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Abstract

Many applications in physics and network science require the computation of quantities re-
lated to certain matrix functions. In many cases, a straightforward way to proceed is by di-
agonalization. However, the cost scales cubically with the size, hence this method becomes
prohibitive for large dimensions. The aim of this thesis is to provide techniques with much
lower computational cost that exploit the (approximate) sparse structure of the matrices in-
volved.

Spectral projectors associated with Hermitian matrices play a key role in applications
such as electronic structure computations in quantum chemistry and physics. Linear scal-
ing methods in the gapped case, that corresponds to nonmetallic systems, are based on the
fact that such projectors are localized, which means that the entries decay rapidly away from
the main diagonal or with respect to more general sparsity patterns. The relation with the
sign function, together with an integral representation of the latter, is used to obtain new de-
cay bounds, which turn out to be optimal in an asymptotic sense. The influence of isolated
extremal eigenvalues on the decay properties is also investigated and a superexponential
behavior is predicted. Using similar techniques, we extend our results to related matrix func-
tions, such as the Fermi-Dirac function and Cauchy-Stieltjes functions.

Another problem of interest is the computation of the trace of a matrix function f(A).
In certain situations, in particular if f(A) cannot be well approximated by a low-rank ma-
trix, combining probing methods based on graph colorings with stochastic trace estimation
techniques can yield accurate approximations at moderate cost. Until recently, such meth-
ods had not been thoroughly analyzed, however, but were rather used as efficient heuristics
by practitioners. We perform a detailed analysis of stochastic probing methods and, in par-
ticular, expose conditions under which the expected approximation error in the stochastic
probing method scales more favorably with the dimension of the matrix than the error in non-
stochastic probing.

A quantity that often appears in quantum physics and network science is the von Neu-
mann entropy Tr(f(A)), where f(x) = −x log x andA is a density matrix, i.e., a symmetric
positive semidefinite matrix with unit trace. As an alternative to diagonalization, probing tech-
niques or stochastic trace estimators can be used to obtain approximations of the entropy.
Both methods are based on the computation of several quadratic forms bT f(A)b and matrix-
vector products f(A)b, which can in turn be approximated efficiently using polynomial and
rational Krylov subspace methods. With this approach, the matrix A is only accessed via
matrix-vector products Av and via the solution of shifted linear systems (A + ξI)−1v with

xi
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ξ > 0. For the probing approach, theoretical bounds and heuristic estimates are provided for
the error on the entropy, which can be used to select the number of quadratic forms required
to reach a certain accuracy. Moreover, a posteriori error bounds are given for the Krylov ap-
proximations. Our results are validated by several numerical experiments on a number of test
problems arising in network analysis.
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Chapter 1

Introduction

Matrix functions have been extensively researched in numerical linear algebra and find ver-
satile applications across numerous disciplines in the applied sciences. They are written in
the form f(A), where A is a square matrix and f(x) is a scalar function defined over the
spectrum of A. Prominent examples include the matrix inverse A−1, widely encountered in
numerical linear algebra, e.g., in the solution of linear systems, and the matrix exponential
eA, renowned for its role in solving differential equations.

Another significant case is the spectral projector of a Hermitian matrix H , which acts
as the orthogonal projector onto the subspace spanned by the eigenvectors associated with
eigenvalues below a certain value µ ∈ R [14]. Here H denotes the Hamiltonian operator of
the system. This projector, also referred to as the density matrix in the chemistry and physics
literature [97, Chapter 4], is of central importance in electronic structure computations at zero
temperature [24, 70]. For positive temperatures, the electron density matrix can be expressed
by the Fermi-Dirac function (I + eβ(H−µI))−1, where β ∈ R is inversely proportional to T .
In quantum statistical mechanics, the density matrix is the Gibbs state, which takes the form
exp(−βH)/Z , where Z = Tr(exp(−βH)).

Chapter 3 of this thesis is devoted to a study of decay properties of certain matrix func-
tions of interest in physics and chemistry. The a priori knowledge of decay bounds for func-
tions of localized matrices allows to approximate them with banded or sparse matrices and
develop linear scaling methods. This is crucial, for example, in electronic structure computa-
tions [14, 24, 70, 83]. An exponential decay holds in general for f(A), where A is Hermitian
and banded (or sparse) and f is analytic over an ellipse containing the spectrum of A [15].
Specific bounds are known for important matrix functions, like the matrix inverse [9, 35] or
entire functions, like the matrix exponential, which exhibit superexponential decay [19, 69].
Further results for classes of functions defined by an integral transform, such as Laplace-
Stieltjes and Cauchy-Stieltjes functions, are given in [19, 45], where the analysis makes use
of results for the inverse or the exponential.

In [14] one can find rigorous proofs of exponential decay of the entries of spectral pro-
jectors for gapped systems, like insulators, and for the Fermi-Dirac function associated with
general systems. For the latter, the results of [15] based on Bernstein’s Theorem are used,
while, for the projector, another approach is inspired by [65] and makes use of the polynomial
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approximation of a piecewise constant function over the union of disjoint intervals. We en-
hance this approach by exploiting an integral representation of the sign function and obtain
refined decay bounds [17]. We apply the same idea to the Fermi-Dirac function.

Most of the existing bounds for f(A) depend only on partial information about the spec-
trum of A, for example, the spectral interval [λmin(A), λmax(A)] if A is Hermitian and pos-
itive definite [19, 35] or the field of values in the general case [12, 87]. For the spectral pro-
jector, a key role is played by the spectral gap. However, numerical experiments show that
the bounds are often pessimistic and do not capture the actual decay behavior, which seems
to depend also on the distribution of the eigenvalues within the spectral sets. A first step in
this direction is taken in [45], where the authors show a connection between the decay in the
inverse of a positive definite Hermitian matrix and the distribution of the eigenvalues near the
upper end of the spectrum. We refine and generalize these results for the inverse and other
matrix functions defined by integral transforms.

Another important task in numerical linear algebra is to estimate the trace of an implicitly
given matrix B ∈ Rn×n,

Tr(B) =
n∑

i=1

[B]ii. (1.1)

This has applications in, e.g., machine learning and data science [63, 89], theoretical particle
physics [96, 101] and analysis of complex networks [13, 40]; see [102] for an extensive survey.
In many of these applications, we haveB = f(A), whereA ∈ Rn×n is a large and sparse or
structured matrix. In this case, B cannot be formed explicitly and often the only feasible op-
erations with A are matrix-vector products (and sometimes linear system solves). This then
translates into methods for approximating (1.1) that must also rely on matrix-vector products
or quadratic forms with B, which are, e.g., performed by applying a polyomial (or rational)
Krylov subspace method or Chebyshev expansion for approximating f(A)v or vT f(A)v for
a given vector v; hence the name implicit or matrix-free trace estimation.

Popular methods for this task come in two flavors: on the one hand, there are stochastic
estimators, with the most important ones being the classical Hutchinson estimator as es-
tablished workhorse algorithm [68] and the recently proposed Hutch++ algorithm [81] and its
refined variants; see [26, 37, 86]. These estimators are black-box methods for (1.1) which do
not exploit any inherent structure in B and mainly rely on applying B to randomly sampled
vectors. On the other hand, when B = f(A) with sparse A, another popular class of meth-
ods includes estimators based on probing [47, 98, 99], a technique which aims to reduce the
number of quadratic forms that are needed for a given accuracy by exploiting structure in A
to carefully craft specific probing vectors instead of just randomly sampling them.

A goal of this thesis is to analyze the combination of probing techniques with stochas-
tic estimators, which is obtained filling the nonzero entries of the probing vectors with ran-
dom samples from an appropriate distribution, leading to the stochastic probing estimation
method [44]. The combination of these two approaches is algorithmically quite straightfor-
ward and was used before by practitioners; see, e.g., [5, 7, 82, 105]. However, an in-depth
analysis is lacking so far. We provide such an analysis in Chapter 4. Our analysis explains
and highlights many of the important properties of the approach and reveals in particular for
which matrix functions f and matrices A large gains can not only be expected, but actually

2



CHAPTER 1. INTRODUCTION

be guaranteed. Our theoretical findings are illustrated and confirmed by a variety of numerical
experiments. As a by-product of our analysis, we also refine classical results on sign patterns
in the entries of f(A).

An important example is the von Neumann entropy [103] of a symmetric positive semidef-
inite A with Tr(A) = 1. It is defined as S(A) = Tr(−A logA), where logA is the matrix
logarithm. With the usual convention that 0 · log 0 = 0, the von Neumann entropy is given by

S(A) = −
n∑

i=1

λi log λi ,

where λ1, . . . , λn are the eigenvalues of the n×nmatrixA. The von Neumann entropy plays
an important role in several fields including quantum statistical mechanics [74], quantum
information theory [10], and network science [25]. For example, computing the von Neumann
entropy is used in order to determine the ground state of many-electron systems at finite
temperature [1]. The von Neumann entropy of graphs is also an important tool in the structural
characterization and comparison of complex networks [33, 64].

If the size of A is large, the computation of S(A) by means of explicit diagonalization
can be too expensive, so it becomes necessary to resort to cheaper methods that compute
approximations of the entropy. In recent years, a few papers have appeared devoted to this
problem; see, e.g., [27, 36, 77, 107]. These papers investigate different approaches based
on quadratic (Taylor) approximants, the global Lanczos algorithm, Gaussian quadrature and
Chebyshev expansion. In general, the problem of computing the von Neumann entropy of a
large matrix is difficult because the underlying matrix function is not analytic in a neighbour-
hood of the spectrum when the matrix is singular; difficulties can also be expected when A
has eigenvalues close to zero, which is usually the case. In particular, polynomial approxi-
mation methods may converge slowly. In these cases, the use of rational Krylov methods is
often recommended.

In Chapter 5 we propose to approximate the von Neumann entropy using either the prob-
ing approach developed in [47] or a stochastic trace estimator [68, 81, 86]. First, we obtain an
integral expression for the entropy function f(x) = −x log x that relates it with a Cauchy-
Stieltjes function [106, Chapter VIII], and we use it to derive error bounds for the polynomial
approximation of f , which in turn lead to a priori bounds for the approximation of S(A) with
deterministic probing methods. In order to also have a practical stopping criterion alongside
the theoretical bounds, we propose some heuristics to estimate the error of probing methods
and demonstrate their reliability with numerical experiments. We also use properties of sym-
metricM -matrices to show that, in the case of the graph entropy, the approximation obtained
with a probing method is always a lower bound for the exact entropy.

Both probing methods and stochastic trace estimators require the computation of a large
number of quadratic forms with f(A), which can be efficiently approximated using Krylov
subspace methods [48, 58]. We propose to combine polynomial Krylov iterations with rational
Krylov iterations that use asymptotically optimal poles for Cauchy-Stieltjes functions [79].
Next, we obtain new a posteriori error bounds and estimates for this task, building on the
ones presented in [57], and we discuss methods to compute them efficiently. For the case
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of the graph entropy, we make use of a desingularization technique introduced in [20] that
exploits properties of the graph Laplacian to compute quadratic forms more efficiently.

The resulting algorithm can be seen as a black box method that only requires an input
tolerance ϵ and computes an approximation of S(A) with relative accuracy ϵ. While this
accuracy is not guaranteed when the rigorous bounds are replaced by heuristics, we found
the algorithm to be quite reliable in practice.

Our implementation of the probing algorithm is compared to a state-of-the-art randomized
trace estimator developed in [86] with several numerical experiments, in which we approxi-
mate the graph entropy of various complex networks. The performance of stochastic probing
is discussed as well.

To summarize, the thesis is organized as follows: In Chapter 2 we review basic definitions
and results for matrix functions and graph theory. In Chapter 3 we study the decay properties
of matrix functions. In particular, we prove new decay bounds for spectral projectors and the
Fermi-Dirac function and show the connection between the eigenvalue distribution and the
decay properties of such matrix function. In Chapter 4, we consider the estimation of the
trace of matrix functions. We recall the two basic trace estimation methods, namely probing
and the Hutchinson estimator. Then we analyze the stochastic probing estimator and derive
formulas for the variance as well as more sophisticated tail bounds. We show that in certain
situations, the expected value of the error increases only with the square root of the matrix
dimension n, whereas in deterministic probing the error scales linearly with n. We present a
number of numerical experiments that illustrate the theoretical results and the performance
of the stochastic probing estimator compared to other state-of-the-art methods. In Chapter 5,
we recall some properties of the von Neumann entropy and we obtain bounds for the poly-
nomial approximation of f(x) = −x log x, which are applied to derive bounds for the con-
vergence of probing methods. Then we describe the computation of quadratic forms using
Krylov subpsace methods and we get a posteriori error bounds and estimates. We summarize
the overall algorithm and discuss heuristics and stopping criteria. We test the performance
of the methods on density matrices of several complex networks. Finally, we conclude by
summarizing the presented work and exploring possible future research directions.
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Chapter 2

Basics on Matrix Functions and Graphs

In this chapter we review the basic definitions and properties of matrix functions and graphs.

2.1 Background on Matrix Functions

In this section we define a matrix function f(A), where A is a square matrix and f(x) is a
scalar function. Hence, we discuss some of the main properties we are interested in, such as
the connections with polynomials and basic ways to approximate them. For more details on
the theory of matrix functions, see the book [67].

2.1.1 Definition

There are various equivalent ways to define the matrix function f(A). We first give the defi-
nition based on the Jordan canonical form [67, Definition 1.2].

Recall that every matrix A can be written in Jordan canonical form:

A = Z−1JZ, J = diag(J1, . . . , Jp), Jk =


λk 1

λk
. . .
. . . 1

λk

 , (2.1)

where Jk ∈ Cmk×mk is a Jordan block associated with the eigenvalue λk ofA. Note that the
representation is unique up to the order of the blocks and m1 + · · ·+mp = n.

Denote with σ(A) the spectrum of A, i.e., the set of all the eigenvalues. Note that, in
general, there can be more than one Jordan block associated with each eigenvalue, hence
σ(A) contains at most p distinct numbers. The index n(λ) of λ ∈ σ(A) is the size of the
largest Jordan block associated with λ.

In order to define f(A) we need f to be defined on the spectrum of A, i.e. the values

f (j)(λ), j = 1, . . . , n(λ)− 1, λ ∈ σ(A)

must exist. With these notations, we are able to give the following definition.
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2.1. BACKGROUND ON MATRIX FUNCTIONS

Definition 2.1. Let f be defined over the spectrum of A ∈ Cn×n, and let A have the Jordan
canonical form (2.1). Then we define

f(A) := Z−1f(J)Z, f(J) = diag(f(J1), . . . , f(Jp)),

with

f(Jk) =


f(λk) f ′(λk) · · · f (mk−1)(λk)

(mk−1)!

f(λk)
. . . ...
. . . f ′(λk)

f(λk)

 ∈ Cmk×mk , k = 1, . . . , p. (2.2)

A direct consequence of (2.2) is that σ(f(A)) = {f(λ) : λ ∈ σ(A)}, since f(J) is
triangular and only the values f(λk), k = 1, . . . , p, appear on the diagonal. Moreover, this
definition simplifies if A is diagonalizable. In this case each Jordan block Jk in (2.1) has
size mk = 1, hence s = n and J = Λ = diag(λ1, . . . , λn). Therefore f is defined on the
spectrum of A if f(λk) is defined for k = 1, . . . , n, and

f(A) = Z−1f(Λ)Z, f(Λ) = diag(f(λ1), . . . , f(λn)).

In particular, we do not require f to be differentiable or even continuous at any point. In
the following chapters we will only deal with Hermitian matrices. Hence, A will always be
diagonalizable and Z−1 = Z∗, so f(A) = Z∗f(Λ)Z is Hermitian as well.

2.1.2 Main Properties

Matrix functions are strictly connected to polynomials, as explained by the following propo-
sition.

Proposition 2.1. Let A ∈ Cn×n be diagonalizable with eigenvalues λ1, . . . , λn (not neces-
sarily distinct). Let f(x) be defined on the spectrum of A and let p(x) =

∑d
j=0 cjx

j be a
polynomial. Then

• p(x) is defined over the spectrum of A and p(A) =
∑d

j=0 ckA
k.

• If f(λk) = p(λk) for all k = 1, . . . , n, then f(A) = p(A).

A polynomial that interpolates the values of f on λ1, . . . , λn always exists and an exam-
ple is the Lagrange interpolating polynomial, which has degree n− 1 (or less). In particular,
every matrix function is a polynomial evaluated at the matrix argument. This argument can
be generalized to non-diagonalizable matrices by using the Hermite interpolation, and, if used
as the definition of a matrix function, it is equivalent to Definition 2.1; see [67, Chapter 1].

Many important matrix functions, such as the matrix exponential, are commonly defined
via their power series. The following result shows the equivalence of these two definitions.
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CHAPTER 2. BASICS ON MATRIX FUNCTIONS AND GRAPHS

Theorem 2.2 (Theorem 4.7 in [67]). Let f(x) have the Taylor series

f(x) =

∞∑
j=0

cj(x− α)j

that converges absolutely over the complex disk D = {z ∈ C : |z − r| < r}. IfA ∈ Cn×n is
such that σ(A) ⊂ D, then

f(A) =
∞∑
j=0

cj(A− αI)j .

Theorem 2.2 includes classical examples in the matrix functions setting. For instance,

eA =
∞∑
j=0

1

j!
Aj ,

(I −A)−1 =

∞∑
j=0

Aj ,

log(I +A) =

∞∑
j=1

(−1)j+1

j
Aj ,

where the last two identities hold if |λ| < 1 for all λ ∈ σ(A).
Another classical way to define matrix functions is via the Cauchy integral formula.

Theorem 2.3. Let A ∈ Cn×n, and let f be analytic on and inside a closed contour Γ that
encloses σ(A), oriented clockwise. Then

f(A) =
1

2πi

∫
Γ
f(z)(zI −A)−1 dz. (2.3)

The representation (2.3) can be used for many different purposes, especially in the con-
text of computing f(A)b, where b ∈ Cn; see, e.g., [60]. We will see an application in Sec-
tion 5.3.3.

Approximation Theory

Here we discuss basic ways to approximate matrix functions by means of polynomials or
rational functions.

Let A ∈ Cn×n be Hermitian with spectrum σ(A) = {λ1, . . . , λn}. Recall that the most
widely used matrix norms (p-norm for p = 1, 2,∞ and Frobenius norm) are given by

∥A∥1 = ∥A∥∞ = max
i=1,...,n

n∑
j=1

|[A]ij |, ∥A∥2 = max
k=1,...,n

|λk|, ∥A∥F =

√√√√ n∑
k=1

λ2k.

(2.4)
The following result is useful to analyze the approximations of a matrix function.
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2.2. BACKGROUND ON GRAPH THEORY

Proposition 2.4. LetA ∈ Cn×n be Hermitian with spectral interval [λmin, λmax], and let f be
defined over [λmin, λmax]. Then

∥f(A)∥2 ≤ max
x∈[λmin,λmax]

|f(x)|.

Proposition 2.4 is a consequence of the spectral theorem for Hermitian matrices and of
the unitary invariance of the 2-norm. This inequality can also be generalized to functions of
non-Hermitian matrices, due to an important result by Crouzeix [30, 31]. In this case, the set
on which f is maximized is the numerical range (or field of values) of A, and an additional
constant factor K = 1 +

√
2 must be added in front of the right-hand side, although it is

conjectured that the result is true with K = 2.
In view of Proposition 2.4, for any function g(x) defined over [λmin, λmax] we get

∥f(A)− g(A)∥2 ≤ max
x∈[λmin,λmax]

|f(x)− g(x)|.

Hence, in order to approximate f(A), we can choose a function g that approximates f over
[λmin, λmax] and is easy to compute (e.g., a polynomial or rational function).

2.2 Background on Graph Theory

Here we recall some notions and notations for graphs. For a detailed survey see, e.g., [40].

2.2.1 Definitions

A graph is a pair G = (V, E), where V is the set of nodes and E ⊂ V ×V is the set of edges.
Here we deal with finite graphs, so V is a finite set. A graph is called undirected if (v, w) ∈ E
if and only if (w, v) ∈ E for all edges (v, w) ∈ E , otherwise G is directed. Given a numbering
V = {v1, . . . , vn} of the nodes, the adjacency matrix A has entries

[A]ij =

{
1 if (vi, vj) ∈ E ,
0 if (vi, vj) ̸∈ E .

Note that A is symmetric if and only if the graph is undirected.
For an undirected graph, the degree of a node is the number of edges incident to v, that

is,
deg(v) = |{w ∈ V | (v, w) ∈ E}| .

The degree can also be expressed in terms of the adjacency matrix: deg(vi) = [A1]i, where
1 ∈ Rn is the vector of all ones. Through the degree we can define the graph Laplacian as

L = D −A, D = diag(deg(v1), . . . ,deg(vn)).
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CHAPTER 2. BASICS ON MATRIX FUNCTIONS AND GRAPHS

A walk of length ℓ is a sequence w0, w1, . . . , wℓ ∈ V such that (wk−1, wk) ∈ E for
k = 1, . . . , ℓ. The relation between walks and the entries of the powers of the adjacency
matrix is explained by the following formula:

[Aℓ]ij = |{walks of length ℓ starting at vi and ending at vj}|. (2.5)

We say that two nodes v, w ∈ V are connected if there is a walk that connects v to w, i.e. it
starts with v and ends with w. We say that an undirected graph is connected if, for each pair
of vertices v, w ∈ V , v and w are connected.

The geodesic distance d(v, w) between two nodes v, w ∈ V is the minimal length of a
walk that connects v and w. We let d(v, w) = ∞ if no such walk exists. If v = vi and
w = vj , in view of (2.5), we get the formula

d(vi, vj) = min{ℓ ∈ N | [Aℓ]ij ̸= 0}.

The diameter of a graph is the maximum distance between any two nodes v, w ∈ V . Finally,
the average path length of a graph is

1

n(n− 1)

∑
v∈V

∑
w∈V

d(v, w).

A small average path length (with respect to the number of nodes) is typical of small-world
graphs; see [3].
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Chapter 3

Decay of Spectral Projectors and
related Matrix Functions

In this chapter, we explore new decay bounds on the entries of matrix functions related to
spectral projectors. In Section 3.1, we introduce the class of matrices with decay away from
the diagonal or more general sparsity patterns. In Section 3.2, we delve into the correlation
between the decay properties and polynomial approximations. We also illustrate the applica-
tion of this technique to some of the bounds present in the literature for the inverse, general
analytic functions and integral transforms. In Section 3.3, we focus on spectral projectors
and the sign function, reporting the refined decay bounds obtained in [17]. In Section 3.4, we
investigate the connection between decay bounds and the distribution of the eigenvalues. We
refine the result in [46] for the matrix inverse and report the bounds in [17] for spectral projec-
tors and the sign function. Bounds of this kind are also given for Cauchy-Stieltjes functions
and the Fermi-Dirac function.

3.1 Matrices with Decay

Localization in numerical linear algebra is intended as the possibility to approximate a dense
matrix with a sparse matrix, which can lead to huge computational savings in matrix computa-
tions. The storage can go fromO(n2) down toO(n), and the cost of manyO(n3) algorithms
can also decrease substantially. See the survey [11] for more insights into this topic.

An important example of sparsity is provided by the class of banded matrices.

Definition 3.1. Let A ∈ Cn×n, and let m be a positive integer. We say that A is m-banded if
[A]ij = 0 for any i, j such that |i− j| > m.

The storage required for a banded matrix is O(mn), that corresponds to the entries [A]ij
with |i − j| ≤ m. The cost of elementary operations on banded matrices, such as matrix
sums and multiplication, or the solution of linear systems, grows also linearly with the size.
See, for example, [56].

Now we introduce the concept of off-diagonal decay.
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3.1. MATRICES WITH DECAY

Definition 3.2. Let {Fn}n∈N be a sequence of matrices, Fn ∈ Cn×n for all n. The matrix
sequence has the off-diagonal decay property if

|[Fn]ij | ≤ ϕ(|i− j|) for all i ̸= j,

where ϕ(x) is a real scalar function independent of n such that ϕ(x) → 0 as x→ ∞.

A typical example is the exponential decay, associated with ϕ(x) = K e−αx withK,α >
0, or equivalently ϕ(x) = K ζx with K > 0 and 0 < ζ < 1. Frequently, other decay
behaviors emerge, such as algebraic (or power-law) decay associated with ϕ(x) = 1/(1 +
x)α, α > 0, or even more complex patterns, as we will see in Section 3.3.

Remark 3.1. An off diagonal decay property allows us to truncate the matrices in the sequence
in the following way: corresponding to each Fn we define F (m)

n , for a positive integer m, as
follows:

[F (m)
n ]ij =

{
[Fn]ij if |i− j| ≤ m,

0 otherwise.

Each matrix F (m)
n is m-banded. Moreover, if Fn has an exponential or algebraic decay prop-

erty, then for all ϵ > 0 and for p = 1, 2,∞ there is an m̄ independent of n such that
∥Fn − F

(m)
n ∥p ≤ ϵ, for m ≥ m̄. See [16] for more details.

The foregoing considerations can be extended to matrices with more general decay pat-
terns.

Definition 3.3. Let {Fn}n∈N be a sequence of matrices, Fn ∈ Cn×n for all n, and let Gn be
a sequence of graphs with nodes {1, 2, . . . , n} and graph distances dn(i, j). The matrices
have the decay property relative to the graph Gn if

|[Fn]ij | ≤ ϕ(dn(i, j)) for all i ̸= j,

where ϕ(x) is a real scalar function independent of n such that ϕ(x) → 0 as x→ ∞.

In this more general setting, we can still define the truncation F (m)
n as

[F (m)
n ]ij =

{
[Fn]ij if d(i, j) ≤ m,

0 otherwise.

However, some restrictions on the graphs must be imposed in order for these approximations
to be sparse. For instance, if the degree of a node is n − 1, then all the entries of F (m)

n are
nonzero when m ≥ 2. In general, a necessary hypothesis is that the degree of all the nodes
in Gn is uniformly bounded in n. A more technical sufficient condition, based on the level sets
of the graphs Gn, is given in [47].

In the following sections, we consider decay bounds for matrix functions of Hermitian
matrix arguments.
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CHAPTER 3. DECAY OF SPECTRAL PROJECTORS AND RELATED MATRIX FUNCTIONS

3.2 Decay Properties via Polynomial Approximations

A key ingredient to derive decay bounds for a matrix function f(A) is the error of the best
uniform polynomial approximation of f over a suitable set containing the spectrum of A.
Denote with Πk the set of all polynomials with degree at most k. Denote the error of the best
uniform approximation in Πk of a function f over a set S as

Ek(f,S) = inf
pk∈Πk

sup
z∈S

|f(z)− pk(z)|. (3.1)

Notice that if S is a real compact interval and f is real valued over S and continuous, then
there exists a unique solution to the minimization problem (3.1), which becomes a mini-
mum [80]. In general, (3.1) is not a minimum.

The following result [17], implicitly used in [11, 14, 15, 45], relates the polynomial approxi-
mations with the off-diagonal decay properties.

Proposition 3.1. LetA ∈ Cn×n be Hermitian andm-banded with σ(A) ⊂ S , and let f(x) be
defined over S. Let i, j be two indices such that i ̸= j, and let k :=

⌊
|i−j|
m

⌋
. Then

|[f(A)]ij | ≤ Ek(f,S). (3.2)

If ϕ(x) is nonincreasing and Ek(f,S) ≤ ϕ(k), then

|[f(A)]ij | ≤ ϕ

(⌊
|i− j|
m

⌋)
≤ ϕ

(
|i− j|
m

− 1

)
.

Proof. Let pk ∈ Πk. Then [pk(A)]ij = 0 since pk(A) is km-banded and |i − j| > km.
Therefore,

|[f(A)]ij | = |[f(A)]ij − [pk(A)]ij | ≤ ∥f(A)− pk(A)∥2 = max
x∈σ(A)

|f(x)− pk(x)|

≤ max
x∈S

|f(x)− pk(x)|.

Since the inequality holds for any pk ∈ Πk , by the definition ofEk(f,S)we conclude that (3.2)
holds. The second part follows from the inequality

⌊
|i−j|
m

⌋
≥ |i−j|

m − 1 and (3.2).

Remark 3.2. The result of Proposition 3.1 implies that if we are given a sequence of n × n
matrices {An} of increasing size, all Hermitian, uniformlym-banded and such that σ(An) ⊂
S for all n, then f(An) is well defined for all n and the bound (3.2) holds for all the matrices
in the sequence, since it depends only on the set S and on the bandwidth, and not on n.

The same approach works more generally for a sparse matrix A; see [14, 16, 47].

Proposition 3.2. LetA ∈ Cn×n be Hermitian with σ(A) ⊂ S , and let f(x) be defined over S.
Let i, j be two indices such that i ̸= j, and let k := d(i, j)− 1, where d(i, j) is the geodesic
distance in G(A). Suppose that Ek(f,S) ≤ ϕ(k). Then

|[f(A)]ij | ≤ ϕ (d(i, j)− 1) .

Proof. Let k = d(i, j)− 1 be fixed. We have k ≥ 0 since i ̸= j. Then [pk(A)]ij = 0 for any
pk ∈ Πk since d(i, j) > k. We conclude by proceeding as in Proposition 3.1.
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3.2. DECAY PROPERTIES VIA POLYNOMIAL APPROXIMATIONS

3.2.1 Decay Bounds for the Inverse

The error for the best uniform polynomial approximation of the function f(x) = x−1 over an
interval is explicitly known [80].

Theorem 3.3. Let f(x) = 1/x be defined over [a, b], where 0 < a < b. Let

r =
b

a
, K =

(1 +
√
r)2

2b
, ζ =

√
r − 1√
r + 1

. (3.3)

Then

Ek(1/x, [a, b]) = Kζk+1 (3.4)

for all k.

Theorem 3.3 has been used in [35] to obtain the following result regarding the entries of
the matrix inverse.

Theorem 3.4. LetA ∈ Cn×n be Hermitian, positive definite andm-banded. Let a = λmin(A),
b = λmax(A). Let r,K, ζ be defined as in (3.3). Then, for any i and j such that i ̸= j,

|[A−1]ij | ≤ K ζ
|i−j|
m . (3.5)

Theorem 3.4 follows directly from Proposition 3.1. In [35] the authors choose a different
constant in order to capture the case i = j. In fact, |[A−1]ii| ≤ ∥A−1∥2 = 1/a for any i,
so if we choose the maximum between 1/a and the value of K in (3.3) we get a bound that
holds for all i, j. Since it is important to keep the constant factors as small as possible, we
think that it is more convenient to distinguish the two cases.

Theorem 3.4 holds only for Hermitian matrices. For the case of normal matrices, see [45].
A reader familiar with Krylov methods will recognize in the expression for ζ given in (3.3)

the geometric rate of the bound for the error reduction (measured in the A-norm) of the con-
jugate gradient method applied to a linear system Ax = b with a positive definite A; see, for
example, [76, Section 5.6]. It is also well known that this bound can be overly pessimistic,
and that much faster convergence can occur for certain distributions of the eigenvalues of
A, for instance when most of the eigenvalues are clustered in the lower end of the spectrum.
The following result [46] shows that this phenomenon holds also for the decay in the entries
of the inverse.

Theorem 3.5. Let A ∈ Cn×n be Hermitian, positive definite andm-banded with eigenvalues
λ1 ≤ λ2 ≤ · · · ≤ λn. Let

rℓ =
λn−ℓ

λ1
, ζℓ =

√
rℓ − 1

√
rℓ + 1

, K =
2

λ1
.

Then the entries of A−1 are bounded by

|[A−1]ij | ≤ Kζ
|i−j|
m

−ℓ

ℓ for all ℓ = 0, 1, . . . ,

⌊
|i− j|
m

⌋
. (3.6)
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CHAPTER 3. DECAY OF SPECTRAL PROJECTORS AND RELATED MATRIX FUNCTIONS

The family of bounds given in Theorem 3.5 implies that we can remove some eigenvalues
in the upper end of the spectrum and obtain a bound like the one in (3.5) with a smaller
geometric rate that depends on the “effective” condition number rℓ, but paying the price of a
smaller exponent. This means that, if some of the largest eigenvalues are isolated, the decay
can be predicted much more accurately than (3.5), which is a special case of (3.6) with ℓ = 0
up to a constant factor. We will return on this type of bounds in Section 3.4.

3.2.2 Analytic Functions and Bernstein’s Theorem

In [15] the authors have shown that f(A) has the exponential decay property whenever f is
analytic on a suitable region containing σ(A) andA is symmetric and banded. To analyze the
polynomial approximations of f over the spectral interval, they used the following classical
result [80, Theorem 73].

Theorem 3.6 (Bernstein’s Theorem). Let Eχ be the unique ellipse with foci at −1 and 1,
with semiaxes κ1 > 1 and κ2 > 0, and χ = κ1 + κ2. Let f be analytic in the interior of Eχ
and continuous on Eχ. Assume that f(x) is real for real x. Then

Ek(f, [−1, 1]) ≤ 2M(χ)

χk(χ− 1)
, M(χ) := max

z∈Eχ
|f(z)|.

Theorem 3.7 ([15]). Let A be Hermitian and m-banded with spectrum σ(A) contained in
[−1, 1], and let f be analytic in the interior of Eχ, χ > 1, and continuous on Eχ. Let

M(χ) = max
z∈Eχ

|f(z)|, K =
2χM(χ)

χ− 1
.

Then

|f(A)ij | ≤ K

(
1

χ

) |i−j|
m

, for all i, j.

Remark 3.3. Theorem 3.7 gives us a family of bounds, depending on a parameter χ > 1.
Notice that for χ → 1 we have that K → ∞, and if χ is the minimal value such that Eχ
contains a pole of f , we also have that K → ∞ for χ → χ. A way to effectively use this
bound is to optimize among the admissible values of χ for every entry in f(A):

|[f(A)]ij | ≤ inf
1<χ<χ

2χM(χ)

χ− 1

(
1

χ

) |i−j|
2m

 .
This minimization can be carried numerically, by choosing a finite number of admissible val-
ues of χ and minimizing among them, or analytically if the expression is simple. See, for
example, [14, Section 8].
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3.2. DECAY PROPERTIES VIA POLYNOMIAL APPROXIMATIONS

Remark 3.4. The assumption σ(A) ⊂ [−1, 1] is not restrictive. Indeed, if σ(A) ⊂ [a, b], the
shifted and scaled matrix

Ã =
2

b− a
A− a+ b

a− b
I

has spectrum contained in [−1, 1]. Then we can consider

f̃(x) = f(u), u =
b− a

2
x+

a+ b

2

and get f(A) = f̃(Ã), so we can replace f by f̃ in our analysis.
Theorem 3.7 has been used, for example, in [14] to derive the bounds of Theorem 3.11

and Theorem 3.20 for spectral projectors and the Fermi-Dirac function, respectively. We will
return to this in the following sections.

3.2.3 Functions Defined by an Integral Transform

We need the following continuity result for the polynomial of best uniform approximation [80].

Theorem 3.8 (Theorem 24 in [80]). Let f(x), f̃(x) be continuous functions over [a, b], and
let pk(x), p̃k(x) be their polynomials of best uniform approximation over [a, b] in Πk. There
exists a constantM(f) > 0 depending only on f such that

|pk(x)− p̃k(x)| ≤M |f(x)− f̃(x)|

for all x ∈ [a, b].

The following result comes from [18] and analyzes the polynomial approximations of a
function expressed as an integral transform.

Lemma 3.9. Let f(x) be defined for x ∈ [a, b] by

f(x) =

∫ ∞

0
gt(x) dt, (3.7)

where gt(x) is continuous for (t, x) ∈ (0,∞) × [a, b] and the integral (3.7) is absolutely
convergent. Then

Ek(f, [a, b]) ≤
∫ ∞

0
Ek(gt(x), [a, b]) dt, (3.8)

for all k ≥ 0.

Proof. If the right-hand side of (3.8) is infinite, then the thesis is trivially true. From now on,
we assume that the integral in (3.8) converges.

For all t ∈ (0,∞) and for any degree k ≥ 0, since gt(x) is continuous over the compact
interval [a, b] there exists a unique polynomial p(t)k (x) ∈ Πk such that

Ek(gt(x), [a, b]) = max
x∈[a,b]

∣∣∣gt(x)− p
(t)
k (x)

∣∣∣ .
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For all x ∈ [a, b] we can define

pk(x) :=

∫ ∞

0
p
(t)
k (x) dt. (3.9)

This is well defined: for all x ∈ [a, b], the mapping t 7→ p
(t)
k (x) is continuous for all t ∈

(0,∞) in view of Theorem 3.8, since gt(x) is uniformly continuous for (t, x) in the compact
sets contained in (0,∞)× [a, b]. Moreover, the integral is absolutely convergent, since∫ ∞

0

∣∣∣p(t)k (x)
∣∣∣ dt ≤ ∫ ∞

0
|gt(x)| dt+

∫ ∞

0

∣∣∣gt(x)− p
(t)
k (x)

∣∣∣ dt (3.10)

≤
∫ ∞

0
|gt(x)| dt+

∫ ∞

0
Ek(gt(x), [a, b])dt < +∞.

We want to show that pk(x) is also a polynomial. Consider the expression

p
(t)
k (x) =

k∑
i=0

ai(t)x
i,

which defines the coefficients ai(t) as functions of t. Formally, we have

pk(x) =
k∑

i=0

(∫ ∞

0
ai(t) dt

)
· xi =

k∑
i=0

āix
i,

where āi :=
∫∞
0 ai(t) dt. To conclude, we need to show that this expression is well defined,

that is, the functions ai(t) are integrable in t. Consider k + 1 distinct points x0, . . . , xk in
the interval [a, b], and let a(t) = [a0(t), . . . , ak(t)]

T , p(t) = [p
(t)
k (x0), . . . , p

(t)
k (xk)]

T . We
have that V a(t) = p(t), where

V =


1 x0 x20 · · · xk0
1 x1 x21 · · · xk1
...

...
... . . . ...

1 xk x2k · · · xkk


is a Vandermonde matrix. Since V is nonsingular, we have that a(t) = V −1p(t). Then, if we
let V −1 = (cij)

k
i,j=0, we obtain the expression

ai(t) =
k∑

j=0

cijp
(t)
k (xj), i = 0, . . . , k,

where cij is independent of t for all i, j. This shows that, for all i, ai(t) is continuous for
t ∈ (0,∞), and we have

|āi| ≤
∫ ∞

0
|ai(t)| dt ≤

k∑
j=0

|cij |
∫ ∞

0

∣∣∣p(t)k (xj)
∣∣∣ dt < +∞, i = 0, . . . , k,

17



3.2. DECAY PROPERTIES VIA POLYNOMIAL APPROXIMATIONS

hence āi is well defined for i = 0, . . . , k and pk(x) is a polynomial of degree at most k.
Finally, we have

Ek(f, [a, b]) ≤ max
x∈[a,b]

|f(x)− pk(x)|

≤ max
x∈[a,b]

∫ ∞

0

∣∣∣gt(x)− p
(t)
k (x)

∣∣∣ dt
≤
∫ ∞

0
Ek(gt(x), [a, b]) dt.

This concludes the proof.

Remark 3.5. The hypothesis of gt(x) being continuous for (t, x) ∈ (0,∞) × [a, b] can be
weakened since it is needed only to prove that the mapping t 7→ p

(t)
k (x) is measurable, so

that the integrals in (3.9) and (3.10) are defined. For instance, we can assume that gt(x) is
continuous over ((0,∞) \ D)× [a, b], where D ⊂ (0,∞) is a discrete set. In this way, The-
orem 3.8 shows that t 7→ p

(t)
k (x) is continuous almost everywhere, hence it is measurable.

Many functions in the applications can be expressed as in (3.7). For instance, if gt(x) =
h(t)/(x + t), then f(x) belongs to the class of Cauchy-Stieltjes functions. The following
bound generalizes and refines the results in [19, 45].

Theorem 3.10. Let f(x) be a Cauchy-Stieltjes function of the form

f(x) =

∫ ∞

0

h(t)

x+ t
dt

defined for x ∈ [a, b], 0 < a < b. Then

Ek(f, [a, b]) ≤
1

2

(√
f(a) +

√
f(b)

)2 (√
b−

√
a√

b+
√
a

)k+1

.

Proof. By applying Lemma 3.9 and Theorem 3.3, we get

Ek(f(x), [a, b]) ≤
∫ ∞

0
h(t)Ek(1/(x+ t), [a, b]) dt =

∫ ∞

0
h(t)K(t) ζ(t)k+1 dt

≤
(∫ ∞

0
h(t)K(t) dt

)
ζ(0)k+1,

where

K(t) =
(1 +

√
r(t))2

2(b+ t)
, ζ(t) =

√
r(t)− 1√
r(t) + 1

, r(t) =
b+ t

a+ t

for t ≥ 0. Proceeding as in the proof of [45, Theorem 4], we get∫ ∞

0
h(t)K(t) dt =

1

2

∫ ∞

0

h(t)

a+ t
dt+

1

2

∫ ∞

0

h(t)

b+ t
dt+

∫ ∞

0

h(t)√
(a+ t)(b+ t)

dt.

18
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The first two terms are equal to f(a)/2 and f(b)/2, respectively, in view of the representation
of f . The third term can be bounded by using the Cauchy-Schwarz inequality:∫ ∞

0

h(t)√
(a+ t)(b+ t)

dt ≤
(∫ ∞

0

h(t)

a+ t
dt

) 1
2
(∫ ∞

0

h(t)

b+ t
dt

) 1
2

=
√
f(a)f(b).

Finally,

Ek(f(x), [a, b]) ≤
1

2

(
f(a) + f(b) + 2

√
f(a)f(b)

)
ζ(0)k+1

=
1

2

(√
f(a) +

√
f(b)

)2 (√
b−

√
a√

b+
√
a

)k+1

.

This concludes the proof.

The application of Theorem 3.10 to derive decay bounds is straightforward in view of
Proposition 3.1 or Proposition 3.2.

Although this class is wider and includes transforms associated with more general mea-
sures, many important examples have this simple representation. For instance,

x−α =
sin(απ)

π

∫ ∞

0

t−α

x+ t
dt,

log(1 + x)

x
=

∫ ∞

1

1

t (x+ t)
dt.

Other functions that belong to the case (3.7) are Laplace-Stieltjes functions, character-
ized by gt(x) = h(t) e−tx [19, 79], the sign function (Section 3.3), the Fermi-Dirac function
(Section 3.3.7) and −x log x, which is involved in the definition of the von Neumann entropy
(Chapter 5).

3.3 Refined Bounds for Spectral Projectors and the Sign Function

The ability to approximate spectral projectors associated with banded or sparse matrices is
crucial for the development of linear scaling methods in electronic structure computations,
as discussed in [14, 24, 70, 83].

3.3.1 Spectral Projectors in Electronic Structure Computations

In electronic structure computations, we deal with a quantum systems of electrons at a cer-
tain temperature T ≥ 0. A continuous Hamiltonian is discretized via a finite difference
scheme or a Galarkin projection, leading to the Hermitian matrix Hn of size n = nb · ne,
where nb is the number of basis functions and depends only on the projection scheme, while
ne is the number of electrons, so we consider this as an increasing parameter.
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Let λ1 ≤ · · ·λne < λne+1 ≤ · · · ≤ λn be the eigenvalues of Hn, with associated or-
thonormal eigenvectors vi, i = 1, . . . , n. The first ne eigenvalues are called occupied levels,
and the associated eigenvectors are called occupied states. For systems with temperature
T = 0, a key role in the computations is played by the spectral projector associated with the
occupied states [70, 83],

Pn = v1v
∗
1 + · · ·+ vnev

∗
ne

=

ne∑
i=1

viv
∗
i .

We can also write it as the matrix function Pn = h(Hn), where h is the Heaviside function

h(x) =


1 if x < µ,
1
2 if x = µ,

0 if x > µ,

(3.11)

and λne < µ < λne+1 (µ is also called Fermi level or Fermi energy).
Let us consider the sequences of matrices {Hn} and {Pn}. In order to establish a com-

mon decay on the entries for all the projectors Pn, the authors in [14] identified the following
reasonable assumptions:

• the matrices Hn have uniformly bounded bandwidth;

• there exist four parameters b1 < a1 < a2 < b2 independent of n such that σ(Hn) ⊂
[b1, a1] ∪ [a2, b2] and, for all ne, [b1, a1] contains the first ne eigenvalues of Hn while
[a2, b2] contains the remaining n− ne.

The key quantity here is the relative spectral gap γ = (a2−a1)/(b2−b1). If this quantity is not
too small (e.g., insulators or semiconductors) then the projector exhibits exponential decay,
while for small or vanishing gap (e.g., metallic systems) the decay can be very slow [14].

For systems with positive temperature T > 0, the role previously played by the projector
is taken by fFD(Hn), where fFD is the Fermi-Dirac function

f(Hn) =
1

1 + eβ(x−µ)
, (3.12)

where β = (κBT )
−1 and κB is the Boltzmann’s constant. Note that, for T → 0, we get

fFD(Hn) → Pn. Hence, for large values of β, fFD(Hn) can be used as an approximation
of Pn; see [14]. On the other hand, when T is sufficiently large, a decay is present also in the
vanishing gap case corresponding to metallic systems.

3.3.2 Previous Work

Throughout this section, we consider a single Hermitian, banded H ∈ Cn×n with spectrum
contained in [b1, a1] ∪ [a2, b2] and its spectral projector P = h(H). We keep in mind that,
in the applications,H is an element of a matrix sequence with uniformly bounded bandwidth
and spectrum, as described above.
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Since the Heaviside function is discontinuous, the quantity Ek(h, [b1, b2]) does not con-
verge to 0, so we cannot use directly Proposition 3.1 to obtain decay bounds for P . In [14]
the authors considered the approximation of h(x) over the spectrum of H with the Fermi-
Dirac function, which is analytic over a family of ellipses containing [b1, b2], so the entries
of fFD(H) decay exponentially in view of Bernstein’s Theorem; see Theorem 3.20. Usu-
ally, a large value of β is required to have a good approximation fFD(x) ≈ h(x) over
[b1, a1] ∪ [a2, b2], and this often leads to pessimistic decay bounds.

Since the spectral projector of H depends only on the eigenvectors associated with the
first ne eigenvalues, a scaled and shifted modification such as

Ĥ = cH + d I, c > 0, d ∈ R,

has the same spectral projector. This allows us to make convenient assumptions on the
spectrum. For instance, if d = −(a2 + a1)/2 then σ(Ĥ) ⊂ [b̂1,−a] ∪ [a, b̂2], with a =
(a2−a1)/2, so we can choose µ = 0 in (3.11). Then, by putting b = max{b̂2,−b̂1}, we have
σ(Ĥ) ⊂ [−b,−a] ∪ [a, b]. When dealing with a sequence, the transformation must be the
same for all the matrices. This can be done if all the spectra are contained in the same union
of intervals.

Another approach, which turns out to be better than the one based on the Fermi-Dirac
approximation, consists in estimating directly the error of the polynomial approximation of the
Heaviside function over [−b,−a]∪ [a, b]. If µ = 0, then the identity h(x) = (1− sign(x))/2
holds, where

sign(x) =


−1 if x < 0,

0 if x = 0,

1 if x > 0,

hence [P ]ij = −1
2 [sign(H)]ij for i ̸= j. So it is equivalent to study the decay properties

of sign(H) instead of P . Moreover, sign(x) = x/|x| = x/(x2)
1
2 for any x ̸= 0. The main

idea is to consider a polynomial qk(x) ∈ Πk which approximates x−
1
2 over [a2, b2], and then

construct p2k+1(x) =
1
2(1− xqk(x

2)) to approximate h(x). This, using Theorem 3.6, leads
to the following result [14].

Theorem 3.11. Let H be Hermitian and m-banded with σ(H) ⊂ [−b,−a] ∪ [a, b], and let
P = h(H) be the spectral projector associated with the negative eigenvalues ofH . Then, for
1 < ξ < ξ̄ := b+a

b−a , we have

|[P ]ij | ≤
2bξM(ξ)

ξ − 1

(
1

ξ

) |i−j|
2m

for all i, j,

where

M(ξ) =
1

√
z0
, z0 =

[
b2 + a2

b2 − a2
− ξ2 + 1

2ξ

]
b2 − a2

2
.
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As discussed in Remark 3.3, we can optimize the bound among the admissible values of
ξ, so

|[P ]ij | ≤ inf
1<ξ<ξ̄

2bξM(ξ)

ξ − 1

(
1

ξ

) |i−j|
2m

 . (3.13)

Remark 3.6. Other features of the spectral projector follow from the fact that P = P 2. An
important consequence of this identity is that σ(P ) ⊂ {0, 1}, so |[P ]ij | ≤ ∥P∥2 = 1 for
any i, j. This means that any bound for the entries of P is useless unless it is less than 1 too.

3.3.3 Exploiting an Integral Representation of the Sign Function

In this section we report the new decay bounds in [17] for the spectral projector P = h(H),
where H is banded, Hermitian and with spectrum contained in the union of two symmetric
intervals and h(x) is the Heaviside function defined as in (3.11) with µ = 0. For this pur-
pose, since P = 1

2(I − sign(H)), we study the decay properties of sign(H) instead of P .
Numerical validation of the results is also given with some experiments.

Consider the following integral representation of sign(x) [67, Chapter 5]:

sign(x) =
2

π

∫ ∞

0

x

x2 + t2
dt. (3.14)

In view of Lemma 3.9 we can reduce the problem to study the polynomial approximations
of ft(x) = x(x2 + t2)−1. Notice that ft(x) = xgt(x

2) where gt(x) = (x + t2)−1. The
following result is specific for odd functions of this form.

Lemma 3.12. Let f(x) = xg(x2) be defined for x ∈ [−b,−a] ∪ [a, b], where g(x) is defined
for x ∈ [a2, b2]. Let k ≥ 0 and s =

⌈
k−1
2

⌉
. Then

Ek(f, [−b,−a] ∪ [a, b]) ≤ bEs(g, [a
2, b2]).

Proof. Suppose that k is odd, so k = 2s + 1 with s ≥ 0. Let qs(x) ∈ Πs and pk(x) =
xqs(x

2) ∈ Πk. Then

Ek(f, [−b,−a] ∪ [a, b]) ≤ sup
x∈[−b,−a]∪[a,b]

|f(x)− pk(x)|

= sup
x∈[−b,−a]∪[a,b]

|x| · |g(x2)− qs(x
2)|

≤ b sup
x∈[a2,b2]

|g(x)− qs(x)|.

Since this holds for all qs(x) ∈ Πs, by the definition in (3.1) we get

Ek(f, [−b,−a] ∪ [a, b]) ≤ bEs(g, [a
2, b2]).

If k is even, then k − 1 = 2s+ 1 is odd, and we can use the inequality

Ek(f, [−b,−a] ∪ [a, b]) ≤ Ek−1(f, [−b,−a] ∪ [a, b]) ≤ Es(g, [a
2, b2]).

This concludes the proof.
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Now we can bound Ek(sign(x), [−b,−a] ∪ [a, b]).

Theorem 3.13. Let 0 < a < b, and let, for any t ≥ 0,

r(t) :=
b2 + t2

a2 + t2
, K(t) :=

(1 +
√
r(t))2

2(b2 + t2)
, ζ(t) :=

√
r(t)− 1√
r(t) + 1

. (3.15)

Then
Ek(sign(x), [−b,−a] ∪ [a, b]) ≤ 2b

π

∫ ∞

0
K(t) ζ(t)

k
2 dt, (3.16)

and

Ek(sign(x), [−b,−a] ∪ [a, b]) ≤ 1

2

(
1 +

√
b

a

)2

·
(
b− a

b+ a

) k
2

. (3.17)

Proof. Let k ≥ 0. Let ft(x) = x(x2+t2)−1 = xgt(x
2) for t ≥ 0, where gt(x) = (x+t2)−1,

so that
sign(x) =

2

π

∫ ∞

0
ft(x) dt.

From (3.4), we get that Ek(gt(x), [a
2, b2]) = Ek(1/x, [a

2 + t2, b2 + t2]) = K(t)q(t)k+1.
Therefore, in view of (3.14), Lemma 3.9, and Lemma 3.12, since ⌈k−1

2 ⌉ ≥ k−2
2 ,

Ek(sign(x), [−b,−a] ∪ [a, b]) ≤ 2

π

∫ ∞

0
Ek(ft(x), [−b,−a] ∪ [a, b]dt

≤ 2b

π

∫ ∞

0
K(t)ζ(t)

k
2 dt.

For (3.17), since k
2 ≥ 0 and ζ(t) ≤ ζ(0) for all t ≥ 0, it holds that

2b

π

∫ ∞

0
K(t) ζ(t)

k
2 dt ≤ 2b

π

∫ ∞

0
K(t) dt ·ζ(0)

k
2 =

2b

π

∫ ∞

0
K(t) dt ·

(
b− a

b+ a

) k
2

. (3.18)

In order to estimate the integral, we can expand it as follows:∫ ∞

0
K(t) dt =

∫ ∞

0

(1 +
√
r(t))2

2(b2 + t2)
dt

=
1

2

(∫ ∞

0

1

b2 + t2
dt+

∫ ∞

0

1

a2 + t2
dt+ 2

∫ ∞

0

1√
(b2 + t2)(a2 + t2)

dt

)
.

The first two terms can be explicitly computed:∫ ∞

0

1

b2 + t2
dt =

π

2b
,

∫ ∞

0

1

a2 + t2
dt =

π

2a
.
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The third can be bounded by using the Cauchy-Schwarz inequality:∫ ∞

0

1√
(b2 + t2)(a2 + t2)

dt ≤
(∫ ∞

0

1

b2 + t2
dt

) 1
2

·
(∫ ∞

0

1

a2 + t2
dt

) 1
2

=
π

2
√
ab
.

Therefore

2b

π

∫ ∞

0
K(t) dt ≤ 1

2

(
1 +

b

a
+ 2

√
b

a

)
=

1

2

(
1 +

√
b

a

)2

. (3.19)

This concludes the proof.

By using these results, we can derive bounds for the entries of sign(H) and spectral
projectors.

Theorem3.14. LetH beHermitian andm-bandedwithσ(H) ⊂ [−b,−a]∪[a, b]. Let sign(H)
be the matrix sign function and P = h(H) be the spectral projector associated with the neg-
ative eigenvalues. Let

K̂ :=
1

4

(
1 +

√
b

a

)2

, ζ̂ :=
b− a

b+ a
.

Then

|[sign(H)]ij | ≤ 2K̂ ζ̂
|i−j|
2m

− 1
2 for |i− j| ≥ m, (3.20)

|[P ]ij | ≤ K̂ ζ̂
|i−j|
2m

− 1
2 for all i, j. (3.21)

Proof. The inequality (3.20) follows from Theorem 3.13 combined with Lemma 3.1. Regard-
ing (3.21), if |i− j| ≥ m, the inequality follows directly from (3.20) and the identity |[P ]ij | =
|[sign(H)]ij |/2. For |i − j| < m, note that |[P ]ij | ≤ 1 for all i, j (see Remark 3.6) and the
right-hand side of (3.21) is greater than 1.

Remark 3.7. This result improves the bound in (3.13) since all the geometric rates are smaller
than the one in (3.21). Moreover, one does not need to choose the better estimate among a
family of bounds.

The general (non-banded) case follows by using Proposition 3.2 with essentially the same
proof of Theorem 3.14.

Theorem 3.15. LetH be Hermitian with σ(H) ⊂ [−b,−a] ∪ [a, b]. Then,

|[P ]ij | ≤ K̂ζ̂
d(i,j)−1

2 for all i, j,

where d(i, j) is the geodesic distance in G(H) and K̂ , ζ̂ are as in Theorem 3.14.
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3.3.4 An Asymptotically Optimal Bound

Although the bound given in Theorem 3.14 behaves well in practice, it is not optimal from an
asymptotic point of view. Hasson showed in [65] that there exists K > 0 such that

Ek(sign(x), [−b,−a] ∪ [a, b]) ≤ K√
k

(
b− a

b+ a

) k
2

.

By Proposition 3.1, this leads to

|[sign(H)]ij | ≤
K√

|i−j|
m − 1

(
b− a

b+ a

) |i−j|
2m

− 1
2

, (3.22)

that is asymptotically faster than the bound in (3.20). This is actually the best result we can
obtain by using polynomial approximations of the sign function if the only available spectral
information is that σ(H) ⊂ [−b,−a] ∪ [a, b], since

√
k

(
b+ a

b− a

) k
2

· Ek(sign(x), [−b,−a] ∪ [a, b]) = O(1) as k → ∞.

See [38] for more details. Here the disadvantage is that we do not know an explicit formula
for K. In what follows we will obtain, by manipulating the integral in (3.16), a decay that is
asymptotically equivalent to (3.22) but with computable parameters.

In order to obtain better bounds, we start with the inequality (3.16). In the proof of Theo-
rem 3.13, a key argument used in (3.18) is the inequality

ζ(t)
k
2 ≤ ζ(0)

k
2 for any t ≥ 0. (3.23)

The next result gives us a better estimate of the left-hand side in (3.23).

Lemma 3.16. Let ζ(t) be defined as in (3.15), and let α > 0 be real. Then

ζ(t)α ≤ e−α(c1−t2c2)t2ζ(0)α for all t ≥ 0,

where

c1 =
1

2ab
, c2 =

a2 + ab+ b2

8a3b3
.

Moreover, for any fixed τ such that 0 < τ <
√

c1
c2

and σ(τ) := c1 − τ2c2, we have

ζ(t)α ≤ e−ασ(τ)t2ζ(0)α for 0 ≤ t ≤ τ. (3.24)

Proof. Let t ≥ 0 be fixed. We have

ζ(t)α =

(√
b2 + t2 −

√
a2 + t2√

b2 + t2 +
√
a2 + t2

)α

≤
(

1

b+ a

)α

·
(√

b2 + t2 −
√
a2 + t2

)α
,
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so

ζ(t)α

ζ(0)α
≤

(√
b2 + t2 −

√
a2 + t2

)α
(b− a)α

. (3.25)

Consider the function s(x) =
√
b2 + x−

√
a2 + x defined forx > 0, and its Taylor expansion

with Lagrange remainder centered in 0:

s(x) = b− a− 1

2

b− a

ab
x+

1

2
s′′(ξ)x2,

for some ξ between 0 and x. Since

s′′(ξ) =
1

4

(
1

(a2 + ξ)3/2
− 1

(b2 + ξ)3/2

)
≤ 1

4

(
1

a3
− 1

b3

)
=

1

4

(b− a)(a2 + ab+ b2)

a3b3
,

we have

s(x) ≤ (b− a)

(
1− 1

2ab
x+

1

8

a2 + ab+ b2

a3b3
x2
)

= (b− a)(1− c1x+ c2x
2). (3.26)

Note that s(x) is a positive function, so 1 − c1x + c2x
2 is also positive in view of (3.26).

Since the numerator in (3.25) is s(t2)α, we have

ζ(t)α

ζ(0)α
≤ (1− c1t

2 + c2t
4)α = eα log(1−c1t2+c2t4) ≤ eα(−c1t2+c2t4) = e−α(c1−c2t2)t2 ,

where for the last inequality we have used that log(x) ≤ x− 1 for all x > 0.
For (3.24), observe that if 0 ≤ t ≤ τ then c1 − t2c2 achieves its minimum in τ , so

c1 − t2c2 ≥ c1 − τ2c2 = σ(τ) for 0 ≤ t ≤ τ . This concludes the proof.

Remark 3.8. The inequality (3.24) is uniform in t as long as 0 ≤ t ≤ τ . Moreover, for
τ <

√
c1
c2

, we have that σ(τ) > 0. This means that ζ(t)α is bounded by ζ(0)α times a
Gaussian function in the variable t.

Theorem 3.17. Let 0 < a < b, and let c1 = 1
2ab , c2 = a2+ab+b2

8a3b3
and 0 < τ < τ̄ :=

√
c1
c2

.
Then, for all k,

Ek(sign(x), [−b,−a] ∪ [a, b]) ≤ K1(τ)√
k
ζ(0)

k
2 +K2ζ(τ)

k
2 ,

where ζ(t) is defined as in (3.15) and

K1(τ) =
1

b
√
2πσ(τ)

(
1 +

b

a

)2

, σ(τ) = c1 − τ2c2,

K2 =
1

2

(
1 +

√
b

a

)2 (3.27)

for all k ≥ 0.
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Proof. From Theorem 3.13 we have

Ek(sign(x), [−b,−a] ∪ [a, b]) ≤ 2b

π

∫ ∞

0
K(t) ζ(t)

k
2 dt, (3.28)

where K(t) is defined in (3.15). We split the integral in two terms as follows:∫ ∞

0
K(t) ζ(t)

k
2 dt =

∫ τ

0
K(t) ζ(t)

k
2 dt+

∫ ∞

τ
K(t) ζ(t)

k
2 dt.

The first term can be bounded by using Lemma 3.16, as t ranges from 0 to τ , and the inequality
K(t) ≤ K(0) = (1 + b/a)2/2b:

2b

π

∫ τ

0
K(t) ζ(t)

k
2 dt ≤ 2b

π
C(0)

∫ τ

0
ζ(t)

k
2 dt

≤ 1

bπ

(
1 +

b

a

)2

ζ(0)
k
2

∫ τ

0
e−

k
2
σ(τ)t2 dt

≤ 1

bπ

(
1 +

b

a

)2

ζ(0)
k
2

∫ ∞

0
e−

k
2
σ(τ)t2 dt

=
1

2bπ

(
1 +

b

a

)2

ζ(0)
k
2 ·

√
2π

k σ(τ)

=
1

b
√
2πσ(τ)

(
1 +

b

a

)2 1√
k
ζ(0)

k
2 .

For the second term:
2b

π

∫ ∞

τ
K(t) ζ(t)

k
2 dt ≤ 2b

π

(∫ ∞

0
K(t) dt

)
ζ(τ)

k
2

≤ 1

2

(
1 +

√
b

a

)2

ζ(τ)
k
2 ,

where we have used (3.19). Combining these two inequalities with (3.28), we conclude.

Remark 3.9. Since ζ(τ) < ζ(0) for any τ > 0, the second term in (3.29) decays faster than
the first. Hence, the asymptotic behavior of this bound is equal to the one in (3.22), but with
computable parameters.

The combination of Theorem 3.17 and Proposition 3.1 yields the following result.

Theorem3.18. LetH beHermitian andm-bandedwithσ(H) ⊂ [−b,−a]∪[a, b]. Let sign(H)
be the matrix sign function and P = h(H) be the spectral projector associated with the neg-
ative eigenvalues. Let c1 = 1

2ab , c2 =
a2+ab+b2

8a3b3
and 0 < τ < τ̄ :=

√
c1
c2

. Let ζ(t) be defined
as in (3.15), and letK1(τ),K2 and σ(τ) be defined as in (3.27). Then, for |i− j| ≥ m,

|[sign(H)]ij | ≤
K1(τ)√
|i−j|
m − 1

ζ(0)
|i−j|
2m

− 1
2 +K2ζ(τ)

|i−j|
2m

− 1
2 ,
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and

|[P ]ij | ≤
1

2

 K1(τ)√
|i−j|
m − 1

ζ(0)
|i−j|
2m

− 1
2 +K2ζ(τ)

|i−j|
2m

− 1
2

 . (3.29)

Remark 3.10. The bounds in Theorem 3.18 depend on the choice of τ , which ranges between
0 and τ̄ . As in 3.11, we have a whole family of bounds which can be optimized among the
admissible values of τ .

We also have the counterpart of Theorem 3.18 for general sparse matrices.

Theorem 3.19. LetH be as in Theorem 3.18 but without the hypothesis that it is banded. Then,
for i ̸= j,

|[sign(H)]ij | ≤
K1(τ)√
d(i, j)− 1

ζ(0)
d(i,j)−1

2 +K2ζ(τ)
d(i,j)

2 ,

and

|[P ]ij | ≤
1

2

(
K1(τ)√
d(i, j)− 1

ζ(0)
d(i,j)−1

2 +K2ζ(τ)
d(i,j)

2

)
,

where all the parameters are defined as in Theorem 3.18.

3.3.5 Comparison of Existing Bounds

For the next experiments, we will assume that σ(H) ⊂ [−1,−a] ∪ [a, 1], so b = 1. This is
not restrictive, since we can scale and shift the matrix in order to satisfy the condition.

Since any bound for a generic entry [P ]ij of the spectral projector associated with a
banded H depends only on the value |i − j|, in order to study the exact decay of P we can
consider the quantities

DP (k) := max
|i−j|=k

|[P ]ij |, for any k ≥ 0.

Let us denote the bounds for DP (k) induced by (3.13), (3.21) and (3.29) for |i − j| = k as
B1(k), B2(k) and B3(k), respectively. The third is optimized among the admissible values
of τ as described in Remark 3.10. The components of P satisfy |[P ]ij | ≤ 1 for all i, j, so it
is convenient to use the following bound:

DP (k) ≤ min{1, Bs(k)},

for any s = 1, 2, 3.
For the tests we have constructed Hermitian matrices with prescribed size, bandwidth,

and spectrum with the following procedure.
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Algorithm 1 Matrix with prescribed bandwidth and spectrum
Input: Eigenvalues λ1, . . . , λn ∈ R, bandwidth m > 0
Output: A ∈ Rn×n symmetric, m-banded such that σ(A) = {λ1, . . . , λn}

1: Sample Ω ∈ Rn×n random matrix, compute the QR factorization Ω = QR
2: Set Λ = diag(λ1, . . . , λn), Am = QΛQ∗

3: for k = m, . . . , n− 1 do
4: x̃ = Ak(k : n, k −m+ 1) ∈ Rn−k+1, ũ = x̃− ∥x̃∥2e1, u = [0, . . . , 0, ũ]
5: Hk = I − βuuT , β = 2/uTu
6: Ak+1 = HkAkHk ▷ Implicit operation, Hk is never formed
7: end for
8: return A = An

Algorithm 1 is a variant of [56, Algorithm 7.4.2], which returns a tridiagonal matrix. At
each step of the loop, the principal submatrixAk(1 : k+1, 1 : k+1) ism-banded, so at the
final step we get an n× n m-banded matrix similar to Am.

With Algorithm 1, we have constructed a 2000 × 2000 Hermitian matrix H which is 20-
banded and such thatσ(H) ⊂ [−1,−0.3]∪[0.3, 1]. In Figure 3.1 the exact decay is compared
with the bounds. We can see that the decay rate seems to be captured by all the bounds,
although B3(k) < B2(k) < B1(k) for almost all the values of k.

0 200 400 600 800 1000 1200 1400 1600 1800 2000
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Figure 3.1: Logarithmic plot of the bounds (3.13), (3.21), and (3.29) compared with the exact
decay for the spectral projector associated with the negative eigenvalues of a 20-banded,
2000×2000 Hermitian matrix with uniformly distributed eigenvalues in [−1,−0.3]∪ [0.3, 1].

The bounds can be used to truncate the projector to a banded matrix with a small error.
Let us see how the bounds behave in order to truncate P to P (m) where m is such that
|[P ]ij | < ϵ for |i− j| > m, for a fixed threshold ϵ. Let us define

mi(ϵ) = min{k̄ : Bi(k) ≤ ϵ for all k ≥ k̄}, i = 1, 2, 3,

mP (ϵ) = min{k̄ : DP (k) ≤ ϵ for all k ≥ k̄}.
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The valuemi(ϵ) is the first for which the boundBi becomes definitively smaller than a thresh-
old ϵ, and mP (ϵ) does the same with Dp. The values of mi(ϵ), i = 1, 2, 3, and mP (ϵ) as-
sociated with the previous example are displayed in Table 3.1. We note that m3(ϵ) provides
the best estimate in all cases. Once again, it should be emphasized that for a given accuracy
ϵ, the estimated bandwidth is independent of n. We can also notice that the exact decay is
oscillatory with period equal to the original bandwidth m. This is reflected in the fact that
mP (ϵ) is always a multiple of m.

ϵ = 1e− 1 ϵ = 1e− 2 ϵ = 1e− 3 ϵ = 1e− 4 ϵ = 1e− 5

m1(ϵ) 419 577 733 887 1041
m2(ϵ) 270 419 568 717 865
m3(ϵ) 218 347 483 623 764
mP (ϵ) 60 180 300 420 540

Table 3.1: Estimated bandwidth needed to achieve a prescribed error in the approximate spec-
tral projector using different bounds. In the last row of the table, we report the actual band-
width needed to achieve the prescribed error levels.

3.3.6 Nonsymmetric Spectrum

Our approach strongly relies on the fact that σ(H) is contained in the union of two symmetric
intervals. Although this hypothesis is always satisfied by choosing suitable values of a and
b, the bound does not behave like the real decay when b (or −b) is not close to the maximum
(resp., minimum) eigenvalue. If σ(H) ⊂ [−b1,−a] ∪ [a, b2] with b1 ̸= b2, it would be
preferable to consider this domain instead of [−b,−a] ∪ [a, b] with b = max{b1, b2}.

It is shown in [39, 49] that there exist positive constants C1, C2 and η such that

C1k
− 1

2 e−ηk ≤ Ek(sign(x), [−b1,−a] ∪ [a, b2]) ≤ C2k
− 1

2 e−ηk. (3.30)

The rate η is computable and given by

η =

∫ K

−1

K − x√
(1− x2)(x+ b1/a)(x− b2/a)

dx,

where

K =

∫ 1
−1 x((1− x2)(x+ b1/a)(x− b2/a))

−1/2 dx∫ 1
−1((1− x2)(x+ b1/a)(x− b2/a))−1/2 dx

.

However, the arguments in [49] do not give the values of C1 and C2, so they are unknown.
As an example, we constructed a 300 × 300, tridiagonal, Hermitian matrix H such that

the spectrum is uniformly distributed over [−0.5,−0.1]∪ [0.1, 1]. In Figure 3.2 the real decay
is compared with the asymptotic rate in (3.30) and the rate in (3.22), which is asymptotically
equivalent to the bound (3.29). All the constant factors are set to 1 to compare only the
asymptotic behavior.
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Figure 3.2: Logarithmic plot of the decay rates (3.30) and (3.22) compared with the exact
decay of the spectral projector associated with the negative eigenvalues of a 300 × 300
tridiagonal matrix with spectrum in [−0.5,−0.1] ∪ [0.1, 1].

3.3.7 Bounds for the Fermi-Dirac Function

Using the same techniques introduced in this section, we can derive new decay bounds for
the Fermi-Dirac matrix function.

Let us recall a previous result based on Bernstein’s Theorem 3.6.

Theorem 3.20 (Theorem 8.1 in [14]). Let H be Hermitian and m-banded with σ(H) ⊂
[−1, 1]. Let fFD(x) = (1 + eβ(x−µ))−1 be the Fermi-Dirac function, where β > 0 and
µ ∈ [−1, 1]. Then

|[fFD(H)]ij | ≤
2χM(χ)

χ− 1

(
1

χ

) |i−j|
m

, M(χ) = max
z∈Eχ

|fFD(z)|, (3.31)

for any 1 < χ < χ, where

χ =

√√
(β2(1− µ2)− π2)2 + 4π2β2 − β2(1− µ2) + π2

√
2β

+

√√
(β2(1− µ2)− π2)2 + 4π2β2 + β2(1 + µ2) + π2

√
2β

,

and Eχ is the unique ellipse with foci in −1 and 1, with semiaxes κ1 > 1 and κ2 >, and
χ = κ1 + κ2.

Remark 3.11. The hypothesis σ(H) ⊂ [−1, 1] is not restrictive. In fact, if σ(H) ⊂ [a, b], then

(I + exp(β(H − µ)))−1 = (I + exp(β̃(H̃ − µ̃)))−1,

where H̃ = 2
b−aH − b+a

b−aI , µ̃ = 2
b−aµ− b+a

b−a , β̃ = b−a
2 β and σ(H̃) ⊂ [−1, 1].
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The parameters of Theorem 3.20 simplify when µ = 0.

Corollary 3.21. LetH bem-banded with σ(H) ⊂ [−1, 1]. Let fFD(x) = (1 + eβx)−1 with
β > 0. Then (3.31) holds with χ andM(χ) given by

χ =
π +

√
β2 + π2

β
, M(χ) =

∣∣∣1/(1 + eβz
∗
)
∣∣∣ , z∗ = i

χ2 − 1

2χ
. (3.32)

In the same spirit of the previous sections, we can give a unified bound for the entries
of fFD(H) in the case where µ = 0 and σ(H) is contained in the union of two symmetric
intervals. We consider the identity

fFD(x) =
1

1 + eβx
=

1

2

(
1− e

β
2
x − e−

β
2
x

e
β
2
x + e−

β
2
x

)
=

1

2

(
1− tanh

(
β

2
x

))
, (3.33)

so here tanh
(
β
2x
)

plays with fFD(x) the same role as sign(x) with the Heaviside func-
tion (3.11). We have the following relation between hyperbolic and trigonometric tangent:

tanh(z) = −i tan(iz). (3.34)

Moreover, tan(z) has the pole expansion [4, Example 11.7.3]

tan(z) =
∞∑
s=0

2z

z2s − z2
, zs =

2s+ 1

2
π. (3.35)

Combining (3.34) with (3.35) gives us

tanh(z) =

∞∑
s=0

2z

z2s + z2
. (3.36)

Due to the relation (3.33), we can reduce the problem to that of bounding the entries of the
hyperbolic tangent matrix function.

Theorem 3.22. LetH ∈ Cn×n be Hermitian andm-banded with σ(A) ⊂ [−b,−a] ∪ [a, b].
Let

K̃ =


b
2

[(
tanh(b)

b

) 1
2
+
(
tanh(a)

a

) 1
2

]2
if a > 0,

b
2

[(
tanh(b)

b

) 1
2
+ 1

]2
if a = 0,

and

ζ̃ =

√
b2 + π2/4−

√
a2 + π2/4√

b2 + π2/4 +
√
a2 + π2/4

=
b2 − a2

(
√
b2 + π2/4 +

√
a2 + π2/4)2

.

Then
|[tanh(A)]ij | ≤ K̃ζ̃

|i−j|
2m

− 1
2 ,

for |i− j| ≥ m.
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Proof. The sum in (3.36) can be interpreted as the integral of a piecewise continuous func-
tion. Hence, in view of Lemma 3.9 and Remark 3.5 and applying Lemma 3.12, for k ≥ 0 we
get

Ek(tanh(x), [−b,−a] ∪ [a, b]) ≤
∞∑
s=0

Ek(2x/(z
2
s + x2), [−b,−a] ∪ [a, b])

≤ 2b
∞∑
s=0

K(zs)ζ(zs)
k
2 .

≤

(
2b

∞∑
s=0

K(zs)

)
ζ(z0)

k
2 ,

where r(t),K(t), ζ(t) are as in (3.15). Proceeding similarly as in Theorem 3.14 we expand
K(zs) as follows:

∞∑
s=0

2K(zs) =
∞∑
s=0

(1 +
√
r(zs))

2

b2 + z2s

=
∞∑
s=0

1

b2 + z2s
+

∞∑
s=0

1

a2 + z2s
+ 2

∞∑
s=0

1√
(b2 + z2s )(a

2 + z2s )
.

Consider the case a > 0. In view of (3.36),
∞∑
s=0

1

b2 + z2s
=

tanh(b)

2b
,

∞∑
s=0

1

a2 + z2s
=

tanh(a)

2a
, (3.37)

while the third can be bounded by using the Cauchy-Schwarz inequality:

∞∑
s=0

1√
(b2 + z2s )(a

2 + z2s )
≤

( ∞∑
s=0

1

b2 + z2s

) 1
2
( ∞∑

s=0

1

a2 + z2s

) 1
2

=

(
tanh(b)

2b

tanh(a)

2a

) 1
2

.

Finally,
∞∑
s=0

K(zs) ≤
tanh(b)

2b
+

tanh(a)

2a
+ 2

(
tanh(b)

2b

tanh(a)

2a

) 1
2

=
1

2

[(
tanh(b)

b

) 1
2

+

(
tanh(a)

a

) 1
2

]2
.

If a = 0, observe that the second identity in (3.37) becomes
∞∑
s=0

1

z2s
=

∞∑
s=0

lim
a→0

1

a2 + z2s
= lim

a→0

∞∑
s=0

1

a2 + z2s
= lim

a→0

tanh(a)

2a
=

1

2
,
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where we have used the Monotone Convergence Theorem [91, Theorem 1.26]. The rest of the
proof proceeds as before.

We can use Theorem 3.22 to obtain a new bound for the entries of the Fermi-Dirac func-
tion.

Corollary 3.23. Let fFD(x) = (1 + eβx)−1, and let H be Hermitian and m-banded with
σ(H) ⊂ [−b,−a] ∪ [a, b]. Let

ζ̃ =
β2(b2 − a2)

(
√
β2b2 + π2 +

√
β2a2 + π2)2

,

and

K̃ =
b

4


tanh

(
β
2 b
)

b


1
2

+

tanh
(
β
2a
)

a


1
2


2

if a > 0,

K̃ =
b

4


tanh

(
β
2 b
)

b


1
2

+

(
β

2

) 1
2


2

if a = 0.

Then

|[fFD(H)]ij | ≤ K̃ζ̃
|i−j|
2m

− 1
2 , (3.38)

for all i, j such that |i− j| ≥ m.

Proof. Since |[fFD(H)]ij | = −1
2 |[tanh(

β
2H)] for all i ̸= j, we can apply Theorem 3.22 by

observing that σ
(
β
2H
)
⊂
[
−β

2 b,−
β
2a
]
∪
[
β
2a,

β
2 b
]

.

Remark 3.12. Let us compare this result with the previous bound given by Corollary 3.21.
In (3.31) the rate is (1/χ)

|i−j|
m , where 1 < χ < χ and χ is given in (3.32), while in (3.38)

the rate is ζ̃
|i−j|
2m . When a = 0 and b = 1, so the only assumption on the spectrum of H

is σ(H) ⊂ [−1, 1], we have that ζ̃
1
2 = 1/χ, hence ζ̃

|i−j|
2m = (1/χ)

|i−j|
m < (1/χ)

|i−j|
m for

χ < χ, so the geometric rate in (3.38) decays faster than all the rates in (3.31). Moreover, in
Corollary 3.21 no attention is paid to a possible gap around µ in the spectrum of H . Hence,
when such a gap is present, the bound in (3.38) can be much smaller.
Remark 3.13. Theorem 3.22 and Corollary 3.23 optimize the spectral information only if σ(H)
is symmetric with respect to µ. The case µ ̸= 0 can be handled by considering H̃ = H−µI
so that (I+exp(β(H−µI))−1 = (I+exp(βH̃))−1. However, if σ(H̃) is not symmetric, we
expect the bounds to be pessimistic, so the same considerations of Section 3.3.6 hold also
in this case. This problem does not hold for Theorem 3.20, in which, however, no benefits are
obtained from a possible gap around µ. Specific bounds for the nonsymmetric, gapped case
are yet to be found.
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Example 3.14. As a numerical example, we constructed two 100 × 100 tridiagonal matrices
with uniformly distributed spectrum over [−1,−a] ∪ [a, 1], a = 0, 0.3. We then computed
fFD(H) = (I+exp(10H))−1, so β = 10 and µ = 0. We compared the off-diagonal decay

max
|i−j|=k

|[fFD(H)]ij |

with the bounds (3.38) and (3.31) optimized in χ. The results are shown in Figure 3.3. When
a = 0, (3.38) yields a small refinement, while, for a = 0.3, the improvement is notable.

0 10 20 30 40 50 60 70 80 90 100

10
-15

10
-10

10
-5

10
0

0 10 20 30 40 50 60 70 80 90 100

10
-15

10
-10

10
-5

10
0

Figure 3.3: Logarithmic plot of the exact off-diagonal decay of fFD(H) = (I + e10H)−1

compared with the bounds (3.38) and (3.31) optimized inχ, whereH is symmetric, tridiagonal
with σ(H) ⊂ [−1,−a] ∪ [a, 1]. Left: a = 0. Right: a = 0.3.

3.4 Bounds Related to the Eigenvalue Distribution

In this section we will give bounds for the entries of some matrix functions which take account
of more spectral information than the previous techniques.

3.4.1 Inverse Function

The result of Theorem 3.24 can be refined by directly working on the best polynomial approx-
imation.

Theorem 3.24. Let A ∈ Cn×n be Hermitian positive definite and m-banded with distinct
eigenvalues λ1 < λ2 < · · · < λν , with ν ≤ n. For ℓ < ν define σℓ(A) := {λ1, . . . , λν−ℓ}
and

rℓ =
λν−ℓ

λ1
, ζ̂ℓ =

√
rℓ − 1

√
rℓ + 1

, Kℓ =

(
1 +

√
rℓ
)2

2λν−ℓ
. (3.39)
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Then

Ek(1/x, σ(A)) ≤ Ek−ℓ(1/x, σℓ(A)) ≤ Kℓζ̂
k+1−ℓ
ℓ , (3.40)

for all k ≥ 0 and ℓ = 0, 1, . . . , k. Moreover, we have that

|[A−1]ij | ≤ Kℓζ̂
|i−j|
m

−ℓ

ℓ , (3.41)

for |i− j| > m and ℓ = 0, 1, . . . ,
⌊
|i−j|
m

⌋
.

Proof. Let pk−ℓ be a polynomial of degree k − ℓ. Define

Rℓ(x) =
ν∏

i=ν−ℓ+1

(
1− x

λi

)
and let

pk(x) =
1

x
(1−Rℓ(x)) +Rℓ(x) pk−ℓ(x). (3.42)

Since Rℓ(0) = 1, we have that 1 − Rℓ(x) is a multiple of x so the first term in (3.42) is a
polynomial of degree ℓ− 1. Then pk(x) has degree k. From the identity

1

x
− pk(x) = Rℓ(x)

(
1

x
− pk−ℓ(x)

)
,

and by using that Rℓ(λi) = 0 for i = ν − ℓ+ 1, . . . , n, and |Rℓ(x)| ≤ 1 for any x ∈ σℓ(A),
we have

Ek(1/x, σ(A)) ≤ max
x∈σ(A)

∣∣∣∣1x − pk(x)

∣∣∣∣ = max
x∈σ(A)

[
|Rℓ(x)| ·

∣∣∣∣1x − pk−ℓ(x)

∣∣∣∣]
≤ max

x∈σℓ(A)

∣∣∣∣1x − pk−ℓ(x)

∣∣∣∣ .
The inequality holds for any pk−ℓ(x) ∈ Πk−ℓ and by using Theorem 3.3, we have that

Ek(1/x, σ(H)) ≤ Ek(1/x, σℓ(A)) ≤ Ek(1/x, [a, λν−ℓ])

= Kℓζ̂
k+1−ℓ
ℓ ,

so (3.40) holds. Finally, for (3.41) it is sufficient to apply Proposition 3.1.

Remark 3.15. With Theorem 3.24 we have refined the result of Theorem 3.5, since we can
now exclude a multiple eigenvalue by increasing ℓ by 1, while by using Theorem 3.5 we would
need to increase ℓ by the algebraic multiplicity of that eigenvalue. We also slightly decreased
the constant factor, since Kℓ ≤ 2/λ1 for any ℓ. This is not a big improvement since Kℓ

increases with ℓ and the values of these two constants do not differ much in practice.
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3.4.2 Cauchy-Stieltjes Functions

Theorem 3.24 extends to Cauchy-Stieltjes functions through Lemma 3.9.

Theorem 3.25. Let A ∈ Cn×n be Hermitian positive definite and m-banded with distinct
eigenvalues λ1 < λ2 < · · · < λν , with ν ≤ n. Define σℓ(A+ tI) := {λ1+ t, . . . , λν−ℓ+ t}
for ℓ < ν and t ≥ 0, and let ζ̂ℓ be as in (3.39). Consider a Cauchy-Stieltjes function of the form

f(x) =

∫ ∞

0

h(t)

x+ t
dt, (3.43)

with h(t) ≥ 0 for all t. Then

Ek(f(x), σ(A)) ≤
1

2

(√
f(λ1) +

√
f(λν−ℓ)

)2
ζ̂k+1−ℓ
ℓ , (3.44)

for all k ≥ 0 and ℓ = 0, . . . , k. Moreover, we have that

|[f(A)]ij | ≤
1

2

(√
f(λ1) +

√
f(λν−ℓ)

)2
ζ̂

|i−j|
m

−ℓ

ℓ , (3.45)

for |i− j| ≥ m and ℓ = 0, 1, . . . ,
⌊
|i−j|
m

⌋
.

Proof. Let k ≥ 0. By applying Lemma 3.9, we get

Ek(f, σ(A)) ≤
∫ ∞

0
h(t)Ek(1/(x+ t), σ(A)) dt =

∫ ∞

0
h(t)Ek(1/x, σ(A+ tI)) dt.

Let ℓ = 0, . . . , ⌊k⌋ be fixed. In view of Theorem 3.24, by defining

rℓ(t) =
λν−ℓ + t

λ1 + t
, ζℓ(t) =

√
rℓ(t)− 1√
rℓ(t) + 1

, Kℓ(t) =

(
1 +

√
rℓ(t)

)2
2(λν−ℓ + t)

,

we get

Ek(1/x, σ(A+ tI)) ≤ Kℓ(t)ζℓ(t)
k+1−ℓ ≤ Kℓ(t)ζ̂ℓ,

Since k + 1− ℓ ≥ 0 and ζℓ(t) ≤ ζℓ(0) = ζ̂ℓ. Hence,

Ek(f, σ(A)) ≤ ζ̂ℓ

∫ ∞

0
h(t)Kℓ(t) dt. (3.46)

In order to estimate the integral, we split it as follows:∫ ∞

0
h(t)Kℓ(t) dt =

∫ ∞

0
h(t)

(1 +
√
r(t))2

2(λν−ℓ + t)
dt

=
1

2

(∫ ∞

0

h(t)

λ1 + t
dt+

∫ ∞

0

h(t)

λν−ℓ + t
dt+ 2

∫ ∞

0

h(t)√
(λ1 + t)(λν−ℓ + t)

dt

)
.
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The first two terms are equal to f(λ1) and f(λν−ℓ), respectively, in view of (3.43). The third
can be bounded by using the Cauchy-Schwartz inequality:∫ ∞

0

h(t)√
(λ1 + t)(λν−ℓ + t)

dt ≤
(∫ ∞

0

h(t)

λ1 + t
dt

) 1
2

·
(∫ ∞

0

h(t)

λν−ℓ + t
dt

) 1
2

=
√
f(λ1)f(λν−ℓ).

Finally, ∫ ∞

0
h(t)Kℓ(t) dt ≤

1

2
(f(λ1) + f(λν−ℓ) + 2

√
f(λ1)f(λν−ℓ))

=
1

2
(
√
f(λ1) +

√
f(λν−ℓ))

2.

In view of this and (3.46), we get (3.44). The bound (3.45) follows from (3.44) and Proposi-
tion 3.1.

3.4.3 Spectral Projector and Sign Function

As in Section 3.3, we analyze the polynomial approximations of the sign function by exploiting
the integral representation

sign(x) =
2

π

∫ ∞

0

x

x2 + t2
dt,

so we can reduce the problem to analyzing x(x2 + t2)−1 for t ≥ 0. Our goal is to extend
the results valid for the inverse function concerning the decay with respect to the effective
condition number rℓ to the case of the spectral projector and the matrix sign.

Lemma 3.26. Let ft(x) := x(x2+t2)−1 for t ≥ 0. LetH ∈ Cn×n be a Hermitian nonsingular
matrix. Let a = µ1 < µ2 < · · · < µν = b, with ν ≤ n, be the distinct values of |λ| for
λ ∈ σ(H), and let bℓ = µν−ℓ. For any t ≥ 0, let

rℓ(t) =
b2ℓ + t2

a2 + t2
, Kℓ(t) =

(1 +
√
rℓ(t))

2

2(b2ℓ + t2)
, ζℓ(t) =

√
rℓ(t)− 1√
rℓ(t) + 1

. (3.47)

Then

Ek(ft(x), σ(H)) ≤ bℓKℓ(t) ζℓ(t)
k
2
−ℓ,

for any ℓ = 0, 1, . . . ,
⌊
k
2

⌋
.

Proof. From the definition of µi, we have σ(H2 + t2I) = {µ21 + t2, . . . , µ2ν + t2}. We
denote σℓ(H2 + t2I) = {µ21 + t2, . . . , µ2ν−ℓ + t2}. Consider the function 1/x defined over
σ(H2 + t2I). By proceeding as in Theorem 3.24, we can construct pk(x) ∈ Πk such that

1

x
− pk(x) = Rℓ(x)

(
1

x
− pk−ℓ(x)

)
, (3.48)
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whereRℓ(x) ∈ Πℓ satisfies |Rℓ(µ
2
i + t

2)| < 1 for i = 1, . . . , ν− ℓ andRℓ(µ
2
i + t

2) = 0 for
i = ν − ℓ+ 1, . . . , ν , and pk−ℓ(x) ∈ Πk−ℓ is the polynomial of best uniform approximation
for 1/x over the interval [µ21 + t2, µ2ν−ℓ + t2]. Then

max
x∈σ(H2+t2I)

∣∣∣∣1x − pk(x)

∣∣∣∣ ≤ max
x∈σℓ(H2+t2I)

∣∣∣∣1x − pk−ℓ(x)

∣∣∣∣
≤ Kℓ(t) ζℓ(t)

k+1−ℓ.

In order to approximate ft(x) over σ(H), consider S2k+1(x) := x pk(x
2 + t2) ∈ Π2k+1. In

view of (3.48), we have

ft(x)− S2k+1(x) = x

(
1

x2 + t2
− pk(x

2 + t2)

)
= xRℓ(x

2 + t2)

(
1

x2 + t2
− pk−ℓ(x

2 + t2)

)
.

Therefore,

E2k+1(ft, σ(H)) ≤ max
x∈σ(H)

|ft(x)− S2k+1(x)|

= max
x∈σ(H)

(
|x| · |Rℓ(x

2 + t2)| ·
∣∣∣∣ 1

x2 + t2
− pk−ℓ(x

2 + t2)

∣∣∣∣)
≤ max

x∈{µ1,...,µν−ℓ}

(
|x| ·

∣∣∣∣ 1

x2 + t2
− pk−ℓ(x

2 + t2)

∣∣∣∣)
≤ bℓ · max

x∈{µ1,...,µν−ℓ}

∣∣∣∣ 1

x2 + t2
− pk−ℓ(x

2 + t2)

∣∣∣∣
≤ bℓKℓ(t) ζℓ(t)

k+1−ℓ.

By proceeding as in Lemma 3.12, we obtain that

Ek(ft(x), σ(H)) ≤ bℓKℓ(t) ζℓ(t)
k
2
−ℓ.

This concludes the proof.

Now we can state the analogue of Theorem 3.14.

Theorem 3.27. Let H be Hermitian with σ(H) ⊂ [−b,−a] ∪ [a, b]. Let a = µ1 < µ2 <
· · · < µν = b, with ν ≤ n, be the distinct values of |λ| for λ ∈ σ(H), and let bℓ = µν−ℓ. Let

K̂ℓ :=
1

4

(
1 +

√
bℓ
a

)2

, ζ̂ℓ :=
bℓ − a

bℓ + a
.

Then, for all k ≥ 0 and ℓ = 0, . . . ,
⌊
k
2

⌋
,

Ek(sign(x), σ(H)) ≤ 2bℓK̂ℓζ̂
k
2
−ℓ

ℓ . (3.49)
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Moreover, ifH ism-banded and ℓ = 0, . . . ,
⌊
|i−j|
2m − 1

2

⌋
,

|[sign(H)]ij | ≤ 2bℓ K̂ℓζ̂
|i−j|
2m

− 1
2
−ℓ

ℓ for |i− j| ≥ m,

|[P ]ij | ≤ bℓ K̂ℓζ̂
|i−j|
2m

− 1
2
−ℓ

ℓ for all i, j. (3.50)

Proof. Let k be fixed, and let ℓ = 0, . . . ,
⌊
k
2

⌋
. By applying (3.16) and Lemma 3.26, we have

Ek(sign(x), σ(H)) ≤ 2

π

∫ ∞

0
bℓKℓ(t)ζℓ(t)

k
2
−ℓ dt

≤
(
2

π

∫ ∞

0
bℓKℓ(t) dt

)
ζℓ(0)

k
2
−ℓ,

where Kℓ(t), ζℓ(t) are as in (3.47). By proceeding as in Theorem 3.13, we get (3.49). The
other bounds follow by applying Proposition 3.1 and Proposition 3.2 together with (3.49),
also noting that |Pij | ≤ 1 for all i, j.

Theorem 3.27 gives us a family of bounds parametrized by ℓ. Hence, for fixed i, j, the
corresponding entry of the projector is bounded by

|[P ]ij | ≤ min
ℓ=0,...,

⌊
|i−j|
2m

− 1
2

⌋ Ĉℓq̂
|i−j|
2m

− 1
2
−ℓ

ℓ . (3.51)

Depending on the eigenvalue distribution ofH , this can predict a much faster decay than the
results of Section 3.3. For instance, increasing ℓ gives a smaller geometric rate q̂ℓ but also
a smaller exponent. If some of the eigenvalues that are largest in magnitude are isolated, q̂ℓ
becomes much smaller even for moderate values of ℓ. In case of a cluster of eigenvalues near
the spectral gap, we can also predict a superexponential decay. We will see some examples
in the next section.

In all the results in this section, a special attention is given to the case where the absolute
value |λ| of an eigenvalue λ ∈ σ(H) appears more than once. For instance, in electronic
structure computations it is usual to have isolated eigenvalues with the largest absolute value
that have high multiplicity; see [14, Section 8.2].

3.4.4 Numerical Experiments

Here we see how the bound (3.50) works on some examples. The matrices are generated
with the method described in Section 3.3.5.

For the first example, we consider a 3000 × 3000, 20-banded matrix H for which −1 is
an eigenvalue with multiplicity 10 and all the other eigenvalues are uniformly distributed over
[−0.5,−0.1] ∪ [0.1, 0.5]. In order to apply the results of Section 3.3 we must consider the
inclusion σ(H) ⊂ [−1,−0.1] ∪ [0.1, 1]. However, if we apply Theorem 3.27 with ℓ = 1 we
obtain b1 = 0.5 that leads to a much more accurate bound, as we can see in Figure 3.4.
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Figure 3.4: Logarithmic plot of the bounds given by Theorem 3.27 applied with ℓ = 0, 1
compared with the exact decay of the spectral projector associated with the negative eigen-
values of a 20-banded, 3000 × 3000 Hermitian matrix with spectrum contained in {−1} ∪
[−0.5,−0.1] ∪ [0.1, 0.5].

Now we show that Theorem 3.27 can predict a superexponential decay behavior if the
eigenvalues are clustered near the spectral gap. We first consider the case where the spec-
trum is symmetric with respect to the origin, so, in the notation of Lemma 3.26, any µi cor-
responds to two eigenvalues, one positive and one negative. More precisely, we consider a
300× 300, tridiagonal matrix H with eigenvalues

λ
(j)
i = (−1)j

[
1 + 0.9

(
1− i− 1

149
− 2

√
1− i− 1

149

)]
∈ [−1,−0.1] ∪ [0.1, 1],

for i = 1, . . . , 150 and j = 0, 1. In the notation of Lemma 3.26 we have that ν = 150 and
µi = λ

(0)
i = |λ(1)i | for i = 1, . . . , 150. So, increasing ℓ by 1 removes two eigenvalues of

equal modulus.
In Figure 3.5 the decay of the spectral projector is compared with the bounds given by

Theorem 3.27 for ℓ = 0, . . . , 50, and with a bound that is optimized among the values of ℓ.
Due to the eigenvalue distribution, the geometric rate q̂ℓ decreases rapidly in ℓ. Hence, the
optimized bound (3.51) describes a superexponential decay.

The situation is different if the eigenvalues are not symmetrically distributed. For in-
stance, consider a 300× 300, tridiagonal, Hermitian matrix H with eigenvalues

λi = (−1)i

[
1 + 0.9

(
1− i− 1

299
− 2

√
1− i− 1

299

)]
∈ [−1,−0.1] ∪ [0.1, 1],

for i = 1, . . . , 300.
For this case, the comparison is shown in Figure 3.6. We can see that the optimized bound

has a superexponential decay, but does not quite capture the exact behavior.

41



3.4. BOUNDS RELATED TO THE EIGENVALUE DISTRIBUTION
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Figure 3.5: Left: Plot of the spectrum ofH . Note that it is symmetric with respect to the origin.
The eigenvalues tend to form a dense concentration near the spectral gap from the left and
from the right, while they are increasely isolated tending to the extremes. Right: Exact decay
of the entries of the projector compared with the bounds (3.50) for ℓ = 0, 1, . . . , 50. The
dotted line, which corresponds to ℓ = 0, is the bound (3.21). The dashed line corresponds
to the best bound among the values of ℓ. We see that the decay behavior is captured by the
optimized bound.
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Figure 3.6: Left: Plot of the spectrum of H . In this case, no symmetry is present. Again, the
eigenvalues tend to form a dense concentration near the spectral gap from the left and from
the right, while they are increasely isolated tending to the extremes. Right: Exact decay of the
entries of the projector compared with the bounds in (3.50) for ℓ = 0, 1, . . . , 50.
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3.4.5 Fermi-Dirac Function

As discussed in Section 3.3.7, due to the relation (1 + eβx)−1 = 1
2(1 − tanh(β2x) and the

pole expansion (3.36), in the case where µ = 0 and the spectrum of H is contained in the
union of two symmetric intervals, the Fermi-Dirac function and the spectral projector share
many properties. We give the following result without proof, since it is essentially the same
as Theorem 3.27 and follows by a combination of Theorem 3.22 and 3.26.

Theorem 3.28. Let fFD(x) = (1 + eβx), β > 0. Let H be Hermitian and m-banded with
σ(H) ⊂ [−b,−a] ∪ [a, b]. Let a = µ1 < µ2 < · · · < µν = b, with ν ≤ n, be the distinct
values of |λ| for λ ∈ σ(H), and let bℓ = µν−ℓ. Let, for ℓ ≥ 0,

ζ̂ℓ =
β2(b2ℓ − a2)

(
√
β2b2ℓ + π2 +

√
β2a2 + π2)2

,

and

K̃ℓ =
bℓ
4


tanh

(
β
2 bℓ

)
bℓ


1
2

+

tanh
(
β
2a
)

a


1
2


2

if a > 0,

K̃ℓ =
bℓ
4


tanh

(
β
2 bℓ

)
bℓ


1
2

+

(
β

2

) 1
2


2

if a = 0.

Then, for |i− j| ≥ m and ℓ = 0, . . . ,
⌊
|i−j|
2m − 1

2

⌋
,

|[fFD(H)]ij | ≤ K̂ℓζ̂
|i−j|
2m

− 1
2
−ℓ

ℓ for all i, j.

3.5 Conclusions and Further Developments

We have developed new bounds for the entries of spectral projectors, Cauchy-Stieltjes func-
tion and the Fermi-Dirac function, which improve and refine the existing ones under suitable
hypotheses. Integral representations proved to be a powerful tool to describe well the decay
rate. Manipulating such integrals can yield asymptotically optimal bounds in the sense of
polynomial approximation, as shown in Theorem 3.17 for the sign function.

We have also shown that, like for the matrix inverse, the decay properties of many matrix
functions is connected to the full spectral information. The situation here is similar to that
arising in the analysis of the convergence of the conjugate gradient method for solving linear
systems: this is not surprising, since in both cases we are dealing with polynomial approxi-
mations of matrix functions on the spectrum of a matrix. As a result, we are able to delete a
few isolated eigenvalues from the spectral information and predict superexponential decay
behavior in the presence of clusters.
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3.5. CONCLUSIONS AND FURTHER DEVELOPMENTS

Our results for spectral projectors and the Fermi-Dirac function can be improved by devel-
oping bounds without assuming that the spectrum is contained in the union of two symmetric
intervals. In this sense, we can reduce to study functions of the form x/(x2 + t2) in view of
the representations (3.4.3) and (3.36).

Numerical results also show that the constant factors of the bounds remain pessimistic,
especially when the condition number is large, so other techniques need to be explored as
well. Moreover, as illustrated in Section 3.3.6, specific bounds for the projector are needed
when the eigenvalues of the matrix argument are not symmetric with respect to the origin, in
order to replicate the behavior captured by the purely asymptotic results.
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Chapter 4

Estimating the Trace of Matrix
Functions

In this chapter we consider methods for approximating the trace of functions of sparse sym-
metric matrices. We introduce and analyze the stochastic probing approach, based on a
combination of probing [47] with the classical Hutchinson’s estimator [68], and show both
theoretically and experimentally that it can outperform existing techniques. In Section 4.1 we
review some existing stochastic trace estimators, namely Hutchinson, Hutch++ and XTrace.
In Section 4.2, we introduce the deterministic probing approach. In Section 4.3 we present a
theoretical analysis of the stochastic probing estimation that reveals in particular for which
matrix functions f and matrices A large gains with respect to the deterministic approach
can not only be expected, but can actually be guaranteed. As a by-product of our analysis, we
also refine classical results on sign patterns in the entries of f(A). Section 4.4 includes a
variety of numerical experiments that validate the theoretical results and highlight the perfor-
mance of stochastic probing compared to the deterministic counterpart and the stochastic
estimators introduced in Section 4.1. This chapter is based in part on [44].

4.1 Literature Review on Randomized Trace Estimators

In this section, we consider the task of approximating the trace of an implicitly given matrix
B ∈ Rn×n by means of stochastic estimators. We assume that B is accessible only via
matrix-vector products Bx for some x ∈ Rn. Recall that we are instered in the case B =
f(A), whereA ∈ Rn×n is large and sparse, hence the operations withB can be performed by
applying a polynomial (or rational) Krylov subspace method; see Section 5.3. Here we review
some literature about Hutchinson’s estimator and its recent variants, Hutch++ and XTrace.

4.1.1 Hutchinson’s Estimator

The Hutchinson estimator was first proposed in [54] for estimating the trace of influence ma-
trices in penalized least squares problems and in [68] for estimatingTr(A−1), the trace of the
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inverse of a matrix. It can be applied in the same way for any implicitly given matrix, however.
It is based on the following fact: If x is a random vector with independent and identically dis-
tributed (i.i.d.) components such that E[x] = 0 and E[xxT ] = I , then E[xTBx] = Tr(B).
One obtains Hutchinson’s estimator by sampling N independent random vectors with this
property, and then averaging the results:

Tr
(H)
N (B) =

1

N

N∑
s=1

(x(s))TBx(s). (4.1)

From the linearity of the expected value it follows that E[Tr(H)
N (B)] = Tr(B). The accuracy

of the approximation Tr
(H)
N (B) depends onN and the distribution of the entries of the sam-

ple vectors. Two important examples are Rademacher vectors, whose entries are i.i.d., taking
the values ±1 with equal probability 1

2 , or Gaussian vectors, whose entries are i.i.d. according
to the standard normal distribution. For these particular cases, the variance of the estimator
is explicitly known; see, e.g., [43, Corollary 3.2]. For convenience, we from now on we use the
notation Off(B) for the off-diagonal part of a matrix B.

Theorem 4.1. Let B ∈ Rn×n be symmetric, and let x(s), s = 1, . . . , N be independent
random vectors with i.i.d. components.

1. If x(s) are Rademacher vectors, then

V[Tr(H)
N (B)] =

2

N
∥Off(B)∥2F =

2

N

n∑
i,j=1
i ̸=j

|[B]ij |2. (4.2)

2. If x(s) are Gaussian vectors, then

V[Tr(H)
N (B)] =

2

N
∥B∥2F =

2

N

n∑
i,j=1

|[B]ij |2. (4.3)

Note that Rademacher vectors can result in estimates with much smaller variance, es-
pecially if B is diagonally dominant. Similar results hold for non-symmetric B, involving
Off(B +BT ).

A more accurate analysis of the Hutchinson approximation can be achieved by deriving
tail bounds of the following form: given a target accuracy ε > 0 and a failure probability δ,
find N such that the (ε, δ) approximation

P(|Tr(B)− Tr
(H)
N (B)| ≥ ε) ≤ δ (4.4)

holds. A vast literature on the topic has been developed in the past years; see for instance [6,
28, 90]. The following recent result is currently the one with the tightest tail bounds.

Theorem 4.2 (Theorem 1 and Corollary 1 in [28]). Let B ∈ Rn×n be symmetric and let
x(s), s = 1, . . . , N be independent random vectors.
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1. If x(s) are Rademacher vectors, then

P(|Tr(B)− Tr
(H)
N (B)| ≥ ε) ≤ 2 exp

(
− Nε2

8∥Off(B)∥2F + 8ε∥Off(B)∥2

)
(4.5)

for every ε > 0. In particular, for N ≥ 8
ε2
(∥Off(B)∥2F + ε∥Off(B)∥2) log 2

δ it holds
that P(|Tr(B)− Tr

(H)
N (B)| ≥ ε) ≤ δ.

2. If x(s) are Gaussian vectors, then

P(|Tr(B)− Tr
(H)
N (B)| ≥ ε) ≤ 2 exp

(
− Nε2

4∥B∥2F + 4ε∥B∥2

)
for all ε > 0. In particular, forN ≥ 4

ε2
(∥B∥2F +ε∥B∥2) log 2

δ it holds thatP(|Tr(B)−
Tr

(H)
N (B)| ≥ ε) ≤ δ.

As a consequence of these tail bounds, to achieve an (ε, δ) approximation, we require
N = O(ε−2 log(1δ )) samples. This asymptotic result is sharp, as discussed in [108]. For fa-
vorable distributions of the eigenvalues ofB it is possible to obtain better asymptotic results
by resorting to the Hutch++ estimator [81].

4.1.2 Hutch++

The Hutch++ method from [81] is essentially based on the observation that the trace of B
might be well approximated by the trace of a low-rank approximation of B if its eigenvalues
decay rapidly. Specifically, consider the eigendecomposition B = WΛW T such that W =
[W1,W2],Λ = diag(Λ1,Λ2), where Λ1 ∈ Rp×p is associated to the p largest eigenvalues,
and the columns of W1 ∈ Rn×p, W2 ∈ Rn×(n−p) are eigenvectors associated with the
diagonal entries of Λ1,Λ2, respectively. Then

Tr(B) = Tr(W1Λ1W
T
1 ) + Tr(W2Λ2W

T
2 ), (4.6)

and if the eigenvalues in Λ1 are significantly larger than those in Λ2, the first term in (4.6)
might already serve as a good approximation, or at least the trace of the second term will be
small and easier to approximate using the Hutchinson method. Precomputing and “deflating”
eigenvectors associated with large eigenvalues is a well-known technique in the context of
trace estimation; see, e.g., [50].

The key idea in Hutch++ is that it is enough to perform deflation using very rough ap-
proximations to eigenvectors of B which result from a single step of power iteration (i.e.,
a multiplication with B). The usage of more steps is also discussed and employed in [93].
We recall here the basic Hutch++ algorithm, that is, the version where the parameters p (rank
of the low rank approximation) and q (number of vectors for the standard Hutchinson esti-
mation) are given a priori. We use the notation Q = orth(M) to denote a matrix whose
columns form an orthonormal basis of range(M). This can be retrieved from a reduced QR
factorization of M .
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Algorithm 2 Basic Hutch++ trace estimator
Input: B ∈ Rn×n symmetric, p, q ∈ N
Output: Tr

(H++)
p,q (B) ≈ Tr(B)

1: Sample Ω ∈ Rn×p with random i.i.d. Gaussian or Rademacher entries
2: Compute Q = orth(BΩ)
3: Compute Tr1 = Tr(QTBQ) =

∑p
i=1(q

(i))TBq(i) ▷ exact trace of low rank approx
4: Sample X ∈ Rn×q with random i.i.d. Gaussian or Rademacher entries
5: Compute Y = (I −QQT )X =

[
y(1)| · · · |y(q)

]
6: Compute Tr2 =

1
q Tr(Y

TBY ) = 1
q

∑q
i=1(y

(i))TBy(i) ▷ Hutchinson estimator on
remainder

7: return Tr(H++)
p,q (B) = Tr1+Tr2

Algorithm 2 requires 2p + q matrix-vector multiplications with B: p for computing BΩ
at line 2, p for computing Tr1 = Tr(QTBQ) at line 3, and q to compute BY and form Tr2
at line 6. Notice that Tr(QTBQ) = Tr(QQTB) andQQTB coincides with the randomized
rangefinder of B and is close, up to a failure probability, to the best rank p approximation of
B; see [78, Chapter 11]. A variant of Hutch++ for the trace of positive definite matrices, called
Nyström++, replaces the randomized low rank approximation technique with the Nyström ap-
proximation [55] BNys = BΩ(ΩTBΩ)†(BΩ)T , where Ω ∈ Rn×p is a sample matrix and
(ΩTBΩ)† is the Moore-Penrose pseudoinverse of ΩTBΩ; see [86] for more details.

Hutch++ performs particularly well if the eigenvalues of B drop off rapidly. If they don’t,
Hutch++ will not significantly improve over the standard Hutchinson estimator. We will return
to this in Section 4.1.3.

An adaptive variant has been developed in [86]. This allows the user to give a tolerance ϵ
and a failure probability δ as input and chooses adaptively the parameters p and q needed to
get the tail bound

P{|Tr(B)− Tr(H ++ )
p,q (B)| ≥ ϵ} ≤ δ.

Further strategies, based on Krylov subspace iterations, can be found in [26].

4.1.3 XTrace

XTrace was recently suggested in [37] as a modification of Hutch++ using bootstrap resam-
pling, for which any permutation of the test vectors involved in the computation yields the
same result. In view of the exchangeability principle [62] this property must be satisfied by a
trace estimator with optimal variance. A basic pseudocode is the following.

The quantities Tr(QT
(k)BQ(k)), k = 1, . . . , N/2 can all be recovered by Q = orth(Z)

with cheap operations. Hence, an efficient implementation requires N/2 matvecs for com-
putingZ at line 2 andN/2 quadratic forms for computing (ω(k))TBω(k), resulting inN total
matvecs. See [37] for more details.

Another powerful trace estimator that follows the same principles as XTrace comes from
the Nyström approximation, similarly to what was done in [86] for Nyström++. The resulting
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Algorithm 3 Basic XTrace trace estimator
Input: B ∈ Rn×n symmetric, number N of matvecs, where N is even
Output: Tr

(XT )
N (B) ≈ Tr(B)

1: Sample ω(1), . . . ,ω(N/2) ∈ Rn with random i.i.d. Gaussian or Rademacher entries
2: Compute Z = B

[
ω(1)| · · · |ω(N/2)

]
3: for k = 1, . . . , N/2 do
4: Q(k) = orth(Z−k) ▷ Z−k obtained by removing the k-th column of Z
5: T̂r = Tr(QT

(k)BQ(k)) + (ω(k))TBω(k)

6: end for
7: return Tr(XT )

N (B) = 2
N

∑N/2
k=1 T̂rk

procedure is called XNysTrace and is summarized by the following pseudocode.

Algorithm 4 Basic XNysTrace trace estimator
Input: B ∈ Rn×n symmetric positive definite, number N of matvecs
Output: Tr

(XNT )
N (B) ≈ Tr(B)

1: Sample ω(1), . . . ,ω(N) ∈ Rn with random i.i.d. Gaussian or Rademacher entries
2: Compute Z = B

[
ω(1)| · · · |ω(N/2)

]
3: for k = 1, . . . , N do
4: B̂k = Y−k(Ω

T
−kZ−k)

†ZT
−k

5: T̂rk = Tr(B̂k) + (ω(k))(B − B̂k)ω
(k)

6: end for
7: return Tr(XNT )

N (B) = N−1
∑N

k=1 T̂rk

A careful implementation of this method requires N matvecs with B and other cheaper
operations; see [37] for more details.

The excellent performance brought by Hutch++, XTrace and XNysTrace in case of expo-
nentially decaying eigenvalues is explained by the following result [37].

Theorem 4.3. Let B ∈ Rn×n be symmetric positive definite whose eigenvalues have the
exponential decay λi(B) ≤ αi for i = 1, 2, . . . , where α ∈ (0, 1). With Gaussian test
vectors, the standard deviations of the Hutch++, XTrace and XNysTrace estimators satisfy

(V[Tr(H++)
N/3,N/3(B)])1/2 ≤ C1(α)α

N/3;

(V[Tr(XT )
N (B)])1/2 ≤ C2(α)α

N/2;

(V[Tr(XNT )
N (B)])1/2 ≤ C3(α)α

N ,

where Cj(α), j = 1, 2, 3, depend only on α.

In our setting, where B = f(A), Theorem 4.3 means that one can expect good perfor-
mance of the three methods when f is large on a small part of the spectral interval of A and
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has a fast decay everywhere else, e.g., when f(A) = exp(−A) and A is positive definite,
but for a function like f(A) =

√
A with σ(A) ⊆ [0, 1], performance will generally not be

satisfactory, as we will see by means of an example in Section 4.4.3.

4.2 Deterministic Probing Approach

Probing methods for trace (or diagonal) estimation were introduced in [99] and later refined,
extended and analyzed in, e.g., [47, 73, 98]. The basic idea of probing methods is based on
the observation that the magnitude of the entries of most matrix functions f(A) exhibit a
(often exponential) decay away from the sparsity pattern ofA; see, e.g., [15, 17, 35, 45, 47, 95]
and the references therein.

This observation motivates the construction of probing vectors

vℓ =
∑
i∈Cℓ

ei, ℓ = 1, . . . , nc, (4.7)

where ei denotes the ith vector of the canonical basis of Rn and the sets Cℓ, ℓ = 1, . . . , nc,
form a partitioning of the index set V = {1, . . . , n}. We denote their sizes by |Cℓ| =: nℓ.
The (deterministic) probing approximation corresponding to (4.7) is then given by

T (f(A)) =

nc∑
ℓ=1

vT
ℓ f(A)vℓ (4.8)

with error

Tr(f(A))− T (f(A)) = −
nc∑
ℓ=1

∑
i,j∈Cℓ
i ̸=j

[f(A)]ij . (4.9)

One can see from (4.9) that the approximation is accurate when the entries [f(A)]ij are small
in modulus for i and j in the same index setCℓ. Therefore, if the entries of f(A) decay away
from the sparsity pattern of A, a typical approach is to construct the sets C1, . . . , Cnc via a
distance-d coloring of G(A), according to the following definition.

Definition 4.1. LetG = (V, E) be an undirected graph. If the mapping col : V → {1, . . . , nc}
is such that col(i) ̸= col(j) if d(i, j) ≤ d, then the corresponding partition of V given via
Cℓ = {i ∈ V | col(i) = ℓ}, ℓ = 1, . . . , nc, is called a distance-d coloring (with nc colors) of
G.

Note that a distance-1 coloring would be the standard node coloring of a graph, where
any two adjacent nodes have different colors. The computation of a distance-d coloring (in
particular for large values of d) is a computationally demanding task in general, even if one
does not aim for an optimal coloring. It is common practice to use the greedy approach
described in the following subsection for obtaining a suboptimal coloring with affordable
computation cost [18, 47, 94].
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Algorithm 5 Greedy algorithm for a distance-d coloring
Input: Graph G = (V, E) with V = {1, . . . , n} and distance d
Output: Distance-d coloring col

1: col(1) = 1
2: for i = 2 : n do
3: Wi = {j ∈ {1, . . . , i− 1} : d(i, j) ≤ d}
4: col(i) = min{k > 0 : k ̸= col(j) for all j ∈Wi}
5: end for

4.2.1 Computation of the Coloring

The computation of the coloring is often the most expensive part of the overall probing
method; see, e.g., the discussion in [18, Section 6].

One can obtain different colorings depending on the order of the nodes; sorting the nodes
by descending degree usually leads to good performance [94, 72]. The number of colors ob-
tained with this algorithm is at most ∆d+1, where ∆ is the maximum degree of a node in the
graph induced byA, and the cost is at mostO(n∆d) if the d-neighborsWi of each node i are
computed with a traversal of the graph. Alternatively, the greedy coloring can be obtained by
computing Ad, which can be done using at most 2⌊log2 d⌋ matrix-matrix multiplications [67,
Section 4.1]. In our Matlab implementation of the probing method, we construct the greedy
distance-d coloring by computing Ad, as we found it to be faster than the graph-based ap-
proach; this is likely due to the more efficient Matlab implementation of matrix-matrix opera-
tions.

Remark 4.1. The efficiency of Algorithm 5 is significantly influenced by the sparsity structure
of G. For instance, good performance is expected if G is a large-world network, such as road
networks, characterized by a long average path length. On the other hand, small-world graph,
such as social networks and scientific collaboration networks, tend to exhibit large values of
∆ and a considerable fill-in of the entries ofAd even for small values of d, resulting in a high
computational effort of Algorithm 5.

For special graph structures, colorings with a small but not necessarily minimal number
of colors are known in closed form and therefore available cheaply. As these will play a role
in our subsequent analysis, we recall them here.

Proposition 4.4 (from Section 2 in [47]). 1. LetA bem-banded, i.e., [A]ij = 0 for |i−
j| > m. Then a distance-d coloring for G(A) with nc = dm+ 1 colors is given by

col(i) = (i− 1) mod (dm+ 1) + 1, i = 1, . . . , n, (4.10)

and this coloring is optimal if all entries within the band of A are nonzero.

2. Let G(A) = (V,E) be a regular D-dimensional lattice of size n1 × · · · × nD and let
its nodes be labeled as V = {v ∈ ZD : 0 ≤ [v]k ≤ nk − 1 for k = 1, . . . , D}. Then
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a distance-d coloring for G(A) with nc = (d+ 1)D colors is given by

col(v) =

(
D−1∑
k=0

[̃v]k(d+ 1)k

)
+ 1, [̃v]k = [v]k mod (d+ 1). (4.11)

Remark 4.2.

1. The coloring (4.11) is not optimal. ForD = 2, the optimal distance-d coloring is explic-
itly known and requires

⌈
1
2(d+ 1)2

⌉
colors. The regular structure of the coloring (4.11)

allows for an easier analysis of corresponding probing approximations, though, as dis-
cussed in [47, 94]. For D > 2, optimal distance-d colorings of the lattice are not
explicitly known for general d > 1.

2. A different way of coloring regular lattices is used in the hierarchical probing approach
from [73, 98], which starts with a distance-1 coloring and recursively subdivides it. This
typically results in a non-optimal coloring that uses more colors than a coloring com-
puted by Algorithm 5, but allows us to reuse certain computational results if one de-
tects that the probing approximation is not accurate enough and the distance for the
coloring thus needs to be increased.

4.2.2 Error Bounds

Based on the colorings from Proposition 4.4, one can derive bounds for the error (4.9) under
the assumption that f(A) has the exponential decay property

|[f(A)]ij | ≤ cqd(i,j) (4.12)

for all i, j, where c > 0, 0 ≤ q < 1 are constants independent of i, j.

Theorem 4.5 (Theorems 4.1 and 4.2 in [47]). Let A ∈ Rn×n and let f(A) be defined.

1. Suppose that A is m-banded such that f(A) fulfills (4.12), and let T d(f(A)) be the
probing approximation (4.8) ofTr(f(A)) associated with the distance-d coloring (4.10).
Then

|Tr(f(A))− T d(f(A))| ≤ n · 2c qd

1− qd
. (4.13)

2. Suppose that A is such that G(A) is a regular D-dimensional lattice and f(A) ful-
fills (4.12). Let T d(f(A)) be the probing approximation of Tr(f(A)) associated with
the distance-d coloring (4.11). Then

|Tr(f(A))− T d(f(A))| ≤ n · 2cD Li1−D(q
d), (4.14)

where Lis(z) =
∑∞

k=1
zi

is is the polylogarithm.
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Remark 4.3. Note that, when D is a positive integer, Li1−D(z) is a rational function, and
explicit representations are known, e.g.

Li0(z) =
z

1− z
, Li−1(z) =

z

(1− z)2
, Li−2(z) =

z + 4z2 + z3

(1− z)4
.

In all these cases, Li1−D(q
d) = O(qd) for large d.

It is also possible to obtain an error bound that holds for general graphs G(A) (i.e., with-
out relying on a specific structure or the use of a specific coloring), based on polynomial
approximation of f over an interval [a, b] ⊃ σ(A). To this purpose, we consider the polyno-
mial approximation error defined in (3.1). Theorem 4.4 in [47] gives a bound for the case when
Ek(f, [a, b]) decays exponentially in k. Using essentially the same proof, one can obtain the
following general result.

Theorem 4.6. LetA ∈ Rn×n be symmetric with σ(A) ⊂ [a, b]. Let T d(f(A)) be the probing
approximation of Tr(f(A)) associated with a distance-d coloring of G(A). Then

|Tr(f(A))− T d(f(A))| ≤ 2n · Ed(f, [a, b]). (4.15)

The numerical examples in Section 4.4 and in [47, Section 6] illustrate that the error of the
deterministic probing approximation indeed scales linearly with the size n, suggesting that
O(n) error bounds as in Theorem 4.6 are the best we can achieve with this method.

Since we expectTr(f(A)) to grow withn, the linear scaling of the absolute error is usually
a minor issue when we aim for a certain relative accuracy. However, one needs to be careful
when dealing with large-scale problems in which Tr(f(A)) is much smaller than n. In such
cases, it is necessary to increase d to achieve a small relative error. Nonetheless, we will see
that better scaling with the size is achieved via stochastic probing in Section 4.3.

4.3 Stochastic Probing

Stochastic probing methods combine the probing approach discussed in Section 4.2 with the
Hutchinson estimator from Section 4.1.1. Stochastic probing has already been used under the
name “dilution”—restricted to distance d = 1—for approximating the trace of the inverse in
lattice quantum chromodynamics computations [7, 82] and for more general d in [5, 50], but
without a theoretical analysis.

4.3.1 Description of the Method

We assume that C1, . . . , Cnc (with |Cℓ| = nℓ) is a partition of V = {1, . . . , n} associated
with a distance-d coloring of G(A). We define a stochastic probing vector associated with
Cℓ as

wℓ =
∑
i∈Cℓ

Xiei, ℓ = 1, . . . , nc, (4.16)
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where Xi, i ∈ Cℓ, are i.i.d. random variables such that E[Xi] = 0 and E[X2
i ] = 1 for all

i ∈ Cℓ. In the case of Rademacher variables, we call wℓ a Rademacher probing vector, while
in the case of Gaussian variables, we call wℓ a Gaussian probing vector. Basic properties of
these stochastic probing vectors are summarized in the following proposition.

Proposition 4.7. LetA ∈ Rn×n be symmetric. Let a partitionC1, . . . , Cnc ofV = {1, . . . , n}
associated with a distance-d coloring of G(A) be given and let wℓ be stochastic probing vec-
tors associated with Cℓ, ℓ = 1, . . . , nc, as defined in (4.16). Then

wT
ℓ f(A)wℓ =

∑
k∈Cℓ

X2
k [f(A)]kk +

∑
i,j∈Cℓ
i ̸=j

XiXj [f(A)]ij , (4.17)

and thus,
E[wT

ℓ f(A)wℓ] = Tr([f(A)]Cℓ
) =

∑
k∈Cℓ

[f(A)]kk. (4.18)

Proof. The identity (4.17) follows trivially from the expression (4.16) that defines wℓ. Since
Xi and Xj are independent for i ̸= j, we get E[XiXj ] = E[Xi]E[Xj ] = 0, and since
E[X2

k ] = 1 for all k, we obtain (4.18).

In the spirit of the Hutchinson estimator, we sampleNℓ probing vectors w(1)
ℓ , . . . ,w

(Nℓ)
ℓ

associated with Cℓ and obtain the approximation

1

Nℓ

Nℓ∑
s=1

(w
(s)
ℓ )T f(A)w

(s)
ℓ ≈ Tr([f(A)]Cℓ

) (4.19)

for the “partial trace” belonging to color ℓ. To approximate the full trace, we sum estimates
for all the partial traces according to the following definition.

Definition 4.2. LetCℓ, ℓ = 1, . . . , nc, be a partitioning ofV = {1, . . . , n} and let the number
of samples for each ℓ be collected in the nc-tuple N = (N1, . . . , Nnc). Then the stochastic
probing estimator of Tr(f(A)) is given by

T N
d (f(A)) :=

nc∑
ℓ=1

1

Nℓ

Nℓ∑
s=1

(w
(s)
ℓ )T f(A)w

(s)
ℓ . (4.20)

In view of (4.18), we have

E[T N
d (f(A))] = Tr(f(A)). (4.21)

4.3.2 Variance of the Stochastic Probing Estimator

From basic properties of the variance, we have

V[T N
d (f(A))] =

nc∑
ℓ=1

Vℓ/Nℓ, where Vℓ := V[wT
ℓ f(A)wℓ]. (4.22)

The individual variances Vℓ can be given explicitly.
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Theorem 4.8. Let A ∈ Rn×n be symmetric, let a partition C1, . . . Cnc of V = {1, . . . , n}
be given and let wℓ be stochastic probing vectors associated with Cℓ, ℓ ∈ {1, . . . , nc}, as
defined in (4.16).

1. If wℓ is a Rademacher probing vector, then

Vℓ = 2∥Off([f(A)]Cℓ
)∥2F = 2

∑
i,j∈Cℓ
i ̸=j

|[f(A)]ij |2. (4.23)

2. If wℓ is a Gaussian probing vector, then

Vℓ = 2∥[f(A)]Cℓ
∥2F = 2

∑
i,j∈Cℓ

|[f(A)]ij |2. (4.24)

Proof. For any ℓ = 1, . . . , nc we have wT
ℓ f(A)wℓ = ([wℓ]Cℓ

)T [f(A)]Cℓ
[wℓ]Cℓ

. In view of
Theorem 4.1, if wℓ is a Rademacher probing vector, we get

V[wT
ℓ f(A)wℓ] = V[([wℓ]Cℓ

)T [f(A)]Cℓ
[wℓ]Cℓ

] = ∥Off([f(A)]Cℓ
)∥.

Similarly, if wℓ is a Gaussian probing vector, then

V[wT
ℓ f(A)wℓ] = V[([wℓ]Cℓ

)T [f(A)]Cℓ
[wℓ]Cℓ

] = ∥[f(A)]Cℓ
∥2F .

This concludes the proof.

Remark 4.4. The diagonal entries of f(A) are present in the summation in (4.24), but not
in (4.23). This suggests—and is actually confirmed by numerical experiments not reported
here—that if a decay away from the sparsity pattern ofA is present in f(A), then the variance
is much smaller in the Rademacher case, since the diagonal entries will dominate in (4.24).
From now on, we will therefore only consider the Rademacher distribution for our analysis
and experiments.

From (4.22) and Theorem 4.8, we obtain the variance of the Rademacher probing approx-
imation. We immediately state it for distance-d colorings, although it also holds for a general
partitioning C1, . . . , Cnc .

Lemma 4.9. Let A ∈ Rn×n be symmetric and let Cℓ, ℓ = 1, . . . , nc, be a distance-d color-
ing of G(A). Further, let N = (N1, . . . , Nnc), let w

(1)
ℓ , . . . ,w

(Nℓ)
ℓ be Rademacher probing

vectors associated withCℓ, and let T N
d (f(A)) be the corresponding Rademacher probing ap-

proximation (4.20). Then, with Vℓ from (4.23),

V[T N
d (f(A))] =

nc∑
ℓ=1

Vℓ
Nℓ

= 2

nc∑
ℓ=1

1

Nℓ
∥Off([f(A)]Cℓ

)∥2F . (4.25)

Remark 4.5. Lemma 4.9 tells us that the variance becomes much smaller as d increases if a
decay on the entries is present. However, as in the deterministic case with the formula (4.9),
the exact value of Vℓ = ∥Off([f(A)]Cℓ

)∥2F on the right-hand side is not known, since f(A)
is not explicitly available. Bounds on Vℓ for special cases will be given in Section 4.3.4.
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Assuming that a distance-d coloring of G(A) is already given, the computational cost of
the stochastic probing method is proportional to the number of matrix-vector products (or
rather quadratic forms) that need to be evaluated. In the following, we therefore only count
the number of quadratic forms to gauge the efficiency of the method. For example, the cost
for computing the stochastic probing estimator T N

d (f(A)) covered in Lemma 4.9 is taken to
be N1 + · · ·+Nnc quadratic forms with f(A).

It is in general not advisable to use the same number of samples for each Cℓ: When the
partition comes from a distance-d coloring of G(A), it is often the case that the variances
Vℓ vary widely, e.g., if some sets Cℓ in the coloring are much smaller than the others. A cost
optimal approach will thus use different sample sizes for different colors, as we develop now.

Suppose that we aim to obtain an estimator with overall variance at most ε2. Then, taking
into account the expression (4.22) for the variance and assuming that we know the individ-
ual variances Vℓ, the overall lowest number of quadratic forms is obtained by solving the
optimization problem

min
N1,...,Nnc∈N

N1 + · · ·+Nnc s. t.

nc∑
ℓ=1

Vℓ/Nℓ = ε2. (4.26)

While the discrete problem (4.26) is difficult to solve, it is easy to do so if one relaxes it by
allowingNℓ ≥ 0 to be real. Similar optimization problems occur in general multi-level Monte
Carlo methods and have been solved before; see, e.g., [43, 53, 61]. The solution of the relaxed
version of (4.26) is given by

Nℓ = µ
√
Vℓ, µ = ε−2

nc∑
ℓ=1

√
Vℓ. (4.27)

To obtain integer numbers of samples, one can simply pick the ceiling of the values, ⌈Nℓ⌉
in (4.27).

As discussed before, the variances Vℓ required for computing (4.27) are generally un-
known in practice. In some cases it is possible to bound them a priori—as we will discuss
in Section 4.3.4—or they can be estimated on-the-fly during the computation—as is, e.g., de-
scribed in [61] in the context of stochastic multilevel trace estimation methods.

4.3.3 Tail Bounds for the Stochastic Probing Estimator

According to the central limit theorem, for large values of the Nℓ, the stochastic estimator
T N

d (f(A)) for the trace is approximately normally distributed with meanTr(f(A)) and stan-
dard deviation σ = (

∑nc
ℓ=1 Vℓ/Nℓ)

1/2. This gives the approximate tail bound

P
(
|Tr(f(A))− T N

d (f(A))| ≥ ε
)
≲ 1− erf

(
ε√
2σ

)
,

with the error function erf(z) = 2√
π

∫ z
0 e

−t2dt. Solving for σ2 results in

P
(
|Tr(f(A))− T N

d (f(A))| ≥ ε
)
≤ δ if

nc∑
ℓ=1

Vℓ/Nℓ ≲
ε2

2(inverf(1− δ))2
, (4.28)
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where inverf(z) denotes the inverse of erf(z).
The relation (4.28) is not entirely satisfactory, since it does not quantify how “inexact” the

inequality is and how largeNℓ should be. It has the advantage, though, that it applies for any
probability distribution used for the stochastic probing vectors. For Rademacher vectors, we
now derive tail bounds for the stochastic probing estimator which do not rely on the central
limit theorem and which hold for any choice of the sample sizesNℓ. To this end we recall the
following result from [28] which, actually, is at the basis of theorem 4.2.

Theorem 4.10. Let x be a Rademacher vector of length n and let M ∈ Rn×n be a nonzero
matrix such that [M ]ii = 0 for i = 1, . . . , n. Then, for all ε > 0,

P
(
|xTMx| ≥ ε

)
≤ 2 exp

(
− ε2

8∥M∥2F + 8ε∥M∥2

)
.

Using this theorem, we can derive an analogue of Theorem 4.2 for the stochastic probing
method.

Theorem 4.11. Let A be symmetric, and let f and A be such that f(A) is nonzero. Let
C1, . . . , Cnc be a distance-d coloring of G(A). Let N = (N1, . . . , Nnc), and let w(s)

ℓ be
Rademacher probing vectors, with T N

d (f(A)) the corresponding trace estimate (4.20). Then

P
(
|Tr(f(A))− T N

d (f(A)
)
| ≥ ε) ≤ 2 exp

(
− ε2

8η1 + 8εη2

)
(4.29)

for every ε > 0, where

η1 :=

nc∑
ℓ=1

1

Nℓ
∥Off([f(A)]Cℓ

)∥2F =

nc∑
ℓ=1

Vℓ/Nℓ, η2 := max
ℓ=1,...,nc

1

Nℓ
∥Off([f(A)]Cℓ

)∥2,

(4.30)
with Vℓ the variances from (4.23). In particular, if we chooseN1, . . . , Nnc such that

η1 + εη2 ≤
ε2

8 log 2
δ

, (4.31)

we have P
(
|Tr(f(A))− T N

d (f(A)
)
| ≥ ε) ≤ δ.

Proof. Define the block diagonal matrices

Mℓ :=
1

Nℓ

 Off([f(A)]Cℓ
)

. . .
Off([f(A)]Cℓ

)

 ∈ RnℓNℓ×nℓNℓ , ℓ = 1, . . . , nc,

and

M :=

 M1

. . .
Mnc

 ∈ RN̂×N̂ ,
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where N̂ =
∑nc

ℓ=1 nℓNℓ. Then, T N
d (f(A)) − Tr(f(A)) = xTMx with x a Rademacher

vector of length N̂ of the form

x =

 ŵ1
...

ŵnc

 ∈ RN̂ , where ŵℓ =

 [w
(1)
ℓ ]Cℓ

...
[w

(Nℓ)
ℓ ]Cℓ

 ∈ RnℓNℓ , ℓ = 1, . . . , nc,

and each [w
(s)
ℓ ]Cℓ

∈ Rnℓ being a Rademacher vector of length nℓ. We conclude by applying
Theorem 4.10, noting that η1 = ∥M∥2F and η2 = ∥M∥2.

Similarly to the discussion at the end of Section 4.3.2, we now elaborate on how to choose
the number of samples Nℓ, ℓ = 1, . . . , nc, in order to obtain a cost-efficient (ε, δ) approxi-
mation of the trace, based on inequality (4.31). To minimize the number N1 + · · · + Nℓ of
quadratic forms involved in the computation of (4.20), one can solve

min
N1,...,Nnc∈N

N1 + · · ·+Nnc s. t. η1 + εη2 ≤ ε2/8 log(2/δ), (4.32)

where η1, η2 are defined in (4.30). A way to solve this approximately is to ignore the term εη2,
due to the small factor ε and since we expect εη2 ≪ η1; a similar reasoning in a slightly differ-
ent context is also used in [86]. With this assumption, noting also that η1 = V[T N

d (f(A))],
the problem (4.32) reduces to

min
N1,...,Nnc∈N

N1 + · · ·+Nnc s. t. V[T N
d (f(A))] = ε2/8 log(2/δ). (4.33)

This is the same as (4.26), where ε2 is replaced by ε2/8 log(2/δ). Hence, by adapting (4.27)
to this case, we find

Nℓ = ⌈µ
√
Vℓ⌉, µ = 8ε−2 log

2

δ

nc∑
ℓ=1

√
Vℓ, Vℓ = ∥Off([f(A)]Cℓ

)∥2F . (4.34)

4.3.4 A Priori Bounds for the Variance in Specific Cases

We now discuss three specific situations in which we can give a priori bounds on the variances
Vℓ and thus, according to Lemma 4.9, on the variance of the stochastic probing estimator
T N

d (f(A)). These bounds can then, in turn, be used to determine suitable numbers Nℓ of
samples based on the tail bounds of Section 4.3.3. An important feature of all three bounds
is that they depend only linearly on the dimensions nℓ. Interpreting the square root of the
variance as a measure for the accuracy of the Rademacher probing method, we thus have a
sublinear dependence, proportional to the square root of the dimension. This is an “order 1

2 ”
improvement over the non-stochastic probing method, where the accuracy depends linearly
on the dimension; see Theorem 4.5.

Proposition 4.12. LetA ∈ Rn×n be symmetric, let G(A) be its graph, and assume that f(A)
has the exponential decay property (4.12) with constants c > 0 and 0 < q < 1.

58



CHAPTER 4. ESTIMATING THE TRACE OF MATRIX FUNCTIONS

(i) If G(A) ism-banded and T N
d (f(A)) is the Rademacher probing approximation (4.20)

associated with the distance-d coloring (4.10), then the variances Vℓ from (4.23) satisfy

Vℓ ≤ nℓ · 4c2
q2d

1− q2d
, (4.35)

(ii) If G(A) is a regular D-dimensional lattice and T N
d (f(A)) is the Rademacher probing

approximation (4.20) associated with the distance-d coloring (4.11), then the variances
Vℓ from (4.23) satisfy

Vℓ ≤ nℓ · 4c2D Li1−D(q
2d). (4.36)

Proof. LetC1, . . . , Cnc be the colors of the coloring in (i) or (ii). From the exponential decay
property (4.12), we obtain

Vℓ = 2
∑

i,j∈Cℓ
i ̸=j

|[f(A)]ij |2 ≤ 2
∑

i,j∈Cℓ
i ̸=j

c2q2 d(i,j). (4.37)

In the case of (i), the distance-d coloring (4.10) has the property that for given i all other
nodes in Cℓ have a distance from i which is a multiple γd of d, and there are at most two
such nodes for each γ ∈ N; cf. [47, Section 4] for a detailed discussion. This is why for each
i we can write

∑
j∈Cℓ,j ̸=i q

2 d(i,j) ≤ 2
∑∞

γ=1 q
2dγ = 2q2d/(1− q2d), which gives (4.35).

In the case of (ii) and the coloring (4.11), for a given node i ∈ Cℓ it was shown in [47,
Section 4] that all other nodes in Cℓ have again a distance which is a multiple γd of d, and
for each γ there are this time at most 2DγD−1 nodes which have this distance. Thus,

Vℓ = 2
∑
i∈Cℓ

∑
j∈Cℓ,j ̸=i

|[f(A)]ij |2 ≤ 2nℓ

∞∑
γ=1

2DγD−1 · c2q2dγ = nℓ · 4c2 Li1−D(q
2d),

which is (4.36).

The third situation that we consider is when [f(A)]ij has constant sign for d(i, j) > d.
Here, we can establish a bound using the polynomial approximation error Ed(f, [a, b]).

Proposition 4.13. Let A ∈ Rn×n be symmetric with σ(A) ⊂ [a, b] and let C1, . . . , Cnc be a
distance-d coloring of G(A). Let T N

d (f(A)) be the Rademacher probing approximation (4.20)
associatedwith this coloring. Suppose that [f(A)]ij has constant sign for all i, j withd(i, j) >
d. Then

Vℓ ≤ nℓ · 4
(
Ed(f, [a, b])

)2
. (4.38)

Proof. Denote by vℓ the deterministic probing vector associated with the color Cℓ, ℓ =
1, . . . , nc, so that we have

Tr([f(A)]Cℓ
)− vT

ℓ f(A)vℓ = −
∑

i,j∈Cℓ
i ̸=j

[f(A)]ij .
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By assumption, all terms on the right-hand side have the same sign, which gives∑
i,j∈Cℓ
i ̸=j

|[f(A)]ij | =
∣∣ ∑
i,j∈Cℓ
i ̸=j

[f(A)]ij
∣∣ = ∣∣Tr([f(A)]Cℓ

)− vT
ℓ f(A)vℓ

∣∣ ,
and thus

Vℓ = 2
∑

i,j∈Cℓ
i ̸=j

|[f(A)]ij |2 ≤ 2 max
i,j∈Cℓ
i ̸=j

|[f(A)]ij |
∑

i,j∈Cℓ
i ̸=j

|[f(A)]ij |

≤ 2 max
d(i,j)>d

|[f(A)]ij | ·
∣∣Tr([f(A)]Cℓ

)− vT
ℓ f(A)vℓ

∣∣ . (4.39)

The first factor in (4.39) is bounded by a quantity that does not depend on ℓ,

max
d(i,j)>d

|[f(A)]ij | ≤ Ed(f, [a, b]); (4.40)

see, e.g., [45, Section 2.1]. For the second term, let pd denote the polynomial of best approx-
imation of degree d. Then Tr(pd(A)) = vTℓ pd(A)vℓ, since [pd(A)]ij = 0 if d(i, j) > d, and
thus∣∣Tr([f(A)]Cℓ

)− vT
ℓ f(A)vℓ

∣∣ ≤ |Tr([f(A)− pd(A)]Cℓ
)|+

∣∣vT
ℓ (f(A)− pd(A))vℓ

∣∣
≤

∑
k∈Cℓ

|[f(A)− pd(A)]kk|+
∣∣vT

ℓ (f(A)− pd(A))vℓ

∣∣ .
Herein, each term in the sum is bounded by Ed(f, [a, b]), and for the second term we have∣∣vTℓ (f(A)− pd(A))vℓ

∣∣ ≤ ∥vℓ∥22 · Ed(f, [a, b]) = nℓ · Ed(f, [a, b]).

Using this in (4.39) gives (4.38).

Remark 4.6. When given a fixed budget N of quadratic forms that one wants to invest for
trace estimation via stochastic probing, our results lead to a simple heuristic for distributing
these across the different colors Cℓ: According to (4.27), the optimal number of samples
should be chosen proportionally to

√
Vℓ, and under the assumptions of Proposition 4.12 or

Proposition 4.13 we further know that Vℓ essentially scales as O(nℓ). Thus, it is sensible to
choose the numbers of samples as Nℓ = round(ν

√
nℓ), where

ν =
N∑nc

ℓ=1

√
nℓ
,

and round(ν
√
nℓ) denotes the nearest integer to ν√nℓ.

The following result gives us bounds on the standard deviation (i.e., the sqare root of the
variance) for the stochastic probing estimator.

Theorem 4.14. Let f(A) be defined forA ∈ Rn×n symmetric. LetC1, . . . , Cnc be a distance-
d coloring of G(A), and let T N

d (f(A)) be the Rademacher probing approximation (4.20) as-
sociated with the coloring.
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1. IfA ism-banded and f(A) fulfills (4.12), and the distance-d coloring is chosen as (4.10),
then (

V
[
T N

d (f(A))
]) 1

2 ≤ 2
√
n c

qd√
1− q2d

;

2. IfG(A) is a regularD-dimensional lattice and the distance-d coloring is chosen as (4.11),
then (

V
[
T N

d (f(A))
]) 1

2 ≤ 2
√
n c

√
D
√

Li1−D(q2d);

3. If [f(A)]ij has constant sign for d(i, j) > d and σ(A) ⊂ [a, b], then(
V
[
T N

d (f(A))
]) 1

2 ≤ 2
√
n cEd(f, [a, b]).

Proof. The variance can be bounded in general by V
[
T N

d (f(A))
]
≤ V

[
T 1

d(f(A))
]

in view
of (4.22), where 1 = (1, 1, . . . , 1) (i.e., only one sample per color is used). In all the inequal-
ities (4.35), (4.36), and (4.38), the right-hand side has the form nℓ · ϕ(d), where ϕ(d) does
not depend on ℓ. Hence, we get

V
[
T 1

d(f(A))
]
=

nc∑
ℓ=1

Vℓ ≤
nc∑
ℓ=1

nℓ ϕ(d) = nϕ(d).

Thus, by replacing ϕ(d) with the correct formula, we conclude.

Remark 4.7. Let us compare Theorem 4.14 with the error bounds of Section 4.2.2. Under
suitable assumptions, the behavior of the bounds is the same with respect to d. This is easy
to see for the banded and constant sign case, while for the lattice sparsity pattern note that√

Li1−D(q2d) = O(qd) for large d, as discussed in Remark 4.3. On the other hand, the factor
n present in the deterministic case is replaced by

√
n in the stochastic probing case. This

can yield a huge gain, especially for large-scale problems.

4.3.5 Matrix Functions with Constant Sign Patterns

Here we characterize classes of functions and matrices for which [f(A)]ij has a fixed sign
for d(i, j) ≥ d, i.e., situations in which Proposition 4.13 applies. We first state a classical
result from [42] which treats the case d = 0, i.e., it gives conditions such that f(A) ≥ 0 for
all i and j. Recall that a matrix A ∈ Rn×n is called a (possibly singular) M-matrix if it can
be written as A = θI −B, where all entries in B are non-negative, B ≥ 0, and the spectral
radius satisfies ρ(B) ≤ θ. If A and thus B is symmetric, ρ(B) = ∥B∥2 = λmax(B), the
largest eigenvalue of B; see, e.g., [23].

Lemma 4.15 ([42]). Let A = θI − B ∈ Rn×n with B ≥ 0 and ∥B∥2 ≤ θ be a symmetric
M-matrix. Suppose that f(x) is continuous over [θ − ∥B∥2, θ + ∥B∥2], analytic over (θ −
∥B∥2, θ + ∥B∥2 + ε), for some ε > 0, and that

(−1)kf (k)(θ) ≥ 0 for all k ≥ 0. (4.41)

Then f(A) ≥ 0.

61
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This gives rise to the following proposition, where we assume that the derivatives of f
alternate their sign only beyond the dth derivative.

Proposition 4.16. Let A and f be as in Lemma 4.15, except that condition (4.41) is replaced
by

(−1)kf (k)(θ) ≥ 0 for k ≥ d, (4.42)

where d is a positive integer. Then

[f(A)]ij ≥ 0 for d(i, j) ≥ d.

Proof. We consider the Taylor series centered at θ, writing it in terms of x ∈ (θ − ∥B∥, θ +
∥B∥). Then

f(x) =
∞∑
k=0

ckx
k = pd−1(x) + g(x),

where pd−1(x) =
∑d−1

k=0 ckx
k and g(x) =

∑∞
k=d ckx

k. Since [Ak]ij = 0 for k < d(i, j),
we have that [pd−1(A)]ij = 0 if d ≤ d(i, j). Moreover,

g(k)(θ) =

{
0 if k < d

f (k)(θ) if k ≥ d
,

so from Lemma 4.15 we get that g(A) ≥ 0. Finally,

[f(A)]ij = [pd−1(A)]ij + [g(A)]ij = [g(A)]ij ≥ 0

for d(i, j) ≥ d.

Of course, if the assumptions on f in Proposition 4.16 hold for−f instead of f , we obtain
[f(A)]ij ≤ 0 for d(i, j) ≥ d.
Remark 4.8. Lemma 4.15 or Proposition 4.16 can be applied for the following functions f of
a symmetric M-matrix A:

1. Completely monotone functions, i.e., function whose derivatives satisfy

(−1)kf (k)(x) ≥ 0, k ≥ 0,

for all x ∈ (0,∞). In that case, Lemma 4.15 implies that f(A) ≥ 0.

2. Bernstein functions, i.e., nonnegative functions f on (0,∞)with completely monotone
derivative f ′. By applying Proposition 4.16 to −f we get [f(A)]ij ≤ 0 for d(i, j) ≥ 1,
i.e. for i ̸= j.

3. The entropy function f(x) = −x log x. In fact, for θ > 0 we have

f (k)(θ) = (−1)k−1θ1−k(k − 2)!, k ≥ 2.

If A = θI −B with B ≥ 0 is an M-matrix, by applying Proposition 4.16 to −f we get
[f(A)]ij ≤ 0 for d(i, j) ≥ 2. If θ ≤ exp(−1) we also get f ′(θ) = − log θ − 1 ≥ 0,
so that in this case we even have [f(A)]ij ≤ 0 for d(i, j) ≥ 1, i.e., for i ̸= j.
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4. Fractional powers with exponent larger than 1, i.e., f(x) = xα with α > 1. If d = ⌈α⌉,
we get {

f (k)(x) ≥ 0 for k < d,

(−1)k+df (k)(x) ≥ 0 for k ≥ d.

Hence, if d is even, we get [f(A)]ij ≥ 0 for d(i, j) ≥ d, and if d is odd we get
[f(A)]ij ≤ 0 for d(i, j) ≥ d.

5. f(x) = x exp(−x), for which

f (k)(x) = (−1)k(x− k) exp(−x), k ≥ 0.

For d = ⌈θ⌉, we get that (−1)k+d+1f (k)(θ) ≥ 0 for k ≥ d. Therefore, if d is even, we
get [f(A)]ij ≤ 0 for d(i, j) ≥ d, and if d is odd we get [f(A)]ij ≥ 0 for d(i, j) ≥ d.

In all situations just outlined, we also have that stochastic probing with only one sample
per color is never worse than deterministic probing (which has the same computational cost).

Proposition 4.17. Assume that A and f satisfy the assumptions of Proposition 4.13 with
C1, . . . , Cnc a distance-d coloring of G(A). Let T 1

d(f(A)) the stochastic probing approxi-
mation of the trace using just one Rademacher vector for each color, i.e.,N = (1, . . . , 1) and
by T d(f(A)) the deterministic probing approximation defined in (4.8) with respect to the same
distance-d coloring. Then

| T 1

d(f(A))− Tr(f(A))| ≤ | T d(f(A))− Tr(f(A))|.

Proof. We use the notation and the result from Proposition 4.7 to obtain∣∣ T 1

d(f(A))− Tr(f(A))
∣∣ = ∣∣ ∑

i,j∈Cℓ
i ̸=j

XiXj [f(A)]ij
∣∣ ≤ ∑

i,j∈Cℓ
i ̸=j

|[f(A)]ij |,

and the assumptions of Proposition 4.13 together with (4.9) to conclude,∑
i,j∈Cℓ
i ̸=j

|[f(A)]ij | =
∣∣ ∑
i,j∈Cℓ
i ̸=j

[f(A)]ij
∣∣ = | T d(f(A))− Tr(f(A))|.

Note that this result assumes constant sign in [f(A)]ij only for d(i, j) ≥ d. For special
cases and d = 1 the result has been observed before, for example in [5, Section 2.3] for the
specific case of the log-determinant of certain precision matrices.
Remark 4.9. One might think that the stochastic probing method that we discussed in this
chapter could be further enhanced by using Hutch++ or XTrace instead of standard Hutchin-
son on each of the colors Cℓ where we estimate Tr([f(A)]Cℓ

). This, however, turns out to
be counter-productive, since these methods then invest too much effort in computing the low
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rank approximation for each color block. What we would need for the advanced estimators to
be efficient is that, for each color Cℓ, the block [f(A)]Cℓ

can be well approximated by a ma-
trix with small rank compared to the block size nℓ. The coloring approach aims at making the
off-diagonal entries of [f(A)]Cℓ

small, so if the diagonal elements are not comparably small,
there cannot be a low rank approximation to [f(A)]Cℓ

. And even if there is a rapid decay in
the eigenvalues of f(A), we can at best expect to have a similar decay in the eigenvalues
of each color block [f(A)]Cℓ

, l = 1, . . . , nc. But this means that, compared to no probing,
we have an effort which is nc times as large to invest before we retrieve a good low rank
approximation for each of the color blocks.

4.4 Numerical Experiments

We now illustrate our theoretical analysis with several numerical examples. All experiments
are done in MATLAB R2020b on a computer with Intel® Core™ i7-7700HQ CPU and 16 GB
RAM.

4.4.1 Scaling with the Size for Random Geometric Graphs

We start with a series of experiments illustrating the results in Section 4.3.4 on the more
favorable scaling of the error of stochastic vs. deterministic probing. The matrices used
are Laplacians L or adjacency matrices A of random geometric graphs with n nodes. These
were obtained via the command random geometric graph(n,radius) from the package
NetworkX [59] in Python with n ranging from 200 to 5, 000 in steps of 200. In order to keep
similar properties for all the matrices, in particular to keep the number nc of colors of the
distance-d coloring similar for all n, we used radius =

√
logn
πn for all n, motivated by the

results in [85, Section 6].
We test four different matrix functions: the shifted inverse f1(L) = (L + 2I)−1, the

square root f2(L) =
√
L, the exponential f3(L) = exp(−10L), where L is the graph Lapla-

cian, and the absolute value f4(A) = |A| of the adjacency matrix A. The trace of |A| is
the graph energy; cf. [75]. Graph Laplacians are M-matrices, since they can be written as
θI −B with θ the maximum degree in the graph and B ≥ 0 with ρ(B) = θ; cf. [23, Chapter
6]. Hence, in view of Remark 4.8 the assumptions of Proposition 4.13 are satisfied for the
functions f1(L), f2(L), f3(L), for all distance-d colorings. On the other hand, we have no
information on the signs in f4(A).

In this experiment, we use a distance-3 coloring for all graphs, which is computed with
Algorithm 5. With f a generic symbol for one of the functions f1, . . . , f4 andM (n) a generic
symbol for the Laplacian or the adjacency matrix of the random geometric graph withn nodes,
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Figure 4.1: Absolute errors and asymptotic behavior for increasing n for the three methods
in (4.43). For stochastic methods, we show the average error over 20 runs, together with a
confidence interval.

Figure 4.1 reports the quantities

|Tr(f(M (n)))− T d(f(M
(n)))| (deterministic probing),

|Tr(f(M (n)))− T 1

d(f(M
(n)))| (stochastic probing, one vector per color)

|Tr(f(M (n)))− T N
d (f(M (n)))| (stochastic probing with N = (N1, . . . , Nnc),

where Nℓ = ν
√

|Cℓ| and
∑nc

ℓ=1Nℓ = 100nc).
(4.43)

The choice of Nℓ in the third case is motivated by Remark 4.6, and We expect the error
given by T N

d (f(M (n))) to be smaller by one order of magnitude as compared to the error
of T 1

d(f(M
(n))). For the stochastic methods, we actually show an average of these errors

over 20 runs, together with the confidence interval obtained by adding and subtracting the
empirical standard deviation of the samplings. We also display the functions g1(n) = c1n
and g2(n) = c2

√
nwith suitably chosen constants c1 and c2 which allow to easily appreciate

the expected scaling behavior.
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Figure 4.1 shows that stochastic probing with just one vector per color performs indeed
better—and this by one to two orders of magnitude—than deterministic probing. Moreover,
the expected decrease by one order of magnitude for stochastic probing withNℓ samples per
color is clearly visible in all four examples. In addition, for f1, f2 and f4 we see that the error
of stochastic probing (with one vector) scales with the square root of the dimension whereas
it scales linearly with the dimension for deterministic probing. This is exactly the scaling of
the bounds on the error (or the variance) that we obtained in our analysis in Section 4.3.4,
and this analysis applies to f1, f2 and f3. For f1 and f2 the actual error is very close to
the bounds, whereas for f3 the bounds are more pessimistic: the accuracy of stochastic
probing appears to almost not depend on the dimension, whereas the growth of the error for
deterministic probing appears to be less than linear. For the graph energy, i.e., function f4,
the analysis of Section 4.3.4 cannot be applied. Interestingly, though, we observe again linear
growth of the error for deterministic probing and growth with the square root of the dimension
for stochastic probing.

4.4.2 Scaling with the Distance

In the next experiment, we analyze the scaling with the distance d. As a test graph, we con-
sider the road network DC of the District of Columbia1, more specifically its biggest connected
component which has n = 9, 522 nodes. Road networks exhibit a large-world structure,
hence we need only few colors for a distance-d coloring; see Remark 4.1. Again, we consider
the functions (L+2I)−1,

√
L, exp(−10L) and |A|, where L andA are the graph Laplacian

and the adjacency matrix, respectively. We again compare deterministic probing, stochastic
probing with just one vector per color (i.e., nc vectors in total) and stochastic probing with∑nc

ℓ=1Nℓ = 100nc with each Nℓ proportional to
√
|Cℓ| as motivated in Remark 4.6. This

time, we report the average relative error over 20 runs, displayed together with the confidence
interval obtained by adding and subtracting the empirical standard deviation of the samplings;
cf. Figure 4.2.

As expected, for the first three functions the error for stochastic probing scales similarly
as a function of d as for deterministic probing while being smaller by a few orders of magni-
tude. This is consistent with Remark 4.7. In the fourth example, the error in stochastic probing
is smaller for the smaller values of d but becomes increasingly closer to the error of deter-
ministic probing for larger values of d. Note that none of the assumptions of Theorem 4.14
hold in this case.

4.4.3 Comparison with Hutch++ and XTrace

In a last series of experiments, we compare stochastic probing with the other variance reduc-
tion techniques outlined in Section 4.1. Since these techniques use low-rank approximations
of f(A), their performance depends on the eigenvalue distribution in f(A) and is heavily en-
hanced by an exponential decay, as shown by Theorem 4.3. We compare these methods with
plain Hutchinson and with stochastic probing with distances d = 1, 3, 5. The test matrices

1available at http://www.diag.uniroma1.it/challenge9/data/tiger/
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Figure 4.2: Absolute errors and asymptotic behavior for increasing d for the three methods
in (4.43). For stochastic methods, we show the average error over 20 runs, together with a
confidence interval.

are f1(L) = (L + 2I)−1, f2(L) =
√
L and f3(L) = exp(−10L), where L is again the

Laplacian L of the DC graph. For d = 1, 3, 5, the colorings computed with Algorithm 5 have
nc = 4, 15, 35 colors, respectively.

The largest 2500 eigenvalues of all three test matrices are depicted in the top left plot of
Figure 4.3. The remaining three plots report the error of the different trace estimation methods
as a function of the total number of matrix-vector multiplications. Since these evaluations
are by far the most costly component in any of the methods, their number quite accurately
reflects the computational cost. The essence of Figure 4.3 is that for situations where the
eigenvalues do not show a pronounced decay (functions f1 and f2), the techniques using
low rank approximations perform significantly worse than stochastic probing. The situation
is reversed, though, when the eigenvalues decay rapidly, as in f3(L). The plots for the shifted
inverse and the square root also illustrate that using a larger distance in the coloring gives
more accurate results in stochastic probing for the same cost, an observation which should
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Figure 4.3: Comparison of the relative accuracy of different trace estimators as a function of
matvecs f(L)x. For each method, we show the average error over 20 runs.

not come as a big surprise.

4.5 Conclusions and Further Developments

We analyzed the performance of stochastic probing methods for estimating the trace of func-
tions of sparse matrices. We derived formulas for the variance and tail bounds of this combi-
nation between a stochastic approach (Hutchinson’s estimator) and probing estimators. For
some common cases, for instance when the matrix argument is banded, when the associ-
ated graph is a regular grid, or when the entries [f(A)]ij have constant sign for d(i, j) > d,
we derived bounds on the variance showing that the error scales on average with the square
root of the size, in contrast to the linear scaling exhibited by the deterministic method. Our
theory is validated by several numerical experiments where we observed the scaling of the
error with the size and compared the performance with other known estimators, indicating

68



CHAPTER 4. ESTIMATING THE TRACE OF MATRIX FUNCTIONS

when stochastic probing can be the method of choice. Further developments could consist
on finding more efficient ways to compute the coloring, depending on the structure of the
graph associated with the matrix argument.
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Chapter 5

Von Neumann Entropy and its
Computation

In this chapter we consider the computation of the von Neumann entropy, which is defined
as the trace of the matrix function f(A) = −A logA. We analyze its approximation through
trace estimators and deal with the computation of quadratic forms and matrix-vector prod-
ucts. In Section 5.1, we study the analytical properties of the function f(x) = −x log x. In
Section 5.2, we discuss the approximation of the entropy by means of the probing approach.
In Section 5.3, we analyze the computation of matrix-vector multiplications and quadratic
forms via polynomial and rational Krylov methods, by developing a pole selection strategy
and a posteriori error bounds. In Section 5.4, we give an overview of the algorithms used for
the numerical experiments of Section 5.5, where we compare the described methods. This
chapter is based in part on [18].

5.1 Properties of the von Neumann Entropy

A densitymatrix is a positive semi-definite linear operator ρwith unit trace acting on a complex
Hilbert space. In quantum mechanics, density operators describe mixed states of quantum
mechanical systems, which are convex combinations of pure states (i.e., density matrices
with rank 1). Here we consider only finite dimensional Hilbert spaces, so ρ is an n × n Her-
mitian matrix. For simplicity, we focus on the real symmetric case.

The von Neumann entropy of a system described by the density matrix ρ [103] is given by

S(ρ) = −
∑

λ∈σ(ρ)

λ log(λ) = −Tr(ρ log ρ), (5.1)

under the convention that 0 · log(0) = 0. Here log(x) is the natural logarithm. Note that in
the literature the entropy is sometimes defined using log2(x) instead, but, since log2(x) =
log(x)/ log(2), the two definitions are equivalent up to a constant scaling factor. We also
mention that in the original definition the entropy includes the factor κB (the Boltzmann con-
stant), which we omit.
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The function f(x) = −x log x is defined over the spectrum of any Hermitian positive
semidefinite matrix A. Hence, even though it has no physical meaning, the quantity S(A)
is defined without the additional hypothesis of unit trace. Moreover, if ρ is given in the form
ρ = γA with γ > 0, we have the relation

S(ρ) = −γ Tr(A log(A))− γ log(γ) Tr(A) = γS(A)− γ log(γ) Tr(A). (5.2)

Hence, we can easily recover S(ρ) from S(A).
In quantum mechanics, the von Neumann entropy of a density matrix gives a measure of

how far the system is from being in a pure state, and therefore it measures the uncertainty
in our knowledge of the state of the system. For any density matrix of size n, we have 0 ≤
S(ρ) ≤ log(n). Moreover, S(ρ) = 0 if and only if ρ is a pure state (i.e., ρ is a rank 1 matrix
with one eigenvalue equal to 1 and all the others equal to 0) and S(ρ) = log(n) if and only if
ρ = 1

nI [103, 104].
The von Neumann entropy also has applications in network theory. Let L be the Lapla-

cian of an undirected graph. Then L is a singular positive semidefinite matrix and the eigen-
value 0 is simple if and only if G is connected, in which case the associated one-dimensional
eigenspace is spanned by 1. Given the density matrix ρ = L/Tr(L), the von Neumann
entropy of G is defined as S(ρ) [25, 27].

It should be mentioned that, strictly speaking, the graph entropy defined in this manner is
not a “true” entropy, since it does not satisfy the sub-additivity requirement. In other words, the
graph entropy could decrease when an edge is added to the graph, see [34]. For this reason,
different notions of graph entropy have been proposed in the literature; see, e.g., [51, 52].
These entropies still have the form of a von Neumann entropy, S = −Tr(ρ log ρ), but with a
different definition of the density matrix ρ which, however, is still expressed as a function of
a matrix (Hamiltonian) associated to the graph.

Throughout this chapter, we use the notation A to denote general matrices, and ρ to
denote density matrices, i.e., Tr(ρ) = 1. Most of our results are applicable in general for
symmetric positive semidefinite matrices and not only to density matrices.

A straightforward way to compute the von Neumann entropy is by diagonalization. How-
ever, this approach is unfeasible when the dimension is very large. Here we propose some
approaches to compute approximations to the von Neumann entropy based on the trace esti-
mation of matrix functions, and propose methods for the computation of the quadratic forms
associated with the estimation scheme via Krylov methods.

5.1.1 Integral Representation and Polynomial Approximation

A quantity that plays an important role in our analysis is the error of the best uniform poly-
nomial approximation of a continuous function, which we already introduced in detail in Sec-
tion 3.2. Here we briefly recall some notations. Let Πk be the set of all polynomials with
degree at most k. For a continuous function f : [a, b] → R, the error of the best uniform
polynomial approximation in Πk is

Ek(f, [a, b]) = min
p∈Πk

max
x∈[a,b]

|f(x)− p(x)|. (5.3)
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The function f(x) = x log(x) is not analytic on any neighborhood of 0, so we cannot
expect to find a geometric decay as for the case of the inverse (cf., Theorem 3.3) or for
general analytic functions (cf., Theorem 3.6) if we consider [0, b], b > 0, as the interval
of definition. However, since f is continuous, by the Weierstrass Approximation Theorem
Ek(f, [0, b]) must go to 0 as k → ∞. A more precise estimate is the following [107], derived
by computing the coefficients of the Chebyshev expansion of f(x):

Ek(f, [0, b]) ≤
b

2k(k + 1)
for all k ≥ 1. (5.4)

This shows that the decay rate of the error is algebraic in k. Our approach is based on an
integral representation and leads to sharper bounds.

Recall that a Cauchy-Stieltjes function has the form (3.43). An example is given by the
function log(1 + z)/z that has the expression

log(1 + z)

z
=

∫ ∞

1

1

s(s+ z)
ds.

It is easy to check that the above identity also holds for z ∈ (−1, 0). With the change of
variable x = 1+z and some simple rearrangements, we get the following integral expression
for the entropy:

−x log(x) =
∫ ∞

1

x(1− x)

s(s+ x− 1)
ds, x ∈ [0, 1]. (5.5)

With the additional change of variable s = t+ 1, we can rewrite (5.5) in the form

−x log(x) = x(1− x)

∫ ∞

0

1

(t+ x)(t+ 1)
dt, x ∈ [0, 1]. (5.6)

Note that the above identities also hold for x = 0 and x = 1, because of the factor x(1 −
x) in front of the integral. This shows that although the entropy function −x log(x) is not
itself a Cauchy-Stieltjes function, we can recognize a factor of the form (3.43) in its integral
representation. This observation will be important later for the selection of poles in a rational
Krylov method; see Section 5.3.2.

Since the integral representation (5.6) has the form (3.7), we can apply Lemma 3.9 to
derive a new bound for Ek(x log x, [a, b]).

Theorem 5.1. Let 0 ≤ a < b and γ = a/b. We have

Ek(x log(x), [a, b]) ≤ b (1−√
γ)

1 + γ + 2k
√
γ

4(k2 − 1)

(
1−√

γ

1 +
√
γ

)k

, (5.7)

for all k ≥ 2.

Proof. Let f(x) = x log(x). Notice that f(x) = bf(b−1x) + log(b)x, so

Ek(f(x), [a, b]) = Ek(bf(b
−1x), [a, b]) = bEk(f(x), [γ, 1])
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since k ≥ 2 and we can ignore terms of degree 1 for the polynomial approximation. For x ∈
[γ, 1] we can use the representation (5.6). Let gt(x) := x(1−x)

(1+t)(x+t) be the integrand in (5.6)
for all t > 0. Note that gt(x) is a continuous fuction in the variables (t, x) ∈ (0,∞)× [a, b],
so we can apply Lemma 3.9. Then we can write gt(x) as

gt(x) =
x

x+ t
− x

1 + t
= 1− t

x+ t
− x

1 + t
, (5.8)

and since k ≥ 2 and 1− x
1+t has degree 1, we get that

Ek(gt(x), [γ, 1]) = Ek(t/(x+ t), [γ, 1]) = tEk(1/x, [γ + t, 1 + t]).

Hence, by using Theorem 3.3 and Lemma 3.9, we get

Ek(x log(x), [a, b]) ≤ b

∫ ∞

0

t
(√

κ(t) + 1
)2

2(1 + t)

(√
κ(t)− 1√
κ(t) + 1

)k+1

dt, (5.9)

where κ(t) = (1 + t)/(γ + t). In order to bound the integral, consider the identities√
κ(t)− 1√
κ(t) + 1

=

(√
1 + t−

√
γ + t

)2
1− γ

,
(√

κ(t) + 1
)2

=

(√
1 + t+

√
γ + t

)2
γ + t

.

We have

∫ ∞

0

t
(
1 +

√
κ(t)

)2
2(1 + t)

(√
κ(t)− 1√
κ(t) + 1

)k+1

dt

=
1

2

∫ ∞

0

t

(γ + t)(1 + t)
·
(√

1 + t+
√
γ + t

)2 (√
1 + t−

√
γ + t

)2k+2

(1− γ)k+1
dt

≤ 1

2(1− γ)k−1

∫ ∞

0

(√
1 + t−

√
γ + t

)2k
dt. (5.10)

By checking the derivative, it can be shown that

F (t) =

√
1 + t

√
γ + t

(√
1 + t−

√
γ + t

)2k ((
√
1+t−

√
γ+t)

4

2k+2 − (1−γ)2

2k−2

)
2
(√

1 + t
√
γ + t− γ − t

) (
1 + t−

√
1 + t

√
γ + t

)
is an antiderivative of

(√
1 + t−

√
γ + t

)2k. Since limt→∞ F (t) = 0, we deduce that

∫ ∞

0

(√
1 + t−

√
γ + t

)2k
dt =

√
γ
(
1−√

γ
)2k ( (1−γ)2

2k−2 − (1−
√
γ)

4

2k+2

)
2
(
1−√

γ
) (√

γ − γ
)

= 2(1−√
γ)2k

1 + γ + 2
√
γ k

2(k2 − 1)
.

This, combined with (5.10), concludes the proof.
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Remark 5.1. The result of Theorem 5.1 is an improvement of (5.4). When a > 0, the right-hand
side in (5.7) is the product of an algebraic and a geometric factor, so the decay is asymptoti-
cally faster. When a = 0, we have γ = 0 and (5.7) becomes

Ek(x log(x), [0, b]) ≤
b

4(k2 − 1)
,

which is better than (5.4) for all k ≥ 2. The new bound (5.7) is compared with (5.4) in
Figure 5.1.
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Figure 5.1: Comparison of the bounds (5.4) and (5.7) with the error of the polynomial approx-
imation of the entropy function x log x on the interval [10−6, 10−2].

5.2 Computation via Deterministic Probing

In this section we consider the deterministic probing approach, analyzed in [47] and reviewed
in Section 4.2, for the computation of S(A) = Tr(f(A)), where A is a symmetric positive
semidefinite matrix and f(x) = −x log x. Recall that the probing estimation is associated
with a distance-d coloringC1, . . . , Cnc of the graph G(A), and the probing estimator is given
by

T d(f(A)) =

nc∑
ℓ=1

vT
ℓ f(A)vℓ,

where vℓ is the probing vector (4.7) associated with the color ℓ, ℓ = 1, . . . , nc.

5.2.1 A Priori Error Bounds

We have the following error bound for the approximation of S(A) via probing.
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Corollary 5.2. Let A ∈ Rn×n be symmetric with σ(A) ⊂ [a, b], 0 ≤ a < b, and let γ = a/b.
Then

|S(A)− T d(−A log(A))| ≤ n b (1−√
γ)

1 + γ + 2d
√
γ

2(d2 − 1)

(
1−√

γ

1 +
√
γ

)d

, (5.11)

for all d ≥ 2. In particular, if a = 0, we have

|S(A)− T d(−A log(A))| ≤ n b

2(d2 − 1)
, (5.12)

for all d ≥ 2.

Proof. The inequality (5.11) follows from Theorem 5.1 and Theorem 4.5. The inequality (5.12)
follows from (5.11) with γ = a/b = 0.

Remark 5.2. The bound (5.11) can be pessimistic in practice, especially for large values of
d. We will see this in Example 5.3 and in Section 5.5.2. A priori bounds based on polynomial
approximations often fail to catch the exact convergence behavior in many problems related
to matrix functions, since a minimization problem over the spectrum of a matrix is relaxed to
the whole spectral interval. This occurs in the convergence of polynomial Krylov methods [76,
Section 5.6] and in the decay bounds on the entries of matrix functions (cf., Section 3.4). Also,
the coloring we get via Algorithm 5 can return far more colors than needed for a distance-d
coloring, and this can benefit the convergence in a way that is not predicted by the bound. We
will see in Section 5.4.1 a more practical heuristic to predict the error with higher accuracy.
Example 5.3. Let us see how the bound and the convergence of the probing method perform
in practice. We use the density matrix ρ = L/Tr(L), where L is the Laplacian of the graph
minnesota from the SuiteSparse Matrix Collection [32]. More precisely, we consider the
biggest connected component whose graph Laplacian has size n = 2640 and 9244 nonzero
entries.

For several values of d, we compute the approximation T d(−ρ log ρ) associated with
two different distance-d colorings: the first is obtained by the greedy coloring (Algorithm 5)
after sorting the nodes by descending degree, while for the second we use the reverse Cuthill-
McKee algorithm to get a 67-banded matrix and then apply (4.10).

In Figure 5.2 we compareT d(−ρ log(ρ))with the value ofS(ρ) obtained by diagonalizing
ρ, considered as exact. The left plot shows the error in terms of the number of colors (i.e. the
number of probing vectors) associated with the distance-d colorings. In the right plot the
errors are shown in terms of d together with bound (5.12), where b = λmax(ρ).

For a fixed value of d, the coloring based on the bandwidth provides a smaller error than
the greedy one, but it also uses a larger number of colors. Indeed, we can see from the left
plot that with the same computational effort the greedy algorithm obtains a smaller error. On
the right we can observe that bound (5.12) is close to the error given by the greedy coloring
for small values of d, while it fails to catch the convergence behavior for large values of d.

For the graph entropy, i.e. when ρ = L/Tr(L) and L is a graph Laplacian of a graph G ,
we can show that −T d(ρ log ρ) is a lower bound for S(ρ). In the proof we use the fact that
ρ is a symmetric M -matrix and Proposition 4.16.
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Figure 5.2: Absolute errors of the probing approximation of S(ρ) where the distance-d color-
ing is obtained either by the greedy procedure (Algorithm 5) or with the reverse Cuthill-McKee
algorithm and the coloring (4.10) for banded matrices. On the left the abscissa represents the
number of colors used for the coloring. On the right the errors are compared with bound (5.12)
in terms of d.

Proposition 5.3. Let A ∈ Rn×n be a symmetric M -matrix, and let T d(−A log(A)) be the
approximation (4.8) of S(A) induced by a distance-d coloring of G(A) with d ≥ 1. Then
T d(−A log(A)) ≤ S(A).

Proof. If V1, . . . , Vnc is the graph partitioning associated with a distance-d coloring, the error
of the approximation can be written as

S(A)− T d(−A log(A)) = −
nc∑
ℓ=1

∑
i,j∈Vℓ
i ̸=j

[−A log(A)]ij ; (5.13)

see Section 4.2. By definition of a distance-d coloring, for all i, j ∈ Vℓ, i ̸= j, we have
d(i, j) ≥ d+ 1 ≥ 2. Then, in view of Proposition 4.16 (see also Remark 4.8), the right-hand
side of (5.13) is nonnegative.

5.2.2 Density Matrices Expressed as Matrix Functions

In this chapter, we mainly consider the entropy of sparse density matrices. However, an im-
portant case is given by ρ = g(H), whereH is the Hamiltonian of a certain quantum system
and g is a function defined on the spectrum of H . Notable examples are the Gibbs state
[29, 104] and the Fermi-Dirac state [1]. Despite ρ being a dense matrix in general, a sparse
structure of H implies that ρ exhibits decay properties and can be well approximated by a
sparse matrix [11, 14]. Moreover, since S(ρ) = −g(H) log(g(H)) one can apply the tech-
niques described in Chapter 4 to the composition −g(x) log(g(x)). Although the detailed
investigation of this problem is outside the scope of this work, we give some insight and
possible future directions.
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Gibbs Entropy

LetH ∈ CN×N be the Hamiltonian of a certain system (i.e., a symmetric matrix). The Gibbs
state [29, 104] associated with H is the density matrix

ρG = Z−1 exp(−βH), Z = Tr(exp(−βH)),

where β is an inverse temperature factor. Without loss of generality, we can assume that H
is positive semidefinite, since

e−βH

Tr(e−βH)
=

e−β(H+αI)

Tr(e−β(H+αI))
,

and we can choose α such that H + αI is positive semidefinite.
The Gibbs entropy of a system with Hamiltonian H is S(ρG). The importance of this en-

tropy comes from the following fact [104]: ρG has the maximal von Neumann entropy among
all the density matrices with the same expectation. In other words:

S(ρG) = max{S(ρ) : ρ density matrix, Tr(ρH) = Tr(ρGH)}.

Moreover, if H is the Laplacian of a certain graph, S(ρG) is used as an alternative definition
for the entropy of a graph; see [51, 52].

In view of (5.2), S(ρG) can be written as follows:

S(ρG) = Z−1S(e−βH) + log(Z−1) =
Tr(−βHe−βH)

Tr(e−βH)
− log(Tr(e−βH)). (5.14)

Hence, the problem reduces to compute Tr(e−βH) and Tr(−βHe−βH). These two matrix
functions typically exhibit a fast (in particular, exponential) decay of the eigenvalues. In view
of the experiments in Section 4.4, in which the computation of Tr(e−βH) is also present,
we expect that stochastic estimators based on low rank approximations, such as Hutch++,
XTrace, and XNysTrace, are able to accurately compute these quantities with low effort.

Fermi-Dirac Entropy

The expression (5.14) allows to reduce the problem to much simpler matrix functions when
the density matrix is a Gibbs state. However, this is not the case in general.

Let us considerϕ(x) = −g(x) log(g(x)), so thatS(g(H)) = Tr(ϕ(H)). In view of The-
orem 4.5, the error of the probing approximation can be bounded by using Ek(ϕ(x), [a, b]).
Since we don’t have, in general, an integral representation of ϕ(x), we rely on Bernstein’s
Theorem 3.6 to get bounds. In order to simplify the analysis, we consider the case where
[a, b] = [−1, 1]. The discussion in Section 3.2.2 shows that this is not restrictive.

Let us recall some properties of the complex logarithm. Its principal branch is analytic
over the set

S = C \ {z ∈ R : z ≤ 0},
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which is the complex plane without the real nonpositive numbers. We also have

log(z) = log(|z|) + i arg(z),

where arg(z) is the principal branch of the argument function. In particular, | arg(z)| ≤ π
for all z ∈ S , and

| log(z)| ≤
√
log(|z|)2 + π2 ≤ | log(|z|)|+ π. (5.15)

Bernstein’s Theorem makes use of the notation Eχ to denote an ellipse with foci at ±1
and sum of semiaxes χ > 1 [80, Theorem 73]. We have the following result.
Theorem 5.4. Let g be continuous over Eχ and analytic over the interior of Eχ. Suppose that
g(z) ∈ S for all z ∈ Eχ. Let ϕ(z) = g(z) log(g(z)). Then

Ek(ϕ, [−1, 1]) ≤ K(χ)

(
1

χ

)k

, K(χ) = max
z∈Eχ

|ϕ(z)| (5.16)

for all k ≥ 0. Moreover,

K(χ) ≤ |M(χ) log(M(χ))|+ πM(χ), M(χ) = max
z∈Eχ

|g(z)|. (5.17)

Proof. Since ϕ(z) is the composition of two analytic functions, it is analytic itself over the
interior of Eχ. Hence, in view of Bernstein’s Theorem 3.6 we get (5.16).

For (5.17), in view of (5.15), we get

|g(z) log(g(z))| ≤ |g(z)|(log(|g(z)|) + π)| ≤ |g(z)| log(|g(z)|) + π|g(z)|.

By taking the maximum of |g(z)|, we conclude.

Theorem 5.4 applies when g(z) is the Fermi-Dirac function: g(z) = fFD(z) = (1 +
eβ(z−µ))−1.
Proposition 5.5. Let fFD(z) = (1 + eβ(z−µ))−1, where β > 0 and µ ∈ R. Let 1 < χ < χ,
where χ is defined in Theorem 3.20. Then fFD(z) ∈ S for all z ∈ Eχ.
Proof. Suppose that there exists z∗ ∈ Eχ such that fFD(z

∗) ∈ R and fFD(z
∗) ≤ 0. Then,

eβ(z
∗−µ) ∈ R and eβ(z∗−µ) < −1. Since eβ(z∗−µ) ∈ R and eβ(z∗−µ) < 0, we have that

Imag(z∗) = 1
β (k +

1
2)π for some integer k. Moreover, since |eβ(z∗−µ)| = eReal(β(z∗−µ)) >

1, we have that Real(z∗) > µ. Since Eχ is convex and symmetric with respect to both the
real and immaginary axes, this implies that α+ π

2 i ∈ Eχ for all|α| ≤ Real(z∗). In particular,
z̃ = µ+ π

2 i ∈ Eχ. Since z̃ is a pole of fFD(z), we get a contradiction.

Proposition 5.5 tell us that the composition ϕ(z) = g(z) log(g(z)) satisfies the hypothe-
ses of Theorem 5.4 when g(z) = fFD(z). Moreover, the same holds for g(z) = 1−fFD(z).
This is important since the electronic entropy [1] of a system with Hamiltonian H ∈ Rn×n is

Tr(fFD(H) log(fFD(H)) + (I − fFD(H)) log(I − fFD(H))).

In view of the previous results, the probing approach is applicable, in principle, for the compu-
tation of the electronic entropy. However, one still needs a way to compute the matrix-vector
products and the quadratic forms with the matrix function ϕ(H) = g(H) log(g(H)). This
can be the subject of future research.
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5.3 Computation of Quadratic Forms with Krylov Methods

Although the content of this section has been revised by all the authors of [18], the original
results Lemma 5.7, Proposition 5.8, Theorem 5.9, and all the content of Section 5.3.3, are to
be attributed to Igor Simunec.

The approximate computation of Tr(f(A)) with probing methods or stochastic trace es-
timators can be reduced to the computation of several quadratic forms with f(A), i.e. expres-
sions of the form bT f(A)b. In this section, we briefly describe how they can be efficiently
computed using polynomial and rational Krylov methods.

A polynomial Krylov subspace associated to A and b is given by

Pm(A, b) = range
{
b, Ab, . . . , Am−1b

}
= {p(A)b : p ∈ Πm−1}.

More generally, given a sequence of poles {ξj}j≥1 ⊂ (C∪{∞})\σ(A)∪{0}, we can define
a rational Krylov subspace as follows,

Qm(A, b) = qm−1(A)
−1Pm(A, b) =

{
r(A)b : r(z) =

pm−1(z)

qm−1(z)
,with pm−1 ∈ Πm−1

}
,

(5.18)

where qm−1(z) =
m−1∏
j=1

(1 − z/ξj). If all poles are equal to ∞, we have qm−1(z) ≡ 1 and

Qm(A, b) coincides with the polynomial Krylov subspace Pm(A, b), so Pm(A, b) can be
considered as a special case of Qm(A, b). Note that this definition of qm−1 does not allow
us to have poles ξj = 0; this can be fixed by changing the definition of qm−1 but it is not
required in our case, since we are only going to use real negative poles and poles at ∞.

Let us denote by Vm = [v1 . . . vm] a matrix with orthonormal columns that spans the
Krylov subspace Qm(A, b), and by Am = V T

mAVm the projection of A onto the subspace.
We can then project the problem on Qm(A, b) and approximate ψ = bT f(A)b in the follow-
ing way,

ψ ≈ ψm = bTVmf(Am)V T
mb.

If the basis Vm is constructed incrementally using the rational Arnoldi algorithm [92], we have
v1 = b/ ∥b∥2 and therefore

ψm = ∥b∥22 e
T
1 f(Am)e1. (5.19)

Note that the approximation ψm is closely related to the rational Krylov approximation of
f(A)b, which is given by

f(A)b ≈ Vmf(Am)V T
mb = ∥b∥2 Vmf(Am)e1, (5.20)

and is known to converge with a rate determined by the quality of rational approximations of
f , in view of the following result.

Proposition 5.6 (Corollary 3.4 in [58]). Let A be symmetric with spectrum contained in
[λmin, λmax]. Then the arnoldi approximation of f(A)b satisfies

|f(A)b− ∥b∥2 Vmf(Am)e1| ≤ 2 ∥b∥2 min
p∈Πm−1

∥f − q−1
m−1p∥[λmin,λmax].
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Rational Krylov methods are often used instead of polynomial ones when the function
f is not analytic or has a singularity close to the spectrum of A, due to the generally better
convergence rate of rational approximations than that of the polynomial ones for such func-
tions. This is the case for f(x) = x log x when the matrix argument is singular or has many
eigenvalues close to 0. For such functions, the higher cost per iteration induced by the linear
system solves is justified by the much smaller number of iterations required to attain a pre-
scribed accuracy. We refer to [57, 58] for an extensive discussion of rational Krylov methods
for the computation of matrix functions. The approximation (5.19) can be also interpreted in
terms of rational Gauss quadrature rules; see, e.g., [2, 88].

Remark 5.4. The standard Arnoldi algorithm is inherently sequential since the computation
of the new vector of the Krylov basis vm+1 requires the previous computation of vm. It is
possible to parallelize it by solving several linear systems simultaneously and expanding the
Krylov basis with blocks of vectors, with one of the strategies presented in [22], at the cost
of lower numerical stability. Since in this work we are expected to compute several quadratic
forms bT f(A)b, we can easily achieve parallelization by assigning the quadratic forms to
different processors and thus we can neglect parallelism inside the computation of a single
quadratic form.

Remark 5.5. We mention that for symmetricA it is possible to construct the Krylov basis Vm
using a method based on short recurrences such as rational Lanczos [84]. This has the advan-
tage of reducing the orthogonalization costs, which can become significant ifm is large, and
also avoids the need to store the matrixVm when approximating the quadratic form bT f(A)b;
see (5.19). However, the implementation in finite arithmetic of short recurrence methods can
suffer from loss of orthogonality, which in turn can lead to a slower convergence. In order to
avoid this potential problem, we use the rational Arnoldi method with full orthogonalization.
Since we expect to attain convergence in a small number of iterations, the orthogonalization
costs remain modest compared to the cost of operations with A.

5.3.1 Convergence

By Proposition 5.6, the accuracy of the approximation (5.20) for f(A)b is related to the quality
of rational approximations to the function f of the form r(z) = qm−1(z)

−1pm−1(z), where
pm−1 ∈ Πm−1 and qm−1 is determined by the poles of the rational Krylov subspace.

In the case of quadratic forms we can prove a faster convergence rate using the fact that
ψm = ψ for rational functions of degree up to (2m − 1, 2m − 2). The following fact, as
stated in [18, Lemma 4.3], was already present in the literature; see [58, Remark 3.2] and [84,
Proposition 3.1]. Here we report the proof in [18] for completeness.

Lemma 5.7. Assume that A is symmetric. Let p2m−1 ∈ Π2m−1 and define the rational func-
tion r(z) = qm−1(z)

−2p2m−1(z). Then we have

bT r(A)b = bTVmr(Am)V T
mb.

Proof. It is sufficient to prove this fact for p2m−1(z) = zk , for k = 0, . . . , 2m−1. Assuming
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for the moment that k = 2j + 1 is odd, we have

bT r(A)b = bT s(A)As(A)b, with s(z) = qm−1(z)
−1zj , j < m.

Now using [58, Lemma 3.1], we obtain

bT r(A)b =
(
bTVms(Am)V T

m

)
A
(
Vms(Am)V T

mb
)
= bTV T

m r(Am)V T
mb.

The case of pm−1(z) = zk with k even can be proved in the same way, by writing

bT r(A)b = bT s(A)2b, with s(z) = qm−1(z)
−1zj , j < m.

Lemma 5.7 leads to the following convergence result for the approximation of quadratic
forms, with the same proof as Proposition 5.6 in [58, Corollary 3.4].

Proposition 5.8. LetA be symmetric with spectrum contained in [λmin, λmax], ψ = bT f(A)b
and denote by ψm the approximation (5.19). We have

|ψ − ψm| ≤ 2 ∥b∥22 min
p∈Π2m−1

∥∥f − q−2
m−1p

∥∥
[λmin,λmax]

.

By comparing Proposition 5.8 with Proposition 5.6, we can expect the convergence for
quadratic forms to be roughly twice as fast as the one for matrix-vector products with f(A).

5.3.2 Poles for the Rational Krylov Subspace

Recall that the function f(z) = x log x has the integral expression (5.6), which corresponds
to a Cauchy-Stieltjes function multiplied by the polynomial x(1 − x). This implies that we
can expect that a pole sequence that yields fast convergence for Cauchy-Stieltjes functions
will be effective also in our case, especially if we add two poles at ∞ to account for the
degree-two polynomial.

The authors of [79] consider the case of a positive definite matrixAwith spectrum in [a, b]
and a Cauchy-Stieltjes function f , and relate the error for the computation of f(A)b with a
rational Krylov method to the third Zolotarev problem in approximation theory. The solution
to this problem is known explicitly and it can be used to find poles on (−∞, 0) that provide
in some sense an optimal convergence rate for the rational Krylov method [79, Corollary 4].
However, the optimal Zolotarev poles are not nested, so they cannot be used to expand the
Krylov subspace incrementally, and they are practical only if one knows in advance how many
iterations to perform, for instance by relying on an a priori error bound. This drawback can
be overcome by constructing a nested sequence of poles that is equidistributed according
to the limit measure identified by the optimal poles, which can be done with the method of
equidistributed sequences (EDS) described in [79, Section 3.5]. These poles have the same
asymptotic convergence rate as the optimal Zolotarev poles and are usually better for prac-
tical purposes. To be computed, they require the knowledge of [a, b] or a positive interval Σ
such that [a, b] ⊂ Σ.
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As an alternative, one can also use poles obtained from Leja-Bagby points [8, 58]. These
points can be computed with a greedy algorithm and they have an asymptotic convergence
rate that is close to the optimal one. See [58, Section 4] and the references therein for addi-
tional information.
Remark 5.6. For the function f(x) = x log x, the first few iterations of a polynomial Krylov
method have a fast convergence rate that is close to the convergence rate of rational Krylov
methods, even if it becomes asymptotically much slower for ill conditioned matrices. The
faster initial convergence can be explained by the algebraic factor in the bound (5.7) for poly-
nomial approximations of x log x. Since polynomial Krylov iterations are cheaper than ratio-
nal Krylov iterations, this suggests the use of a mixed polynomial-rational method, that starts
with a few polynomial Krylov steps and then switches to a rational Krylov method with, e.g.,
EDS poles to achieve a higher accuracy. These methods are compared numerically in Exam-
ple 5.10, where we also test the performance of the a posteriori error bound that we prove in
Section 5.3.3.
Remark 5.7. Note that in the context of the graph entropy the matrix A is a graph Laplacian,
which is a singular matrix. Therefore in principle it is not possible to use the poles described
in this section, since here we assume that A is positive definite. However, we can use one
of the desingularization strategies described in [20] to remove the 0 eigenvalue of the graph
Laplacian, obtaining a matrix with spectrum contained in [λ2, λn], where λ2 is the second
smallest eigenvalue of A and λn is the largest one. In our implementation we use the ap-
proach that is called implicit desingularization in [20], which consists in replacing the initial
vector b for the Krylov subspace with c = b− 1T b

n 1, where 1 is the vector of all ones. Since
c is orthogonal to the eigenvector 1 associated to the eigenvalue 0, it can be shown that the
convergence of a Krylov subspace method with starting vector c is the same as for a matrix
with spectrum in [λ2, λn]. An approximation of f(A)b can be then cheaply recovered from
f(A)c using the fact that f(A)1 = f(0)1, and similarly for bT f(A)b. See [20] for more
details.

5.3.3 A Posteriori Error Bound

In this section we prove an a posteriori bound for the error in the computation of the quadratic
form bT f(A)b with a rational Krylov method. This bound is a variant of the one described in
[57, Section 6.6.2] for f(A)b, modified in order to account for the faster convergence rate in
the case of quadratic forms.

We recall that after m iterations the rational Arnoldi algorithm yields the rational Arnoldi
decomposition [21, Definition 2.3]

AVm+1Km = Vm+1Hm, (5.21)

where rangeVm+1 = Qm+1(A, b) andKm,Hm are (m+1)×m upper Hessenberg matrices
with full rank. Let us consider the situation when ξm = ∞: in this case the last row of Km

is zero, and the decomposition simplifies to

AVmKm = VmHm + vm+1h
T
m+1,
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whereHm andKm denote them×m leading principal blocks ofHm andKm, respectively,
and hT

m+1 = hm+1,meTm denotes the last row of Hm. Note that Km is nonsingular since
Km has full rank, so we can rewrite the decomposition as

AVm = VmAm + vm+1h
T
m+1K

−1
m , where Am = V T

mAVm = HmK
−1
m . (5.22)

Remark 5.8. To derive the bound, we assume that ξm = ∞ because it simplifies the rational
Arnoldi decomposition and hence the expression of the bound. Such an assumption is not
restrictive, since the value of ξm does not have any impact on Vm andAm, but only on vm+1

and the last column ofHm andKm. As we shall see later, we can use a technique described
in [57, Section 6.1] to compute the bound for all m, without having to set the corresponding
poles ξm = ∞. Note that if ξm ̸= ∞, then (5.22) does not hold, and in particular V T

mAVm ̸=
HmK

−1
m .

By using the Cauchy integral formula (2.3), we can obtain the following expression for the
error [57, Section 6.2.2]:

f(A)b− Vmf(Am)V T
mb =

1

2πi

∫
Γ
f(z)(zI −A)−1rm(z)dz, (5.23)

where Γ is a contour contained in the region of analyticity of f that encloses the spectrum
of A, and

rm(z) = b− (zI −A)xm(z), with xm(z) = Vm(zI −Am)−1V T
mb,

which can be seen as a residual vector of the shifted linear system (zI − A)x = b. It turns
out that [57, Section 6.2.2]

rm(z) = ∥b∥2 φm(z)vm+1, with φm(z) = hT
m+1K

−1
m (zI −Am)−1e1.

Observe that we have

bT (zI −A)−1rm(z) = rm(z)T (zI −A)−1rm(z) + xm(z)Trm(z)

= rm(z)T (zI −A)−1rm(z),

where we exploited the fact that xm(z) ∈ Qm(A, b) ⊥ rm(z).
By using this property in conjunction with (5.23), we can write the error for the quadratic

form bT f(A)b as

ψ − ψm =
1

2πi

∫
Γ
f(z)rm(z)T (zI −A)−1rm(z)dz

=
1

2πi
∥b∥22

∫
Γ
f(z)φm(z)2vT

m+1(zI −A)−1vm+1dz.

(5.24)

We can now follow the same steps used in [57, Section 6.2.2] to bound the integral in (5.24).
Assume that Am has the spectral decomposition Am = UmDmU

T
m, with Um orthogonal

and Dm = diag(θ1, . . . , θm), and define the vectors

[α1, . . . , αm] = hT
m+1K

−1
m Um and [β1, . . . , βm]T = UT

me1,
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so that we have

φm(z) = hT
m+1K

−1
m Um(zI −Dm)−1UT

me1 =
m∑
j=1

αjβj
1

z − θj
,

and

φm(z)2 =

m∑
j=1

α2
jβ

2
j

1

(z − θj)2
+ 2

m∑
j=1

αjβjγj
1

z − θj
,

where we defined γj =
∑
ℓ : ℓ̸=j

αℓβℓ
1

θj − θℓ
. By plugging this expression into (5.24) we get

1

∥b∥22
(ψ − ψm) =

1

2πi

∫
Γ
f(z)φm(z)2vT

m+1(zI −A)−1vm+1dz

=

m∑
j=1

α2
jβ

2
j

1

2πi

∫
Γ

f(z)

(z − θj)2
vT
m+1(zI −A)−1vm+1dz

+ 2

m∑
j=1

αjβjγj
1

2πi

∫
Γ

f(z)

z − θj
vT
m+1(zI −A)−1vm+1dz

=
m∑
j=1

α2
jβ

2
j v

T
m+1

(
(f(A)− f(θj)I)(A− θjI)

−2 − f ′(θj)(A− θjI)
−1
)
vm+1

+ 2
m∑
j=1

αjβjγjv
T
m+1(f(A)− f(θj)I)(A− θjI)

−1vm+1,

where for the last equality we used the residue theorem [66, Theorem 4.7a].
Let us define

gm(z) =
m∑
j=1


α2
jβ

2
j

(
f(z)− f(θj)

(z − θj)2
− f ′(θj)

z − θj

)
+ 2αjβjγj

f(z)− f(θj)

z − θj
if z ̸= θj ,

1

2
α2
jβ

2
j f

′′(θj) + 2αjβjγjf
′(θj) if z = θj ,

(5.25)
where the expression for z = θj is obtained by taking the limit for z → θj in the definition
for z ̸= θj . The above computations immediately lead to the following a posteriori bound for
the quadratic form error.

Theorem 5.9. Let A be a symmetric matrix with spectrum σ(A) ⊂ [λmin, λmax]. Using the
same notation as above, we have

∥b∥22 min
z∈[λmin,λmax]

|gm(z)| ≤ |ψ − ψm| ≤ ∥b∥22 max
z∈[λmin,λmax]

|gm(z)| . (5.26)

Remark 5.9. We are mainly interested in the upper bound in (5.26) to have a reliable stopping
criterion for the rational Krylov method, although the lower bound can also be of interest. We
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also mention that other bounds and error estimates can be obtained, such as those described
in [57, Section 6.6], but we found that the one derived in this section worked well enough for
our purposes. Under certain assumptions, it is also possible to obtain upper and lower bounds
for the quadratic form bT f(A)b using pairs of rational Gauss quadrature rules, such as Gauss
and Gauss-Radau quadrature rules. We refer to [2] for more details.
Example 5.10. In this example we test the accuracy of the lower and upper bounds given
in (5.26) for polynomial and rational Krylov methods. We consider a 2000 × 2000 matrix A
with eigenvalues given by the Chebyshev points for the intervalΣ = [10−3, 103], and compute
bT f(A)b with a random vector b and f(x) = x log(x). The upper and lower bounds are
computed numerically by evaluating gm on a discretization of the interval [λmin, λmax]. In
addition to the lower and upper bounds, we also consider a heuristic estimate of the error
given by the geometric mean of the upper and lower bound in (5.26), i.e.

estm = ∥b∥22
√

min
z∈Σ

|gm(z)|max
z∈Σ

|gm(z)|. (5.27)

The results are shown in Figure 5.3. On the left plot we show the convergence for the poly-
nomial Krylov method and for a rational Krylov method with poles from an EDS for Cauchy-
Stieltjes functions, and on the right plot a mixed polynomial-rational method that uses 10
poles at ∞ (which correspond to polynomial Krylov steps) followed by 10 EDS poles (see Re-
mark 5.6). The upper and lower bounds match the shape of the convergence curve quite well,
although they are less accurate when polynomial iterations are used. Rather surprisingly, the
geometric mean of the bounds gives a very accurate estimate for the error, even in the case
when the bounds themselves are less accurate.
Remark 5.11. We do not have a rigorous explanation for the accuracy of the estimate based
on the geometric mean of the bounds in (5.26), but from further experiments it seems to be
very accurate also for other functions. Unfortunately, if the spectral interval Σ is known only
approximately, the bounds become less tight and the geometric mean estimate usually ends
up underestimating the actual error by one or two orders of magnitude.

Computation of the Bound

Recall that the a posteriori bounds in (5.26) hold after the m-th iteration only if ξm = ∞. In
a practical scenario, i.e. when using the bounds as a stopping criterion for a rational Krylov
method, it is desirable to evaluate the bounds after each iteration, without being forced to set
the corresponding pole to ∞. As anticipated in Remark 5.8, we provide here two approaches
to evaluate the bounds in (5.26) even when ξm ̸= ∞.

One way to avoid setting poles to ∞, proposed in [57, Section 6.1], is to use an auxiliary
basis vector v∞, which is initialized as v

(1)
∞ = Av1 at the beginning of the rational Arnoldi

algorithm, and maintained orthonormal to the basis vectors {v1, . . . ,vj} at each iteration j,
at the cost of only one additional orthogonalization per iteration. The basis [Vj v

(j)
∞ ] is an

orthonormal basis of the rational Krylov subspaceQj+1(A, b)with poles {ξ1, . . . , ξj−1,∞},
and it is associated to the auxiliary Arnoldi decomposition

AVjK̃j = [Vj v
(j)
∞ ]H̃j ,
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Figure 5.3: Accuracy of error bounds and estimates for the relative error in the computation
of bT f(A)b with Krylov methods, where b is a random vector, f(x) = x log(x) and A is a
2000 × 2000 matrix with eigenvalues that are Chebyshev points in the interval [10−3, 103].
Left: polynomial Krylov and rational Krylov with EDS poles for Cauchy-Stieltjes function. Right:
10 poles at ∞ and 10 EDS poles for Cauchy-Stieltjes functions.

where K̃jej = e1 and the last column of H̃j contains the orthogonalization coefficients
for v(j)

∞ . This decomposition can be used to compute the bound (5.26) since the last row of
K̃j is zero by construction.

Remark 5.12. We point out that if ξj = ∞ for some j, then the approach described above will
not work from iteration j+1 onward, sinceAv1 ∈ Qj+1(A, b) and thereforev(j+1)

∞ = 0 after
orthogonalization. This is easily fixed by switching to a different auxiliary vector at iteration
j +1, such as v∞ = Avj+1, or by setting directly at the start v∞ = Aℓ+1v1, where ℓ is the
number of poles at ∞ used to construct the rational Krylov subspace.

In our experience, the technique described above can be sometimes subject to instability
due to a large condition number of the matrix K̃j . We therefore also propose another ap-
proach, which is inspired by the methods for moving the poles of a rational Krylov subspace
presented in [21, Section 4]. The idea is to add a pole at ∞ at the beginning of the pole se-
quence, and reorder the poles at each iteration in order to always have the last pole equal to
∞.

First of all, we recall how to swap poles in a rational Arnoldi decomposition. This proce-
dure is a special case of the algorithm described in [21], but we still describe it in some detail
for completeness. Recall that the poles of a rational Krylov subspace are the ratios of the en-
tries below the main diagonals of Hj and Kj [21, Definition 2.3], i.e. ξj = hj+1,j/kj+1,j .
In other words, the poles {ξ1, . . . , ξj} are the eigenvalues of the upper triangular pencil
(Ĥj , K̂j), where we denote by Ĥj the bottom j × j block ofHj , and similarly for K̂j . So we
can obtain a transformation that swaps two adjacent poles in the same way as orthogonal
transformations that reorder eigenvalues in a generalized Schur form [71]. Let Uj and Wj

be j × j orthogonal matrices such that the pencil UT
j (Ĥj , K̂j)Wj is still in upper triangular
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form and has the last two eigenvalues in reversed order; the matricesUj andWj only involve
2× 2 rotations, and they can be computed and applied cheaply as described in [71]. Defining
Ûj = blkdiag(1, Uj) ∈ R(j+1)×(j+1), we have the new rational Arnoldi decomposition

AṼj+1K̃j = Ṽj+1H̃j ,

where

Ṽj+1 = Vj+1Ûj , K̃j = ÛT
j KjWj and H̃j = ÛT

j HjWj .

This decomposition has the same poles as AVj+1Kj = Vj+1Hj , with the difference that
the last two poles ξj−1 and ξj are now swapped. In particular, if ξj−1 = ∞, the last pole of
the new decomposition is now ∞, and hence the last row of K̃j is equal to zero.

Given the pole sequence {ξ1, ξ2, . . . }, let us consider the rational Krylov subspace asso-
ciated to the modified pole sequence {∞, ξ1, ξ2, . . . }. Clearly, after the first iteration both
pole sequences identify the same subspace Q1(A, b), but the last (and first) pole of the
modified sequence is ∞, so the last row of K1 is zero and we can use the decomposition
AV1K1 = V2H1 to compute the bound (5.26). After the second iteration, if ξ1 ̸= ∞, we
can swap the poles ξ1 and ∞ with the procedure outlined above to obtain the decomposition
AV2K2 = V3H2 associated to the poles {ξ1,∞}, where again the last row ofK2 is equal to
zero (for simplicity we still use the notation Kj instead of K̃j , and similarly for Vj and Hj).
If ξ1 = ∞, there is no need to swap poles and we can proceed to the next iteration.

By repeating the same steps at each iteration, we can ensure that after j iterations we
have a decomposition AVjKj = Vj+1Hj , associated to the poles {ξ1, . . . , ξj−1,∞} in
this order, so that the last row of Kj is equal to zero and it can be used to compute the
bound (5.26).

Remark 5.13. Note that Vj is a basis of Qj(A, b), which is the same subspace that we would
have obtained if we had run the rational Arnoldi algorithm with poles {ξ1, . . . , ξj−1}; so the
method described in this section actually computes the approximation ψj and the bound
associated to the poles {ξ1, . . . , ξj−1}, and not to the modified sequence {∞, ξ1, . . . , ξj−2}.
The initial pole at∞ is only added to enable the computation of the bound and it is never used
in the actual approximation.

5.4 Implementation Aspects

In this section we outline the algorithm used to compute the entropy obtained by connect-
ing the different components presented in the previous sections, and we briefly comment
on some of the decisions that have to be taken in an implementation, especially concerning
stopping criteria. Given a symmetric positive semidefinite matrixA and a target relative accu-
racy ϵ, the algorithm should output an estimate trest of Tr(f(A)), where f(x) = −x log x,
such that

|Tr(f(A))− trest| ≤ ϵTr(f(A)),
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using either the deterministic probing approach of Section 4.2 or a stochastic trace estimator
from Section 4.1. Observe that the entropy of an n×n density matrix is always bounded from
above by log n, but it may be in principle very small, so we prefer to aim for a certain relative
accuracy rather than an absolute accuracy. Quadratic forms and matrix-vector products with
f(A) are computed using Krylov methods, specifically using a certain number of poles at ∞
followed by the EDS poles described in Section 5.3.2.
Remark 5.14. In the following, we are going to use ϵ̂ to denote an absolute error, to distinguish
it from the target relative accuracy ϵ. Note that we can easily transform absolute inequalities
for the error into relative inequalities if we know in advance an estimate or a lower bound for
Tr(f(A)). Recall that ifA is anM -matrix, T d(f(A)) is actually a lower bound for Tr(f(A))
(Proposition 5.3). In the general case, any rough approximation of the entropy can be used for
this purpose, since the important point is determining the order of magnitude of Tr(f(A)).
Remark 5.15. The error in the approximation of S(A) can be divided into the error in the
approximation of the trace using a probing method or a stochastic estimator, and the error
in the approximation of the quadratic forms with f(A) using a Krylov subspace method. For
simplicity, in the following we impose that the relative error associated to each of these two
components is smaller than ϵ/2.

5.4.1 Probing Method Implementation

We begin by observing that it is not possible to cheaply estimate the error of a probing method
a posteriori, since error estimates are usually based on approximations with different values
of the distance d, which in general lead to completely different colorings that would require
computing all quadratic forms from scratch.

For this reason, it is best to find a value of d that ensures a relative accuracy ϵ a priori
when using a distance-d coloring. This can be done using one of the bounds in Corollary 5.2,
but it can often lead to unnecessary additional work, since the bounds usually overestimate
the error by a couple of orders of magnitude; see Figure 5.2. Therefore we also provide a
heuristic criterion for choosing d that does not have the same theoretical guarantee as the
bounds, but appears to work quite well in practice. In view of Corollary 5.2, we can expect the
absolute error to behave as

|Tr(f(A))− T d(f(A))| ∼
C

dk
qd, (5.28)

for k = 2 and some parameters C > 0 and q ∈ (0, 1). However, we found that sometimes
the actual error behavior is better described with a different value of k, such as k = 3, so we
do not impose that k = 2. To estimate the values of the parameters, we compute T d(f(A))
for d = 1, 2, 3 and use the estimate

|Tr(f(A)− T d(f(A))| ≈ |T d+1(f(A))− T d(f(A))| , d = 1, 2.

Assuming that (5.28) holds exactly and fixing the value of k, we can determine C and q by
solving the equations

|T d+1(f(A))− T d(f(A))| =
C

dk
qd, d = 1, 2.
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We can check when the resulting estimate is below ϵ̂ to heuristically determine d, i.e., we
select d as

d⋆ = min
{
d :

C

dk
qd ≤ ϵ̂

}
,

in order to have the approximate absolute error inequality

|Tr(f(A))− T d⋆(f(A))| ≲ ϵ̂.

We found that the best results are obtained for k = 2 and k = 3, so in our implementation we
use the maximum of the two corresponding estimates. Variants of this estimate include using
other values of d to estimate the parameters instead of d = 1, 2, 3, and using four different
values in order to also estimate the parameter k. However, they usually give results that are
similar or sometimes worse than the estimate presented above, so they are often not worth
the additional effort required to compute them. In particular, using four values of d raises the
risk of misjudging the value of q, causing the estimate to be inaccurate for large values of
d. The error estimate (5.28) is compared to the actual error and the theoretical bound (5.11)
for two different graphs in Figure 5.4. The figure also includes a simple error estimate based
on consecutive differences, which requires the computation of T d+1(f(A)) to estimate the
error for T d(f(A)).
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Figure 5.4: Absolute error of the probing method with greedy coloring (Algorithm 5) compared
with the theoretical bound (5.11) using a = λ2, the heuristic error estimate (5.28) and the sim-
ple error estimate |Tr(f(A)− T d(f(A))| ≈ |T d+1(f(A))− T d(f(A))|. Left: Laplacian
of the largest connected component of the graph minnesota, with 2640 nodes. Right: Lapla-
cian of the largest connected component of the graph eris1176, with 1174 nodes.

Remark 5.16. The heuristic criterion for selecting d requires the computation of T d(f(A))
for d = 1, 2, 3, so it is more expensive to use than the theoretical bound (5.11). However, this
cost is usually small compared to the cost of computing T d(f(A)) for the selected value of
d, especially if the requested accuracy is small. Note also that the heuristic criterion always
computes T 3(f(A)), so it does more work than necessary when d ≤ 2 would be sufficient.
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Nevertheless, in such a situation the theoretical bound (5.11) may suggest to use an even
higher value of d (see Figure 5.4).

After choosing d such that

|Tr(f(A))− T d(f(A))| ≤ ϵ̂, (5.29)

using either the a priori bound (5.11) or the estimate (5.28), a distance-d coloring can be
computed with one of the coloring algorithms described in Section 4.2, depending on the
properties of the graph. The greedy coloring [94, Algorithm 4.2] is usually a good choice for
general graphs.

Let us now determine the accuracy required in the computation of the quadratic forms.
Assume that we have

T d(f(A)) =

nc∑
ℓ=1

vT
ℓ f(A)vℓ,

where {vℓ}nc
ℓ=1 are the probing vectors used in the distance-d coloring. Let ψ̂ℓ denote the ap-

proximation of vT
ℓ f(A)vℓ obtained with a Krylov method. Recall that ∥vℓ∥2 = |Vℓ|1/2, where

Vℓ denotes the set of the partition associated to the ℓ-th color. If we impose the conditions∣∣∣vT
ℓ f(A)vℓ − ψ̂ℓ

∣∣∣ ≤ ϵ̂ · |Vℓ|
n

ℓ = 1, . . . , nc, (5.30)

where we normalized the accuracy requested for each quadratic form depending on ∥vℓ∥2,
we obtain the desired absolute accuracy on the probing approximation∣∣∣ T d(f(A))−

nc∑
ℓ=1

ψ̂ℓ

∣∣∣ ≤ ϵ̂. (5.31)

If we are aiming for a relative accuracy ϵ, we should select ϵ̂ = 1
2 ϵTr(f(A)) in (5.29)

and (5.31). In practice,Tr(f(A))will be replaced by a rough approximation (see Remark 5.14).
The overall probing algorithm is summarized in Algorithm 6.

5.4.2 Adaptive Hutch++ Implementation

The probing approach requires that A is a sparse matrix and that the distance-d colorings
are easily computable. In order to cover more general cases, we propose to use the Hutch++
estimator (cf., Section 4.1.2), and in particular its adaptive implementation. We use the Mat-
lab code of [86, Algorithm 3] provided by the authors, modified to use Krylov methods for
the computations with f(A). This algorithm requires an absolute tolerance ϵ̂ and a failure
probability δ, and outputs an approximation Tradap(f(A)) such that

P
[ ∣∣Tr(f(A))− Tradap(f(A))

∣∣ ≥ ϵ̂
]
≤ δ.

To obtain an approximation within a relative accuracy ϵ, we can use ϵ̂ ≈ ϵTr(f(A)), using
a rough approximation of Tr(f(A)). Similarly to the probing method, in order to have a final
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Algorithm 6 Probing method for S(A)
Input: A ∈ Rn×n symmetric positive semidefinite, ϵ relative error tolerance
Output: trest ≈ S(A) such that |tr − S(A)| /S(A) ≲ ϵ

1: Select d such that |T d(f(A))− S(A)| /S(A) ≲ ϵ/2, using either the bound (5.11) or
the heuristic (5.28). The heuristic (5.28) requires the computation of T d(f(A)) for d =
1, 2, 3, which can be done by running steps 2 – 4.

2: Compute a distance-d coloring of G(A) with, e.g., Algorithm 5 and the associated prob-
ing vectors {v1, . . . ,vs}.

3: For ℓ = 1, . . . , nc, compute ψ̂ℓ ≈ vT
ℓ f(A)vℓ such that (5.30) holds, using a rational

Krylov method with either the upper bound (5.26) or the estimate (5.27) as stopping cri-
terion.

4: return trest =
nc∑
ℓ=1

ψ̂ℓ, satisfying
∣∣∣ nc∑
ℓ=1

ψ̂ℓ − S(A)
∣∣∣/S(A) ≲ ϵ.

relative error bounded by ϵ, in our implementation we use a tolerance ϵ̂ ≈ 1
2ϵTr(f(A)) for

adaptive Hutch++, and we set the accuracy for the computation of matrix-vector products
and quadratic forms in order to ensure that the total error due to the Krylov approximations
remains below 1

2ϵTr(f(A)). We omit the technical details to simplify the presentation.

5.4.3 Krylov Method Implementation

Quadratic forms with f(A) are approximated using a Krylov method with some poles at ∞
followed by the EDS poles of Section 5.3.2, using as a stopping criterion either the a posteriori
upper bound (5.26) or the estimate shown in Example 5.10.

The number of poles at∞ is chosen in an adaptive way, switching to finite poles when the
error reduction in the last few iterations of the polynomial Krylov method is “small”. Specif-
ically, we decide to switch to EDS poles after the k-th iteration if on average the last ℓ ≥ 1
iterations did not reduce the error bound or estimate err est by at least a factor c ∈ (0, 1),
i.e. if

err estk

err estk−ℓ−1
≥ cℓ.

In our implementation we use ℓ = 3 and c = 0.75, usually leading to at most 10 polynomial
Krylov iterations.

Since EDS poles are contained in (−∞, 0), each rational Krylov iteration involves the so-
lution of a symmetric positive definite linear system, which can be computed either with a
direct method using a sparse Cholesky factorization, or iteratively with the conjugate gradi-
ent method using a suitable preconditioner. Note that the same EDS poles can be used for
all quadratic forms, so the number of different matrices that appear in the linear systems is
usually small and independent of the total number of quadratic forms. Although this depends
on the accuracy requested for the entropy, the number of EDS poles used is almost always
bounded by 10, and often much smaller than that: see the numerical experiments in Sec-
tion 5.5 for some examples. This is a great advantage for direct methods, especially when
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the Cholesky factor remains sparse, since we can compute and store a Cholesky factoriza-
tion for each pole and then reuse it for all quadratic forms. If the fill-in in the Cholesky factor
is moderate, the cost of a rational iteration can become comparable to the cost of a poly-
nomial one, leading to large savings when computing many quadratic forms. Of course, for
large matrices with a general sparsity structure the computation of even a single Cholesky
factor may be unfeasible, so the only option is to use a preconditioned iterative method. In
such a situation, it is still possible to benefit from the small number of different matrices that
appear in linear systems by storing and reusing preconditioners, but the gain is less evident
compared to direct methods.

The matrix-vector products with f(A) in the Hutch++ algorithm are approximated with
the same Krylov subspace method, with the difference that we use the a posteriori upper
and lower bounds from [57, eq. (6.15)]. A geometric mean estimate similar to the one used in
Example 5.10 can also be used in this context. For the computation of the a posteriori bounds
we use the pole swapping technique with an auxiliary pole at ∞ described in Section 5.3.3.

5.5 Numerical Experiments

The experiments were done in Matlab R2021b on a laptop with operating system Ubuntu 20.04,
using a single core of an Intel i5-10300H CPU running at 2.5 GHz, with 32 GB of RAM. Since we
are using Matlab, the execution times may not reflect the performance of a high performance
implementation, but they are still a useful indicator when comparing different methods.

The target relative accuracy of the adaptive Hutch++ estimator will be 10−2 or 10−3, since
for higher precision the cost becomes prohibitive. Such accuracy is reasonable in the context
of trace estimation for difficult problems; see [28, 28, 86]. When using probing, we are able
to carry out the execution with a smaller input tolerance.

5.5.1 Test Matrices

We consider a number of symmetric test matrices from the SuiteSparse Matrix Collection [32].
All matrices are treated as binary matrices, i.e. all edge weights are set to one. For each ma-
trix, we extract the graph Laplacian associated to the largest connected component and we
normalize it so that it has unit trace. We report some information on the resulting matrices
in Table 5.1. For the four smallest matrices, the eigenvalues were computed via diagonaliza-
tion, while for the larger matrices the eigenvalues λ2 and λn were approximated using eigs.
The cost of solving a linear system with a direct method is highly dependent on the fill-in
in the Cholesky factorization; the column labelled fill-in in Table 5.1 contains the ratios
nnz(R)/nnz(ρ), where ρ is the test matrix andR is the Cholesky factor of any shifted matrix
ρ + αI , for α > 0 (nnz(M) denotes the number of nonzeros of a matrix M ). All matri-
ces have been ordered using the approximate minimum degree reordering option available in
Matlab before factorization.
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Table 5.1: Information on the matrices used in the experiments.

test matrix n nnz(ρ) fill-in λ2 λn entropy

yeast 2224 15442 3.6 4.54e-06 4.96e-03 7.055
minnesota 2640 9244 1.3 1.28e-07 1.04e-03 7.607
ca-HepTh 8638 58250 7.5 4.92e-07 1.33e-03 8.540
bcsstk29 13830 618678 2.9 7.22e-08 1.25e-04 9.440
cond-mat-2005 36458 379926 21.7 5.63e-08 8.13e-04 9.958
loc-Brightkite 56739 482629 32.6 7.10e-08 2.67e-03 9.896
ut2010 115406 687472 1.2 2.72e-10 3.44e-04 11.361
usroads 126146 450046 1.4 2.39e-11 2.54e-05 11.478
com-Amazon 334863 2186607 105.9 6.69e-10 2.97e-04 12.400
ny2010 350167 2059711 1.8 4.67e-12 3.63e-05 12.541
roadNet-PA 1087562 4170590 1.6 5.54e-13 3.37e-06 13.628

5.5.2 Probing Bound vs. Estimate

In this experiment, we fix a relative error tolerance ϵ = 10−3 and we compare the choice of d
given by the theoretical bound (5.11) with the one provided by the heuristic estimate (5.28).
We report in Table 5.2 the error, the execution time, the value of d and the number of colors
used in the two cases. When the theoretical bound is used, the selected value of d is signif-
icantly higher compared to the one chosen by the heuristic estimate, but in both cases the
overall error remains below the tolerance ϵ. Moreover, for certain graphs using the theoretical
bound leads to greedy colorings with a number of colors equal to the number of nodes in the
graph, completely negating the advantage of using a probing method. Observe that the errors
obtained with the larger value of d are not much smaller than the ones for the smaller value
of d, because in both cases the quadratic forms are computed with target relative accuracy
ϵ, so the probing error for the larger value of d is dominated by the error in the quadratic
forms. In the case of the heuristic estimate, the execution time includes the time required
to run the probing method for d = 1, 2, 3 in order to evaluate (5.28). The stopping criterion
for the Krylov subspace method uses the upper bound (5.26). The execution time can be fur-
ther reduced by using the estimate (5.27) for the Krylov subspace method, as the following
experiment shows. The diagonalization time for the matrices used in this experiment can be
found in the last column of Table 5.4. Note that for smaller matrices, diagonalization is often
the fastest method, but the advantage of approximating the entropy with a probing method is
already evident for matrices of size n ≈ 10000.

5.5.3 Krylov Bound vs. Estimate

We fix an error tolerance ϵ = 10−5 and compare the performance of the geometric mean
error estimate (5.27) with the theoretical upper bound (5.26) for the Krylov subspace method.
The value of d for the probing method is selected using the heuristic estimate (5.28). The
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Table 5.2: Comparison of the theoretical bound (5.11) against the heuristic estimate (5.28)
for choosing d, using relative tolerance ϵ = 10−3 in the probing method. Top row: heuristic
estimate. Bottom row: theoretical bound.

test matrix n error d colors time (s)

yeast 2224 3.062e-04 3 222 0.952
3.733e-05 25 2224 4.464

minnesota 2640 4.456e-04 5 24 0.196
3.173e-05 18 255 0.779

ca-HepTh 8638 2.974e-04 3 252 2.273
3.161e-05 27 8638 42.078

bcsstk29 13830 4.912e-05 3 176 2.292
8.497e-05 12 2095 17.849

entropy error, execution time, and total number of polynomial and rational Krylov iterations
are reported in Table 5.3. We can see that using the estimate instead of the theoretical bound
moderately reduces the computational effort, while still attaining the requested accuracy ϵ on
the entropy. In particular, observe that the number of rational Krylov iterations is significantly
higher when using the upper bound (5.26). In this experiment, all linear systems are solved
with direct methods and Cholesky factorizations are stored and reused.

Table 5.3: Comparison of the upper bound (5.26) against the geometric mean estimate (5.27)
for Krylov methods used in the probing method, using relative tolerance ϵ = 10−5 for the
probing method. Top row: geometric mean estimate. Bottom row: upper bound.

test matrix n error poly iter rat iter time (s)

yeast 2224 4.405e-06 16140 748 7.095
6.023e-06 16419 2237 8.231

minnesota 2640 5.728e-07 2983 289 1.535
2.490e-06 2987 598 1.734

ca-HepTh 8638 8.195e-07 39481 2442 40.240
2.395e-06 39747 6389 50.133

bcsstk29 13830 6.133e-06 4704 0 12.093
7.545e-06 6363 44 16.047

5.5.4 Adaptive Hutch++

Here we test the performance and the accuracy of the adaptive variant of Hutch++ [86, Algo-
rithm 3]. A relative accuracy ϵ is achieved by setting the absolute tolerance to ϵS(ρ), where
S(ρ) is computed via diagonalization and considered as exact. The computational effort of
Hutch++ is determined by the parameters Nr and NH described in Section 4.1. In particular,
the number of matrix-vector products is equal to Nr and the number of quadratic forms is
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equal to Nr + NH . We used ϵ = 10−2, 10−3 as target tolerances and δ = 10−2 as failure
probability. Matrix-vector products and quadratic forms are computed using the Krylov sub-
space method with the geometric mean estimate as a stopping criterion (5.27). In Table 5.4
we compare the results for the two tolerances, obtained as an average of 100 runs of the algo-
rithm, including both the average and worst relative error. In the majority of cases, the worst
error is below the input tolerance ϵ. We see that for ϵ = 10−2 the computation with Hutch++
is very fast for all test matrices; on the other hand, the cost becomes significantly higher for
ϵ = 10−3, showing that the stochastic estimator quickly becomes inefficient as the required
accuracy increases. Observe that for ϵ = 10−2 adaptive Hutch++ uses only 3 matvecs for
all tests problems, which is the minimum amount that can be used by the implementation
in [86]. This means that the internal criteria of the algorithm have determined that spending
more matvecs in the low rank approximation is not beneficial, and hence the convergence
of the method is roughly the same as for Hutchinson’s estimator. A similar behavior can be
observed in Table 5.7, and can be linked to the fact that for these test matrices ρ, the matrix
function −ρ log ρ does not exhibit eigenvalue decay and hence cannot be well-approximated
by low rank matrices. On the other hand, for problems where low rank approximation is more
effective, stochastic estimators that exploit it, such as Hutch++, can have much faster con-
vergence.

Table 5.4: Results for Hutch++ applied to some test matrices. For each matrix, the first and
second row show the results for ϵ = 10−2 and ϵ = 10−3, respectively. The failure probability
is δ = 10−2 in both cases. The last column contains the diagonalization times.

test matrix avg error worst error Nr Nr +NH time (s) eig (s)

yeast
2.55e-03 9.94e-03 3 282 0.421 0.5083.56e-04 1.16e-03 1228 2160 19.735

minnesota
3.46e-03 1.07e-02 3 154 0.111 0.8194.53e-04 1.26e-03 1854 2684 35.721

ca-HepTh
2.83e-03 9.92e-03 3 81 0.205 22.1703.55e-04 9.14e-04 635 3968 66.350

bcsstk29
1.84e-03 6.97e-03 3 38 0.171 86.6962.39e-04 8.24e-04 3 1883 13.276

5.5.5 Larger Matrices

In this section we test the probing method and the adaptive Hutch++ algorithm on larger
matrices, for which it would be extremely expensive to compute the exact entropy. In light of
the results shown in Tables 5.2 and 5.3, we select the value of d for the probing method using
the heuristic estimate (5.28) and we use the geometric mean estimate (5.27) for the Krylov
subspace method. The results are reported in Tables 5.5 and 5.6 for the probing method, and
in Table 5.7 for Hutch++. Figure 5.5 contains a more detailed breakdown of the execution
time for the probing method used on the matrices of Table 5.5. We separate the time in
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preprocessing, where we evaluate the heuristic (5.28) to select d, and the main run of the
algorithm with the chosen value of d. The time for the main run is further divided in coloring,
and polynomial and rational Krylov iterations. The time for the Cholesky factorizations refers
to the whole process, since the factors are computed and stored when a certain pole for a
rational Krylov iteration is encountered for the first time.

In Table 5.5, we consider matrices with a “large-world” sparsity structure, such as road
networks, and we use a relative tolerance of ϵ = 10−4. For these matrices, for which the
diameter and the average path length are relatively large, it is possible to quickly compute
distance-d colorings with a relatively small number of colors. Moreover, Cholesky factoriza-
tions can be computed cheaply and have a small fill-in, so it is possible to rapidly solve linear
systems using a direct method. On the other hand, in Table 5.6 we consider matrices with a
“small-world” sparsity structure, more typical of social networks and scientific collaboration
networks. These matrices require a much larger number of colors to construct distance-d
colorings, even for small values of d. The cost of probing methods is thus significantly higher
on this kind of problem. In Table 5.6, only polynomial Krylov iterations are used due to the
low relative tolerance ϵ = 10−2, so it is never necessary to solve linear systems. Recall that
these matrices also have a high fill-in in the Cholesky factorizations (see Table 5.1), so the
conjugate gradient method with a suitable preconditioner is likely to be much more efficient
than a direct method for solving a linear system.

Table 5.5: Results for the probing method applied to test matrices with large-world sparsity
structure, using relative tolerance ϵ = 10−4.

test matrix n d colors poly iter rat iter time (s)

ut2010 115406 4 504 7070 919 79.60
usroads 126146 8 77 626 0 6.30
ny2010 350167 5 329 3914 15 111.39
roadNet-PA 1087562 8 106 827 0 84.46

Table 5.6: Results for the probing method applied to test matrices with small-world sparsity
structure, using relative tolerance ϵ = 10−2.

test matrix n d colors poly iter time (s)

cond-mat-2005 36458 3 1221 3883 13.809
loc-Brightkite 56739 3 3946 18765 90.564
com-Amazon 334863 3 625 1285 47.458

In Table 5.7 we show the results for the adaptive Hutch++ algorithm, using relative toler-
ance ϵ = 10−2. The results are obtained as an average of 100 runs of the algorithm. We can
observe that the stochastic trace estimator works well for both large-world and small-world
graphs, in contrast to the probing method.
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Figure 5.5: Breakdown of the execution time of the probing method for the test matrices in
Table 5.5.

5.5.6 Algorithm Scaling

To investigate how the complexity of the algorithms scales with the matrix size, we compare
the scaling of the probing method and the stochastic trace estimator on two different test
problems with increasing dimension. The first one is the graph Laplacian of a 2D regular
square grid, and the second one is the graph Laplacian of a Barabasi-Albert random graph,
generated using the pref function of the CONTEST Matlab package [100]. For the probing
method on the 2D grid, we use the optimal distance-d coloring with

⌈
1
2(d+ 1)2

⌉
colors de-

scribed in [41]. For both test problems, we use a relative tolerance ϵ = 10−4 for the probing
method, and a relative tolerance ϵ = 10−2 and failure probability δ = 10−2 for adaptive
Hutch++, averaging over 100 runs. The results are summarized in Figure 5.6, for graphs with
a number of nodes from n = 210 to n = 220. As expected, the probing method is much
more efficient in the case of the 2D grid, since the number of colors used in the distance-d
colorings remains constant as n increases. On the other hand, for the Barabasi-Albert ran-
dom graph, which has a small-world structure, the number of colors used in a distance-d
coloring increases with the number of nodes, and hence the scaling for the probing method
is significantly worse. The adaptive Hutch++ algorithm also has a better performance for
the 2D grid, but the scaling in the problem size is good for both graph categories, since the
number of vectors used in the trace approximation does not increase with the matrix dimen-
sion. However, the stochastic approach is only viable with a loose tolerance ϵ for this kind
of problem since low rank approximation is not effective, as discussed in Section 5.5.4. The
initial decrease in the execution time for Hutch++ as n increases is caused by the fact that
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Table 5.7: Results for Hutch++ applied to large test matrices, with relative tolerance ϵ = 10−2

and failure probability δ = 10−2. The parameters Nr and NH are defined in Section 4.1.

test matrix n Nr Nr +NH time (s)

ny2010 350167 3 10 0.490
usroads 126146 3 14 0.190
ny2010 350167 3 10 0.487
roadNet-PA 1087562 3 8 1.126

cond-mat-2005 36458 3 34 0.448
loc-Brightkite 56739 3 42 4.576
com-Amazon 334863 3 11 1.171

the adaptive algorithm uses a larger number of vectors for the graphs with fewer nodes.
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Figure 5.6: Execution times for the probing method (left, ϵ = 10−4) and the adaptive Hutch++
algorithm (right, ϵ = 10−2) on the graph Laplacian of a 2D regular grid and a Barabasi-Albert
random graph, as a function of the number of nodes n.

5.5.7 Comparison with Stochastic Probing

Here we analyze the application of the stochastic probing technique for the computation of
the von Neumann entropy.

In order to compare the accuracy and convergence of the stochastic probing approxima-
tion with the deterministic one, we repeat the experiment in Section 4.4.2. As a test matrix,
we consider the density matrix ρ = L/Tr(L), whereL is the graph Laplacian of minnesota;
see Table 5.1. We compare the accuracy of the deterministic probing estimator T d(−ρ log ρ),
the stochastic probing estimator T 1

d(f(A)), for which one sample per color is used, and
T N

d (f(A)), for which N = {N1, . . . , Nnc}, and the Ni are chosen by using the criterion
described in Remark 4.6. In figure 5.7, we show the absolute errors for different values of d,
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Figure 5.7: Absolute errors and asymptotic behavior for increasing d for the three methods
in (4.43), applied to compute the entropy of the graph minnesota. For stochastic methods,
it is shown the average error over 20 runs, together with a confidence interval.

ranging from 1 to 50. The distance-d colorings are computed via Algorithm 5. For stochastic
methods, we consider the average absolute errors over 20 runs, together with a confidence
interval obtained by adding and subtracting the empirical standard deviation.

We can see that the scaling of the error with d is the same for both deterministic and
stochastic probing. However, due to the better scaling with the size, the error of the stochastic
probing approximation has higher accuracy, which is further improved when using more than
one probing vector per color, as discussed in Remark 4.6.

5.6 Conclusions and Further Developments

In this chapter, we have investigated two approaches for approximating the von Neumann en-
tropy of a large, sparse, symmetric positive semidefinite matrix. The first method is a state-
of-the-art randomized approach, while the second one is based on the idea of probing. Both
methods require the computation of many quadratic forms involving the matrix function f(A)
with f(x) = −x log x, an expensive task given the lack of smoothness of f(x) at x = 0.
We have examined the use of both polynomial and rational Krylov subspace methods, and
combinations of the two. Pole selection strategy and several implementation aspects, such
as heuristics and stopping criteria, have been investigated. Numerical experiments in which
the entropy is computed for a variety of networks have been used to test the various ap-
proximation methods. Not surprisingly, the performance is affected by the structure of the
underlying network, especially for the methods based on the probing idea. Our main conclu-
sion is that the probing approach is better suited than the randomized one for graphs with a
large-world structure, since they admit distance-d colorings with a relatively small number of
colors. Such performance is further improved by using stochastic probing, as expected from
the analysis in Chapter 4. Conversely, for complex networks with a small-world structure, the
number of colors required for distance-d colorings is larger, so the probing approach becomes
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more expensive. For this type of graphs, the randomized method is more competitive than
the one based on probing, since it is less affected by the structure of the graph; however, for
matrices in which low rank approximation cannot be exploited such as the graph Laplacians
that we consider, randomized trace estimators are best suited for computing approximations
with a relatively low accuracy, since their cost quickly grows as the requested accuracy is
increased. The computation of the von Neumann entropy of density matrices expressed as
matrix functions by using the same techniques can be subject of future research; some pos-
sible directions are outlined in Section 5.2.2, where we describe some situations in which the
density matrix is itself expressed as a function of another (sparse) matrix.
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Chapter 6

Conclusions

In this thesis we have investigated several mathematical and algorithmic topics arising in the
computation of matrix functions of interest in physics and network analysis.

In the first part of thesis we analyzed the decay properties of the entries of certain ma-
trix functions. We refined existing bounds on the entries of spectral projectors by expressing
the projectors in terms of the sign function and exploiting an integral representation for the
latter. We also provided bounds that take into account the eigenvalue distribution of the ma-
trix argument. By removing the effect of isolated eigenvalues of maximum modulus from the
spectral information, we were able to predict a superexponential decay in certain cases. The
same techniques are also applied to other related examples, such as the Fermi-Dirac function
and Cauchy-Stieltjes functions. While we are able to qualitatively describe the decay behavior
of the entries in the projector, particularly in cases in which the spectral gap splits the spec-
trum into two symmetric intervals, further research is required in order to find quantitatively
accurate bounds, especially for the case of nonsymmetric intervals.

The remainder of the thesis is devoted to the problem of trace estimation. First, we have
analyzed, theoretically and experimentally, the accuracy of the stochastic probing estima-
tor for approximating the trace of functions of sparse symmetric matrices. We have shown
that the error scales, on average, at most with the square root of the size, improving on the
linear scaling of the deterministic probing approach. We compared the performance with
some important trace estimators from the literature and pointed out when stochastic probing
can outperform the estimators based on low rank approximations. In particular, if the matrix
function exhibits a fast decay of the eigenvalues, then we can compute the trace with high
accuracy by using stochastic estimators based on low rank approximations, such as Hutch++
and XTrace, while, for slowly decaying eigenvalues, stochastic probing yields a better perfor-
mance. Further developments on this topic might include a new and faster way to get the
colorings.

Finally, we have considered the computation of the von Neumann entropy by using trace
estimators and Krylov methods. We analyzed the accuracy of the deterministic probing ap-
proximation by developing a new bound for the best uniform polynomial approximation of
f(x) = −x log x on an interval of nonngegative numbers. We obtained a posteriori error
bounds and a truncation strategy for the approximation of quadratic forms bT f(A)b by mix-
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ing polynomial and rational Krylov iterations. Our numerical experiments show the viability
of the computation of the von Neumann entropy by combining trace estimators with Krylov
methods. When using the adaptive Hutch++ algorithm, we rapidly achieve low accuracy with
few operations indipendently of the matrix argument, while the task becomes prohibitive for
a higher accuracy. On the other hand, if the sparsity pattern of the matrix argument is that of
a large-world network, we are able to attain small errors with a moderate computational cost.
This can be further enhanced by using stochastic probing, in view of the results of Chapter 4.
In principle, the same techniques may be applied to the case of density matrices expressed as
matrix functions, prominent examples of which are the Gibbs state and Fermi-Dirac function.
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