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1 Introduction

According to General Relativity (GR), when two black holes merge, the resulting remnant
is initially highly deformed but quickly settles into a stationary Kerr black hole. The
gravitational wave signal emitted during this last “ringdown” phase is effectively described
by black hole perturbation theory [1–3]. On the other hand, analytic perturbation theory
also plays a key role in the initial phase of the merger, the inspiral phase [4]. While, for the
inspiral, the theory has been pushed to high perturbative orders, the standard paradigm for
modeling the ringdown only relies on linear theory. At linear order, gravitational waves during
the ringdown are effectively described by a combination of exponentially damped sinusoids
known as quasinormal modes (QNMs) [5]. They are labeled by two angular harmonic numbers
(ℓ,m), an overtone number n and characterized by a discrete set of complex frequencies
ωℓmn. The real part of ωℓmn specifies the QNM oscillation frequency, while the imaginary
part determines the decay timescale. In GR the entire linear QNM spectrum is predicted
in terms of the mass and angular momentum of the black hole, although the computation
of the frequencies cannot be done analytically (see for example [5, 6] for a review on the
techniques developed in the literature). The amplitudes of each linear mode at the beginning
of the ringdown, on the other hand, are initial conditions that must be fitted using data from
merger events or Numerical Relativity (NR) simulations [7–15].

Enhanced detector sensitivity over the coming years [16–18] will enable the capture
of more detailed waveforms. These advancements will allow for a deeper analysis of the
gravitational waves emitted during the ringdown phase, potentially uncovering second-order
perturbation effects in high signal-to-noise ratio events [19]. Previous studies [15, 20–26] have
already demonstrated that such second-order effects can be identified in certain simulations
of binary black hole mergers.

Linear order QNMs obey a homogeneous linear wave equation: a second order differential
operator should annihilate the linear metric perturbation. Linearity and homogeneity are the
reasons why the QNM amplitudes are initial conditions and they cannot be predicted without
modelling the merger. On the contrary, the main output of the analysis is the spectrum
of frequencies of the linear QNMs. The frequencies are complex because of the boundary
conditions which are outgoing at infinity and infalling at the BH horizon.

We will now explain second-order perturbation theory, which has been developed for
both Schwarzschild and Kerr black holes [27–39], by comparing and contrasting it with
the linear theory. The second-order metric perturbations solve a wave equation similar to
the first order one: the same second order differential operator now acts on the quadratic
perturbations, but this time the equation is not homogeneous. Inhomogeneity comes from a
source term, quadratic in the linear perturbations. For these reasons, the resulting quadratic
quasi-normal modes (QQNMs) differ from the linear ones in three aspects, which will be
reviewed more fully in the rest of the paper.

First, from the linearity of the differential operator, we can split the quadratic source
term into a sum over pairs of linear QNMs. Each pair of linear QNM will couple and give
rise to a different QQNM, and the actual quadratic perturbation will be the sum of all
the QQNMs thus obtained. The physical interpretation of this fact is that perturbation
theory allows us to progressively account for the non-linearities of General Relativity at the
perturbative order we consider, and the first interaction is the three graviton vertex.
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Figure 1. Real and Imaginary part of the frequency of the linear and quadratic QNMs, in units where
the BH mass is M = 1. They represent the QNM oscillation frequency and decay rate respectively.
To avoid clutter, we only display quadratic frequencies that can be obtained combining linear modes
with 2 ≤ ℓ ≤ 4 and 0 ≤ n ≤ 4. Each mode has a mirror mode with negative real part and identical
imaginary part.

The second point is that, contrary to the linear case, the frequency spectrum at quadratic
order is completely fixed by symmetry. Anticipating the discussion in section 2.3, if we
consider a source term made of two linear QNMs with frequencies ω1 and ω2, the frequency of
the corresponding QQNM will be either ω1 + ω2 or ω1 − ω∗

2 . Analogously, there is a selection
rule on the possible values of the resulting angular momentum. Since the linear spectrum
already contains numerous close-by frequencies, the number of allowed combinations at the
quadratic level is huge, as shown in figure 1. This figure also highlights that QQNM decay
rates can be slower than linear ones (for slightly larger overtone numbers). Still, the total
contribution of QQNM to the signal depends on both their decay time and amplitude: if
the latter is non-negligible (as for overtones where the amplitude can even be large [14]),
it will be important to include them in future ringdown models. Therefore, determining
the QQNMs amplitudes becomes critical. However, the multiplicity of QQNM makes it a
challenging task to determine the amplitudes of both linear and quadratic modes by fitting
a gravitational wave signal.

This prompts the discussion of the third and main difference between linear and quadratic
QNMs. Because of the source term, QQNMs solve a non-homogeneous equation. By
additionally supplying the appropriate QNM boundary conditions, we will show that the
amplitude of every quadratic perturbation is, in principle, completely determined in terms
of the two linear amplitudes that produce it. A simple scaling argument shows that the
quadratic amplitudes are proportional to the product of the two linear amplitudes sourcing
them, thus the most relevant quantity that one can compute is their ratio. Computing these
ratio of amplitudes for a non-rotating black hole in GR will be the central goal of this paper.

Because all quadratic amplitudes are fixed, including quadratic modes can improve the fit
of the ringdown signal without introducing any new free parameters. This property is highly
desirable given the recent debates on the possibility that QNM models can overfit data [40–43].
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Nevertheless, computing the amplitude ratios presents several technical challenges due to
the redundancy of the metric tensor in encoding the two physical degrees of freedom. The
process involves fixing gauge redundancy, selecting master scalar variables to capture the
graviton d.o.f., solving the equations of motion and finally reconstructing the full metric to
obtain the gravitational wave amplitude at infinity. On top of this, the second-order master
scalars can diverge at infinity [27–35], complicating the extraction of physical effects. This
is why, so far, only a limited number of second-order amplitudes have been obtained by
fitting NR simulations [15, 20–25] or by integrating BH perturbation theory equations [26, 33–
35, 38, 39, 44, 45]. Building on our recent work [46], in this paper we employ two new master
scalars that remain regular everywhere, allowing us to derive all the low multipole QQNM
amplitudes on a Schwarzschild background after integrating the resulting equations using the
Leaver algorithm. Our results are the quadratic counterpart to the well-known tables of linear
QNM frequencies that one can find in the literature [5]. Because QQNM seem to only depend
weakly on spin [15, 25, 26, 35], we expect our calculation to also be relevant at least for slowly
rotating BHs, on top of being expressed in a simpler form than for the Kerr case. These results
are important for two main reasons. Firstly, they can be used to improve the numerical fit of
GR to observational data in merger events. Additionally, our computations offer predictions
for vacuum non-linear GR effects that can be empirically tested, providing a crucial benchmark
against which modified gravity theories or environmental effects can be evaluated.

The present article elaborates on the calculations presented in the companion Letter [46],
while also improving them in two aspects. First, we provide the amplitudes of QQNM for
arbitrary waveform polarizations, whereas our previous work focussed on the (physically
relevant) case where the waveform is reflection symmetric, implying a circular polarization
pattern up to angular factors [47]. In particular, we show that the ratio of QQNM to linear
QNM amplitudes, previously accepted as a universal quantity independent of the initial
conditions of the merger, actually depends on the polarization content of the linear modes,
corroborating the recent results in [38]. However, we demonstrate that this dependence is
captured by four fundamental numbers, independent of initial conditions, representing four
different combinations of parities of linear modes. Thus, QQNM amplitudes still remain
completely determined once the amplitudes of the linear modes themselves are known. Second,
we prove two selection rules on the vanishing of classes of quadratic modes. All our results
are available online [48]: in particular we provide the complete expression of our quadratic
source term, and we provide a convenient Python function that gives the ratio of QQNM
to linear QNM amplitudes.

The paper is divided into the following sections: section 2 begins with a review of how
to extract the two physical degrees of freedom from the metric tensor, both at linear and
quadratic orders. We then write down the differential equation governing the evolution of
the these two degrees of freedom. In section 3 we get to solving the differential equation,
noting that the variables chosen to codify these degrees of freedom, usually called master
scalars, are not well suited for our problem. After clarifying the issue, we then perform a
master scalar redefinition to resolve it. Our solution is very similar to the one adopted by
Nakano and Ioka [33] for the specific case of the dominant QQNM, while it differs from the
one chosen by [27–32, 35]. In section 4, we extract the physical waveform out of our variables,
paying a particular attention to the polarization of the QNMs. Finally, section 5 contains
all our main results. We draw our conclusions in section 6.
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Notation. We set G = c = 1. Our convention for the Fourier transform is

Ψ(t) =
∫ dω

2π e
−iωtΨ̃(ω) . (1.1)

Due to the proliferation of multiple indices in many formula, we will often shorten the notation
and write only those indices that cannot be immediately deduced from the context.

2 Metric reconstruction from master scalars

In this section we will first decompose the metric tensor fully exploiting the symmetries of
the background. While the metric contains 10 variables, the physical degrees of freedom
of a massless spin-two field must be two. We call the variables encoding these degrees of
freedom master scalars. This section will then review their definition, the differential equation
they obey, and how to express the metric in terms of them, following the conventions of
Spiers, Pound and Wardell [36]. To simplify the presentation, after an initial discussion that
sets up the problem, we will first briefly review linear perturbations, and then extend the
discussion to the quadratic ones. Formulas are then presented in a notation that applies
to both linear and quadratic modes.

We are interested in the small perturbations on top of the Schwarzschild background
metric, up to quadratic order. The natural ansatz is

gµν = ḡµν + εh(1)
µν + ε2h(2)

µν +O(ε3) , (2.1)

where ε is the expansion parameter controlling the amplitude of the perturbations and ḡµν

is the Schwarzschild metric,

ḡµνdxµdxν = −f(r)dt2 + f−1(r)dr2 + r2(dθ2 + sin2(θ)dϕ2) , (2.2)

where f(r) = 1− 2M/r. Slightly abusing terminology, we will ofter refer to hµν as “metric”
instead of metric perturbation. Indices are raised and lowered using ḡµν .

We can impose the Einstein field equations in vacuum for gµν :

Gµν [g] = G(0)
µν + εG(1)

µν [h(1)] + ε2G(1)
µν [h(2)] + ε2G(2)

µν [h(1),h(1)] +O(ε3) = 0 , (2.3)

where G(0)
µν is trivially zero because the Schwarzschild metric solves the vacuum field equations,

while G(1)
µν and G

(2)
µν are respectively linear and bilinear differential operators. At order ε

and ε2 eq. (2.3) gives

G(1)
µν

[
h(1)] = 0 , (2.4)

G(1)
µν

[
h(2)] = −G(2)

µν

[
h(1),h(1)] ≡ Sµν

[
h(1),h(1)] . (2.5)

Since the right hand side of eq. (2.5) will source the quadratic perturbations, we also call it Sµν .
It is convenient to parametrize the 10 components of the metric and the source keeping

rotational symmetry in mind. We will decompose them into ten spherical components:

htt, htr, hrr, ht+, hr+, ht−, hr−, h+, h− and h◦ . (2.6)
Stt, Str, Srr, St+, Sr+, St−, Sr−, S+, S− and S◦ . (2.7)

– 5 –
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Using the tensor spherical harmonics reviewed in appendix C we have

hab =
∑

ℓ,m,ω

e−iωthℓm
ab Y

ℓm , (2.8)

haB =
∑

ℓ,m,ω

e−iωt[hℓm
a+Y

ℓm
B + hℓm

a−X
ℓm
B

]
, (2.9)

hAB =
∑

ℓ,m,ω

e−iωt[hℓm
◦ ΩABY

ℓm + hℓm
+ Y ℓm

AB + hℓm
− Xℓm

AB

]
, (2.10)

and similarly for Sµν . In the previous equation a, b, . . . are indices representing t, r, while
A,B, . . . represent θ, ϕ. From now on, we will not write ℓm above h and S components,
leaving it implicit. Due to properties of tensor spherical harmonics, components of the
metric with a + subscript are parity-even (they do not change under parity), while the −
components are parity-odd (they take a minus sign under parity). Furthermore, since the
background metric ḡµν is symmetric under time translations, we focus on perturbations
oscillating at a single frequency e−iωt. We take advantage of the fact that the spectrum is
discrete to sum over all QNM frequencies ω. In our conventions, ω = ωr + iωi and ωi < 0.
Following [49], modes with ωr > 0 are called ‘regular modes’, while those with ωr < 0 are
called ‘mirror modes’. Notice that this definition of mirror modes is different from the one
used in [38], where mirror modes ares defined as modes with m < 0. However, since for a
Schwarzschild BH the QNM frequencies do not depend on m, we find the former definition
more appropriate to our setup. Moreover, mirror modes are also different from retrograde
(or counterotating) modes [5, 15], which are defined as modes with sign(ωrm) < 0. Finally,
we focus on perturbations with ℓ ≥ 2, as according to the peeling theorem [50–52] these
are the only ones carrying radiation to infinity.

2.1 Gauge choice

We will now fix the Regge-Wheeler (RW) gauge, which is the most common choice when
performing black hole perturbation theory (see for example [36] for a detailed discussion).
Metric perturbations transform under diffeomorphisms as

h(1)
µν → h(1)

µν + Lξ(1) ḡµν ,

h(2)
µν → h(2)

µν + Lξ(2) ḡµν + 1
2L

2
ξ(1) ḡµν + Lξ(1)h(1)

µν , (2.11)

where Lξ is the Lie derivative with respect to a vector field ξµ. While the full Einstein tensor
is covariant under diffeomorphisms, the operators that appear from its perturbative expansion
eqs. (2.4) and (2.5) have different transformation laws, as emphasised in [36]. We will denote
by h̃(i) the metric perturbations taken in Regge-Wheeler gauge, where one imposes

h̃t+ = h̃r+ = h̃+ = h̃− = 0 . (2.12)

Our source term Sµν in eq. (2.5) will always be computed using the linearized perturbations
in RW gauge, without adding the tilde in order to improve readability.

By applying a generic infinitesimal diffeomorphism as in eq. (2.11), we can find the
relation between the metric in Regge-Wheeler gauge and in a generic gauge. In section 4
we will do this to compute the metric in asymptotically flat gauge, where the physical
waveform is most easily extracted.

– 6 –
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2.2 Main formulas

We now present the formulas in a language which unifies the discussion of linear and quadratic
modes. For each parity sector all the h̃(1) variables can be expressed in terms of a single
master scalar, which we take to be the well known Cunningham-Price-Moncrief ψ(1)

− for
the odd sector, and the Zerilli-Moncrief ψ(1)

+ for the even sector (see [53] for an interesting
strategy to define them constructively). The master scalars are defined as

ψ
(i)
+ = 2r

λ2
1

[
r−2h̃

(i)
◦ + 2

Λ(r)
(
f2h̃(i)

rr − rf(r−2h̃
(i)
◦ )′

)]
, (2.13)

ψ
(i)
− = 2r

µ2

[
(h̃(i)

t−)′ +
M

r2f(r)(h̃
(i)
t− − h̃

(i)
r−) + iωh̃

(i)
r− − 2

r
h̃

(i)
t−

]
, (2.14)

and they obey the Zerilli and Regge-Wheeler equations, obtained by imposing the equations
of motion (2.4)–(2.5)

dψ(i)
±

dr2
∗

+ ω2ψ
(i)
± − V±(r)ψ(i)

± = S
(i)
± , (2.15)

where ′ = d/dr, r∗ = r + 2M ln
(

r
2M − 1

)
is the tortoise coordinate and V+(r), V−(r) are

the Zerilli and Regge-Wheeler potentials

V+(r) :=
f(r)
Λ(r)2

[
µ4

r2

(
λ2

1 +
6M
r

)
+ 36M2

r4

(
µ2 + 2M

r

)]
,

V−(r) := f(r)
(
ℓ(ℓ+ 1)
r2 − 6M

r3

)
.

(2.16)

Since there is no source at linear order S(1) = 0, we will simplify notation and rename
S(2) ≡ S. We will explain in more details in the next section how one can obtain the source
term in eq. (2.15) from Einstein’s equations at second order (2.5), and also highlight some
properties of the source term. However, since its explicit expression is quite involved, we give
it only in the companion Mathematica files [48]. Following [36] we also defined

λs =
√

(ℓ+ |s|)!
(ℓ− |s|)! , µ2 = λ2

1 − 2 = (ℓ+ 2)(ℓ− 1), Λ(r) = µ2 + 6M
r

. (2.17)

There is a one-to-one relation between master scalars and the metric perturbations they
describe: indeed the latter can be reconstructed from the former as
h̃

(i)
tt = f(r)2h̃(i)

rr + 2f(r)S(i)
+ ,

h̃
(i)
tr = −iωrψ(i)

+
′ + −iω

f(r)Λ(r)

[
µ2
(
1− 3M

r

)
− 6M2

r2

]
ψ

(i)
+ + 2r2

λ2
1

(
S

(i)
tr + iω

2r
Λ(r)f(r)S

(i)
tt

)
,

h̃(i)
rr = 1

4r2f(r)2

[
Λ(r)

(
λ2

1rψ
(i)
+ − 2h̃(i)

◦
)
+ 4r3f(r)

(
r−2h̃

(i)
◦
)′]

,

h̃
(i)
t− = 1

2f(r)
(
rψ

(i)
−

)′
+ 2r2

µ2 S
(i)
t− ,

h̃
(i)
r− = iω

2f(r)rψ
(i)
− + 2r2

µ2 S
(i)
r− ,

h̃
(i)
◦ = r2f(r)ψ(i)

+
′ + r

2Λ(r)

[
λ2

2 +
6M
r

(
µ2 + 2M

r

)]
ψ

(i)
+ − 4r4

λ2
1Λ(r)

S
(i)
tt , (2.18)

where Sµν = 0 at linear order, and the frequency ω is the one of the mode under consideration.
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2.3 Linear versus quadratic perturbations

The goal of this subsection is to highlight the similarities and differences between linear and
quadratic perturbations. At first order, the Regge-Wheeler and Zerilli equations are linear
homogeneous differential equations, so the amplitude of the master scalar can be rescaled at
will and indeed in our setup the linear waveform amplitude is determined by fitting to data
(either interferometers signals or Numerical Relativity simulations). The main prediction of
the differential equations come when we supplement them with outgoing boundary conditions
at infinity and infalling at the black hole horizon, which are the boundary conditions for
QNM: the spectrum of allowed frequencies becomes discrete [54]. Modes are thus labeled
by an overtone number n. Even for a single overtone n, there are two solutions to the RW
and Zerilli equations (2.15), one with positive real part of the frequency which we label
as ωℓn+ (called regular mode), and one with negative real part given by ωℓn− = −(ωℓn+)∗,
where ∗ denotes complex conjugation. Thus, in general, linear modes are indexed by the
supplementary mode number N = (n,m) where m = ± denotes a regular or mirror mode.

As we will see, while much of the formulas in section 2.2 are only slightly modified at
second order, the Regge-Wheeler and Zerilli equations now predict the amplitude of the
quadratic modes given the amplitude of the linear ones, while the set of allowed frequencies is
trivial to obtain. As one can see from eq. (2.5), schematically we have on the left-hand side the
same differential operator G(1) as at linear order, now acting on the second order perturbation.
The main difference is the appearance of a source term, completely determined once the linear
perturbations are fixed. We will still demand QNM boundary conditions on the solutions of
eq. (2.5). Given the (bi)linearity properties of G(i), we can look for second-order solutions of
eq. (2.5) by considering two fixed linear perturbations in the source term, say described by
ψ

(1)
1 and ψ(1)

2 , and then constructing the full solution using a superposition. While the linear
perturbations can be generic at this point, we will take them to be linear QNMs characterized
by (ℓ1,m1, n1,m1, p1), (ℓ2,m2, n2,m2, p2) (with frequencies ω1 and ω2) where p is the parity,
even for Zerilli and odd for Regge-Wheeler. We will just assume here that modes 1 and 2
are not the same and add up in the total waveform, while introducing later on a symmetry
factor in order to cover the case where (ℓ1,m1, n1,m1, p1) = (ℓ2,m2, n2,m2, p2) (see also the
toy model in appendix B for a pedagogical introduction to this symmetry factor).

Given the symmetries of the background, the source term of eq. (2.5) is very constrained
by selection rules. For example, the only possible time dependence of the source is (without
any loss of generality, we take ωr

1 ≥ ωr
2 > 0 here)

eωi
1t cos(ωr

1t)× eωi
2t cos(ωr

2t+ φ0) ∝ e(ωi
1+ωi

2)t [cos((ωr
1 − ωr

2)t− φ0) + cos((ωr
1 + ωr

2)t+ φ0)] ,
(2.19)

so that at quadratic order ω = ω1 + ω2 or ω = ω1 − ω∗
2 or their mirror modes at second

order ω = −ω∗
1 − ω∗

2, ω = −ω∗
1 + ω2. Notice that, due to the complicated way in which

time derivatives appear in the source term, the actual amplitudes of the two cosines in
the source are not equal but generically unrelated. Similarly, we have selection rules on
the angular momentum

ℓ = |ℓ1 − ℓ2|, . . . , ℓ1 + ℓ2, m = m1 +m2 . (2.20)

– 8 –
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In the actual source term, selection rules are imposed by the fact that the source is proportional

to the 3j symbol
(
ℓ1 ℓ2 ℓ

m1 m2 −m

)
. In fact, the only dependence of the source term on m,

m1 and m2 is fully contained in the 3j symbol because of angular momentum conservation
(see later on section 5.2).

Finally, parity imposes

(−1)ℓ1+p1 × (−1)ℓ2+p2 = (−1)ℓ+p ⇒ (−1)ℓ1+ℓ2+ℓ = (−1)p1+p2+p , (2.21)

where the parity of a mode is determined by its intrinsic parity p, which is +1 for the Zerilli
sector and −1 for the Regge-Wheeler sector, and by the parity of the spherical harmonics (−1)ℓ.

The most general solution of eq. (2.5) will be a combination of a particular solution
plus the most general solution of the homogeneous equation. However the homogeneous
equation is identical to eq. (2.4), so imposing QNM boundary conditions on a homogeneous
solution will select the linear QNM frequencies. The linear amplitudes are then artificially
shifted by O(ϵ), but there is no physics in this amplitude redefinition in our approach since
linear amplitudes just get fitted to data.1 On the other hand, new solutions are allowed at
frequencies ω1 + ω2 and ω1 − ω∗

2 and their mirrors at second order, because of the non-trivial
source term. For these frequencies, we will see that the freedom to add an arbitrary solution
of the homogeneous equation will allow us to always find a non-trivial solution with QNM
boundary conditions. Thus we recover a well-known result: the frequencies at quadratic
order are exactly those appearing in the source term.

Despite these distinctions, the redundancies of h(2)
µν and the consequent reduction to

two master scalars containing the graviton polarizations is very similar to the linear order.
We specialize h(2) to a given parity, frequency ω and angular momentum ℓ,m, compatible
with the selection rules described above. Keeping the same definitions for the master scalars
(eqs. (2.13) and (2.14)), one discovers that the Regge-Wheeler and Zerilli equations are
modified by a source term S(r) as in eq. (2.15). The metric reconstruction also contains the
components of Sµν besides the quadratic master scalars (eq. (2.18)).

3 Solving the differential equation

In the previous section, we argued that the set of differential equations (2.5) can be reduced
to a single Regge-Wheeler or Zerilli equation with a known source term eq. (2.15), which
we now aim to solve. However, we will encounter a technical issue: while ψ(1)

± approaches
const. × e±iωr∗ at both infinity and the horizon, ψ(2)

± will a priori be more divergent. This
section is dedicated to understanding the problems that arise when this happens and how to
avoid them using new master scalars. Although the problem is rather technical in nature,
it is possible to understand some of its features through a toy-model, which we present in
appendix B. Finally, we will extend the Leaver method to find solutions of the RW/Z equation
with a source term and satisfying QNM boundary conditions. In this section we will drop
the superscript (2) from ψ(2), leaving it implicit.

1On the other hand, it would be important to take into account this shift if we were trying to relate
amplitudes to the initial conditions before merger, as e.g. in [55].
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We are interested in solving eq. (2.15) with a given S(r). The variation of constants
method is a well known way of solving linear non-homogeneous equations, and it leads to
ψ(r) = ψp(r) + ψh(r) where ψp(r) is a particular solution of the non-homogeneous equation,
while ψh(r) is a generic solution of the associated homogeneous equation. While we know
from the analysis at linear order that ψh(r) behaves like e±iωr∗ as |r∗| → ∞, no assumption
can be made a priori about ψp(r).

The reason why a divergent ψp(r) would not contradict the regularity expected of the
physical waveform is that Sµν comes into play when reconstructing the metric perturbation
h̃

(2)
µν , contrary to what happens at linear order where S(1)

µν ≡ 0. The divergences of ψ can
then cancel against those of Sµν . While this observation avoids a logical contradiction, the
divergent behaviour of ψ(r) at the horizon and at infinity is not free of difficulties.

3.1 Divergent master scalars

Let us assume that at infinity and at the horizon ψ(r) ∼ e±iωr∗ × P±(r) as r∗ → ±∞
respectively, where P+(r) is a power series in 1/r and in P− is in (r−2M). Divergences appear
whenever the power series P±(r) contain poles. In addition, let c1, c2 be the coefficients
of the linear combination defining ψh(r).

We can point to three main issues that arise when ψ(r) displays a divergent behaviour at
infinity or the horizon. While they depend on the precise way in which we are approaching the
problem, it is worth noting that similar difficulties arise in alternative approaches too [32, 44].

First, ensuring the QNM boundary conditions is trivial for h̃(1)
µν , because one simply has

to select the solution ψ(1)(r) that goes to e±iωr∗ at r∗ → ±∞ respectively. For quadratic
perturbations, this is far from trivial. The reason is that ψh(r) should be chosen so that
h̃

(2)
µν satisfies the QNM boundary conditions, but choosing different c1, c2 only modifies the

non-singular terms of P±(r) (because solutions of the homogeneous equation are regular).
The conclusion is that checking that the leading (divergent) behaviour of ψ(r) is outgoing
at infinity and infalling at the horizon is not enough: we need control of the subleading
terms up to the first regular one.

Similarly, the amplitude of h̃(2)
µν cannot be independent of c1, c2. Thus even our main

object of interest, the amplitude, is sensitive to the subleading terms in ψ(r). All the divergent
terms in ψ(r) are due to a poor choice of variables, and they all cancel against the divergences
of Sµν in eq. (2.18). The amplitude of h̃(2)

µν is actually critically determined by the first regular
term of ψ(r), which would be very hard to extract if we were to numerically integrate eq. (2.15).

Lastly, we could rephrase our whole computation accounting for generic order ϵ by
describing metric perturbations as gµν = ḡµν + ϵhµν , hµν = h

(1)
µν + ϵh

(2)
µν +O(ϵ2). We would

then define the master scalars ϕ± = ψ
(1)
± + ϵψ

(2)
± +O(ϵ2) according to eqs. (2.13) and (2.14)

at all orders, and they would obey
dϕ±
dr2

∗
+ ω2ϕ± − V±(r)ϕ± = ϵS(r), S(r) = S(r) +O(ϵ) . (3.1)

Our problem would then be reduced to solving for the master scalars perturbatively in
ϵ, employing a single hµν . However this way of describing the problem seems to require
|ψ(1)

± | ≫ ϵ|ψ(2)
± | for all r, which is contradicted at large r∗ if we find that ψ(2)

± is more
divergent that ψ(1)

± .
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Actually this last problem will turn out to be fictitious, because instead of expanding
the master scalars in powers of ϵ we chose to expand the metric perturbations. We will later
verify that all the divergences of the master scalars cancel when reconstructing the metric
perturbations, thus validating our ϵ expansion.

3.2 Bypassing the problem

As we explained in the previous subsection, we cannot easily work with the master scalars
that we defined. This problem has already been noticed in the literature, and was addressed
in [27–33, 56]. Among these works only [33] was targeted towards finding QNM solutions,
although only for the dominant quadratic QNM, while the method employed in other works
was not directly applicable to our setting. In this subsection we thus adapt their main
ideas to our problem.

The crux of the previous discussion is that the divergences of ψ(r) are spurious and
should cancel against those of Sµν in eq. (2.18). The idea is then to analyze the (opposite)
divergences of Sµν and move them into the master scalar, redefining and regularizing it. It is
not clear from eq. (2.18) that this should be doable, because of the intricate way in which
ψ and Sµν present themselves. However we can work directly at the level of eq. (2.15): we
will study the divergences of S(r) and redefine ψ(r) accordingly.

We define the regular master scalar

Ψ(r) = ψ(r) + ∆(r)ψ(1)
1 ψ

(1)
2 , (3.2)

where ∆(r) is a yet-to-be-determined function which can depend on the frequency, the angular
momentum and the parity of each of the three modes, which we leave implicit from now on.
Substituting eq. (3.2) into eq. (2.15), we get that the regulated master scalar satisfies

dΨ
dr2

∗
+ω2Ψ−V (r)Ψ=S(r), S(r)=S(r)+

[ d
dr2

∗
+ω2−V (r)

](
∆(r)ψ(1)

1 ψ
(1)
2

)
, (3.3)

which is a Regge-Wheeler or Zerilli differential equation with a modified source term. Moreover,
we can factor out the linear modes by defining

S(r) = s(r)ψ(1)
1 ψ

(1)
2 , S(r) = s(r)ψ(1)

1 ψ
(1)
2 , (3.4)

so that s(r), s(r) are independent of the linear amplitudes. Such a factorization implicitly
relies on the fact that the source term is symmetric if we exchange the two perturbations
ψ1 and ψ2, which is of course satisfied by the true source term by virtue of the properties
of G(2) in eq. (2.5). As discussed in [33, 44] the condition for the regularity of Ψ(r) is that
s(r) should vanish like (r − 2M) at the horizon and as 1/r2 at infinity.

We highlight that, due to its definition, S(r) contains first or second order r derivatives
of the linear modes. While we can get rid of the second derivatives using the linear Regge-
Wheeler and Zerilli equations, the first derivatives cannot be eliminated, hence s(r) and s(r)
will contain ratios of the form ψ

(1)
i

′/ψ
(1)
i . Despite this, our main concern will be to control

the asymptotic behaviour of S(r) at the horizon and at infinity, so that these ratios can be
computed order by order in (r − 2M) and 1/r (see appendix E). Later, after having defined
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the regular master scalars, we will have to work with S(r) at finite r: at that point we will
keep the first derivatives of ψ(1)

1,2 explicit, writing

S(r) = F1(r)ψ(1)
1 ψ

(1)
2 + F2(r)

(
ψ

(1)
1

′ψ
(1)
2 + ψ

(1)
1 ψ

(1)
2

′)
+ F3(r)

(
ψ

(1)
1

′ψ
(1)
2 − ψ

(1)
1 ψ

(1)
2

′)+ F4(r)ψ(1)
1

′ψ
(1)
2

′ , (3.5)

s(r) = F1(r) + F2(r)
(ψ(1)

1
′

ψ
(1)
1

+ ψ
(1)
2

′

ψ
(1)
2

)
+ F3(r)

(ψ(1)
1

′

ψ
(1)
1

− ψ
(1)
2

′

ψ
(1)
2

)
+ F4(r)

ψ
(1)
1

′

ψ
(1)
1

ψ
(1)
2

′

ψ
(1)
2

, (3.6)

where we give the explicit expression of the Fi functions in the companion files [48].
We discover by inspection that s(r) is always already regular at the horizon, but not

so at infinity. Thus we take a polynomial ansatz for ∆(r)

∆(r) = a2r
2 + a1r . (3.7)

Our code (see appendix E) computes the required {a1, a2} and therefore s(r).
We draw the reader’s attention to the fact that ∆(r) can contain 1/ω terms. Such

terms in Fourier space should be interpreted as time integrals in time domain, meaning
that generically there is no master scalar redefinition that regulates both the horizon and
infinity while also being local in time. However, there is nothing conceptually difficult about
this, and the technical complications of the time integrals are completely absent in Fourier
space. The need for such integrals was sidestepped by Ioka and Nakano [33], who work in
time domain, by effectively working with the time derivative of ψ(r) and then performing
master scalar redefinitions which are local in time. The (minor) drawback of this approach
is that the so-defined master scalar only allows one to reconstruct the time derivatives of
the metric perturbations.

Let us conclude this section by commenting on the arbitrariness of the regulation
procedure. Indeed, one could have defined other regular master scalars by including a
constant term in the regulator (3.7), and they would have displayed well-behaved asymptotics
as well. However, this is just a matter of definitions, and the asymptotic metric that we will
compute in section 4 will not depend on this arbitrary choice. This arbitrariness, however,
prevents us from making a direct comparison with the work of Nakano and Ioka [33], which
provides the value of the quadratic ratio only for the RW and Zerilli variables and for the
dominant QQNM. Our strategy to regulate the master scalars is in some sense “minimal”
because we only subtract the divergent terms without affecting the regular ones.

3.3 Extension of Leaver method

The problem of finding the amplitude of quadratic modes has now been reduced to finding a
solution to the RW and Zerilli equations at second order with appropriate boundary conditions:

Ψ =MAeiωr∗ +O
(1
r

)
, for r → ∞ , (3.8)

Ψ =MBe−iωr∗ +O
(
1− 2M

r

)
, for r → 2M , (3.9)
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where A and B are constants (the M factor is added to have dimensionless amplitudes), and
ω = ω1 + ω2 is the frequency of the nonlinear modes. Although several analytic or numerical
methods can be used both at first and second order to compute the wavefunction from the RW
and Zerilli equations [33, 44, 57–69], we choose here to use one of the most accurate numerical
method: Leaver’s algorithm [70]. The application of Leaver method to the second-order
modes has been streamlined in [33], but we will review the procedure here for completeness.

Leaver’s method only applies to the RW equation, while we need to solve both RW and
Zerilli equations. However, it is easy to transform the Zerilli equation at second order to
a RW form by defining the Chandrasekhar variable χ(2) [54]:

χ(2) = 1
µ2(µ2 + 2)/6− 2iMω

[(1
6µ

2(µ2 + 2) + 12M2(r − 2M)
r2(µ2r + 6M)

)
Ψ− 2M dΨ

dr∗

]
, (3.10)

where we recall that µ2 = (ℓ+2)(ℓ−1). If Ψ obeys a Zerilli equation with a source term of the
form (3.5), then using the RW and Zerilli equations for both linear and second-order modes it
is straightforward to show that χ(2) obeys a RW equation with another source term of the form

d2χ(2)

dr2
∗

+
(
ω2 − V−

)
χ(2) = S̄ , (3.11)

S̄ = G1ψ
(1)
1 ψ

(1)
2 + G2

(
(ψ(1)

1 )′ψ(1)
2 + ψ

(1)
1 (ψ(1)

2 )′
)

+ G3
(
(ψ(1)

1 )′ψ(1)
2 − ψ

(1)
1 (ψ(1)

2 )′
)
+ G4(ψ(1)

1 )′(ψ(1)
2 )′ , (3.12)

where V− is the RW potential given in eq. (2.16), and we give the explicit expression of the
Gi functions in the companion Mathematica notebook [48]. Moreover, χ(2) also satisfies
boundary conditions of the kind (3.8)–(3.9), and the transformation (3.10) is normalized in
such a way that the asymptotic amplitudes of χ(2) and Ψ coincide for r → ∞. Similarly,
the Chandrasekhar transformation can be used to obtain the Zerilli solution at linear order
when we will need it, using the equation

χ
(1)
i = 1

µ2
i (µ2

i +2)/6+2iMωi

[(1
6µ

2
i (µ2

i +2)+12M2(r−2M)
r2(µ2

i r+6M)

)
ψ

(1)
i +2M dψ(1)

i

dr∗

]
, (3.13)

where i = 1, 2. Once again, if ψ(1)
i solves the homogeneous RW equation at first order,

then χ
(1)
i solves the homogeneous Zerilli equation and has the same asymptotic amplitude

than ψ
(1)
i for r → ∞.

Let us now describe the Leaver algorithm for solving RW equation at first and second
order. At first order, we make an ansatz for the RW variable of the form (i = 1, 2):

ψ
(1)
i =MAi(r)

∞∑
n=0

a(1)
n

(
1− 2M

r

)n

, (3.14)

where

Ai(r) =
(

r

2M − 1
)ρi( r

2M

)−2ρi

exp
{[

− ρi

(
r

2M − 1
)]}

, (3.15)

ρi = −2iMωi . (3.16)
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By factoring out the function Ai(r) in the ansatz, one can obtain a wavefunction which
satisfies the boundary conditions (3.8) if the series

∑
n a

(1)
n converges. The RW equation is

then obeyed provided the coefficients a(1)
n satisfy the recursion relation:

α
(1)
0 a

(1)
1 + β

(1)
0 a

(1)
0 = 0 , (3.17)

α(1)
n a

(1)
n+1 + β(1)

n a(1)
n + γ(1)

n a
(1)
n−1 = 0 , (3.18)

where a0 is arbitrary and represents the freedom in the choice of normalization of the linear
RW variable, and the coefficients α(1)

n , β(1)
n and γ

(1)
n are given by

α(1)
n = n2 + (2ρi + 2)n+ 2ρi + 1 , (3.19)

β(1)
n = −

(
2n2 + (8ρi + 2)n+ 8ρ2

i + 4ρi + µ2 − 1
)
, (3.20)

γ(1)
n = n2 + 4ρin+ 4ρ2

i − 4 . (3.21)

The requirement of convergence of
∑

n a
(1)
n provides the value of ω for linear modes. We

numerically obtain it using a simple minimization algorithm.
At second order, the ansatz for the RW variable is changed to

Ψ =MA1(r)A2(r)
∞∑

n=0
a(2)

n

(
1− 2M

r

)n

, (3.22)

and similarly for the Chandrasekhar transformation of the Zerilli variable χ(2). Plugging
the ansatz in the equations of motion (either (3.3) or eq. (3.11)), we find the recurrence
relation at second order:

α
(2)
0 a

(2)
1 + β

(2)
0 a

(2)
0 = b0 , (3.23)

α(2)
n a

(2)
n+1 + β(2)

n a(2)
n + γ(2)

n a
(2)
n−1 = bn , (3.24)

where α(2)
n , β(2)

n and γ
(2)
n take the same expression than at first order with the replacement

ρi → ρ1+ρ2, and the coefficients bn are related to an expansion of the regularized source term,

r3

r − 2MS(r) =MA1(r)A2(r)
∞∑

n=0
bn

(
1− 2M

r

)n

, (3.25)

and similarly for S̄. Notice that the good asymptotic behavior of the source term S precisely
means that the left-hand side of this equation is proportional to the product of amplitudes
A1(r)A2(r) asymptotically and that the series

∑
n bn converges. We can easily obtain the

coefficients bn from a series expansion of the source in the variable u = 1− 2M/r. We then
numerically solve the recurrence relation at second order in a way very similar to the first
order case, the main difference being that the frequency ω = ω1 + ω2 is imposed so that
we instead have to find a value for a(2)

0 such that the series
∑

n a
(2)
n converges. Finally, the

nonlinear ratio is easily found as the asymptotic limit of Ψ/(ψ(1)
1 ψ

(1)
2 ).
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3.4 Summing over parities

In the QNM literature, linear modes amplitudes are often indexed by their overtones and
mirror modes, but not by their parities. This is because of the well-known properties that
the RW and Zerilli equations are isospectral [54], so that even and odd QNMs have the
same frequencies. We thus can’t read the amplitude of a “pure even mode” or a “pure
odd mode” from data, because there is no way to disentangle them when extracting the
amplitudes of single-frequency components.

Thus a quadratic mode amplitude is generated from the two full linear modes including
both even and odd contributions in the waveform, reconstructed from the RW and Zerilli
scalars through eq. (2.18). Schematically, ψ(1)

1 = ψ
(1)
1,−+ψ(1)

1,+ and ψ(1)
2 = ψ

(1)
2,−+ψ(1)

2,+, although
the complete expression of the metric should be read from eqs. (2.8)–(2.10). We would also
like our formula for the source term to correctly describe the case where we look at a quadratic
mode generated by the square of the same linear mode ψ(1)

1 . In order to do this, we can keep
our generic expression for the source where we assume that ψ(1)

1 and ψ
(1)
2 are two different

perturbations that linearly add in the waveform, and divide the source by a symmetry factor
S which is S = 1 if ψ(1)

1 and ψ
(1)
2 are different, and S = 2 if ψ(1)

1 and ψ
(1)
2 are the same (i.e.

ℓ1 = ℓ2, m1 = m2, n1 = n2 and m1 = m2).
Taking into account these considerations, the regularized source term in (3.3) is now

given by

S(r) = 1
S

s−−→+ψ1,−ψ2,− + s++→+ψ1,+ψ2,+, if ℓ+ ℓ1 + ℓ2 even ,
s+−→+ψ1,+ψ2,− + s−+→+ψ1,−ψ2,+, otherwise .

(3.26)

for the source term in the Zerilli equation, and

S(r) = 1
S

s−−→−ψ1,−ψ2,− + s++→−ψ1,+ψ2,+, if ℓ+ ℓ1 + ℓ2 odd ,
s+−→−ψ1,+ψ2,− + s−+→−ψ1,−ψ2,+, otherwise .

(3.27)

for the source term in the RW equation. To obtain these relations, we have used the parity
selection rules explained in section 2.3, and denoted by e.g. s+−→+ the source term for the
Zerilli equation in eq. (3.4) where the first mode ω1 has even parity and the second mode ω2
has odd parity. One should be careful that generically s+−→+ ̸= s−+→+ if the linear modes
are not the same (our convention here is that the first index in sp1p2→p refers to the first
linear mode): one can be obtained from the other if we exchange all the mode numbers of
both linear modes (1 ↔ 2), and similarly for the quadratic odd sector. Thus, for a given
ℓ+ ℓ1 + ℓ2, we see that the amplitude of the corresponding quadratic mode (including both
even and odd parity at second order) depends on four numbers which we can compute using
the algorithm presented in section 3.3.

In the previous literature on quadratic modes [15, 20–26, 33, 34, 44, 45, 71], it has often
been stated that nonlinearities can be encoded in a single number which is the ratio of
quadratic to linear amplitudes. However, as this section makes clear, this ratio also depends
on the parity content of the linear mode amplitudes, making it not a universal quantity that
can be compared across different numerical simulations. This fact was recently highlighted
in [38] to explain discrepancies across independent approaches in computing the ratio of
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amplitudes. Nevertheless, our present work shows that quadratic amplitudes depend on only
four numbers multiplying the linear mode amplitudes, and these are the universal numbers
that one should aim to measure in numerical relativity simulations. Therefore, quadratic
amplitudes are still independent of the initial conditions in the sense that they are fixed (and
given by our present work) once the initial conditions for the linear modes are fixed.

4 Physical observables

Assuming the unique solution Ψ(2) of eq. (3.3) satisfying QNM boundary conditions is known,
we are ready to reconstruct the quadratic metric perturbations. First in RW gauge (denoted
with a tilde on metric perturbations), then we will transform it in the transverse traceless
(TT ) gauge (denoted with a superscript T T ). Finally we will obtain the physical waveform
plus and cross polarizations h+ and h×. Conceptually, the logical chain is

Ψ(2) ⇒ ψ(2) ⇒ h̃µν ⇒ hT T
± ⇒ h+, h× . (4.1)

Since we will be interested in the asymptotic amplitude of the waveform, we will work in
the asymptotic limit r → ∞ whenever possible. The regulated master scalars in eq. (3.2)
were designed so that their asymptotic expansion at large r takes the same form as at linear
order (see eq. (3.8)). We can then extract their amplitudes as2

Ψ(2)
+ ∼MA(2)

+ eiωr∗ , Ψ(2)
− ∼MA(2)

− eiωr∗ , (4.2)

the M factor is added to have dimensionless amplitudes. At linear order we can work with
the usual (unregulated) master scalars ψ(1)

ψ
(1)
+ ∼MA(1)

+ eiωr∗ , ψ
(1)
− ∼MA(1)

− eiωr∗ . (4.3)

Linear and quadratic physical amplitudes are both needed because our main result will be
their ratio. To avoid clutter, we will write equal signs in place of ∼, even though we are
dealing with asymptotic expansions. To evaluate derivatives in the asymptotic expansion, we
recall that we will deal with functions of the form rkeiω(r∗−t), where k is an integer and ω the
frequency of the mode (i.e. ω = ωi for linear modes and ω = ω1 + ω2 for quadratic modes):
consequently ∂r∗ → iω and ∂t → −iω at leading order in the 1/r expansion.

4.1 Reconstructing h̃µν

We split the discussion between linear and quadratic order. In both cases substituting ψ(i)

into eq. (2.18) gives the metric in RW gauge. The main complication at quadratic order is
that ψ(2) should be obtained from Ψ(2) using eq. (3.2).

4.1.1 Linear modes

Simple asymptotic expansions of eq. (2.18) at linear order give

h̃
(1)
tt = h̃(1)

rr = −h̃(1)
tr = −ω2rMA(1)

+ eiωr∗ , h̃
(1)
t− = −h̃(1)

r− = iω

2 rMA(1)
− eiωr∗ , (4.4)

h̃
(1)
◦ = iωr2MA(1)

+ eiωr∗ . (4.5)
2Notice that our parameters A+ and A− are denoted as C+ and C− in the recent work [38].
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4.1.2 Quadratic modes

The necessary steps are just a matter of substitutions so we will refer the reader to the
six notebooks “Asymptotics” in the supplementary materials associated with this paper,
where we give all formulas to reconstruct the quadratic metric components for any parity
of the linear and quadratic perturbations.

To give an example, when an even and an odd linear perturbation couple to give an odd
quadratic perturbation, the required ∆(r), defined in eq. (3.7), is

∆+−→−(r)=−A(1)
+,1A

(1)
−,2(−1)mω2

1
µ2

ℓ

λ1,ℓ2

λ1,ℓ

√
(2ℓ+1)(2ℓ1+1)(2ℓ2+1)

4π

(
ℓ1 ℓ2 ℓ

0 1 −1

)(
ℓ1 ℓ2 ℓ

m1 m2 −m

)
r ,

(4.6)
where the parenthesis are 3j symbols and A+,i and A−,i are the asymptotic amplitudes of
the RW and Zerilli variables defined in eq. (4.3). Then

h̃
(2)
r− = − iω2 rMA(2)

− eiωr∗ + 2r2

µ2
ℓ

Sr− + irω
∆+−→−(r)ψ(1)

+ (r)ψ(1)
− (r)

2f(r) , (4.7)

where Sr− goes to a constant at large r. As promised, the asymptotic behaviour of h̃(2) is
identical to the linear order one because the divergent ∼ r2 term coming from the source
cancels against our correcting term coming from ∆(r).

Before moving on, let us introduce a notation that will prove to be useful when relating
RW gauge to TT gauge quantities:

h̃
(2)
tt = h̃(2)

rr = −h̃(2)
tr = −ω2rMĀ(2)

+ eiωr∗ , h̃
(2)
t− = −h̃(2)

r− = iω

2 rMĀ(2)
− eiωr∗ , (4.8)

h̃
(2)
◦ = iωr2MĀ(2)

+ eiωr∗ , (4.9)

where Ā(2)
+ can be obtained from A(2)

+ and all terms quadratic in the linear amplitudes
present in the source term (e.g. in eq. (4.7)): explicit expressions are provided in the
supplementary files.

4.2 Reconstructing hT T
+ , hT T

−

We now need the expression for the asymptotic waveform in TT gauge, defined by the condition
hT T

ab = hT T
a± = hT T

◦ = 0 at leading order for large r, while only hT T
± are non-zero.3 On the other

hand, up to now we have worked in RW gauge where h̃t+ = h̃r+ = h̃+ = h̃− = 0. We thus
perform an infinitesimal diffeomorphism h̃

(i)
µν → h̃

(i)
µν+∆h(i)

µν up to second order included, where

∆h(1)
µν = Lξ(1) ḡµν ,

∆h(2)
µν = Lξ(2) ḡµν + 1

2L
2
ξ(1) ḡµν + Lξ(1) h̃(1)

µν . (4.10)

ξ
(i)
µ = (ζ(i)

a , Z
(i)
A ) is a vector to be determined from the TT gauge condition. We decompose the

gauge transformation (4.10) in tensor spherical harmonics, splitting as before the discussion
between linear and quadratic modes.

3A more precise statement is hT T
ab = O(r−2), hT T

a± = O(r−1), hT T
◦ = O(r0) and hT T

± = O(r).
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4.2.1 Linear modes

In this case, the components of the gauge transformation we are interested in are given in [36]

∆h(1)
a+ = ζ(1)

a + r2eiωt∂a
[
e−iωtZ

(1)
+
]
, (4.11)

∆h(1)
a− = r2eiωt∂a

[
e−iωtZ

(1)
−
]
, (4.12)

∆h(1)
◦ = 2rf(r)ζ(1)

r − ℓ(ℓ+ 1)r2Z
(1)
+ , (4.13)

∆h(1)
± = 2r2Z

(1)
± , (4.14)

where Z(i)
A =

∑
ℓmω e

−iωt
[
Z

(i)
+ Y ℓm

A + Z
(i)
− Xℓm

A

]
has been decomposed in vector harmonics

following the definitions in appendix C. Imposing TT gauge and working as before in the
asymptotic limit, we find using eq. (4.4)

Z
(1)
± =

MA(1)
±

2r eiωr∗ , ζ
(1)
t = −ζ(1)

r = iωr

2 MA(1)
+ eiωr∗ , (4.15)

so that the nonzero components of the metric in TT gauge are

h
(1),T T
± = rMA(1)

± eiωr∗ . (4.16)

4.2.2 Quadratic modes

At second order, the components of the gauge transformation (4.10) are very similar to the first-
order ones, except for the presence of a supplementary tensor Hµν := L2

ξ(1) ḡµν/2 + Lξ(1) h̃
(1)
µν ,

which is quadratic in the linear perturbations generating the nonlinear mode. When we
expand ξ(1) and h̃

(1)
µν in a spherical harmonic basis, Hµν will consist of a sum of product

of first-order modes, of which we select the nonlinear mode corresponding to a frequency
ω = ω1 + ω2. As in section 3.4, we include a symmetry factor S to also cover the case
where the quadratic mode is generated from the product of the same linear mode (see also
appendix B). Computing the components of Hµν in a tensor spherical harmonic basis in the
limit r → ∞ is tedious but straightforward using the methodology sketched in appendix C.3.
We provide their complete expression in the companion Mathematica notebooks, while
reporting here only one component for the sake of example:

Htt = Hrr = −Htr = i(−1)m+1M
2reiωr∗

4S
A(1)

+,1A
(1)
+,2

× Cℓ1m10,ℓ2m20,ℓ(−m)0
(
ω3

1 + ω2
1ω2 + ω1ω

2
2 + ω3

2
)
,

(4.17)

where the coefficient Cℓ1m10,ℓ2m20,ℓm0 is given in eq. (C.23). A nontrivial result we obtain is
that the components of Hµν are ∝ r (except H◦ ∝ r2), so that they have the same scaling
at large r as the components of h̃µν at linear order.

We can now follow the same steps as in section 4.2.1 to find the diffeomorphism ξ
(2)
µ

to go from RW to TT gauge at second order:

Z
(2)
− =

MĀ(2)
−

2r eiωr∗ + Ht−
iωr2 ,

Z
(2)
+ =

MĀ(2)
+

2r eiωr∗ + H◦
2iωr3 + Ht+

iωr2 ,

ζ
(2)
t = −ζ(2)

r = iωr

2 MĀ(2)
+ eiωr∗ + H◦

2r .

(4.18)
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Thus, the nontrivial metric components in TT gauge are

h
(2),T T
+ = rMĀ(2)

+ eiωr∗ + H◦
iωr

+ 2Ht+
iω

+H+ ,

h
(2),T T
− = rMĀ(2)

− eiωr∗ + 2Ht−
iω

+H− .

(4.19)

Once again, in the following, we will introduce a convenient notation:

h
(i),T T
± =MrÃ(i)

± eiωr∗ , (4.20)

where Ã(1)
± = A(1)

± at first order, while at second order Ã(2)
± includes the contributions of

the various Hµν components (quadratic in the linear amplitudes) into the final second-order
amplitude in TT gauge.

4.3 Reconstructing h+, h×

We are now ready to connect our computation with physical predictions. To begin with,
we will define a spacetime tetrad eµ

a as

eµ
0 = f(r)−1/2δµ

0 , eµ
r = f(r)1/2δµ

r , eµ
θ = r−1δµ

θ ; , eµ
ϕ =(r sinθ)−1δµ

ϕ , (4.21)

where we recall that f(r) = 1− 2M/r. The physical waveforms of the + and × polarizations
are encoded by the variables h+ and h× defined as [72]

h+ = 1
2h

T T
µν (e+)µν , h× = 1

2h
T T
µν (e×)µν , (4.22)

where the polarization tensors are given by

(e+)µν = eµ
θ e

ν
θ − eµ

ϕe
ν
ϕ , (e×)µν = eµ

θ e
ν
ϕ + eµ

ϕe
ν
θ . (4.23)

Explicitly, we have

h+ = 1
2r2

(
hT T

θθ −
hT T

ϕϕ

sin2 θ

)
, h× =

hT T
θϕ

r2 sin θ . (4.24)

Using the full expression of the metric in eq. (2.10), the expression of the even and odd
part of the metric in (4.20) and identities for the spin-weighted spherical harmonics (see
appendix C, in particular eqs. (C.20) and (C.21)), we can get a compact expression for the
complex strain, which is the most commonly used quantity in the NR literature:

h+ − ih× = M

r

∑
ℓmN

AℓmN e
iωℓN (r∗−t)

−2Y
ℓm(θ, ϕ) . (4.25)

In this equation, we have reintroduced explicitly the sum over all modes (both linear and
quadratic) needed to recover the full waveform from individual modes amplitudes; thus N is
the supplementary mode number, i.e. N = (n,m) for linear modes and N = (ℓ1,m1, n1,m1)×
(ℓ2,m2, n2,m2) for nonlinear modes (see section 2.3). This provides us with a way to read the
physical amplitude of the mode AℓmN defined from the individual parities amplitudes as follows

AℓmN := λ2,ℓ

2
(
Ã+,ℓmN − iÃ−,ℓmN

)
, (4.26)
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where this relation is valid both at first and second order (so that we do not write explicitly
the perturbation order), and we recall that λ2,ℓ =

√
ℓ(ℓ+ 1)(ℓ+ 2)(ℓ− 1). On the other

hand, we would also like to be able to recover the individual parities amplitudes Ã+,ℓmN
and Ã−,ℓmN from the physical amplitude AℓmN . To do this, we can remark that h+ and
h× are real to obtain

h+ + ih× = M

r

∑
ℓmN

(−1)mA∗
ℓmN e

−iω∗
ℓN (r∗−t)

2Y
ℓ(−m)(θ, ϕ) , (4.27)

where we have used the relation −2Y
ℓm∗(θ, ϕ) = (−1)m

2Y
ℓ(−m)(θ, ϕ). Now, we can use the fact

that mirror modes always come in pair with standard modes to relabel the sum indices. Let
us denote by N̄ the same mode number than N but in which we transformed regular modes to
mirror modes and vice-versa (i.e., we flipped the sign of the real part of ω) and we flipped the
sign of m: N̄ = (n,−m) for linear modes and N̄ = (ℓ1,−m1, n1,−m1)× (ℓ2,−m2, n2,−m2)
for nonlinear modes. By relabelling the summation indices in (4.27) and using the relation
ω∗

ℓN̄ = −ωℓN we get

h+ + ih× = M

r

∑
ℓmN

(−1)mA∗
ℓ(−m)N̄ e

iωℓN (r∗−t)
2Y

ℓm(θ, ϕ) . (4.28)

On the other hand, we can follow the same procedure as explained above eq. (4.25) to get
h+ + ih× from the individual parities amplitudes, which lead to

(−1)mA∗
ℓ(−m)N̄ = λ2,ℓ

2
(
Ã+,ℓmN + iÃ−,ℓmN

)
. (4.29)

By inverting the system (4.26)–(4.29) we can recover the individual parities amplitudes
from the strain amplitudes as

Ã+,ℓmN = 1
λ2,ℓ

(
AℓmN + (−1)mA∗

ℓ(−m)N̄
)
, (4.30)

Ã−,ℓmN = i

λ2,ℓ

(
AℓmN − (−1)mA∗

ℓ(−m)N̄
)
. (4.31)

Thus, we see that the amplitude of a regular mode for a given parity depends on both the
amplitudes of regular and mirror modes in the strain. We can now follow our main algorithm
for computing the amplitudes of quadratic modes, which is the following. First, use eqs. (4.30)–
(4.31) to read the individual parities amplitudes of linear modes from the strain. Then, use
our Leaver code to compute the individual parities amplitudes of the corresponding quadratic
mode. Finally, use eq. (4.26) to find the amplitude of the quadratic mode in the strain.

Our results at this point are rather generic. In the next section we will study how
reflection (or equatorial) symmetry will allow us to simplify some of our formulas while giving
us insight into how quadratic modes amplitudes depend on the linear ones.

4.4 Reflection symmetry

The results of the previous section can be simplified if we impose a symmetry which is
commonly assumed in the QNM literature [11, 12, 19, 47], namely reflection (or equatorial)
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symmetry. Indeed, if the underlying cause for BH perturbations is a BBH merger, and if we
neglect the spins of the progenitor BHs as a first approximation, then the system is reflection
symmetric with respect to the plane of motion of the BBH. We prove in appendix A that it
imposes the following relation between the amplitude of regular and mirror modes:

A∗
ℓ(−m)N̄ = (−1)ℓAℓmN . (4.32)

Waveforms computed assuming reflection symmetry have a circular polarization pattern
up to angular factors, see e.g. [47]. Let us now introduce a polarization parameter κℓmN
encoding deviations from equatorial symmetry:

κℓmN = (−1)m
A∗

ℓ(−m)N̄
AℓmN

. (4.33)

We see that κℓmN = (−1)ℓ+m if we assume reflection symmetry, however we will keep
κℓmN arbitrary in our final results. Using eqs. (4.30) and (4.31) there is now a one-to-one
correspondence between the individual parities amplitudes Ã+,ℓmN , Ã−,ℓmN and the strain
amplitude together with the polarization parameter, given by

Ã+,ℓmN = AℓmN
λ2,ℓ

(
1 + κℓmN

)
, (4.34)

Ã−,ℓmN = i
AℓmN
λ2,ℓ

(
1− κℓmN

)
, (4.35)

and the inverse relations read

AℓmN = λ2,ℓ

2
(
Ã+,ℓmN − iÃ−,ℓmN

)
, (4.36)

κℓmN = Ã+,ℓmN + iÃ−,ℓmN

Ã+,ℓmN − iÃ−,ℓmN
. (4.37)

Here we can notice that, if one assumes reflection symmetry κℓmN = (−1)ℓ+m, then the
parity of the mode is completely given by the parity of ℓ +m, i.e. h− vanishes for ℓ +m

even and vice-versa.

5 Final ratio of amplitudes and its symmetries

We are now ready to assemble all of our formulas together to obtain the ratio of quadratic
amplitudes to linear ones. We will express our results in terms of the amplitudes and po-
larization parameters entering the strain in eq. (4.25), because these are the most relevant
for comparing our results with NR simulations. Taking into account the sum over parities
mentioned in section 3.4 and all the previous results obtained in this section (in particu-
lar eqs. (4.36) and (4.37)), we can express the quadratic mode amplitude and polarization
parameter in the following way.

If ℓ + ℓ1 + ℓ2 is even:

A(2)
ℓmN

A(1)
1 A(1)

2
= 1

4
[
α+ + β+

]
, κ

(2)
ℓmN = α+ − β+

α+ + β+
, (5.1)

α+ = R−−→+
(
1− κ

(1)
1
)(
1− κ

(1)
2
)
+R++→+

(
1 + κ

(1)
1
)(
1 + κ

(1)
2
)
,

β+ = R+−→−
(
1 + κ

(1)
1
)(
1− κ

(1)
2
)
+R−+→−

(
1− κ

(1)
1
)(
1 + κ

(1)
2
)
,
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where to shorten the notation we have denoted A(1)
i := A(1)

ℓimiNi
, κ(1)

i := κ
(1)
ℓimiNi

.
If ℓ + ℓ1 + ℓ2 is odd:

A(2)
ℓmN

A(1)
1 A(1)

2
= 1

4
[
α− + β−

]
, κ

(2)
ℓmN = α− − β−

α− + β−
, (5.2)

α− = R+−→+
(
1 + κ

(1)
1
)(
1− κ

(1)
2
)
+R−+→+

(
1− κ

(1)
1
)(
1 + κ

(1)
2
)
,

β− = R−−→−
(
1− κ

(1)
1
)(
1− κ

(1)
2
)
+R++→−

(
1 + κ

(1)
1
)(
1 + κ

(1)
2
)
.

In this equation, the ratio of amplitudes for the individual parities Rp1p2→p are computed with
our Leaver code, so that eqs. (5.1) and (5.2) completely fix the quadratic mode amplitudes and
polarizations as a function of the linear mode amplitudes and polarizations. It is easy to notice
that assuming κ

(1)
i = ±1 implies κ(2) = ±1 in all cases, so that if one imposes equatorial

symmetry on the linear modes amplitudes then quadratic amplitudes will automatically
respect the same symmetry. As already discussed in section 3.4, we observe that for a fixed
parity of ℓ+ ℓ1 + ℓ2, the amplitudes of quadratic modes depend on four numbers (in addition
to the initial conditions of the linear mode), which we compute with our code.

In practise, we need only to compute the ratios Rp1p2→p for regular modes at second
order (i.e. modes with positive real part of ω1 + ω2). This is because we can use the following
relations in order to compute second-order mirror modes amplitudes and polarizations:

Aℓ(−m)N̄ = (−1)mκ∗ℓmNA∗
ℓmN , κℓ(−m)N̄ = 1

κ∗ℓmN
. (5.3)

Thus, at second order the ratio of amplitudes for mirror modes reads

A(2)
ℓ(−m)N̄

A(1)
ℓ1(−m1)N̄1

A(1)
ℓ2(−m2)N̄2

=
(
κ

(2)
ℓmN

κ
(1)
1 κ

(1)
2

A(2)
ℓmN

A(1)
1 A(1)

2

)∗
. (5.4)

We provide our results in companion files [48], where we give all the values of the ratios
Rp1p2→p entering eqs. (5.1) and (5.2) for 2 ≤ ℓ, ℓ1, ℓ2 ≤ 7 respecting the Clebsch-Gordan rules
|ℓ1 − ℓ2| ≤ ℓ ≤ ℓ1 + ℓ2. We also include the cases where one of the linear amplitudes is an
overtone n = 1 or a mirror mode m = −. We furthermore provide a convenience Python
function to directly compute the quadratic ratios A(2)

ℓmN /A
(1)
1 A(1)

2 either assuming reflection
symmetry or supplementing κ

(1)
1 , κ(1)

2 .

5.1 Explicit values of the ratio

If we assume reflection symmetry, then κi = (−1)ℓi+mi and the ratio of amplitudes is a single
number that we compute with our code. In our companion paper [46] we have plotted this
ratio for several parent linear modes; while referring the reader to this paper for more details,
let us just highlight here that a combination of a regular mode with a mirror mode can
give appreciable nonlinear ratios in the ℓ = 2 multipole, which have not yet been observed
in NR simulations. For example, we find

A(2)
21(220+)×(2(−1)0−)

A(1)
220+A

(1)
2(−1)0−

≃ 0.104e−1.59i (reflection symmetry). (5.5)
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On the other hand, we find for the loudest quadratic mode the following ratio of amplitudes:

A(2)
44(220+)×(220+)(

A(1)
220+

)2 ≃ 0.154e−0.068i (reflection symmetry), (5.6)

in good agreement with NR simulations [15, 20–23, 25, 26].
As stated before, reflection symmetry is approximately satisfied in most NR simulations

of mergers [11]; however the symmetry is broken by the spins of the progenitor BHs and
there will be small deviations from it in actual ringdown waveforms. Our results show that
in this case the ratio of amplitudes depends on the linear modes initial conditions through
their polarization parameters κ(1)

i ; this dependence could explain the discrepancies in the
literature when computing the ratio of amplitudes in different physical settings [15, 25, 26, 35].
The dependence of the nonlinear ratio on linear modes polarizations (equivalently, on their
polarity) has been analyzed in the recent [38]; we have verified that our generic formula (5.1)
agrees with their figure 1 for the value of the dominant nonlinear mode as a function of κ(1)

i .
We refer the reader to that article for more details on this point.

5.2 Two selection rules for the quadratic modes

There is an additional symmetry in quadratic modes that is worth mentioning. To begin
with, we notice that the m1,m2,m dependence of the source (and hence of the ratio of
amplitudes) is completely captured by a 3j symbol. This agrees with expectations based on
the Wigner-Eckart theorem that rotational symmetry fixes the source for all m1,m2,m if we
know it for a single configuration, provided its 3j symbol is nontrivial. More importantly,
a 3j symbol has the following symmetry property:(

ℓ1 ℓ2 ℓ

m1 m2 −m

)
= (−1)ℓ1+ℓ2+ℓ

(
ℓ2 ℓ1 ℓ

m2 m1 −m

)
. (5.7)

Thus, if ℓ1 + ℓ2 + ℓ is odd and ℓ1 = ℓ2, m1 = m2, the 3j symbol vanishes which implies
a first selection rule:

Rule 1. Quadratic modes vanish if ℓ1 = ℓ2, m1 = m2 and ℓ is odd.

Notice that it is valid regardless of the value of n1, n2, m1, m2, κ(1)
1 and κ(1)

2 , and that we
are focussing on the vanishing of the strain amplitude A(2)

ℓmN where all parities are summed
over as in eq. (5.2). However, the antisymmetry (5.7) of the 3j symbol (for ℓ+ ℓ1 + ℓ2 odd)
implies another, less straightforward, selection rule for quadratic modes. To see this, let us
define a normalized quadratic ratio R̂ by dividing R by its factoring 3j symbol. From the
previous consideration on the Wigner-Eckart theorem, we get the property that R̂ does not
depend on m, m1, m2. Furthermore, the antisymmetry (5.7) together with the symmetry of
the source term by exchange of all the quantum numbers of the linear modes (1 ↔ 2) implies
that the normalized ratio is antisymmetric under (1 ↔ 2) if ℓ + ℓ1 + ℓ2 is odd.

This means that R̂ vanishes if all quantum numbers of modes 1 and 2 are the same
except for m1 and m2, which can be arbitrary. Thus the ratios R̂−−→− and R̂++→− in (5.2)
vanish in this case, but R̂+−→− does not necessarily vanish since p1 ̸= p2. However, we still
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get that R̂−+→− = −R̂+−→− under (1 ↔ 2). Thus the strain amplitude in eq. (5.2) will
vanish if (1 + κ

(1)
1 )(1 − κ

(1)
2 ) = (1 − κ

(1)
1 )(1 + κ

(1)
2 ), i.e. if κ(1)

1 = κ
(1)
2 . These considerations

lead us to the following second selection rule:

Rule 2. Quadratic modes vanish if ℓ1 = ℓ2, n1 = n2, m1 = m2, κ(1)
1 = κ

(1)
2 and ℓ is odd.

Notice that this time the rule is valid regardless of the values of m1, m2. Furthermore,
if we assume reflection symmetry, κ(1)

1 = κ
(1)
2 means that ℓ1 + m1 has to be of the same

parity than ℓ2 +m2. This explains the vanishing of some of the quadratic modes plotted
in figure 1 of our companion article [46].

6 Conclusions

In this article we have developed the tools for an accurate computation of the amplitudes
and polarization parameters of all quadratic QNMs for a Schwarzschild BH. We give in a
companion package [48] the result of our Leaver code for quadratic modes with 2 ≤ ℓ, ℓ1, ℓ2 ≤ 7,
which should be enough for nonlinear ringdown analysis with data from next-generation
interferometers. Our work paves the way towards improved ringdown modelling as well as
accurate tests of GR. Indeed, one expects that in modified theories of gravity where BH
possess scalar hair [73] or a superradiant scalar cloud [74], the ratio of quadratic to linear
amplitudes would be different in data compared to our vacuum GR computation. This opens
up a possibility for a new test of GR in the nonlinear regime.

Our final result in section 5 shows that quadratic QNM amplitudes and polarizations
are completely fixed once linear amplitudes are known, however the ratio of quadratic to
linear amplitudes itself depends on the parity content of linear modes. In this sense, the
ratio of amplitudes is not a universal quantity that should be the same across different
initial conditions, as was emphasised in the recent work [38]. In the most generic case,
quadratic modes amplitudes depend on four numbers that can be considered (like linear
modes frequencies) to be fundamental properties of GR, related to the four different ways to
combine two linear modes with different parities. We also proved two selection rules implying
the vanishing of quadratic modes in some particular cases. Although the dependence of
quadratic modes on spin seems to be rather weak from Numerical Relativity simulations [15],
it still remains important to extend our results to the Kerr case, where the ratio of amplitudes
will be promoted to a function of the spin of the remnant BH. Although technically challenging,
third-order perturbation theory would also be an interesting avenue for future work. At this
order the changing mass of the BH background begins to manifest itself in the ringdown
signal and this effect may be relevant in analyzing the ringdown in black hole mergers [75].
We plan to address these issues in the near future.
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A Reflection symmetry

The assumption (4.32), commonplace in ringdown models(e.g. [11, 12, 19]), is related to
reflection symmetry (see also appendix B of [47]). Let us show here that eq. (4.32) comes from
assuming that the waveform is reflection symmetric with respect to the plane of the binary, i.e.
symmetric under θ → π−θ. In this appendix we will perform all computations in the TT gauge,
so we will suppress the TT labels on variables to avoid clutter. Denoting by Ri

j = δi
j − 2δi

zδ
z
j

the matrix of the linear transformation defining reflection symmetry in Cartesian coordinates,
it is easy to show that the polarization tensors defined in (4.23) transform as

e+
ij(π − θ, ϕ) = Rk

iR
l
je

+
kl(θ, ϕ) , (A.1)

e×ij(π − θ, ϕ) = −Rk
iR

l
je

×
kl(θ, ϕ) , (A.2)

so that imposing that the waveform is refection symmetric i.e. hij(π − θ, ϕ) = Rk
iR

l
jhkl(θ, ϕ)

imposes the transformation properties

h+(π − θ, ϕ) = h+(θ, ϕ) , (A.3)
h×(π − θ, ϕ) = −h×(θ, ϕ) . (A.4)

The second step of the proof is to derive what is the transformation property of a single (ℓm)
component of the waveform model (4.25). Let us denote h+−ih× =

∑
ℓm ψℓm −2Yℓm(θ, ϕ). Us-

ing the property −2Yℓm(π−θ, ϕ) = (−1)ℓ
−2Y

∗
ℓ−m(θ, ϕ) we get that reflection symmetry imposes

ψℓ(−m) = (−1)ℓψ∗
ℓm . (A.5)

This is exactly the transformation needed to find the relation (4.32) for the mirror mode
amplitudes.

B A toy model

We can understand the main features of quadratic modes with a simple toy-model. Let us
consider the following differential equation on the variable h(t, r):

d2h

dr2 − d2h

dt2 = ϵh2 , (B.1)

where ϵ is the small expansion parameter. We can solve it perturbatively by expanding
h = h(1)+ϵh(2)+. . . At leading order (i.e. setting ϵ = 0), the solution for h(1) is a superposition
of ingoing and outgoing waves. We will just assume that the spatial boundary conditions of the
problem are such that the frequencies ωj of these waves are quantized by some integer j so that

h(1) =
∑

j

Aje
iωj(r−t) . (B.2)

Let us now solve for the second-order solution h(2), which obeys the equation

d2h(2)

dr2 − d2h(2)

dt2 =
∑
j,k

AjAke
i(ωj+ωk)(r−t) . (B.3)
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The homogeneous solution of this equation is just a renormalization of the first-order solution
h(1). On the other hand, the source term on the right-hand side oscillates at a frequency
ωj + ωk which we assume is not contained in the spectrum of the linear solution, as is the
case for QNM (i.e., ωl ̸= ωj + ωk for all j, k, l). Let us focus on a single frequency component
of the source term. Notice that, for a given frequency ωj + ωk, there are in fact two terms
in the sum contributing to the source if j ̸= k, and one if j = k. We can easily take this
into account by multiplying the source by 2 and dividing it by a symmetry factor S, where
S = 2 if j = k and S = 1 otherwise.

Then, the particular solution for h(2) = h̃(2)e−i(ωj+ωk)t oscillates at the new frequency
ωj + ωk and is given by

h̃(2) = Bjke
i(ωj+ωk)r + Cjke

−i(ωj+ωk)r − iAjAk

S(ωj + ωk)
rei(ωj+ωk)r . (B.4)

Several important features emerge from this equation. First, notice that the last term seem
to diverge at large radius r. This unphysical feature is avoided in the complete calculation
that we perform in the main body of the paper by defining a “regularized” source term,
whose asymptotic behavior will ensure that the QNM amplitude goes to a constant at the
spatial boundaries. The computation of the physical gravitational wave amplitude at second
order will only involve the regularized source term.

Second, notice that the only freedom that we have at our disposal in order to ensure
that h(2) respects the spatial boundary conditions is to tune the free amplitudes Bjk and
Cjk, since the frequency ωj + ωk is not a free parameter like at first order but is instead
imposed by the source term. This point highlight the essential difference between first and
second-order modes: while at first order the amplitudes of the modes are arbitrary parameters
that should be obtained from the initial conditions of the merger (e.g. the masses and spins
of the progenitors BH), at second order both frequencies and amplitudes are fixed by the
spatial boundary conditions, which in the full problem will be the requirement that the wave
is purely infalling at the horizon and purely outgoing at infinity.

C Spherical harmonics and angular integrals

In this appendix we review, following [36], the conventions regarding the decomposition of
a spherically symmetric spacetime in time-radial and angular components. We focus on
the angular components, in particular on the construction of some tools that will allow us
to easily make use of the properties of spherical symmetry. To begin, the Schwarzschild
metric can be decomposed as:

ds2 = gabdx
adxb + r2ΩABdθ

AdθB , (C.1)

where, using standard polar coordinates θA = (θ, ϕ)

ΩAB :=
(
1 0
0 sin θ2

)
, (C.2)

while the time and radial components in coordinates (t, r) are:

gab :=
(
−f(r) 0

0 f(r)−1

)
. (C.3)
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Focusing on the angular part, it is possible to choose a different basis from the coordinate
one, in particular one may work with a set of complex null vectors which forms a complete
basis for the real vector space:

mA = (1, i sin θ) and m∗
A = (1,−i sin θ) , (C.4)

where the star denotes complex conjugation. This new basis will be useful for the definition of
the so called spin-weighted spherical harmonics which will be used to perform angular integrals.

Splitting the (t, r) sector and the angular one, we may define a covariant derivative on
the unit sphere. In accordance with the existing literature, we will denote this as D. The
non-zero Christoffel symbols are:

Γϕ
θϕ = cot θ , Γθ

ϕϕ = − sin θ cos θ , (C.5)

modulo permutations of lower indices.

C.1 Tensor harmonics

Due to the invariance under rotations of the unit sphere S2, scalar functions defined on
the latter can be decomposed in spherical harmonics Yℓm(θ, ϕ) which are the eigenfunctions
of the Laplace operator on S2:

DAD
AY ℓm(θ, ϕ) = −ℓ(ℓ+ 1)Y ℓm(θ, ϕ) . (C.6)

The same is valid for generic tensorial quantities, with the only difference that the basis
for the decomposition will be related to covariant derivatives of spherical harmonics. We
begin discussing the decomposition of vectors. We define:

Y ℓm
A (θ, ϕ) := ∂AY

ℓm ,

Xℓm
A (θ, ϕ) := −ϵ C

A ∂CY
ℓm ,

(C.7)

where ϵ is the Levi-Civita tensor on the unit sphere, in particular:

ϵθϕ = −ϵϕθ = sin θ . (C.8)

These two vector harmonics form a basis for vector fields on the sphere, in fact for each
point on the sphere X and Y are orthogonal to each other. A generic vector field can be
therefore decomposed as:

V(θ, ϕ) =
∑
ℓm

V ℓm
+ Yℓm(θ, ϕ) + V ℓm

− Xℓm(θ, ϕ) . (C.9)

V+ and V− are the components of V with respect to the basis defined by Y and X. The
plus and the minus are related to parity properties of vector harmonics. Scalar spherical
harmonics have parity + or − depending on ℓ, in particular

Y ℓm(π − θ, ϕ+ π) = (−1)ℓY ℓm(θ, ϕ) . (C.10)

The same is true for the vector harmonics:

Yℓm(θ, ϕ) → (−1)ℓYℓm(θ, ϕ) ,
Xℓm(θ, ϕ) → (−1)ℓ+1Xℓm(θ, ϕ) ,

(C.11)
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which can be easily seen writing the vectors in the (θ, ϕ) coordinate base and performing
the transformation (θ, ϕ) → (π − θ, ϕ+ π) accounting also for the change of basis. In other
words, Y and X are respectively a set of vectors and pseudo-vectors indexed by ℓ and m

and this justifies the notation + and − for the decomposition of V.
The same considerations can be extended to higher rank tensors. The irreducible

representations of a generic two indices tensor under SO(3) are a symmetric, anti-symmetric
and trace part. Using the previous machinery, it is immediate to get a basis for two indices
symmetric tensors that makes parity explicit:

Y ℓm
AB := D⟨ADB⟩Y

ℓm ≡ DADBY
ℓm − 1

2DAD
AY ℓm ,

Xℓm
AB := −ϵ C

(ADB)DCY
ℓm ,

(C.12)

where ⟨·⟩ denotes the symmetrized traceless component. These tensors are called tensor
spherical harmonics, and as in the previous case have respectively parity + and − on top of
the parity given by ℓ. A rank two symmetric tensor can therefore be decomposed as:

tAB =
∑
ℓm

tℓm
◦ ΩABY

ℓm + tℓm
+ Y ℓm

AB + tℓm
− Xℓm

AB . (C.13)

Again, the plus and minus make explicit the parity of the associated tensor harmonic. Notice
that decomposing a generic tensor would also require the definition of two anti-symmetric
tensors with definite parity. This explains the decomposition in equations (2.8), (2.9), (2.10)
if the time-radial components are thought as indexing scalars of SO(3).

To make contact with common conventions in the literature it may be useful to write
explicitly the matrices Y ℓm

AB and Xℓm
AB:

Y ℓm
AB =

(
∂2

θY
ℓm+ 1

2ℓ(ℓ+1)Y ℓm −cotθ∂ϕY
ℓm+∂θ∂ϕY

ℓm

−cotθ∂ϕY
ℓm+∂θ∂ϕY

ℓm ∂2
ϕY

ℓm+cosθ sinθ∂θY
ℓm+ 1

2ℓ(ℓ+1)sin2 θY ℓm

)
, (C.14)

Xℓm
AB =

(
1

sinθ (cotθ∂ϕY −∂θ∂ϕY ) sinθ(∂2
θY + 1

2ℓ(ℓ+1)Y )
sinθ(∂2

θY + 1
2ℓ(ℓ+1)Y ) −sinθ (cotθ∂ϕY −∂θ∂ϕY )

)
. (C.15)

All the spherical tensors we defined are orthogonal under the scalar product defined on the
sphere. Our definitions can be compared for example with eq. (3.2)–(3.11) in [33], where
they appear with an extra prefactor that ensures orthonormality.

C.2 Spin-weighted spherical harmonics

In the paper we made use of the machinery of spin-weighted spherical harmonics in order
to compute the integrals that are necessary to extract the spherical components of energy-
momentum tensor generated by the first order perturbation. A spin-weighted spherical
harmonic is a function of the usual spherical harmonics defined as:

sY
ℓm = 1

λs

(−1)sðsY ℓm 0 ≤ s ≤ ℓ

ð∗|s|Y ℓm −ℓ ≤ s ≤ 0
, (C.16)
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where λs was defined in eq. (2.17) and the differential operators act as:
ð sYℓm =

(
mADA − sDAm

A
)

sYℓm

ð∗ sYℓm =
(
mA∗DA + sDAm

A∗
)

sYℓm

. (C.17)

The vector and tensor spherical harmonics can then be expressed in terms of spin-weighted
spherical harmonics as

Y ℓm
A = λ1

2
(
−1Y

ℓmmA − 1Y
ℓmm∗

A

)
, (C.18)

Xℓm
A = −iλ1

2
(
−1Y

ℓmmA + 1Y
ℓmm∗

A

)
, (C.19)

Y ℓm
AB = λ2

4
(
−2Y

ℓmmAmB + 2Y
ℓmm∗

Am
∗
B

)
, (C.20)

Xℓm
AB = −iλ2

4
(
−2Y

ℓmmAmB − 2Y
ℓmm∗

Am
∗
B

)
, (C.21)

and similarly for higher indices tensors.

C.3 Angular integrals

When computing the source term Sµν defined in eq. (2.5) (projected on the basis of spherical
tensors) one has to compute angular integrals of products of three spherical tensors.

To perform such integrals, the (well known) strategy that we employed was to write any
component of any spherical tensor using derivatives of scalar spherical harmonics according
to eqs. (C.18)–(C.21) up to trigonometric functions. Replacing such derivative terms with
spin-weighted harmonics, one obtains expressions involving the product of three spin-weighted
harmonics (without derivatives) and many trigonometric functions. Because ultimately we
are always dealing with scalars (the components of Sµν stripped of their angular dependence),
all the trigonometric functions simplify and the integrals always reduce to the form

Cℓ1m1s1,ℓ2m2s2,ℓms =
∫

s1Y
ℓ1m1(θ, ϕ) s2Y

ℓ2m2(θ, ϕ) sY
ℓm(θ, ϕ) sin θdθdϕ . (C.22)

This integral can be expressed using Wigner 3-j symbols (closely related to Clebsh-Gordan
coefficients) and gives

Cℓ1m1s1,ℓ2m2s2,ℓms =

√
(2ℓ1+1)(2ℓ2+1)(2ℓ+1)

4π

(
ℓ1 ℓ2 ℓ

−s1 −s2 −s

)(
ℓ1 ℓ2 ℓ

m1 m2 m

)
. (C.23)

This result allows us to perform all the integrals we face. To be more precise, given we
want to project Sµν onto a basis of tensor harmonics, our integrals will involve the complex
conjugates Y ℓ,m ∗, Y ℓ,m ∗

A , etc. We get rid of complex conjugation by flipping the sign of m
and s and multiplying by (−1)s+m, and then we proceed as described above.

D Notation

While we followed the notation of Spiers, Pound and Wardell [36], we also found it helpful to
cross-checked some of our intermediate results with other authors. Hence, in this appendix
we compare our notation with different choices that appeared in the literature.
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hµν (Us) hµν (Ioka, Nakano) Sµν (Us) Sµν (Ioka, Nakano)
htt f(r)H0 Stt 8πA0

htr H1 Str 8π i√
2A1

hrr
1

f(r)H2 Srr 8πA
h◦ r2K − ℓ(ℓ+1)

2 r2G S◦
8πr2
√

2 G

ht+ h
(e)
0 St+

8πir√
2ℓ(ℓ+1)

B0

hr+ h
(e)
1 Sr+

8πr√
2ℓ(ℓ+1)

B

ht− h0 St− − 8πr√
2ℓ(ℓ+1)

Q0

hr− h1 Sr− − 8πir√
2ℓ(ℓ+1)

Q

h+ r2G S+
16πr2√

2ℓ(ℓ+1)(ℓ−1)(ℓ+2)
F

h− −ih2 S− − 16πir2√
2ℓ(ℓ+1)(ℓ−1)(ℓ+2)

D

Table 1. Comparison of notations for the decomposition of hµν and Sµν between us and Ioka
and Nakano.

The regularity problems of the master scalars for QNM solutions were recognized and
solved in a particular case by Ioka and Nakano in [33]. Their conventions for the metric
and the source term are summarized in table 1.

Ioka and Nakano use our same Zerilli master scalar at linear order, but at second order
their χ is related to our ψ(2) by

χ = rf(r)
λ1r + 3M

[−iωh◦
rf(r) − htr

]
= (D.1)

= rf(r)
λ1r + 3M

[
−iωr∂rψ

(2) − i
ωA

rf(r)ψ
(2) + iω

4r4

λ2
1Λrf(r)

Stt + iωr∂rψ
(2)+ (D.2)

+iωrBψ(2) − 2r2

λ2
1

(
Str + i

2ωr
Λf(r)Stt

)]
= (D.3)

= rf(r)
λ1r + 3M

[
−iω

(
A

rf(r) − rB

)
ψ(2) − 2r2

λ2
1
Str

]
= −iωψ(2) − 4r2f(r)

Λλ2
1

Str (D.4)

Finally, Brizuela in [32] works with a re-scaled version of our master scalar:

Ψ = −2f
Λ
(
−rfhrr + r2(r−2h◦)′

)
+ 1
r
h◦ =

λ2
1
2 ψ+ (D.5)

Π = −ϵab 1
r2 δbha− + 2

r3 ϵ
abrbha− = −2r3

µ2
ℓ

ψ− (D.6)

where the comparison is performed using on both sides the RW gauge.

E Code computing the source term

In this appendix, we give a brief account of the Mathematica codes “Asymptotics” we used
to compute the source term S defined in eq. (3.3). We separate the computation according
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to the parity of the modes involved (Regge-Wheeler or Zerilli sectors), both at linear and at
quadratic order, for a total of six possible combinations, as displayed in eqs. (3.26) and (3.27).
These codes also report the metric reconstruction at large r in RW gauge starting from the
regulated master scalar, which displays many nontrivial cancellations of divergent terms.

We also wrote a code that, starting from the Einstein equations, derives eqs. (2.13)–(2.15)
and (2.18). This code is quite straightforward, so we will not comment further, except to
point out that eq. (2.15) can be derived from the Einstein equations, as is well known, without
relying on an explicit expression for Sµν , but rather only on its conservation. While reading
our notebooks, the reader should note that, for convenience, our code defines µ and λs in
eq. (2.17) without the square root.

E.1 Computing Sµν

We begin by computing the Sµν tensor appearing in eq. (2.5). We do this by computing,
using the Black Hole Perturbation Toolkit, the Einstein tensor of the metric

g = ḡ + ϵ
(
σ1e h

(1)
1,+ + σ1o h

(1)
1,− + σ2e h

(1)
2,+ + σ2o h

(1)
1,−

)
+O(ϵ3) (E.1)

which gives us G(2)[h(1), h(1)]. In the equation above, all h terms have the appropriate time
and angular dependence which we don’t write explicitly here. The dummy parameters σ1,2
are introduced to identify the contributions that couple the two perturbations (in contrast
to self-coupling), which are proportional to σ1 × σ2. Similarly, the parameters (e, o) are
introduced to help single out the desired parity of the linear modes. The O(ϵ2) term was
omitted because we had already verified that it gives G(1)[h(2)] in eq. (2.5). The linear metric
perturbations are then expressed in terms of the master scalars in eqs. (2.13) and (2.14).

E.2 Angular integrals

While we already discussed the theory behind angular integrals of spin-weighted spherical
harmonics in appendix C.3, here we give some more details on the code implementation.

Our code converts derivatives of spherical harmonics to spin-weighted spherical harmonics
using eqs. (C.18)–(C.21), and then performs the integrals using eq. (C.22). We exploit the
symmetry of the 3j symbols(

ℓ1 ℓ2 ℓ

s1 s2 s

)
= (−1)ℓ1+ℓ2+ℓ

(
ℓ1 ℓ2 ℓ

−s1 −s2 −s

)
(E.2)

to make s1 ≥ 0 and, in case s1 = 0, s2 ≥ 0. This allows us to collect terms and work with
simpler expressions. We note that (−1)ℓ1+ℓ2+ℓ is completely fixed by the parity of the modes,
so we hardcode it keeping in mind that the source obtained in this way will be correct only
for processes not forbidden by parity (see eq. (2.21)).

E.3 Regulation of S

The source term s(r) defined in eq. (3.4) gives a regular master scalar if it vanishes at least
linearly at the horizon and at least as 1/r2 at infinity. To perform the required asymptotic
expansions, we computed the ratio ψ′(r)/ψ(r) to high order in (r − 2M) and in 1/r for both
the even and the odd sectors, using asymptotic expansions in the RW and Zerilli equations.
We are then able to compute s(r) close to the horizon, finding that it is always regular
regardless of the parity sector.
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Linear mode 1 Linear mode 2 Quadratic mode ∆(r)

Even Even Even a2r
2 + a1r

Odd /

Even Odd Even a1r

Odd a1r

Odd Odd Even a1r

Odd /

Table 2. The ansatz chosen for ∆(r), which depends on the parity of the linear and quadratic modes.

On the contrary, we find a divergent behaviour at large r, in particular the function ∆(r)
defined in eq. (3.2) is chosen depending on the parities according to the ansatze in table 2,
where / indicates that s(r) is already regular, and the ci vary depending on the parities. It
is worth mentioning that, using these ansatze, the source term s(r) receives corrections up
to order O(r) from a2 and O(1) from a1; perhaps surprisingly, the O(1/r) term is always
automatically cancelled. The reason for this simplification is that the O(1/r2) behaviour
expected from a regular source comes from imposing that Ψ(r) in eq. (3.2) should go to a
pure exponential at large r (regular behaviour). Given the regularity of the linear master
scalars ψ(1)

1,2, and assuming a power law expansion in r and 1/r for ψ(2), our ansatze for
∆(r) can already eliminate all divergences from Ψ, which requires s(r) to be quadratically
vanishing. An alternative point of view is that to cancel a possible O(1/r) term in s(r),
our ∆(r) would have to contain a term ∝ log(r)/r, which would later spoil the finiteness
of the observables at large r.

Open Access. This article is distributed under the terms of the Creative Commons Attri-
bution License (CC-BY4.0), which permits any use, distribution and reproduction in any
medium, provided the original author(s) and source are credited.

References

[1] T. Regge and J.A. Wheeler, Stability of a Schwarzschild singularity, Phys. Rev. 108 (1957) 1063
[INSPIRE].

[2] F.J. Zerilli, Gravitational field of a particle falling in a schwarzschild geometry analyzed in tensor
harmonics, Phys. Rev. D 2 (1970) 2141 [INSPIRE].

[3] S.A. Teukolsky, Perturbations of a rotating black hole. I. Fundamental equations for gravitational
electromagnetic and neutrino field perturbations, Astrophys. J. 185 (1973) 635 [INSPIRE].

[4] L. Blanchet, Gravitational Radiation from Post-Newtonian Sources and Inspiralling Compact
Binaries, Living Rev. Rel. 17 (2014) 2 [arXiv:1310.1528] [INSPIRE].

[5] E. Berti, V. Cardoso and A.O. Starinets, Quasinormal modes of black holes and black branes,
Class. Quant. Grav. 26 (2009) 163001 [arXiv:0905.2975] [INSPIRE].

[6] R.A. Konoplya and A. Zhidenko, Quasinormal modes of black holes: From astrophysics to string
theory, Rev. Mod. Phys. 83 (2011) 793 [arXiv:1102.4014] [INSPIRE].

– 32 –

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1103/PhysRev.108.1063
https://inspirehep.net/literature/2454
https://doi.org/10.1103/PhysRevD.2.2141
https://inspirehep.net/literature/68376
https://doi.org/10.1086/152444
https://inspirehep.net/literature/81601
https://doi.org/10.12942/lrr-2014-2
https://doi.org/10.48550/arXiv.1310.1528
https://inspirehep.net/literature/1257367
https://doi.org/10.1088/0264-9381/26/16/163001
https://doi.org/10.48550/arXiv.0905.2975
https://inspirehep.net/literature/820791
https://doi.org/10.1103/RevModPhys.83.793
https://doi.org/10.48550/arXiv.1102.4014
https://inspirehep.net/literature/890235


J
H
E
P
0
9
(
2
0
2
4
)
1
1
9

[7] A. Ghosh, R. Brito and A. Buonanno, Constraints on quasinormal-mode frequencies with
LIGO-Virgo binary-black-hole observations, Phys. Rev. D 103 (2021) 124041
[arXiv:2104.01906] [INSPIRE].

[8] LIGO Scientific and Virgo collaborations, Tests of general relativity with GW150914, Phys.
Rev. Lett. 116 (2016) 221101 [Erratum ibid. 121 (2018) 129902] [arXiv:1602.03841] [INSPIRE].

[9] LIGO Scientific and Virgo collaborations, Tests of general relativity with binary black holes
from the second LIGO-Virgo gravitational-wave transient catalog, Phys. Rev. D 103 (2021)
122002 [arXiv:2010.14529] [INSPIRE].

[10] A. Buonanno, G.B. Cook and F. Pretorius, Inspiral, merger and ring-down of equal-mass
black-hole binaries, Phys. Rev. D 75 (2007) 124018 [gr-qc/0610122] [INSPIRE].

[11] E. Berti et al., Inspiral, merger and ringdown of unequal mass black hole binaries: A Multipolar
analysis, Phys. Rev. D 76 (2007) 064034 [gr-qc/0703053] [INSPIRE].

[12] E. Berti, J. Cardoso, V. Cardoso and M. Cavaglia, Matched-filtering and parameter estimation of
ringdown waveforms, Phys. Rev. D 76 (2007) 104044 [arXiv:0707.1202] [INSPIRE].

[13] V. Baibhav, E. Berti, V. Cardoso and G. Khanna, Black Hole Spectroscopy: Systematic Errors
and Ringdown Energy Estimates, Phys. Rev. D 97 (2018) 044048 [arXiv:1710.02156] [INSPIRE].

[14] M. Giesler, M. Isi, M.A. Scheel and S. Teukolsky, Black Hole Ringdown: The Importance of
Overtones, Phys. Rev. X 9 (2019) 041060 [arXiv:1903.08284] [INSPIRE].

[15] M.H.-Y. Cheung, E. Berti, V. Baibhav and R. Cotesta, Extracting linear and nonlinear
quasinormal modes from black hole merger simulations, Phys. Rev. D 109 (2024) 044069
[Erratum ibid. 110 (2024) 049902] [arXiv:2310.04489] [INSPIRE].

[16] E. Barausse et al., Prospects for Fundamental Physics with LISA, Gen. Rel. Grav. 52 (2020) 81
[arXiv:2001.09793] [INSPIRE].

[17] D. Reitze et al., Cosmic Explorer: The U.S. Contribution to Gravitational-Wave Astronomy
beyond LIGO, Bull. Am. Astron. Soc. 51 (2019) 35 [arXiv:1907.04833].

[18] M. Punturo et al., The Einstein Telescope: A third-generation gravitational wave observatory,
Class. Quant. Grav. 27 (2010) 194002 [INSPIRE].

[19] S. Yi et al., Nonlinear quasinormal mode detectability with next-generation gravitational wave
detectors, Phys. Rev. D 109 (2024) 124029 [arXiv:2403.09767] [INSPIRE].

[20] S. Ma et al., Quasinormal-mode filters: A new approach to analyze the gravitational-wave
ringdown of binary black-hole mergers, Phys. Rev. D 106 (2022) 084036 [arXiv:2207.10870]
[INSPIRE].

[21] L. London, D. Shoemaker and J. Healy, Modeling ringdown: Beyond the fundamental
quasinormal modes, Phys. Rev. D 90 (2014) 124032 [Erratum ibid. 94 (2016) 069902]
[arXiv:1404.3197] [INSPIRE].

[22] K. Mitman et al., Nonlinearities in Black Hole Ringdowns, Phys. Rev. Lett. 130 (2023) 081402
[arXiv:2208.07380] [INSPIRE].

[23] M.H.-Y. Cheung et al., Nonlinear Effects in Black Hole Ringdown, Phys. Rev. Lett. 130 (2023)
081401 [arXiv:2208.07374] [INSPIRE].

[24] N. Khera et al., Nonlinear Ringdown at the Black Hole Horizon, Phys. Rev. Lett. 131 (2023)
231401 [arXiv:2306.11142] [INSPIRE].

– 33 –

https://doi.org/10.1103/PhysRevD.103.124041
https://doi.org/10.48550/arXiv.2104.01906
https://inspirehep.net/literature/1856133
https://doi.org/10.1103/PhysRevLett.116.221101
https://doi.org/10.1103/PhysRevLett.116.221101
https://doi.org/10.48550/arXiv.1602.03841
https://inspirehep.net/literature/1421154
https://doi.org/10.1103/PhysRevD.103.122002
https://doi.org/10.1103/PhysRevD.103.122002
https://doi.org/10.48550/arXiv.2010.14529
https://inspirehep.net/literature/1826681
https://doi.org/10.1103/PhysRevD.75.124018
https://doi.org/10.48550/arXiv.gr-qc/0610122
https://inspirehep.net/literature/729905
https://doi.org/10.1103/PhysRevD.76.064034
https://doi.org/10.48550/arXiv.gr-qc/0703053
https://inspirehep.net/literature/746030
https://doi.org/10.1103/PhysRevD.76.104044
https://doi.org/10.48550/arXiv.0707.1202
https://inspirehep.net/literature/755300
https://doi.org/10.1103/PhysRevD.97.044048
https://doi.org/10.48550/arXiv.1710.02156
https://inspirehep.net/literature/1628940
https://doi.org/10.1103/PhysRevX.9.041060
https://doi.org/10.48550/arXiv.1903.08284
https://inspirehep.net/literature/1725950
https://doi.org/10.1103/PhysRevD.109.044069
https://doi.org/10.48550/arXiv.2310.04489
https://inspirehep.net/literature/2716184
https://doi.org/10.1007/s10714-020-02691-1
https://doi.org/10.48550/arXiv.2001.09793
https://inspirehep.net/literature/1777475
https://doi.org/10.48550/arXiv.1907.04833
https://doi.org/10.1088/0264-9381/27/19/194002
https://inspirehep.net/literature/874889
https://doi.org/10.1103/PhysRevD.109.124029
https://doi.org/10.48550/arXiv.2403.09767
https://inspirehep.net/literature/2769163
https://doi.org/10.1103/PhysRevD.106.084036
https://doi.org/10.48550/arXiv.2207.10870
https://inspirehep.net/literature/2121095
https://doi.org/10.1103/PhysRevD.90.124032
https://doi.org/10.48550/arXiv.1404.3197
https://inspirehep.net/literature/1290122
https://doi.org/10.1103/PhysRevLett.130.081402
https://doi.org/10.48550/arXiv.2208.07380
https://inspirehep.net/literature/2136603
https://doi.org/10.1103/PhysRevLett.130.081401
https://doi.org/10.1103/PhysRevLett.130.081401
https://doi.org/10.48550/arXiv.2208.07374
https://inspirehep.net/literature/2136587
https://doi.org/10.1103/PhysRevLett.131.231401
https://doi.org/10.1103/PhysRevLett.131.231401
https://doi.org/10.48550/arXiv.2306.11142
https://inspirehep.net/literature/2734537


J
H
E
P
0
9
(
2
0
2
4
)
1
1
9

[25] H. Zhu et al., Nonlinear effects in black hole ringdown from scattering experiments: Spin and
initial data dependence of quadratic mode coupling, Phys. Rev. D 109 (2024) 104050
[arXiv:2401.00805] [INSPIRE].

[26] J. Redondo-Yuste et al., Spin dependence of black hole ringdown nonlinearities, Phys. Rev. D
109 (2024) L101503 [arXiv:2308.14796] [INSPIRE].

[27] R.J. Gleiser, C.O. Nicasio, R.H. Price and J. Pullin, Second order perturbations of a
Schwarzschild black hole, Class. Quant. Grav. 13 (1996) L117 [gr-qc/9510049] [INSPIRE].

[28] C.O. Nicasio, R.J. Gleiser, R.H. Price and J. Pullin, The collision of boosted black holes: Second
order close limit calculations, Phys. Rev. D 59 (1999) 044024 [gr-qc/9802063] [INSPIRE].

[29] R.J. Gleiser, C.O. Nicasio, R.H. Price and J. Pullin, Gravitational radiation from Schwarzschild
black holes: The second order perturbation formalism, Phys. Rept. 325 (2000) 41
[gr-qc/9807077] [INSPIRE].

[30] D. Brizuela, J.M. Martin-Garcia and G.A. Mena Marugan, Second and higher-order perturbations
of a spherical spacetime, Phys. Rev. D 74 (2006) 044039 [gr-qc/0607025] [INSPIRE].

[31] D. Brizuela, J.M. Martin-Garcia and G.A.M. Marugan, High-order gauge-invariant perturbations
of a spherical spacetime, Phys. Rev. D 76 (2007) 024004 [gr-qc/0703069] [INSPIRE].

[32] D. Brizuela, J.M. Martin-Garcia and M. Tiglio, A Complete gauge-invariant formalism for
arbitrary second-order perturbations of a Schwarzschild black hole, Phys. Rev. D 80 (2009)
024021 [arXiv:0903.1134] [INSPIRE].

[33] H. Nakano and K. Ioka, Second Order Quasi-Normal Mode of the Schwarzschild Black Hole,
Phys. Rev. D 76 (2007) 084007 [arXiv:0708.0450] [INSPIRE].

[34] K. Ioka and H. Nakano, Second and higher-order quasi-normal modes in binary black hole
mergers, Phys. Rev. D 76 (2007) 061503 [arXiv:0704.3467] [INSPIRE].

[35] S. Ma and H. Yang, Excitation of quadratic quasinormal modes for Kerr black holes, Phys. Rev.
D 109 (2024) 104070 [arXiv:2401.15516] [INSPIRE].

[36] A. Spiers, A. Pound and B. Wardell, Second-order perturbations of the Schwarzschild spacetime:
practical, covariant and gauge-invariant formalisms, arXiv:2306.17847 [INSPIRE].

[37] B. Wardell et al., Gravitational Waveforms for Compact Binaries from Second-Order Self-Force
Theory, Phys. Rev. Lett. 130 (2023) 241402 [arXiv:2112.12265] [INSPIRE].

[38] P. Bourg et al., Quadratic quasi-normal mode dependence on linear mode parity,
arXiv:2405.10270 [INSPIRE].

[39] J. Ben Achour and H. Roussille, Quadratic perturbations of the Schwarzschild black hole: the
algebraically special sector, JCAP 07 (2024) 085 [arXiv:2406.08159] [INSPIRE].

[40] G. Carullo, R. Cotesta, E. Berti and V. Cardoso, Reply to Comment on “Analysis of Ringdown
Overtones in GW150914”, Phys. Rev. Lett. 131 (2023) 169002 [arXiv:2310.20625] [INSPIRE].

[41] M. Isi and W.M. Farr, Comment on “Analysis of Ringdown Overtones in GW150914”, Phys.
Rev. Lett. 131 (2023) 169001 [arXiv:2310.13869] [INSPIRE].

[42] R. Cotesta, G. Carullo, E. Berti and V. Cardoso, Analysis of Ringdown Overtones in GW150914,
Phys. Rev. Lett. 129 (2022) 111102 [arXiv:2201.00822] [INSPIRE].

[43] V. Baibhav et al., Agnostic black hole spectroscopy: Quasinormal mode content of numerical
relativity waveforms and limits of validity of linear perturbation theory, Phys. Rev. D 108 (2023)
104020 [arXiv:2302.03050] [INSPIRE].

– 34 –

https://doi.org/10.1103/PhysRevD.109.104050
https://doi.org/10.48550/arXiv.2401.00805
https://inspirehep.net/literature/2742446
https://doi.org/10.1103/PhysRevD.109.L101503
https://doi.org/10.1103/PhysRevD.109.L101503
https://doi.org/10.48550/arXiv.2308.14796
https://inspirehep.net/literature/2691869
https://doi.org/10.1088/0264-9381/13/10/001
https://doi.org/10.48550/arXiv.gr-qc/9510049
https://inspirehep.net/literature/401366
https://doi.org/10.1103/PhysRevD.59.044024
https://doi.org/10.48550/arXiv.gr-qc/9802063
https://inspirehep.net/literature/467593
https://doi.org/10.1016/S0370-1573(99)00048-4
https://doi.org/10.48550/arXiv.gr-qc/9807077
https://inspirehep.net/literature/473949
https://doi.org/10.1103/PhysRevD.74.044039
https://doi.org/10.48550/arXiv.gr-qc/0607025
https://inspirehep.net/literature/720954
https://doi.org/10.1103/PhysRevD.76.024004
https://doi.org/10.48550/arXiv.gr-qc/0703069
https://inspirehep.net/literature/746244
https://doi.org/10.1103/PhysRevD.80.024021
https://doi.org/10.1103/PhysRevD.80.024021
https://doi.org/10.48550/arXiv.0903.1134
https://inspirehep.net/literature/814862
https://doi.org/10.1103/PhysRevD.76.084007
https://doi.org/10.48550/arXiv.0708.0450
https://inspirehep.net/literature/757435
https://doi.org/10.1103/PhysRevD.76.061503
https://doi.org/10.48550/arXiv.0704.3467
https://inspirehep.net/literature/749326
https://doi.org/10.1103/PhysRevD.109.104070
https://doi.org/10.1103/PhysRevD.109.104070
https://doi.org/10.48550/arXiv.2401.15516
https://inspirehep.net/literature/2752495
https://doi.org/10.48550/arXiv.2306.17847
https://inspirehep.net/literature/2673488
https://doi.org/10.1103/PhysRevLett.130.241402
https://doi.org/10.48550/arXiv.2112.12265
https://inspirehep.net/literature/1996657
https://doi.org/10.48550/arXiv.2405.10270
https://inspirehep.net/literature/2787485
https://doi.org/10.1088/1475-7516/2024/07/085
https://doi.org/10.48550/arXiv.2406.08159
https://inspirehep.net/literature/2797432
https://doi.org/10.1103/PhysRevLett.131.169002
https://doi.org/10.48550/arXiv.2310.20625
https://inspirehep.net/literature/2715827
https://doi.org/10.1103/PhysRevLett.131.169001
https://doi.org/10.1103/PhysRevLett.131.169001
https://doi.org/10.48550/arXiv.2310.13869
https://inspirehep.net/literature/2713364
https://doi.org/10.1103/PhysRevLett.129.111102
https://doi.org/10.48550/arXiv.2201.00822
https://inspirehep.net/literature/2000331
https://doi.org/10.1103/PhysRevD.108.104020
https://doi.org/10.1103/PhysRevD.108.104020
https://doi.org/10.48550/arXiv.2302.03050
https://inspirehep.net/literature/2630169


J
H
E
P
0
9
(
2
0
2
4
)
1
1
9

[44] B. Bucciotti, A. Kuntz, F. Serra and E. Trincherini, Nonlinear quasi-normal modes: uniform
approximation, JHEP 12 (2023) 048 [arXiv:2309.08501] [INSPIRE].

[45] D. Perrone, T. Barreira, A. Kehagias and A. Riotto, Non-linear black hole ringdowns: An
analytical approach, Nucl. Phys. B 999 (2024) 116432 [arXiv:2308.15886] [INSPIRE].

[46] B. Bucciotti, L. Juliano, A. Kuntz and E. Trincherini, Quadratic Quasi-Normal Modes of a
Schwarzschild Black Hole, arXiv:2405.06012 [INSPIRE].

[47] M. Isi and W.M. Farr, Analyzing black-hole ringdowns, arXiv:2107.05609 [INSPIRE].

[48] https://github.com/akuntz00/QuadraticQNM.

[49] A. Dhani, Importance of mirror modes in binary black hole ringdown waveform, Phys. Rev. D
103 (2021) 104048 [arXiv:2010.08602] [INSPIRE].

[50] R.K. Sachs, Gravitational waves in general relativity. 6. The outgoing radiation condition, Proc.
Roy. Soc. Lond. A 264 (1961) 309 [INSPIRE].

[51] R.K. Sachs, Gravitational waves in general relativity. VIII. Waves in asymptotically flat
space-times, Proc. Roy. Soc. Lond. A 270 (1962) 103 [INSPIRE].

[52] E. Newman and R. Penrose, An approach to gravitational radiation by a method of spin
coefficients, J. Math. Phys. 3 (1962) 566 [INSPIRE].

[53] L. Hui et al., Static response and Love numbers of Schwarzschild black holes, JCAP 04 (2021)
052 [arXiv:2010.00593] [INSPIRE].

[54] S. Chandrasekhar and S.L. Detweiler, The quasi-normal modes of the Schwarzschild black hole,
Proc. Roy. Soc. Lond. A 344 (1975) 441 [INSPIRE].

[55] E.W. Leaver, Spectral decomposition of the perturbation response of the Schwarzschild geometry,
Phys. Rev. D 34 (1986) 384 [INSPIRE].

[56] H.O. Silva, G. Tambalo, K. Glampedakis and K. Yagi, Gravitational radiation from a particle
plunging into a Schwarzschild black hole: Frequency-domain and semirelativistic analyses, Phys.
Rev. D 109 (2024) 024036 [arXiv:2308.14823] [INSPIRE].

[57] S. Iyer and C.M. Will, Black Hole Normal Modes: A WKB Approach. I. Foundations and
Application of a Higher Order WKB Analysis of Potential Barrier Scattering, Phys. Rev. D 35
(1987) 3621 [INSPIRE].

[58] S. Iyer and C.M. Will, Black Hole Normal Modes: A Semianalytic Approach. I. Foundations,
INSPIRE.

[59] B.F. Schutz and C.M. Will, Black Hole Normal Modes: A Semianalytic Approach, Astrophys. J.
Lett. 291 (1985) L33 [INSPIRE].

[60] R.A. Konoplya, Quasinormal behavior of the d-dimensional Schwarzschild black hole and higher
order WKB approach, Phys. Rev. D 68 (2003) 024018 [gr-qc/0303052] [INSPIRE].

[61] J. Matyjasek and M. Opala, Quasinormal modes of black holes. The improved semianalytic
approach, Phys. Rev. D 96 (2017) 024011 [arXiv:1704.00361] [INSPIRE].

[62] Y. Hatsuda and M. Kimura, Perturbative quasinormal mode frequencies, Phys. Rev. D 109
(2024) 044026 [arXiv:2307.16626] [INSPIRE].

[63] L. Motl and A. Neitzke, Asymptotic black hole quasinormal frequencies, Adv. Theor. Math. Phys.
7 (2003) 307 [hep-th/0301173] [INSPIRE].

[64] M. Ansorg and R. Panosso Macedo, Spectral decomposition of black-hole perturbations on
hyperboloidal slices, Phys. Rev. D 93 (2016) 124016 [arXiv:1604.02261] [INSPIRE].

– 35 –

https://doi.org/10.1007/JHEP12(2023)048
https://doi.org/10.48550/arXiv.2309.08501
https://inspirehep.net/literature/2698235
https://doi.org/10.1016/j.nuclphysb.2023.116432
https://doi.org/10.48550/arXiv.2308.15886
https://inspirehep.net/literature/2692009
https://doi.org/10.48550/arXiv.2405.06012
https://inspirehep.net/literature/2785305
https://doi.org/10.48550/arXiv.2107.05609
https://inspirehep.net/literature/1881773
https://github.com/akuntz00/QuadraticQNM
https://doi.org/10.1103/PhysRevD.103.104048
https://doi.org/10.1103/PhysRevD.103.104048
https://doi.org/10.48550/arXiv.2010.08602
https://inspirehep.net/literature/1823768
https://doi.org/10.1098/rspa.1961.0202
https://doi.org/10.1098/rspa.1961.0202
https://inspirehep.net/literature/45310
https://doi.org/10.1098/rspa.1962.0206
https://inspirehep.net/literature/4914
https://doi.org/10.1063/1.1724257
https://inspirehep.net/literature/8892
https://doi.org/10.1088/1475-7516/2021/04/052
https://doi.org/10.1088/1475-7516/2021/04/052
https://doi.org/10.48550/arXiv.2010.00593
https://inspirehep.net/literature/1821236
https://doi.org/10.1098/rspa.1975.0112
https://inspirehep.net/literature/107949
https://doi.org/10.1103/PhysRevD.34.384
https://inspirehep.net/literature/243865
https://doi.org/10.1103/PhysRevD.109.024036
https://doi.org/10.1103/PhysRevD.109.024036
https://doi.org/10.48550/arXiv.2308.14823
https://inspirehep.net/literature/2691858
https://doi.org/10.1103/PhysRevD.35.3621
https://doi.org/10.1103/PhysRevD.35.3621
https://inspirehep.net/literature/21079
https://inspirehep.net/literature/18749
https://doi.org/10.1086/184453
https://doi.org/10.1086/184453
https://inspirehep.net/literature/16074
https://doi.org/10.1103/PhysRevD.68.024018
https://doi.org/10.48550/arXiv.gr-qc/0303052
https://inspirehep.net/literature/614948
https://doi.org/10.1103/PhysRevD.96.024011
https://doi.org/10.48550/arXiv.1704.00361
https://inspirehep.net/literature/1589270
https://doi.org/10.1103/PhysRevD.109.044026
https://doi.org/10.1103/PhysRevD.109.044026
https://doi.org/10.48550/arXiv.2307.16626
https://inspirehep.net/literature/2683685
https://doi.org/10.4310/ATMP.2003.v7.n2.a4
https://doi.org/10.4310/ATMP.2003.v7.n2.a4
https://doi.org/10.48550/arXiv.hep-th/0301173
https://inspirehep.net/literature/612154
https://doi.org/10.1103/PhysRevD.93.124016
https://doi.org/10.48550/arXiv.1604.02261
https://inspirehep.net/literature/1444875


J
H
E
P
0
9
(
2
0
2
4
)
1
1
9

[65] J.L. Ripley, Computing the quasinormal modes and eigenfunctions for the Teukolsky equation
using horizon penetrating, hyperboloidally compactified coordinates, Class. Quant. Grav. 39
(2022) 145009 [arXiv:2202.03837] [INSPIRE].

[66] G. Aminov, A. Grassi and Y. Hatsuda, Black Hole Quasinormal Modes and Seiberg-Witten
Theory, Annales Henri Poincare 23 (2022) 1951 [arXiv:2006.06111] [INSPIRE].

[67] G. Bonelli, C. Iossa, D.P. Lichtig and A. Tanzini, Exact solution of Kerr black hole perturbations
via CFT2 and instanton counting: Greybody factor, quasinormal modes, and Love numbers, Phys.
Rev. D 105 (2022) 044047 [arXiv:2105.04483] [INSPIRE].

[68] G. Bonelli, C. Iossa, D. Panea Lichtig and A. Tanzini, Irregular Liouville Correlators and
Connection Formulae for Heun Functions, Commun. Math. Phys. 397 (2023) 635
[arXiv:2201.04491] [INSPIRE].

[69] G. Aminov et al., Black hole perturbation theory and multiple polylogarithms, JHEP 11 (2023)
059 [arXiv:2307.10141] [INSPIRE].

[70] E.W. Leaver, An analytic representation for the quasi normal modes of Kerr black holes, Proc.
Roy. Soc. Lond. A 402 (1985) 285 [INSPIRE].

[71] M. Lagos and L. Hui, Generation and propagation of nonlinear quasinormal modes of a
Schwarzschild black hole, Phys. Rev. D 107 (2023) 044040 [arXiv:2208.07379] [INSPIRE].

[72] M. Maggiore, Gravitational Waves. Volume 1: Theory and Experiments, Oxford University Press
(2007) [DOI:10.1093/acprof:oso/9780198570745.001.0001].

[73] C.A.R. Herdeiro and E. Radu, Asymptotically flat black holes with scalar hair: a review, Int. J.
Mod. Phys. D 24 (2015) 1542014 [arXiv:1504.08209] [INSPIRE].

[74] G. Bertone et al., Gravitational wave probes of dark matter: challenges and opportunities,
SciPost Phys. Core 3 (2020) 007 [arXiv:1907.10610] [INSPIRE].

[75] T. May, S. Ma, J.L. Ripley and W.E. East, Nonlinear effect of absorption on the ringdown of a
spinning black hole, arXiv:2405.18303 [INSPIRE].

[76] B.H.P.T.D. Team, BHPToolkit: Black Hole Perturbation Toolkit, http://bhptoolkit.org/.

– 36 –

https://doi.org/10.1088/1361-6382/ac776d
https://doi.org/10.1088/1361-6382/ac776d
https://doi.org/10.48550/arXiv.2202.03837
https://inspirehep.net/literature/2029662
https://doi.org/10.1007/s00023-021-01137-x
https://doi.org/10.48550/arXiv.2006.06111
https://inspirehep.net/literature/1800737
https://doi.org/10.1103/PhysRevD.105.044047
https://doi.org/10.1103/PhysRevD.105.044047
https://doi.org/10.48550/arXiv.2105.04483
https://inspirehep.net/literature/1862659
https://doi.org/10.1007/s00220-022-04497-5
https://doi.org/10.48550/arXiv.2201.04491
https://inspirehep.net/literature/2009720
https://doi.org/10.1007/JHEP11(2023)059
https://doi.org/10.1007/JHEP11(2023)059
https://doi.org/10.48550/arXiv.2307.10141
https://inspirehep.net/literature/2678517
https://doi.org/10.1098/rspa.1985.0119
https://doi.org/10.1098/rspa.1985.0119
https://inspirehep.net/literature/214753
https://doi.org/10.1103/PhysRevD.107.044040
https://doi.org/10.48550/arXiv.2208.07379
https://inspirehep.net/literature/2136626
https://doi.org/10.1093/acprof:oso/9780198570745.001.0001
https://doi.org/10.1142/S0218271815420146
https://doi.org/10.1142/S0218271815420146
https://doi.org/10.48550/arXiv.1504.08209
https://inspirehep.net/literature/1365542
https://doi.org/10.21468/SciPostPhysCore.3.2.007
https://doi.org/10.48550/arXiv.1907.10610
https://inspirehep.net/literature/1746296
https://doi.org/10.48550/arXiv.2405.18303
https://inspirehep.net/literature/2790917
http://bhptoolkit.org/

	Introduction
	Metric reconstruction from master scalars
	Gauge choice
	Main formulas
	Linear versus quadratic perturbations

	Solving the differential equation
	Divergent master scalars
	Bypassing the problem
	Extension of Leaver method
	Summing over parities

	Physical observables
	Reconstructing tilde h(mu nu)
	Reconstructing h(+)**(TT), h(-)**(TT)
	Reconstructing h(+), h(x)
	Reflection symmetry

	Final ratio of amplitudes and its symmetries
	Explicit values of the ratio
	Two selection rules for the quadratic modes

	Conclusions
	Reflection symmetry
	A toy model
	Spherical harmonics and angular integrals
	Tensor harmonics
	Spin-weighted spherical harmonics
	Angular integrals

	Notation
	Code computing the source term
	Computing S(mu nu)
	Angular integrals
	Regulation of S


