
A Model-Agnostic Heuristics for Selective Classification

Andrea Pugnana1, Salvatore Ruggieri2

1 Scuola Normale Superiore, Pisa, Italy
2 University of Pisa, Pisa, Italy

andrea.pugnana@sns.it, salvatore.ruggieri@unipi.it

Abstract

Selective classification (also known as classification with re-
ject option) conservatively extends a classifier with a selec-
tion function to determine whether or not a prediction should
be accepted (i.e., trusted, used, deployed). This is a highly rel-
evant issue in socially sensitive tasks, such as credit scoring.
State-of-the-art approaches rely on Deep Neural Networks
(DNNs) that train at the same time both the classifier and the
selection function. These approaches are model-specific and
computationally expensive. We propose a model-agnostic ap-
proach, as it can work with any base probabilistic binary clas-
sification algorithm, and it can be scalable to large tabular
datasets if the base classifier is so. The proposed algorithm,
called SCROSS, exploits a cross-fitting strategy and theoreti-
cal results for quantile estimation to build the selection func-
tion. Experiments on real-world data show that SCROSS im-
proves over existing methods.

Introduction
There is a pressing demand for a trustworthy AI (Wing
2021). For instance, the EU Regulatory framework proposal
on AI (European Parliament and the Council 2021) rules
that high-risk AI systems will be subject to strict obliga-
tions before deployment. One such obligation is to ensure
“a high level of robustness, security and accuracy”. High-
risk AI systems refer to socially sensitive domains, includ-
ing: healthcare, where predictions might be used to predict
treatments; justice, where predictions can assess the risk of
recidivism; hiring, where predictions can determine rank-
ings of candidates; credit scoring, where predictions are rou-
tinely used to estimate the probability of repaying a debt. In
all these cases, AI is typically framed as a probabilistic bi-
nary classifier (see e.g., (Dastile, Çelik, and Potsane 2020)
for credit scoring), and the predictions are used to score or
rank people. However, the predictive performance of classi-
fiers is typically not homogeneous over the data distribution.
Identifying sub-populations with low performance could be
helpful for debugging and monitoring purposes, especially
in high-risk scenarios. A direction toward improving robust-
ness and accuracy is to lift from the canonical framework of
binary classification to the selective classification one. Se-
lective classification (also known as classification with re-

Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

ject option) (Chow 1970; Pietraszek 2005) conservatively
extends a classifier with a selection function (reject option/s-
trategy) to determine whether or not a prediction should be
accepted. The selection function assesses the classifier pre-
diction’s confidence, robustness, and trustworthiness. If a
sufficiently high level is not reached, the selective classifier
abstains from producing a prediction – e.g. a risk score in
a credit evaluation application. Levels can also inform the
user about the degree of confidence in the classifier predic-
tion, e.g., by associating a rating label to the prediction (e.g.,
high confident, average confident, low confident). Selective
classification has been extensively studied from a theoreti-
cal side (El-Yaniv and Wiener 2010; Franc and Průša 2019).
State-of-the-art practical approaches and tools, however, are
model-specific, e.g., they are tailored to DNNs, as e.g., in the
case of SelectiveNet (Geifman and El-Yaniv 2019) and Self-
Adapting Training (SAT) (Huang, Zhang, and Zhang 2020),
and focused/experimented mainly on image datasets.

Our contribution consists of a model-agnostic heuristics
that lifts any base probabilistic binary classifier to a selec-
tive (probabilistic binary) classifier. The proposed algorithm,
called SCROSS, adopts a cross-fitting approach. Training
data is split into K folds. For each fold, we train a classifier
on the remaining K−1 folds and test it on the fold. The con-
fidence of predictions over all the folds is used to estimate
the bounds on prediction confidence for which the base clas-
sifier should abstain. Estimating the bounds relies on the-
oretical results on quantile estimation (Knight and Bassett
2003) that guarantee a second-order improvement over sam-
ple quantile estimation. We present extensive experimenta-
tion on eight real-world datasets, comparing SCROSS with
the standard PLUGIN baseline, which is model-agnostic but
requires a validation set, and with the state-of-the-art ap-
proaches SelectiveNet and SAT.

Related Work
Selective classification trades off the error rate with the re-
jection rate. Two main models are considered.

In the cost model (Chow 1970), the goal is to minimize
the expected loss defined in terms of misclassification and
rejection costs. The Bayes optimal classifier requires pos-
terior probabilities, which can be estimated on a validation
set by the plug-in rule (Herbei and Wegkamp 2006). Other
methods are based on estimates of the ROC curve (Tortorella

The Thirty-Seventh AAAI Conference on Artificial Intelligence (AAAI-23)

9461

2005) on a validation set. Discriminative methods learn the
selection function directly without the probability estima-
tions (Bartlett and Wegkamp 2008).

An alternative model, which does not require defining
costs, is the bounded-improvement model (Pietraszek 2005).
Here, the selection function is evaluated based on the prob-
ability mass of the accepted region (coverage) and the aver-
age loss over such a region (selective risk). Optimal strate-
gies maximize coverage for a maximum target risk or mini-
mize risk for a minimum target coverage (Geifman and El-
Yaniv 2017). An optimal strategy for noisy free data was
proposed by (El-Yaniv and Wiener 2010), while (Franc and
Průša 2019) deal with the case of known distributions. They
also establish the equivalence of cost-based and bounded-
improvement models.

Most approaches for selective classification are model-
specific in that they try and build the classifier and the se-
lection function concurrently. Examples include methods
for SVM (Fumera and Roli 2002), boosted decision trees
(Cortes, DeSalvo, and Mohri 2016), DNNs (Geifman and
El-Yaniv 2017, 2019; Liu et al. 2019; Huang, Zhang, and
Zhang 2020). A general taxonomy of existing methodolo-
gies can be found in (Hendrickx et al. 2021).

A closely related field is uncertainty estimation, e.g., as
considered in conformal prediction (Shafer and Vovk 2008).
In such a paradigm, model predictions are paired with uncer-
tainty sets/intervals with statistical guarantees (Angelopou-
los and Bates 2021). Another related line of research is al-
gorithmic triage (a.k.a. learning to defer to an expert), where
the learning algorithm accounts for the performances of hu-
man decision makers to whom rejected instances are passed
to (Okati, De, and Gomez-Rodriguez 2021).

In this paper, we adhere to the bounded-improvement
model, take a model-agnostic view of the problem, and spe-
cialize to the case of probabilistic binary classifiers.

Selective Classification
Consider random variables (X, Y) ∈ X×Y , where X ⊆ Rd

is a feature space and Y = {0, 1, . . . , nY} is a finite label
space. The joint distribution of (X, Y) ∼ D is unknown,
but we can observe one or more datasets of i.i.d. realizations
Sn = {(xi, yi)}ni=1. A classifier is a function h : X →
Y that maps features to classes defined from the hypothesis
space H. For a given loss function l : Y × Y → R and
a dataset of observations (the training set), the supervised
classification problem consists of finding a hypothesis h ∈
H that minimizes the risk function:

R(h) =

∫
X×Y

l(h(x), y)dD(x, y) = ED[l(h(X), Y)]

The empirical risk counterpart over a dataset of observations
Sn distinct from the training set (the test set) is used to esti-
mate R(h):

r̂(h|Sn) =
1

n

n∑
i=1

l(h(xi), yi)

The canonical setting is extended to model situations where
predictions of classifiers are not sufficiently reliable, and re-
jecting to predict is preferable. A selective classifier is a pair

(h, g), where h is a classifier and g : X → {0, 1} is a selec-
tion function, which determines when to accept/abstain from
using h as follows:

(h, g)(x) =

{
h(x) if g(x) = 1

abstain otherwise.
A soft selection approach (see (Geifman and El-Yaniv
2017)) consists of defining g in terms of a confidence func-
tion mh : X → [0, 1] (the subscript highlights that mh de-
pends on h) and a threshold θ of minimum confidence for
accepting:

g(x) = 1(mh(x) > θ) (1)
A good confidence function should rank instances based
on descending loss, i.e., if mh(xi) ≤ mh(xj) then
l(h(xi), yi) ≥ l(h(xj), yj). The coverage of a selective
classifier is ϕ(g) = ED[g(X)], i.e., the expected probabil-
ity mass of the accepted region. The selective risk is the risk
over the accepted region:

R(h, g) =
ED[l(h(X), Y)g(X)]

ϕ(g)
= ED[l(h(X), Y)|g(X)]

The inherent trade-off between risk and coverage is sum-
marized by the risk-coverage curve (El-Yaniv and Wiener
2010). Empirical coverage and empirical selective risk are
respectively defined as ϕ̂(g|Sn) =

∑n
i=1 g(xi)

n and:

r̂(h, g|Sn) =
1
n

∑n
i=1 l(h(xi), yi)g(xi)

ϕ̂(g|Sn)

The selective classification problem can be framed by fixing
an upper bound to the selective risk and then looking for a
selective classifier that maximizes coverage. (Geifman and
El-Yaniv 2017) show how to convert this framing into an al-
ternative one, where a lower bound c for coverage is fixed
(target coverage), and then the problem looks for a selec-
tive classifier that minimizes risk. We will consider such an
alternative formulation. For g as in (1), the selective classifi-
cation problem can be stated as:

min
θ∈[0,1]

R(h, g|S) s.t. ϕ(g) ≥ c (2)

State of the art approaches include SelectiveNet (Geif-
man and El-Yaniv 2019) and SAT (Self-Adaptive Training)
(Huang, Zhang, and Zhang 2020). They are specifically de-
signed for DNNs. SelectiveNet builds at the same time the
classifier h and the selection function g by optimizing a loss
function parametric in the target coverage c. Furthermore,
g is a soft selection function as in (1), with mh set to the
softmax function, and θ determined on a validation set (not
used for training) by estimating the 100(1− c) percentile of
the distribution of mh. SAT incorporates model predictions
into the training process by using a convex combination of
labels and predictions. For the selective classification task,
SAT closely resembles the Deep Gamblers approach (Liu
et al. 2019), which models the reject option as an additional
class label in an extension of the cross-entropy loss function.
g is a soft selection function, with mh equal to the predicted
probability of the additional class label. The threshold θ is
computed on a validation set. Differently from SelectiveNet,
the target coverage c is not part of the loss function, and then
the calculation of θ does not require re-training.

9462

The SCROSS Algorithm
We focus our analysis on probabilistic binary classifiers,
where Y = {0, 1} and h(x) = 1(s(x) > 1/2). Here, the
score s(x) ∈ [0, 1] is an estimate of the posterior probabil-
ity PD(Y = 1|X = x). We assume that the algorithm and
hyperparameters for fitting h are given. Apart from this as-
sumption, our approach for lifting h to a selective classifier
(h, g) will be completely agnostic to the specific algorithm
and hyperparameters. Specifically, we adopt a soft selection
function g(x) = 1(mh(x) > θ), with the canonical choice
of softmax as confidence function:

mh(x) = max {s(x), 1− s(x)}.

Our approach aims at determining a threshold θ for the se-
lective classification problem (2) that is a better estimate of
the 100(1− c) percentile of mh than the one adopted by the
state-of-the-art methods, namely the empirical quantile of a
sample. The estimate will be “better” in two respects.

First, we adopt a subsample quantile estimator with the-
oretical guarantees to improve the variance of a full-sample
quantile estimator. The theoretical backbone of our approach
is supported by the results by (Knight and Bassett 2003), re-
ported next for completeness.
Theorem 1 ((Knight and Bassett 2003), Theorem 3)
Given a random sample distributed according to F , satis-
fying some regularity conditions, and K non-overlapping
subsamples of it, let q̂(α) be the empirical α-quantile
estimator of F over the whole sample, and q̄(α) a weighted
average of the empirical quantile estimators of F over
the subsamples. For t ∈ [0, 1], let us define the linear
combination q̃(α) = tq̂(α) + (1 − t)q̄(α). The variance of
q̃(α) is minimized for t = 1/

√
2, K = 2 and equally sized

subsamples.
The sample quantile q̂(α) is known to be asymptotically
normal. A weighted average of subsample quantiles q̄(α) is
first-order equivalent to q̂(α). The above theorem states the
conditions for minimizing the variance of (the second-order
term of) any linear combination of the two estimators.

As a second enhancement, we prevent setting apart a val-
idation set from the training set, as done in state-of-the-art
methods, and then we will be able to fit the classifier h on
the whole available training set. Since the goal is to estimate
quantiles over the (unknown) population of confidence val-
ues of the classifier h, we approximate it by using a cross-
fitting strategy, similar to the double ML approach (Cher-
nozhukov et al. 2018).

Let us describe our approach. Given a training set S ,
we partition S into K non overlapping stratified folds
S1, . . . ,SK , and we define S−k = S \Sk for k = 1, . . . ,K .
For each k, we train a base probabilistic classifier hk over
S−k. We then compute the scores sk(x) for x ∈ Sk, and the
confidence values mhk

(x) = max{hk(x), 1 − hk(x)}. Let
us define mhk

(Sk) = {mhk
(x) | x ∈ Sk}, and m(S) =

∪K
k=1mhk

(Sk). Notice that m(S) is an approximation of the
(unknown) population of confidence values of the classifier
h, since each hk is built on K − 1 stratified folds of the en-
tire training set S which, in turn, is a set of i.i.d. realizations
from D. For a target coverage c, we set θ̂ as as the 100(1−c)

Algorithm 1: SCROSS.fit()
Input : S = {X,y} - training set, h - base classification algorithm,

c - target coverage K - number of folds
Output: (h, g) - selective classifier

1 S1, . . . ,SK ← StratifiedKFold((X,y), K) // partitioning

2 for k ∈ 1, . . . , K do // for each fold

3 S−k = S \ Sk // training data

4 hk ← h.fit(S−k) // train kth classifier

5 sk = hk.score(Sk) // score data

6 mk = max{sk, 1− sk} // compute confidence

7 m← ∪K
k=1mk // store all the scores

8 θ̂ ← perc(m, 100(1− c)) // calculate θ̂

9 m1,m2 ← KFold(m, 2) // partitioning

10 θ̄1 ← perc(m1, 100(1− c)) // calculate θ̄1,

11 θ̄2 ← perc(m2, 100(1− c)) // calculate θ̄2

12 θ̃ = 1√
2
θ̂ + (1− 1√

2
)(1

2 θ̄1 + 1
2 θ̄2) // final θ̄ estimate

13 h← h.fit(S) // classifier

14 g ← lambda x : 1(max{1− h.score(x), h.score(x)} ≥ θ̄)

// selection function

15 return (h, g)

percentile of the empirical distribution of m(S). According
to Theorem 1, to minimize the variance of the quantile es-
timator, we then randomly partition m(S) in two subsets of
equal size and we compute the empirical 100(1 − c) per-
centiles over each of them, denoting such percentiles as θ̄1
and θ̄2 respectively. The final estimator θ̃ is:

θ̃ =
1√
2
θ̂ + (1− 1√

2
)(
1

2
θ̄1 +

1

2
θ̄2) (3)

Algorithm 1 shows the details of the approach, which we
name SCROSS for Selective CROSS-Classification. Notice
that the final classifier h is built at line 13 on the full training
set S . This is not strictly required, e.g., in the case of an
already trained classifier.

Experiments
We experiment our proposal1 on eight datasets and compare
it with a bounded-improvement version of the plug-in rule
(Herbei and Wegkamp 2006) (PLUG-IN), the SelectiveNet
method (Geifman and El-Yaniv 2019) (SELNET), and the
Self Adaptive Training method (Huang, Zhang, and Zhang
2020) (SAT). PLUG-IN uses the softmax function as the
confidence function, as in our approach, but it computes the
θ parameter as the 100(1 − c) percentile on a validation
set, as in the case of SELNET and SAT. Unlike those two
approaches, PLUG-IN is a model-agnostic method. Thus,
PLUG-IN is a natural baseline to evaluate the contribution
of our cross-fitting approach.

Settings. For tabular data, we train both SELNET and SAT
using a ResNet structure (Gorishniy et al. 2021), while we
use LightGBM (Ke et al. 2017) as a base classifier for
both SCROSS and PLUGIN. We also evaluate how the per-
formances of SCROSS are affected by the base classifier

1Python source code and experimental notebooks are available
at https://github.com/andrepugni/SCross.

9463

choice. For the image data (the CatsVsDogs dataset), we
compare all the methods on the same VGG architecture pro-
vided by (Liu et al. 2019) as the base classifier. For SCROSS
and PLUGIN we train the network using cross-entropy loss;
for SAT we use the Self Adaptive Loss and all the pa-
rameters as in the selective implementation experiment of
(Huang, Zhang, and Zhang 2020); for SELNET we use as
loss function L = αL(h,g) + (1 − α)Lv , where L(h,g) =

r̂(h, g|Sm) + λ(max(0, c − ϕ̂(g)))2, Lv = Remp(v) with
v the auxiliary head of SelectiveNet, and with parameters α
and λ set to 0.5 and 32, as in (Geifman and El-Yaniv 2019).
For SELNET and SAT approach, we set 300 epochs in train-
ing, Stochastic Gradient Descent as an optimizer, a learning
rate of .1 decreased by a factor .5 every 25 epochs, as in
the original papers. All the parameters of base classifiers are
left as the default ones. Regarding SCROSS, we fix K = 5
unless otherwise specified. The validation sets for SELNET
and SAT consist of 10% of the training set and 2,000 in-
stances, respectively, as in their original implementations.
Experiments were run on a machine with 96 cores equipped
with Intel(R) Xeon(R) Gold 6342 CPU @ 2.80GHz and
two NVIDIA RTX A6000, OS Ubuntu 20.04.4, program-
ming language Python 3.8.12.

Evaluation metrics. The metrics used for performance
evaluation include the empirical coverage, the empirical ac-
curacy (1 minus the empirical selective risk), and the elapsed
training time. They are computed on a test set (25% of avail-
able data) separated from the training set (75%). The split
into training and test set is time-based when a timestamp
feature is available and stratified random otherwise. Perfor-
mances are shown in the format “mean ± stdev”, where the
mean and the standard deviation refer to 1,000 bootstrap
runs over the test set, as proposed in (Rajkomar et al. 2018).
We follow the approach in (Demsar 2006) to test whether
differences across multiple classifiers are statistically signif-
icant at .001 significance level.2

Datasets. We briefly summarize the main characteristics
of the experimental datasets (7 tabular datasets and 1 image
dataset) and the pre-processing steps performed. A Jupyter
notebook is provided for each dataset, including all the pre-
processing details.

Adult. We dropped from the raw census data (Dua and
Graff 2017) the instances with missing values, because some
base classifiers do not deal with them. The categorical fea-
tures were one-hot encoded for SCROSS and PLUG-IN,
while SELNET and SAT learn embeddings over them. The
final training set contains 30,162 instances and 10 features
(55 after one-hot encoding). The test set size is 15,060.

Lending. The Lending Club dataset3 regards loans in an
online platform. We considered instances whose loan status
is either Fully Paid or Charged Off and used them as class
labels. We removed redundant and non-informative features
and split instances as follows: the ones up to May 2017 are
included in the training set; the ones from June 2017 up to

2We rely on the Python package autorank (Herbold 2020) for
statistical analysis.

3https://www.kaggle.com/wordsforthewise/lending-club

2020 are included in the test set. Categorical features were
processed as for the Adult dataset. The final training set con-
tains 1,364,697 instances and 18 features (65 after one-hot
encoding). The test set size is 445,912.

CSDS1/2/3. The datasets CSDS1, CSDS2 and CSDS3
from (Barddal et al. 2020) regard defaults in repaying a loan:
within six months for CSDS1 (data span over 15 months),
within 2 months for CSDS2 (data span over 25 months), and
within three months for CSDS3 (data span over 16 months).
All features are anonymized. We removed those with miss-
ing values. We then used the time feature to split the raw data
into training and test set: for CSDS1, the threshold was June
2017; for CSDS2, November 2017; and for CSDS3, Novem-
ber 2014. The training set of CSDS1 consists of 230,409 in-
stances and 155 features (test set size is 76,939). For CSDS2,
the training set contains 37,100 instances and 35 features
(test set size is 12,533). For CSDS3, the training set contains
71,177 instances and 144 features (test set size 23,288).

GiveMe. The GiveMeSomeCredit dataset4 aims at pre-
dicting the financial distress of a borrower within two years.
As for CSDS datasets, we removed features with missing
values. The training and the test set were obtained by strati-
fied random sampling, and they contain 112,500 and 37,500
instances, respectively, and 12 features.

UCICredit. This dataset from (Dua and Graff 2017) con-
cerns whether or not a credit card holder will default in the
next six months (Yeh and Lien 2009). There are no miss-
ing values. Training and test sets were obtained by stratified
random sampling. The training set includes 22,500 instances
(7,500 for the test set) and 23 features.

CatsVsDogs. This dataset5 containing a collection of cats
and dogs images. The task here is to distinguish between the
two species. The training and test sets were split as described
in (Liu et al. 2019). There are no missing values. The train-
ing set contains 20,000 images, each one of 64x64 pixels.
The test set consists of 5,000 images.

Comparing approaches. Table 1 compares the empirical
coverage, the selective accuracy, and the elapsed training
time metrics (mean ± stdev) for SCROSS, PLUGIN, SEL-
NET, and SAT. For each dataset, we consider different tar-
get coverages c, ranging from .75 to .99. A value is shown
in bold if the classifier is statistically significantly better
than others in the same row (i.e., empirical coverage clos-
est to the target c, highest empirical selective accuracy, and
shortest elapsed training time, respectively). In case of ties
among classifiers, we report in bold all values of such clas-
sifiers. Before discussing the results of Table 1, a clarifica-
tion should be pointed out about the limitation of a fully fair
comparison. First, SCROSS and PLUGIN can be compared
using the same base classifiers because they are both model-
agnostic. Similarly, SELNET and SAT can be compared to
each other because they are end-to-end learning, namely
they fit the classifier and the selection function together. It
is not possible, instead, to use a same trained base classi-
fier for all of the four methods, as SELNET and SAT would

4https://www.kaggle.com/c/GiveMeSomeCredit
5https://www.kaggle.com/competitions/dogs-vs-cats

9464

Empirical Coverage Empirical Selective Accuracy Elapsed Training Time
SCR PLUG SEL

c SCROSS PLUGIN SELNET SAT SCROSS PLUGIN SELNET SAT OSS IN NET SAT

A
du

lt

.99 .993 ± .001 .992 ± .001 .991 ± .001 .990 ± .001 .871 ± .003 .872 ± .003 .847 ± .003 .845 ± .003 1.84 0.21 2,059 1,088

.95 .950 ± .002 .947 ± .002 .946 ± .002 .941 ± .002 .888 ± .003 .888 ± .003 .856 ± .003 .845 ± .003 1.84 0.21 2,065 1,088

.90 .904 ± .003 .900 ± .003 .899 ± .003 .893 ± .003 .902 ± .003 .903 ± .003 .875 ± .003 .845 ± .004 1.84 0.21 2,067 1,088

.85 .850 ± .003 .846 ± .003 .840 ± .004 .850 ± .003 .919 ± .003 .920 ± .003 .894 ± .003 .845 ± .004 1.84 0.21 2,065 1,088

.80 .802 ± .004 .794 ± .004 .786 ± .004 .828 ± .004 .934 ± .003 .936 ± .003 .902 ± .003 .846 ± .004 1.84 0.21 2,059 1,088

.75 .746 ± .004 .743 ± .004 .741 ± .004 .798 ± .004 .950 ± .003 .950 ± .003 .923 ± .003 .845 ± .004 1.84 0.21 2,072 1,088

L
en

di
ng

.99 .994 ± .001 .995 ± .001 .992 ± .001 1.00 ± .000 .899 ± .001 .899 ± .001 .873 ± .001 .876 ± .001 13.21 2.44 8,933 7,668

.95 .969 ± .001 .970 ± .001 .979 ± .001 1.00 ± .000 .910 ± .001 .909 ± .001 .880 ± .001 .876 ± .001 13.21 2.44 8,935 7,668

.90 .938 ± .001 .939 ± .001 .918 ± .001 1.00 ± .000 .924 ± .001 .923 ± .001 .891 ± .001 .876 ± .001 13.21 2.44 8,916 7,668

.85 .908 ± .001 .909 ± .001 .931 ± .001 1.00 ± .000 .938 ± .001 .937 ± .001 .900 ± .001 .876 ± .001 13.21 2.44 8,920 7,668

.80 .879 ± .001 .880 ± .001 .897 ± .001 1.00 ± .000 .951 ± .001 .951 ± .001 .918 ± .001 .876 ± .001 13.21 2.44 8,911 7,668

.75 .849 ± .001 .850 ± .001 .821 ± .001 1.00 ± .000 .963 ± .001 .963 ± .001 .940 ± .001 .876 ± .001 13.21 2.44 8,903 7,668

G
iv

eM
e

.99 .990 ± .001 .990 ± .001 .991 ± .001 .992 ± .001 .942 ± .002 .942 ± .002 .939 ± .002 .937 ± .002 1.64 0.27 2,420 1,364

.95 .950 ± .002 .949 ± .002 .948 ± .002 .988 ± .001 .956 ± .002 .956 ± .002 .953 ± .002 .939 ± .002 1.64 0.27 2,628 1,364

.90 .902 ± .002 .903 ± .002 .901 ± .002 .984 ± .001 .967 ± .001 .967 ± .001 .964 ± .001 .940 ± .002 1.64 0.27 2,283 1,364

.85 .852 ± .002 .856 ± .002 .853 ± .002 .961 ± .001 .973 ± .001 .973 ± .001 .969 ± .001 .945 ± .002 1.64 0.27 2,281 1,364

.80 .800 ± .003 .807 ± .003 .806 ± .003 .955 ± .002 .978 ± .001 .977 ± .001 .971 ± .001 .946 ± .002 1.64 0.27 2,278 1,364

.75 .748 ± .003 .756 ± .003 .750 ± .003 .950 ± .002 .981 ± .001 .980 ± .001 .975 ± .001 .946 ± .002 1.64 0.27 2,276 1,364

U
C

IC
re

di
t .99 .993 ± .001 .993 ± .002 .988 ± .002 1.00 ± .000 .814 ± .005 .814 ± .005 .813 ± .005 .813 ± .005 1.31 0.19 1,719 872

.95 .951 ± .003 .948 ± .003 .949 ± .003 1.00 ± .000 .827 ± .005 .826 ± .005 .818 ± .005 .813 ± .005 1.31 0.19 1,677 872

.90 .906 ± .004 .897 ± .004 .904 ± .004 .992 ± .002 .839 ± .005 .838 ± .005 .829 ± .005 .814 ± .005 1.31 0.19 1,684 872

.85 .848 ± .005 .851 ± .005 .846 ± .005 .992 ± .002 .855 ± .005 .849 ± .005 .848 ± .005 .814 ± .005 1.31 0.19 1,675 872

.80 .797 ± .005 .803 ± .005 .806 ± .005 .992 ± .002 .867 ± .005 .863 ± .005 .859 ± .005 .814 ± .005 1.31 0.19 1,691 872

.75 .750 ± .005 .751 ± .006 .770 ± .005 .992 ± .002 .875 ± .005 .872 ± .005 .867 ± .005 .814 ± .005 1.31 0.19 1,681 872

C
SD

S1

.99 .980 ± .001 .980 ± .001 .980 ± .001 .986 ± .001 .863 ± .002 .863 ± .002 .862 ± .002 .861 ± .002 6.13 1.06 4,933 2,888

.95 .917 ± .001 .918 ± .001 .924 ± .001 .934 ± .001 .875 ± .002 .875 ± .002 .873 ± .002 .872 ± .002 6.13 1.06 5,158 2,888

.90 .849 ± .002 .853 ± .002 .859 ± .002 .869 ± .002 .885 ± .002 .885 ± .002 .882 ± .002 .882 ± .002 6.13 1.06 5,146 2,888

.85 .790 ± .002 .792 ± .002 .795 ± .002 .805 ± .002 .892 ± .002 .892 ± .002 .890 ± .002 .889 ± .002 6.13 1.06 5,151 2,888

.80 .736 ± .002 .737 ± .002 .741 ± .002 .740 ± .002 .899 ± .002 .898 ± .002 .897 ± .002 .896 ± .002 6.13 1.06 5,155 2,888

.75 .682 ± .002 .681 ± .002 .680 ± .002 .690 ± .002 .904 ± .002 .904 ± .002 .903 ± .002 .902 ± .002 6.13 1.06 5,152 2,888

C
SD

S2

.99 .983 ± .002 .984 ± .002 .933 ± .003 1.00 ± .000 .982 ± .002 .982 ± .002 .984 ± .002 .982 ± .002 1.33 0.23 669 351

.95 .916 ± .003 .927 ± .003 .905 ± .003 .934 ± .003 .985 ± .002 .983 ± .002 .985 ± .002 .984 ± .002 1.33 0.23 669 351

.90 .834 ± .004 .851 ± .004 .814 ± .004 .875 ± .003 .985 ± .002 .984 ± .002 .986 ± .002 .984 ± .002 1.33 0.23 669 351

.85 .761 ± .004 .773 ± .004 .747 ± .004 .812 ± .004 .986 ± .002 .985 ± .002 .986 ± .002 .986 ± .002 1.33 0.23 669 351

.80 .687 ± .005 .715 ± .005 .682 ± .005 .761 ± .004 .987 ± .002 .986 ± .002 .987 ± .002 .986 ± .002 1.33 0.23 671 351

.75 .620 ± .005 .651 ± .005 .616 ± .005 .703 ± .005 .987 ± .002 .986 ± .002 .987 ± .002 .987 ± .002 1.33 0.23 658 351

C
SD

S3

.99 .991 ± .001 .992 ± .001 .992 ± .001 .995 ± .001 .816 ± .003 .816 ± .003 .809 ± .003 .810 ± .003 5.25 0.80 1,316 696

.95 .955 ± .002 .957 ± .002 .949 ± .002 .954 ± .002 .827 ± .003 .826 ± .003 .819 ± .003 .821 ± .003 5.25 0.80 1,318 696

.90 .911 ± .002 .909 ± .002 .906 ± .002 .904 ± .002 .841 ± .003 .841 ± .003 .835 ± .003 .836 ± .003 5.25 0.80 1,315 696

.85 .865 ± .003 .859 ± .003 .850 ± .003 .862 ± .003 .855 ± .003 .856 ± .003 .849 ± .003 .849 ± .003 5.25 0.80 1,306 696

.80 .818 ± .003 .808 ± .003 .808 ± .003 .824 ± .003 .869 ± .003 .871 ± .003 .862 ± .003 .859 ± .003 5.25 0.80 1,319 696

.75 .769 ± .003 .758 ± .003 .758 ± .003 .777 ± .003 .883 ± .003 .884 ± .003 .874 ± .003 .872 ± .003 5.25 0.80 1,316 696

C
at

sV
sD

og
s .99 .992 ± .002 .997 ± .001 .923 ± .004 .913 ± .004 .972 ± .003 .964 ± .003 .980 ± .003 .988 ± .002 18,638 3,240 3,535 3,767

.95 .960 ± .003 .979 ± .003 .855 ± .006 .867 ± .005 .982 ± .002 .963 ± .003 .988 ± .002 .990 ± .002 18,638 3,240 3,581 3,767

.90 .922 ± .004 .948 ± .004 .809 ± .006 .819 ± .006 .989 ± .002 .962 ± .003 .993 ± .002 .990 ± .002 18,638 3,240 3,581 3,767

.85 .889 ± .005 .912 ± .004 .795 ± .006 .777 ± .006 .993 ± .002 .962 ± .003 .992 ± .002 .990 ± .002 18,638 3,240 3,573 3,767

.80 .846 ± .005 .869 ± .005 .758 ± .007 .729 ± .007 .994 ± .002 .960 ± .003 .995 ± .002 .990 ± .002 18,638 3,240 3,587 3,767

.75 .794 ± .006 .822 ± .006 .720 ± .007 .682 ± .007 .994 ± .002 .959 ± .004 .997 ± .002 .990 ± .002 18,638 3,240 3,580 3,767

19/48 11/48 17/48 13/48 27/48 16/48 9/48 2/48 0/48 48/48 0/48 0/48

Table 1: Performance metrics for SCROSS and baselines (1,000 bootstrap runs over the test set, results as mean ± stdev).

re-train it differently. For image data, where the base classi-
fier is a VGG architecture for all four methods, we choose
to set a standard cross-entropy loss in training for SCROSS
and PLUGIN (see settings), which alleviates but do not solve
the problem raised. For tabular data, we choose to adopt
as base classifier a gradient boosting tree classifier, namely

LightGBM, which is known to outperform DNNs in general
(Grinsztajn, Oyallon, and Varoquaux 2022; Shwartz-Ziv and
Armon 2022). However, the selective accuracy of all four
methods for c = .99 is very close in Table 1. This means
that the performances of the LightGBM base classifier and
of the ResNet trained by SELNET and SAT are very close

9465

Empirical Coverage Empirical Selective Accuracy
c K = 2 K = 3 K = 5 K = 7 K = 10 K = 2 K = 3 K = 5 K = 7 K = 10

A
du

lt

.99 .992 ± .001 .991 ± .001 .993 ± .001 .992 ± .001 .992 ± .001 .872 ± .003 .872 ± .003 .871 ± .003 .872 ± .003 .872 ± .003

.95 .950 ± .002 .949 ± .002 .950 ± .002 .951 ± .002 .951 ± .002 .888 ± .003 .888 ± .003 .888 ± .003 .887 ± .003 .887 ± .003

.90 .906 ± .003 .904 ± .003 .904 ± .003 .904 ± .003 .904 ± .003 .901 ± .003 .902 ± .003 .902 ± .003 .902 ± .003 .902 ± .003

.85 .849 ± .003 .850 ± .003 .850 ± .003 .850 ± .003 .850 ± .003 .920 ± .003 .920 ± .003 .919 ± .003 .919 ± .003 .919 ± .003

.80 .798 ± .004 .801 ± .004 .802 ± .004 .802 ± .004 .801 ± .004 .935 ± .003 .934 ± .003 .934 ± .003 .934 ± .003 .934 ± .003

.75 .745 ± .004 .747 ± .004 .746 ± .004 .746 ± .004 .747 ± .004 .950 ± .003 .949 ± .003 .950 ± .003 .949 ± .003 .949 ± .003

L
en

di
ng

.99 .995 ± .001 .995 ± .001 .994 ± .001 .995 ± .001 .994 ± .001 .899 ± .001 .899 ± .001 .899 ± .001 .899 ± .001 .899 ± .001

.95 .970 ± .001 .969 ± .001 .969 ± .001 .970 ± .001 .970 ± .001 .910 ± .001 .910 ± .001 .910 ± .001 .910 ± .001 .910 ± .001

.90 .939 ± .001 .938 ± .001 .938 ± .001 .938 ± .001 .938 ± .001 .923 ± .001 .924 ± .001 .924 ± .001 .924 ± .001 .924 ± .001

.85 .909 ± .001 .908 ± .001 .908 ± .001 .908 ± .001 .908 ± .001 .937 ± .001 .937 ± .001 .938 ± .001 .937 ± .001 .938 ± .001

.80 .880 ± .001 .879 ± .001 .879 ± .001 .879 ± .001 .878 ± .001 .950 ± .001 .951 ± .001 .951 ± .001 .951 ± .001 .951 ± .001

.75 .850 ± .001 .849 ± .001 .849 ± .001 .849 ± .001 .849 ± .001 .962 ± .001 .963 ± .001 .963 ± .001 .963 ± .001 .963 ± .001

G
iv

eM
e

.99 .990 ± .001 .990 ± .001 .990 ± .001 .990 ± .001 .990 ± .001 .942 ± .002 .942 ± .002 .942 ± .002 .942 ± .002 .942 ± .002

.95 .948 ± .002 .949 ± .002 .950 ± .002 .950 ± .002 .950 ± .002 .957 ± .002 .957 ± .002 .956 ± .002 .956 ± .002 .956 ± .002

.90 .901 ± .002 .901 ± .002 .902 ± .002 .901 ± .002 .902 ± .002 .967 ± .001 .967 ± .001 .967 ± .001 .967 ± .001 .967 ± .001

.85 .853 ± .002 .852 ± .002 .852 ± .002 .852 ± .002 .853 ± .002 .973 ± .001 .973 ± .001 .973 ± .001 .973 ± .001 .973 ± .001

.80 .797 ± .003 .799 ± .003 .800 ± .003 .800 ± .003 .801 ± .003 .978 ± .001 .978 ± .001 .978 ± .001 .978 ± .001 .978 ± .001

.75 .744 ± .003 .746 ± .003 .748 ± .003 .747 ± .003 .749 ± .003 .981 ± .001 .981 ± .001 .981 ± .001 .981 ± .001 .981 ± .001

U
C

IC
re

di
t .99 .992 ± .002 .993 ± .001 .993 ± .001 .993 ± .001 .993 ± .001 .814 ± .005 .814 ± .005 .814 ± .005 .814 ± .005 .814 ± .005

.95 .950 ± .003 .951 ± .003 .951 ± .003 .953 ± .003 .953 ± .003 .827 ± .005 .827 ± .005 .827 ± .005 .826 ± .005 .826 ± .005

.90 .903 ± .004 .906 ± .004 .906 ± .004 .907 ± .004 .903 ± .004 .840 ± .005 .839 ± .005 .839 ± .005 .839 ± .005 .840 ± .005

.85 .849 ± .005 .851 ± .005 .848 ± .005 .853 ± .005 .849 ± .005 .855 ± .005 .854 ± .005 .855 ± .005 .854 ± .005 .855 ± .005

.80 .795 ± .005 .795 ± .005 .797 ± .005 .801 ± .005 .797 ± .005 .867 ± .005 .867 ± .005 .867 ± .005 .866 ± .005 .867 ± .005

.75 .745 ± .005 .745 ± .005 .750 ± .005 .754 ± .005 .751 ± .005 .875 ± .005 .876 ± .005 .875 ± .005 .875 ± .005 .875 ± .005

C
SD

S1

.99 .979 ± .001 .979 ± .001 .980 ± .001 .981 ± .001 .981 ± .001 .863 ± .002 .863 ± .002 .863 ± .002 .862 ± .002 .863 ± .002

.95 .917 ± .001 .918 ± .001 .917 ± .001 .917 ± .001 .917 ± .001 .875 ± .002 .875 ± .002 .875 ± .002 .875 ± .002 .875 ± .002

.90 .850 ± .002 .849 ± .002 .849 ± .002 .848 ± .002 .849 ± .002 .885 ± .002 .885 ± .002 .885 ± .002 .885 ± .002 .885 ± .002

.85 .792 ± .002 .791 ± .002 .790 ± .002 .790 ± .002 .790 ± .002 .892 ± .002 .892 ± .002 .892 ± .002 .892 ± .002 .892 ± .002

.80 .739 ± .002 .737 ± .002 .736 ± .002 .736 ± .002 .736 ± .002 .899 ± .002 .899 ± .002 .899 ± .002 .899 ± .002 .899 ± .002

.75 .684 ± .002 .682 ± .002 .682 ± .002 .682 ± .002 .682 ± .002 .904 ± .002 .904 ± .002 .904 ± .002 .904 ± .002 .904 ± .002

C
SD

S2

.99 .983 ± .002 .983 ± .002 .983 ± .002 .984 ± .002 .984 ± .002 .983 ± .002 .983 ± .002 .982 ± .002 .983 ± .002 .983 ± .002

.95 .902 ± .003 .915 ± .003 .916 ± .003 .919 ± .003 .918 ± .003 .985 ± .002 .985 ± .002 .985 ± .002 .984 ± .002 .985 ± .002

.90 .791 ± .004 .824 ± .004 .834 ± .004 .836 ± .004 .836 ± .004 .986 ± .002 .986 ± .002 .985 ± .002 .985 ± .002 .985 ± .002

.85 .686 ± .005 .736 ± .004 .761 ± .004 .765 ± .004 .764 ± .004 .987 ± .002 .986 ± .002 .986 ± .002 .986 ± .002 .986 ± .002

.80 .597 ± .005 .657 ± .005 .687 ± .005 .692 ± .005 .691 ± .005 .988 ± .002 .987 ± .002 .987 ± .002 .987 ± .002 .987 ± .002

.75 .521 ± .005 .586 ± .005 .620 ± .005 .623 ± .005 .624 ± .005 .987 ± .002 .988 ± .002 .987 ± .002 .988 ± .002 .988 ± .002

C
SD

S3

.99 .990 ± .001 .990 ± .001 .991 ± .001 .991 ± .001 .991 ± .001 .817 ± .003 .817 ± .003 .816 ± .003 .816 ± .003 .817 ± .003

.95 .953 ± .002 .953 ± .002 .955 ± .002 .955 ± .002 .955 ± .002 .828 ± .003 .828 ± .003 .827 ± .003 .827 ± .003 .827 ± .003

.90 .907 ± .002 .907 ± .002 .911 ± .002 .910 ± .002 .910 ± .002 .842 ± .003 .842 ± .003 .841 ± .003 .841 ± .003 .841 ± .003

.85 .861 ± .003 .862 ± .003 .865 ± .003 .865 ± .003 .863 ± .003 .856 ± .003 .856 ± .003 .855 ± .003 .855 ± .003 .856 ± .003

.80 .813 ± .003 .815 ± .003 .818 ± .003 .817 ± .003 .817 ± .003 .870 ± .003 .870 ± .003 .869 ± .003 .869 ± .003 .869 ± .003

.75 .766 ± .003 .768 ± .003 .769 ± .003 .769 ± .003 .768 ± .003 .884 ± .003 .883 ± .003 .883 ± .003 .883 ± .003 .883 ± .003

C
at

sV
sD

og
s .99 .997 ± .001 .992 ± .002 .992 ± .002 .991 ± .002 .990 ± .002 .971 ± .003 .971 ± .003 .972 ± .003 .972 ± .003 .972 ± .003

.95 .976 ± .003 .963 ± .003 .960 ± .003 .950 ± .004 .948 ± .004 .978 ± .003 .980 ± .003 .982 ± .002 .982 ± .002 .982 ± .002

.90 .956 ± .003 .926 ± .004 .922 ± .004 .901 ± .005 .889 ± .005 .983 ± .002 .987 ± .002 .989 ± .002 .991 ± .002 .992 ± .002

.85 .938 ± .004 .884 ± .005 .889 ± .005 .855 ± .005 .793 ± .006 .988 ± .002 .992 ± .002 .993 ± .002 .994 ± .002 .994 ± .002

.80 .923 ± .004 .833 ± .006 .846 ± .005 .774 ± .006 .718 ± .007 .990 ± .002 .994 ± .002 .994 ± .002 .994 ± .002 .995 ± .002

.75 .909 ± .005 .775 ± .006 .794 ± .006 .691 ± .007 .658 ± .007 .991 ± .002 .994 ± .002 .994 ± .002 .995 ± .002 .996 ± .002

15/48 12/48 12/48 15/48 16/48 32/48 19/48 19/48 10/48 23/48

Table 2: Performance metrics for SCROSS by varying K (1,000 bootstrap runs over the test set, results as mean ± stdev).

to each other when considering zero or minimal rejection
area. Other base classifiers, including the ResNet architec-
ture adopted in SELNET and SAT, are also experimented,
and results will be described later on.

Let us now turn on the result in Table 1. Regarding empir-
ical coverage, SCROSS is the closest to target coverage in 19
out of 48 cases, followed by SELNET (17 out of 48), SAT

(13 out of 48) and PLUGIN (11 out of 48). The largest vio-
lations occur for the CSDS1 and CSDS2 datasets, with SAT
performing the best in such two cases. A possible reason is
the high imbalance of the two datasets (12% and 2% of pos-
itive rate, respectively), which leads to poor extreme quan-
tile estimation. On the other hand, SAT performs poorly on
Lending, GiveMe and UCICredit, with considerable viola-

9466

Empirical Coverage Empirical Selective Accuracy
c Logistic ResNet RandomForest XGBoost Logistic ResNet RandomForest XGBoost

A
du

lt
.99 .989 ± .001 .991 ± .001 .989 ± .001 .992 ± .001 .850 ± .003 .847 ± .003 .841 ± .004 .872 ± .003
.95 .950 ± .002 .949 ± .002 .950 ± .002 .951 ± .002 .863 ± .003 .861 ± .003 .854 ± .004 .886 ± .003
.90 .901 ± .003 .895 ± .003 .899 ± .003 .903 ± .003 .879 ± .003 .877 ± .003 .871 ± .003 .901 ± .003
.85 .851 ± .003 .847 ± .003 .857 ± .003 .857 ± .003 .894 ± .003 .893 ± .003 .885 ± .003 .916 ± .003
.80 .800 ± .004 .800 ± .004 .808 ± .004 .801 ± .004 .910 ± .003 .906 ± .003 .899 ± .003 .933 ± .003
.75 .752 ± .004 .753 ± .004 .755 ± .004 .749 ± .004 .923 ± .003 .921 ± .003 .915 ± .003 .949 ± .003

L
en

di
ng

.99 .992 ± .001 .994 ± .001 .996 ± .001 .994 ± .001 .849 ± .001 .885 ± .001 .877 ± .001 .903 ± .001

.95 .958 ± .001 .969 ± .001 .970 ± .001 .970 ± .001 .862 ± .001 .894 ± .001 .887 ± .001 .913 ± .001

.90 .917 ± .001 .937 ± .001 .927 ± .001 .939 ± .001 .878 ± .001 .907 ± .001 .904 ± .001 .927 ± .001

.85 .878 ± .001 .906 ± .001 .893 ± .001 .909 ± .001 .894 ± .001 .919 ± .001 .918 ± .001 .941 ± .001

.80 .842 ± .001 .875 ± .001 .861 ± .001 .880 ± .001 .911 ± .001 .931 ± .001 .933 ± .001 .955 ± .001

.75 .809 ± .001 .845 ± .001 .824 ± .001 .853 ± .001 .927 ± .001 .944 ± .001 .949 ± .001 .966 ± .001

G
iv

eM
e

.99 .991 ± .001 .999 ± .001 .991 ± .001 .990 ± .001 .936 ± .002 .934 ± .002 .939 ± .002 .941 ± .002

.95 .949 ± .002 .752 ± .003 .952 ± .002 .949 ± .002 .943 ± .002 .949 ± .002 .953 ± .002 .955 ± .002

.90 .901 ± .002 .710 ± .003 .905 ± .002 .902 ± .002 .946 ± .002 .952 ± .002 .962 ± .001 .966 ± .001

.85 .849 ± .002 .653 ± .003 .858 ± .002 .849 ± .002 .949 ± .002 .956 ± .002 .969 ± .001 .973 ± .001

.80 .799 ± .003 .586 ± .003 .801 ± .003 .799 ± .003 .952 ± .002 .958 ± .002 .974 ± .001 .978 ± .001

.75 .750 ± .003 .525 ± .003 .767 ± .003 .749 ± .003 .955 ± .002 .959 ± .002 .976 ± .001 .981 ± .001

U
C

IC
re

di
t

.99 .992 ± .002 .994 ± .001 .995 ± .001 .989 ± .002 .787 ± .005 .817 ± .005 .811 ± .005 .808 ± .005

.95 .952 ± .003 .957 ± .003 .957 ± .003 .955 ± .003 .801 ± .005 .826 ± .005 .823 ± .005 .818 ± .005

.90 .898 ± .004 .915 ± .004 .906 ± .004 .903 ± .004 .823 ± .005 .837 ± .005 .838 ± .005 .836 ± .005

.85 .852 ± .005 .907 ± .004 .850 ± .005 .851 ± .005 .841 ± .005 .839 ± .005 .852 ± .005 .850 ± .005

.80 .798 ± .005 .795 ± .005 .800 ± .005 .797 ± .005 .852 ± .005 .861 ± .005 .859 ± .005 .861 ± .005

.75 .740 ± .005 .748 ± .005 .759 ± .006 .745 ± .006 .858 ± .005 .871 ± .005 .865 ± .005 .872 ± .005

C
SD

S1

.99 .986 ± .001 .984 ± .001 .985 ± .001 .980 ± .001 .861 ± .002 .861 ± .002 .854 ± .002 .862 ± .002

.95 .923 ± .001 .932 ± .001 .932 ± .001 .921 ± .001 .873 ± .002 .872 ± .002 .865 ± .002 .874 ± .002

.90 .855 ± .002 .878 ± .002 .871 ± .002 .851 ± .002 .882 ± .002 .880 ± .002 .873 ± .002 .884 ± .002

.85 .793 ± .002 .809 ± .002 .820 ± .002 .792 ± .002 .891 ± .002 .889 ± .002 .879 ± .002 .891 ± .002

.80 .736 ± .002 .749 ± .002 .765 ± .002 .735 ± .002 .896 ± .002 .896 ± .002 .885 ± .002 .897 ± .002

.75 .684 ± .002 .691 ± .002 .700 ± .002 .681 ± .002 .902 ± .002 .901 ± .002 .889 ± .002 .903 ± .002

C
SD

S2

.99 .978 ± .002 .968 ± .002 .980 ± .002 .984 ± .002 .983 ± .002 .983 ± .002 .983 ± .002 .982 ± .002

.95 .902 ± .003 .865 ± .003 .926 ± .003 .928 ± .003 .984 ± .002 .985 ± .002 .984 ± .002 .983 ± .002

.90 .819 ± .004 .760 ± .004 .853 ± .004 .860 ± .004 .985 ± .002 .986 ± .002 .985 ± .002 .984 ± .002

.85 .744 ± .004 .664 ± .005 .798 ± .004 .794 ± .004 .986 ± .002 .987 ± .002 .986 ± .002 .984 ± .002

.80 .672 ± .005 .584 ± .005 .724 ± .004 .729 ± .005 .986 ± .002 .988 ± .002 .986 ± .002 .984 ± .002

.75 .605 ± .005 .508 ± .005 .619 ± .005 .669 ± .005 .986 ± .002 .988 ± .002 .987 ± .002 .985 ± .002

C
SD

S3

.99 .990 ± .001 .990 ± .001 .992 ± .001 .991 ± .001 .811 ± .003 .808 ± .003 .810 ± .003 .812 ± .003

.95 .951 ± .002 .949 ± .002 .963 ± .002 .953 ± .002 .823 ± .003 .820 ± .003 .818 ± .003 .823 ± .003

.90 .901 ± .002 .896 ± .003 .918 ± .002 .903 ± .002 .838 ± .003 .835 ± .003 .831 ± .003 .838 ± .003

.85 .847 ± .003 .845 ± .003 .860 ± .003 .852 ± .003 .854 ± .003 .851 ± .003 .847 ± .003 .855 ± .003

.80 .795 ± .003 .795 ± .003 .816 ± .003 .805 ± .003 .869 ± .003 .865 ± .003 .859 ± .003 .868 ± .003

.75 .744 ± .003 .751 ± .003 .772 ± .003 .756 ± .003 .882 ± .003 .876 ± .003 .873 ± .003 .882 ± .003

25/42 8/42 12/42 17/42 5/42 7/42 2/42 30/42

Table 3: Performance metrics for SCROSS with different base classifiers over tabular datasets k = 5, and 1,000 bootstrap runs
over the test set, results as mean ± stdev.

tions from target coverages. Regarding selective accuracy,
SCROSS performs better in 27 out of 48 cases. PLUGIN
obtains performances close to SCROSS on all the tabular

datasets. SELNET and SAT obtain better performances on
the image dataset (in 5 out of 6 target coverages): this is
partly due to the fact that SELNET and SAT cover consider-

9467

ably fewer instances than the target coverage. Regarding the
elapsed training time, PLUGIN is, as one would expect, the
fastest method. SCROSS require K times the elapsed time
of PLUG-IN. Notice, however, that the K-fold approach of
SCROSS can be easily parallelized. Deep learning methods
require extensive training time for tabular data. A special
mention is needed for the image dataset, where the addi-
tional training of a sub-network for the selective function in
SELNET and SAT is moderate if compared to the training of
the sub-network for the classifier (as in PLUGIN). In such a
case, SCROSS is the slowest approach since it requires train-
ing K models. Finally, notice that, since SCROSS, PLUGIN,
and SAT can be trained only once for all the target cov-
erages, the reported training time is insensitive of c. SEL-
NET, instead, needs specific training for each target cov-
erage as the loss function directly takes it into account. In
summary, for tabular data, SCROSS outperforms its direct
model-agnostic competitor PLUGIN as per coverage and ac-
curacy, and with an elapsed training time that is, in abso-
lute terms, moderate. Concerning SELNET and SAT, there
is a clear improvement as per selective accuracy and elapsed
training time, while not improving coverage over imbal-
anced datasets. For image data, SCROSS shows better em-
pirical coverage, but worse selective accuracy and elapsed
training time.

Impact of K in SCROSS. We investigate how the perfor-
mances of SCROSS depend on the number K of folds in
Algorithm 1. Recall that so far we set K = 5. Table 2 shows
the empirical coverage and selective accuracy for different
values of K. We omit the elapsed training time as it mono-
tonically increases with K. Results show that the empiri-
cal coverage and selective accuracy are contrasting objec-
tives, as one would expect. K = 7 and K = 10 reach the
best coverages, partly mitigating the low empirical coverage
problem for the imbalanced datasets CSDS1 and CSDS2. In-
stead, for CatsVsDogs, smaller values of K achieve minimal
target coverage, while larger values do not. Empirical selec-
tive accuracy is almost insensitive to K for tabular datasets,
except for CSDS2 and CSDS3, for which lower K’s are
preferable. On the contrary, larger K’s perform better for
the image dataset. In summary, the default value K = 5 for
SCROSS trades off the contrasting metrics of empirical cov-
erage, selective accuracy, and elapsed training time.

Impact of base classifier in SCROSS. Let us now con-
sider the impact of different base classifiers in the SCROSS
approach. We experiment with Logistic Regression (Logis-
tic), ResNet (ResNet) trained using cross-entropy loss, Ran-
dom Forest (RandomForest), and XGBoost (XGBoost). Re-
sults are shown in Table 3. The empirical coverage trend
at the variation of the target coverage c appears uniform
over the base classifiers, except for a consistently large
violation for ResNet in the GiveMe and in the CSDS2
datasets compared to the other base classifiers. The sim-
ple Logistic model shows the best empirical coverage (25
out of 42 times). As expected, empirical selective accuracy
shows an opposite trend, with the more complex base classi-
fiers ResNet and XGBoost showing the best performances.
In summary, SCROSS performs consistently w.r.t. the base

classifier, extending its predictive accuracy to the case of the
reject option. Deviations from the target coverage are lower
for simpler models.

Conclusions
We proposed a simple-to-implement, effective, model-agno-
stic heuristics to lift a probabilistic binary classifier to a se-
lective classifier with a minimum target coverage. The ap-
proach is supported by a theoretical result on quantile es-
timation, which shows that using a linear combination of
quantile estimates over the full sample and estimates on sub-
samples provides a better second-order estimator. Our ap-
proach does not require a separate validation set, as the PLU-
GIN method. Experiments show that SCROSS (with Light-
GBM as a base classifier) outperforms state-of-the-art DNN-
specific methods, such as SELNET and SAT, on tabular data.

A few issues remain open for future research. First, we
will investigate non-additive loss functions, such as AUC
and Gini (see, e.g., (Shen, Yang, and Gao 2020)), which are
widely used in evaluating performance in imbalanced sce-
narios. Second, (Jones et al. 2021) point out that selective
classification may amplify unfair decisions, for which fair-
selective algorithms are required (Lee et al. 2021). A recent
work explicitly deals with unfairness in selective classifica-
tion by regularising the loss function (Schreuder and Chzhen
2021). We will consider how to lift such a regularization
approach to SCROSS. Third, our method assumes that the
higher the confidence, the lower the loss. If this assumption
fails, using a single bound on the softmax confidence func-
tion may not be appropriate. In such a case, we will investi-
gate the performance of a piecewise selection function. Fi-
nally, we intend to explore the intersection between selective
classification and eXplainable AI (XAI) (Minh et al. 2022;
Guidotti et al. 2019) in order to provide intelligible expla-
nations of the reasons for abstaining. This could be valuable
information, e.g., for informing the human decision-maker
taking over the decision.

Acknowledgements
This paper is part of the project FINDHR that has received
funding from the European Union’s Horizon Europe re-
search and innovation program under g.a. No 101070212.
Views and opinions expressed are however those of the au-
thors only and do not necessarily reflect those of the EU.
Neither the EU nor the granting authority can be held re-
sponsible for them.

References
Angelopoulos, A. N.; and Bates, S. 2021. A Gentle Intro-
duction to Conformal Prediction and Distribution-Free Un-
certainty Quantification. CoRR, abs/2107.07511.
Barddal, J. P.; Loezer, L.; Enembreck, F.; and Lanzuolo, R.
2020. Lessons learned from data stream classification ap-
plied to credit scoring. Expert Syst. Appl., 162: 113899.
Bartlett, P. L.; and Wegkamp, M. H. 2008. Classification
with a Reject Option using a Hinge Loss. J. Mach. Learn.
Res., 9: 1823–1840.

9468

Chernozhukov, V.; Chetverikov, D.; Demirer, M.; Duflo, E.;
Hansen, C.; Newey, W.; and Robins, J. 2018. Double/debi-
ased machine learning for treatment and structural parame-
ters. The Econometrics Journal, 21(1): C1–C68.
Chow, C. K. 1970. On optimum recognition error and reject
tradeoff. IEEE Trans. Inf. Theory, 16(1): 41–46.
Cortes, C.; DeSalvo, G.; and Mohri, M. 2016. Boosting with
Abstention. In NIPS, 1660–1668.
Dastile, X.; Çelik, T.; and Potsane, M. 2020. Statistical and
machine learning models in credit scoring: A systematic lit-
erature survey. Appl. Soft Comput., 91: 106263.
Demsar, J. 2006. Statistical Comparisons of Classifiers over
Multiple Data Sets. J. Mach. Learn. Res., 7: 1–30.
Dua, D.; and Graff, C. 2017. UCI Machine Learning Repos-
itory. Public Repository.
El-Yaniv, R.; and Wiener, Y. 2010. On the Foundations of
Noise-free Selective Classification. J. Mach. Learn. Res.,
11: 1605–1641.
European Parliament and the Council. 2021. Regulation of
the European Parliament and of the Council laying down
harmonised rules on Artificial Intelligence (Artificial Intel-
ligence Act) and amending certain Union legislative acts.
2021/0106(COD).
Franc, V.; and Průša, D. 2019. On discriminative learning of
prediction uncertainty. In ICML, volume 97 of Proceedings
of Machine Learning Research, 1963–1971. PMLR.
Fumera, G.; and Roli, F. 2002. Support Vector Machines
with Embedded Reject Option. In SVM, volume 2388 of
Lecture Notes in Computer Science, 68–82. Springer.
Geifman, Y.; and El-Yaniv, R. 2017. Selective Classification
for Deep Neural Networks. In NIPS, 4878–4887.
Geifman, Y.; and El-Yaniv, R. 2019. SelectiveNet: A Deep
Neural Network with an Integrated Reject Option. In ICML,
volume 97 of Proceedings of Machine Learning Research,
2151–2159. PMLR.
Gorishniy, Y.; Rubachev, I.; Khrulkov, V.; and Babenko, A.
2021. Revisiting Deep Learning Models for Tabular Data.
In NeurIPS, 18932–18943.
Grinsztajn, L.; Oyallon, E.; and Varoquaux, G. 2022. Why
do tree-based models still outperform deep learning on tab-
ular data? CoRR, abs/2207.08815.
Guidotti, R.; Monreale, A.; Ruggieri, S.; Turini, F.; Gian-
notti, F.; and Pedreschi, D. 2019. A Survey of Methods for
Explaining Black Box Models. ACM Comput. Surv., 51(5):
93:1–93:42.
Hendrickx, K.; Perini, L.; der Plas, D. V.; Meert, W.; and
Davis, J. 2021. Machine Learning with a Reject Option: A
survey. CoRR, abs/2107.11277.
Herbei, R.; and Wegkamp, M. H. 2006. Classification with
reject option. Can. J. Stat., 34(4): 709—-721.
Herbold, S. 2020. Autorank: A Python package for auto-
mated ranking of classifiers. J. of Open Source Software,
5(48): 2173.
Huang, L.; Zhang, C.; and Zhang, H. 2020. Self-Adaptive
Training: beyond Empirical Risk Minimization. In NeurIPS.

Jones, E.; Sagawa, S.; Koh, P. W.; Kumar, A.; and Liang,
P. 2021. Selective Classification Can Magnify Disparities
Across Groups. In ICLR. OpenReview.net.
Ke, G.; Meng, Q.; Finley, T.; Wang, T.; Chen, W.; Ma, W.;
Ye, Q.; and Liu, T. 2017. LightGBM: A Highly Efficient
Gradient Boosting Decision Tree. In NIPS, 3146–3154.
Knight, K.; and Bassett, G. W. 2003. Second order improve-
ments of sample quantiles using subsamples. Unpublished.
Lee, J. K.; Bu, Y.; Rajan, D.; Sattigeri, P.; Panda, R.; Das,
S.; and Wornell, G. W. 2021. Fair Selective Classification
Via Sufficiency. In ICML, volume 139 of Proceedings of
Machine Learning Research, 6076–6086. PMLR.
Liu, Z.; Wang, Z.; Liang, P. P.; Salakhutdinov, R.; Morency,
L.; and Ueda, M. 2019. Deep Gamblers: Learning to Abstain
with Portfolio Theory. In NeurIPS, 10622–10632.
Minh, D.; Wang, H. X.; Li, Y. F.; and Nguyen, T. N. 2022.
Explainable artificial intelligence: a comprehensive review.
Artif. Intell. Rev., 55(5): 3503–3568.
Okati, N.; De, A.; and Gomez-Rodriguez, M. 2021. Differ-
entiable Learning Under Triage. In NeurIPS, 9140–9151.
Pietraszek, T. 2005. Optimizing abstaining classifiers using
ROC analysis. In ICML, volume 119 of ACM International
Conference Proceeding Series, 665–672. ACM.
Rajkomar, A.; Oren, E.; Chen, K.; Dai, A. M.; Hajaj, N.;
Hardt, M.; Liu, P. J.; Liu, X.; Marcus, J.; Sun, M.; et al.
2018. Scalable and accurate deep learning with electronic
health records. NPJ Digital Medicine, 1(1): 1–10.
Schreuder, N.; and Chzhen, E. 2021. Classification with ab-
stention but without disparities. In UAI, volume 161 of Pro-
ceedings of Machine Learning Research, 1227–1236. AUAI
Press.
Shafer, G.; and Vovk, V. 2008. A Tutorial on Conformal
Prediction. J. Mach. Learn. Res., 9: 371–421.
Shen, S.; Yang, B.; and Gao, W. 2020. AUC Optimization
with a Reject Option. In AAAI, 5684–5691. AAAI Press.
Shwartz-Ziv, R.; and Armon, A. 2022. Tabular data: Deep
learning is not all you need. Inf. Fusion, 81: 84–90.
Tortorella, F. 2005. A ROC-based reject rule for dichotomiz-
ers. Pattern Recognit. Lett., 26(2): 167–180.
Wing, J. M. 2021. Trustworthy AI. Commun. ACM, 64(10):
64–71.
Yeh, I.; and Lien, C. 2009. The comparisons of data mining
techniques for the predictive accuracy of probability of de-
fault of credit card clients. Expert Syst. Appl., 36(2): 2473–
2480.

9469

