie.,

k=d+1
< 204118 Z
k=d+1

el Al i QlelAlld
d! k!

(2|tl IIhII)"

< 20A11BIl

k=1

QlelllAIy! (21Nl
d!

= 2||AlIB] -1

20elllAld _ g

~ d
s [ 2elEllAlly e
< 2[ A8 p g

Hence by replacing this into Eq. (46) we obtain

L B |t
NAG@. BII = —-IIT (A, Als, Bl
~ d o

A 2ele|h) \ el g

=2[|A[lIBI|
d 2md
20A11B) ( 2elellia
e N
> [T, — (2l _ 1)),

V2rd < d ) d

(47)
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where in the last passage we used the upper bound for d!
that comes from Eq. (40) and introduced the dimensionless
quantity

7 A Al Bl
2¢2 AYIBI 1A

which can be shown to be strictly smaller than 1 (see
Sec. IVC).

It is easy to verify that as long as I'; is nonzero (i.e., as
long as [[H,Als, B] # 0) there exists always a sufficiently
small time 7 such that VO <t < in the rhs of Eq. (47)
is explicitly positive, implying that we could have a finite
amount of correlation at a time shorter than that required
for a light pulse to travel from A to B at speed c. This
apparent violation of causality is clearly a consequence of
the approximations that lead to the effective spin Hamiltonian
we are working on (the predictive power of the model being
always restricted to time scales ¢ which are larger than @).
More precisely, for a sufficiently small value of ¢ (i.e., for
2\t ||fz||d <« 1) the negative contribution on the rhs of Eq. (47)
can be neglected and the bound predicts the norm of [A(r), B]
to grow polynomially as 9, i.e

A N ~ d
n R 211ANB 2elt!|||h
A, gy > Al ||( el ||> f wo)

(48)

V2nd d
which should be compared with
Aa A \d
S B 2| ANIBIIf 2ele [l Al
ITA@®), Bl < ; (50)
V2rd d

that for the same temporal regimes is instead predicted from
the upper bound (45).

C. Counting commutators
Here we report the explicit derivation of the inequality (43).
The starting point of the analysis is the recursive identity
C(k) N7 (A) [h C(k ]) Sik—1 (A)]’ (51)

i1,i2," ko ™y,

which links the expression for nested commutators (42) of
order k to those of order k — 1. Remember now that the
operator A is located on the first site of the chain. Accordingly,
from Eq. (33) it follows that

CVA) =[h,A1=0, Vix=2, (52)

i.e., the only possibly nonzero nested commutator of order 1
will be the operator C fl)(A) = [le , A] which acts nontrivially
on the first and second spin. From this and the recursive
identity (51) we can then derive the following identity for the
nested commutator of order k = 2, i.e.,

O @A) =0, Vir=>3, (53)

C?@A)y=0, Vi >

b 2and Vi, > 1, 54
the only terms which can be possibly nonzero being now
Cl(zl) (A) and szz) (A) = [hy, [h1, A]l, the first having support on
the first and second spin of the chain and the second instead
being supported on the first, second, and third spin. Iterating

the procedure it turns out that for a generic value of k the

operators C'l,(lk’?z’m’ i (A) which may be explicitly not null are
those for which we have

ii=1,
. o . (55)
ljgmax{l17127"'7lj71}+1’ V.Ie{zv"'vk}s

the rule being that passing from ¢k A) to ¢X) (A)

i1,i2, ,ik—1 i1,i2, ik
the new Hamiltonian element h,k entering (51) has to be one
of those already touched (except the first one [A;, A]) or one
at a distance at most 1 to the maximum position reached until
there. We also observe that among the elements Cl(]kzz (A)
which are not null the ones which have the largest support
are those that have the largest value of the indices: indeed,
from (51) it follows that the extra commutator with fz,-k will
create an operator the support of which either coincides with
the one of Cl(khl) e (A) (this happens whenever i; belongs to
{i1, 12, -+, ix—1}), or is larger than the latter by 1 (this hap-
pens instead for iy = max{iy, ip, -+, ix—1} + 1). Accordingly
among the nested commutators of order k the one with the
largest support is

C @A) =lhe, iy, -+ Thy, T, AN -+ 11 (56)

that in principle operates nontrivially on all the first k + 1
elements of the chain. Observe then that in order to get a
nonzero contribution in (41) we also need the succession
entering C’l(]kfz i (A) to touch at least once the support of B.
This, together with the prescription just discussed, implies that
at least once every element /; between A and B has to appear,
and the first appearance of each &; has to happen after the first
appearance of hi_1. In summary we can think of each nested
commutator of order k as a numbered set of k boxes fillable
with elements /; [see Fig. 2(a)] and, keeping in mind the rules
just discussed, we want to count how many fillings give us

(a) R
C, i (A)
iLik Bik—l ﬁ’iz iLiz il?d
Kk k1 3 2 1
(b) ) . ——e - —
9. = [ ]2
d d-1 3 2 1
(c)
el A= Ihdl'_'_'_'_'_lhglhzl Ll +
d+n - 4 3 2 A

FIG. 2. (a) Pictorial representation of the nested commutator
C‘l(kz) 1 k(A) as a set of boxes, each one fillable with a &;. (b) Represen-
tation of the only nested commutator which for the case k = d admits
a nonzero value for the commutation with B. (c) Case k =d +n
with n > 1. Here the boxes indicated with the asterisk can be filled
depending on their position; for instance, here the box before h
could contain only /; while the one after i, could contain any.
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nonzero commutators. Starting from k = d, we have only one
possibility, i.e., the element €%, (A) [see Fig. 2(b)]. This
implies

[[H.Als, B1=[C\) . ,(A), B]
= [lha, [ha-r. -+ . Tha, T, ANl - <10, B], (57)
and hence by subadditivity of the norm to
LA, Ala, BII < 21A11BI2IIAN?, (58)

which leads to T'y < /27 /e >~ 0.923 as anticipated in the
paragraph below Eq. (48). Consider next the case k =d +n
with n > 1. In this event we must have at least d boxes filled
with each ﬁ,» between A and B. Once we fix them, the content
of the remaining k = n — d boxes [indicated by an asterisk in
Fig. 2(c)] depends on their position in the sequence: if one of
those is before the first le it will be forced to be le, if it is
before the first fzz it will be le or fzz, and so on until the one
before the first /1;, which will be any one among the ;. So in
order to compute the number n; of nonzero terms entering
(41) we need to know in how many ways we can dispose
of the empty boxes in the sequence: since empty boxes (as
well as the ones necessarily filled) are indistinguishable there
are (1;) = (5) ways. For each way we would have to count
possible fillings, but there is not a straightforward method to
do it so we settle for an upper bound. The worst case is the
one in which all empty boxes come after the first /1, so that
we have d" fillings, and accordingly we can bound n; with
(*Ya" = (5)d*~4, leading to Eq. (43).

As mentioned at the beginning of the section a technique
similar to the one reported here has been presented in the
recent literature expressed in [25,26]. These works also result
in a polynomial upper bound for the commutator, yet it
appears that the number of contributions entering in the pa-
rameter n; could be underestimated, and this underestimation
is negligible only at orders k ~ d or, equivalently, at small
times. Specifically, in [26], which exploits intermediate results
from [7,30], the bound is obtained from the iteration of the
inequality

I]
Calt, X) < Cp0,X)+2 Y / ds Co(s, DAz, (59)
0

ZedX

where Cg(t, X) = ||[[A(2), B]II, X is the support of A, and 0X
is the surface of the set X. The iteration adopted in [26]
produces an object that involves a summation of the form
Y zeox 2zcoz Qzyeaz, - This selection, however, under-
estimates the actual number of contributing terms. Indeed,
in the first order of iteration Z € dX takes account of all
Hamiltonian elements noncommutating with A, but the next
iteration needs to count all noncommuting elements, given by
Z, € 0Z and Z € 39X. So the generally correct statement, as
in [7], would be }_;rvp D 7 740 27z, 20 - The above
discrepancy is particularly evident when focusing on the linear
spin chain case we consider here. Taking account only of
surface terms in the nested commutators in Eq. (37), among all
the contributions which can be nonzero according to Eq. (55),
we would have included only those with i;;; =i; + 1. These
corrections are irrelevant at the first order in time in Eq. (37)
but lead to underestimations in successive orders. In [26] the

FIG. 3. Simulation of ||[[A(¢), B]|| for different chain lengths L
for the Heisenberg XY linear spin chain.

discrepancy is mitigated at first orders by the fact that the
number of paths of length L considered is upper bounded by
Ni(L) := [2(28 — 1)]* with 8 dimensions of the graph. But
again at higher orders this quantity is overcome by the actual
numbers of potentially not null commutators [interestingly,
in the case of a two-dimensional (2D) square lattice, N;(L)
could be found exactly, shrinking at the minimum the bound;
see [31]]. Similarly, in [25], in the specific case of a 2D
square lattice, to estimate the number of paths of length
L a coordination number C is used, which gives an upper
bound N»(L) := (2C — 1)* that for higher orders is again an
underestimation. To better visualize why this is the case, let us
consider once more the chain configuration. Following rules
of Eq. (55) we understood nested commutators Ci(lk,;z.m,ik A
with repetitions of indices. So with growing k the number
of possibilities for successive terms in the commutator grows
itself: this is equivalent to a growing dimension §®) or coordi-
nation number C®). For instance we can study the multiplicity
of the extensions of the first not null order C'l(dz) ) d(A). Since
the support of this commutator has covered all links between

100

107!

1072
'y
107

1074

-

107

1076
0 2 4 6 8 10 12 14 16 18

L

FIG. 4. Plot of the value of I'; defined in Eq. (48) for different
values of the chain length L, d being fixed equal to L — 1. Notice
that all values are below /27 /e? (dashed line), which is provably
the largest value this parameter can achieve.
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FIG. 5. Simulation and bounds of the function ||[A(¢), B]|| for a
L = 4 spin chain (upper panel) and for a L = 10 spin chain (lower
panel). The plot shows upper bound (45) (blue curve), lower bound
(47) (green curve), simplified lower bound (49) (red), and numerical
simulation (black). The colored bars above the plots outline the
time domain in which each bound (identified by the same colors) is
valid. As expected the simplified bound stands only for sufficiently
small times. In all cases the simulation and the simplified lower
bound are comparable in magnitude so that their curves are hardly
distinguishable. In the case of L = 10 the complete lower bound (47)
(green) is considerably small and hence not visible.

A and B that we can choose among d possibilities (not taking
into account possible sites beyond B and before A, depending
on the geometry of the chain we choose), we will have then
d*~4 possibilities at the Lth order: for suitable d and n we
shall have d“~¢ > Nj(L), N,(L). This multiplicity is relative
to a single initial path, so we do not even need to count also
the different possible initial paths one can construct with d 4/
steps such thatd + 1 < L.

In summary, the polynomial behavior found previously in
the literature is solid at the first order but could not be at higher
orders.

V. SIMULATION FOR A HEISENBERG XY CHAIN

Here we test the validity of our results presented in the
previous section for a reasonably simple system such as a
uniformly coupled nearest-neighbor Heisenberg XY chain
composed by L spin 1/2, described by the following Hamilto-
nian:

161 + 6767, (60)

For local operators A and B we adopt two 6 operators, acting,
respectively, on the first and last spin of the chain, so that
|A|l = |B|| = 1. Employing QUTIP [32,33] we perform the
numerical evaluation for ||[A(¢), B]| varying the length of the
chain L (Fig. 3).

We are interested in the comparison between these results
with the expressions obtained for the upper bound (45), the
lower bound (47), and the simplified lower bound at short
times (49). The time domain in which the simplified lower
bound stands depends also on the value of the parameter I';
specified in Eq. (48), which we understood to be < /27 /e?
but which we need to be reasonably large in order to produce a
detectable bound in the numerical evaluation. In Fig. 4 values
of T'y for different chain lengths L (such that d =L — 1)
are reported. The magnitude of I'y; exhibits an exponential
decrease with the size of the chain L. The results of our
simulations are presented in Fig. 5 for the cases L = 4 and
10. The upper bound (45), as well as the lower bound (47),
should be universal, i.e., to hold for every ¢, although the
latter being trivial at large times. This condition is satisfied for
every L at every ¢ analyzed (we performed the simulation for
2 < L < 12). For what concerns the simplified lower bound
(49), we would expect its validity to be guaranteed only for
sufficiently small 7, and as a matter of fact we find the time
domain of validity to be limited at relatively small times (see,
e.g., the histograms in Fig. 5).

VI. CONCLUSIONS

The study of the L-R inequality we have presented here
shows that for a large class of spin-network models char-
acterized by couplings that are of finite range the correla-
tion function ||[A(¢), B]|| can be more tightly bounded by a
constraining function that exhibits a polynomial dependence
with respect to time and which, for sufficiently large dis-
tances, allows for a precise definition of a maximum speed
of the signal propagation [see Eq. (23)]. Our approach does
not rely on often complicated graph-counting arguments, but
instead is based on an analytical optimization of the origi-
nal inequality [2] with respect to all free parameters of the
model [specifically the A parameter defining via Eq. (7) the
convergence of the Hamiltonian couplings at large distances].
Yet, in the special case of a linear spin chain, we do adopt a
graph-counting argument to present an alternative derivation
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of our result and to show that a similar reasoning can be
used to also construct nontrivial lower bounds for ||[A(z), B]||
when the two sites are located at the opposite ends of the
chain. Possible generalizations of the present approach can be
foreseen by including a refined evaluation of the dependence
upon XA of Eq. (7), that goes beyond the one we adopted in
Eq. (16).

Note added. Recently, the same result presented in Eq. (50)
for a chain appeared in [34].
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