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ABSTRACT

Enlightening our understanding of the first galaxies responsible for driving reionization requires detecting the 21-cm signal
from neutral hydrogen. Interpreting the wealth of information embedded in this signal requires Bayesian inference. Parameter
inference from the 21-cm signal is primarily restricted to the spherically averaged power spectrum (1D PS) owing to its relatively
straightforward derivation of an analytic likelihood function enabling traditional Monte Carlo Markov Chain approaches.
However, in recent years, simulation-based inference (SBI) has become feasible which removes the necessity of having an
analytic likelihood, enabling more complex summary statistics of the 21-cm signal to be used for Bayesian inference. In this
work, we use SBI, specifically marginal neural ratio estimation to learn the likelihood-to-evidence ratio with SWYFT, to explore
parameter inference using the cylindrically averaged 2D PS. Since the 21-cm signal is anisotropic, the 2D PS should yield more
constraining information compared to the 1D PS which isotropically averages the signal. For this, we consider a mock 1000 h
observation of the 21-cm signal using the Square Kilometre Array and compare the performance of the 2D PS relative to the 1D
PS. Additionally, we explore two separate foreground mitigation strategies, perfect foreground removal and wedge avoidance.
We find the 2D PS outperforms the 1D PS by improving the marginalized uncertainties on individual astrophysical parameters
by up to ~ 3040 per cent irrespective of the foreground mitigation strategy. Primarily, these improvements stem from how the
2D PS distinguishes between the transverse, k | , and redshift-dependent, k|, information which enables greater sensitivity to the
complex reionization morphology.

Key words: galaxies: high-redshift —intergalactic medium —dark ages, reionization, first stars —diffuse radiation —early Uni-
verse —cosmology: theory.

1 INTRODUCTION

Roughly 400000 yr after the big bang recombination occurs,
whereby the photons and baryons of the primordial plasma decouple
and the baryons subsequently combine to form neutral hydrogen.
After this point the omnipresence of neutral hydrogen enshrouds the
Universe in a fog rendering it opaque to most forms of radiation.
This fog persists until the ignition of the first star formation episodes
within the primordial galaxies, referred to as the cosmic dawn,
which emit copious amounts of ultraviolet (UV) photons into the
intergalactic medium (IGM) and ionize their local neighbourhood.
Over time, as these galaxies grow and become more abundant
their cumulative UV output accelerates the eradication of this fog,
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rendering the IGM essentially completely ionized. This process is
referred to as the epoch of reionization (EoR).

Directly observing these primordial galaxies is near to impossible.
Their vast distance from us makes them extremely faint, and this is
prior to the extinction of their radiation by the neutral IGM. All
however is not lost. The primordial galaxies imprint their signal on
the neutral IGM, enabling us to indirectly infer their presence by
measuring the 21-cm hyperfine spin-flip transition of the neutral
hydrogen. This signal is observable by detecting the differential
intensity of radiation emitted by the neutral hydrogen relative to
a uniform background source, for example, the cosmic microwave
background (see e.g. Gnedin & Ostriker 1997; Madau, Meiksin &
Rees 1997; Shaver et al. 1999; Tozzi et al. 2000; Gnedin & Shaver
2004; Furlanetto, Oh & Briggs 2006; Morales & Wyithe 2010;
Pritchard & Loeb 2012). As this frequency (redshift) dependent sig-
nal originates from the IGM, detecting it yields a three-dimensional,
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time-evolving picture of the thermal and ionization state of the IGM
throughout reionization.

Accessing the wealth of information embedded in the 3D cosmic
21-cm signal requires large-scale radio interferometer experiments
to pick up the spatially varying signal. Specifically, we measure
the complex visibilities of the interference fringes from the arriving
signal which are naturally represented by a Fourier transform. This
signal can then be split into two components, k; which corresponds
to the line-of-sight (frequency) dependent aspect of the signal and
k, which describes the 2D spatial variation of the signal across the
sky. Typically, given the cosmic 21-cm signal is incredibly faint
relative to the bright foregrounds, in order to boost its signal to
noise we compress the available information by measuring the 1D
spherically averaged power spectrum (PS). This characterizes the
statistical properties of the 21-cm signal by describing the variance as
a function of spatial scale. It is this quantity that is sought by the first-
generation interferometer experiments such as the Low-Frequency
Array (van Haarlem et al. 2013), the Murchison Wide Field Array
(Tingay et al. 2013; Wayth et al. 2018), the Precision Array for
Probing the Epoch of Reionization (Parsons et al. 2010), the Owens
Valley Radio Observatory Long Wavelength Array (Eastwood et al.
2019), and the upgraded Giant Metrewave Radio Telescope (Gupta
etal. 2017).

Importantly, the 21-cm signal is non-Gaussian owing to the com-
plex 3D morphology of the ionized regions. Therefore, computing the
1D PS performs suboptimal compression as we disregard valuable
non-Gaussian information. The lower sensitivity of these first gener-
ation of experiments necessitates the trade-off in information loss in
order to boost the overall signal to noise with the 1D PS. However,
for the forthcoming Square Kilometre Array (SKA; Mellema et al.
2013; Koopmans et al. 2015) this should no longer be a concern
with the increased sensitivity theoretically enabling more complex
summary statistics of the 21-cm signal beyond the 1D PS. In fact,
the SKA has been specifically designed with tomographic imaging
in mind, opening up a wealth of possibilities for analysing the 21-cm
signal.

This has lead to the explosion of studies exploring alternative
probes of the 21-cm signal beyond the 1D PS. For example, with
the bispectrum (e.g. Yoshiura et al. 2015; Shimabukuro et al. 2016;
Majumdar et al. 2018, 2020; Watkinson et al. 2019; Hutter et al.
2021; Kamran et al. 2021), position-dependent PS (Giri et al. 2019a),
one-point statistics (Watkinson & Pritchard 2014; Shimabukuro et al.
2015; Kubota et al. 2016; Banet et al. 2021; Gorce, Hutter & Pritchard
2021), morphological and topographical coefficients extracted from
21-cm images (e.g. Yoshiura et al. 2017; Bag et al. 2019; Chen et al.
2019; Elbers & van de Weygaert 2019; Kapahtia, Chingangbam &
Appleby 2019; Gazagnes, Koopmans & Wilkinson 2021; Giri &
Mellema 2021; Kapahtia et al. 2021), the ionized bubble size
distribution (Kakiichi et al. 2017; Giri et al. 2018a, 2019b; Giri,
Mellema & Ghara 2018b; Bianco et al. 2021), and the compression
of 21-cm images using the wavelet scattering transform (e.g. Greig,
Ting & Kaurov 2022; Hothi et al. 2024).

Importantly, in order to extract the astrophysical properties of these
first galaxies we must perform Bayesian inference. Typically, this
demands generating 3D reionization simulations on-the-fly within
a Monte Carlo Markov Chain (MCMC) framework (e.g. 21CMMC
Greig & Mesinger 2015, 2017, 2018; Park et al. 2019) to compare
against an observation of the 21-cm signal. However, this approach
is extremely restrictive as it requires defining an analytic expression
to compute the likelihood of the 21-cm signal given the model
astrophysical parameter set. As a result, essentially none of the
aforementioned alternative statistics to the 1D PS have been explored
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rigorously within a Bayesian inference context. Instead, most resort
to the Fisher information matrix (Fisher 1935), which still imposes
an implicit Gaussian assumption, to provide simple forecasts (e.g.
Shimabukuro et al. 2017; Greig et al. 2022; Hothi et al. 2024) or
adopt several simplifying assumptions regarding the covariance and
likelihood form (Tiwari et al. 2022; Watkinson, Greig & Mesinger
2022). Alternatively, instead of performing direct inference one can
apply regression in an attempt to extract astrophysical information
from the 21-cm signal by bypassing the need for a summary statistic
entirely through the application of convolutional neural networks
(CNNs) trained directly on 2D or 3D images of the 21-cm signal
to extract astrophysical information (e.g. Gillet et al. 2019; Hassan
et al. 2019; La Plante & Ntampaka 2019; Hassan, Andrianomena &
Doughty 2020; Kwon, Hong & Park 2020; Mangena, Hassan &
Santos 2020; Prelogovic et al. 2022).

However, we can completely forego this restrictive requirement
of an analytic likelihood through the concept of likelihood-free
or simulation-based inference (SBI; see e.g. Cranmer, Brehmer &
Louppe 2020 for a recent review). Essentially, we apply machine
learning on a training set of simulated data to learn our likelihood
function (neural likelihood estimation) or the likelihood-to-evidence
ratio (neural ratio estimation; NRE) after which we can perform an
MCMC to obtain our posteriors or bypass the likelihood estimation
entirely to directly obtain our posterior distribution given our data
(neural posterior estimation). The power of such an approach is that
it enables us to explore any complex or non-Gaussian summary
statistic or feature extraction method applied to the 21-cm signal.
Our only requirement is the generation of the simulated training set.
Realizing this potential, in recent years SBI has been gaining traction
for tackling astrophysical inference from the cosmic 21-cm signal
(e.g. Zhao et al. 2022a; Zhao, Mao & Wandelt 2022b; Prelogovi¢ &
Mesinger 2023; Saxena et al. 2023; Greig et al. 2024).

In this work we choose to explore the often overlooked 2D cylin-
drically averaged (2D PS) for astrophysical parameter inference.! Its
previous omission stemmed from our inability to define a robust like-
lihood function along with the additional computational overheads
required for estimating the 21-cm signal covariance. Specifically,
we follow the approach of our companion work (Greig et al. 2024)
and perform our SBI using marginal neural ratio estimation (MNRE;
Miller et al. 2021) using the publicly available PYTHON package
SWYFT? (Miller et al. 2022) whose goal is to learn the marginal
likelihood-to-evidence ratios for each individual parameter. Rather
than spherically averaging over the k; and k; components of the
signal into a single k& and losing morphological information, the
2D PS keeps these components distinct, better separating out the 2D
structural information from the spatial fluctuations across the sky (k)
from the frequency varying component along the line of sight, k.
Further, the 2D PS more naturally follows the signal characteristics
obtained from radio interferometry allowing us to more cleanly deal
with foreground contamination (e.g. the ‘wedge’). Although it is
still a Gaussian statistic, and therefore still suboptimal, it should
lose less information than the 1D PS. In fact, in a complimentary
study by Prelogovi¢ & Mesinger (2024) exploring the information
content of a variety of 21-cm summaries using Fisher Matrices these
authors predict improvements in the variance on the astrophysical

"Mondal et al. (2022) performed an initial exploratory analysis of the
multifrequency angular power spectrum (MAPS), which has some analogies
to the 2D PS. For a basic three-parameter astrophysical model the MAPS was
found to outperform the 1D PS.

Zhttps://github.com/undark-lab/swyft
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parameters of ~ 15 percent. Further, the 2D PS is considerably
more straightforward to measure observationally and should require
less integration time to achieve sufficient sensitivity in comparison
to many of the aforementioned non-Gaussian approaches. Therefore,
it is an important and valuable summary statistic to explore.

The remainder of this paper is organized as follows. In Section 2 we
summarize our 21-cm simulations using 21CMFAST and in Section 3
we describe our SBI set-up with SWYFT including the generation of
our data base of 21-cm simulations and our mock observation. In
Section 4 we then perform our comparison of the 2D PS to the 1D
PS for different foreground mitigation strategies before concluding
with our closing remarks in Section 5. Unless stated otherwise, all
quantities are in co-moving units and we adopt the cosmological
parameters: (25, Qm, 2, 1, 03, Hy) = (0.69, 0.31, 0.048, 0.97,
0.81, 68 km s~! Mpc™!), consistent with recent results from the
Planck mission (Planck Collaboration VI 2020).

2 SIMULATING THE 21-CM SIGNAL

To simulate the 3D cosmic 21-cm signal emanating from the neutral
hydrogen during reionization we use the seminumerical simulation
code 21ICMFAST? (Mesinger & Furlanetto 2007; Mesinger, Furlan-
etto & Cen 2011). In particular, we use the latest public release,
v3 (Murray et al. 2020), and adopt the Park et al. (2019) flexible
galaxy parametrization to describe the UV and X-ray properties of the
galaxy population. In this section we outline the main ingredients of
21CMFAST, in particular focussing on the astrophysical parameters
within the model we seek to constrain using parameter inference. For
additional details and discussions we refer the reader to these earlier
publications.

2.1 Galaxy UV properties

First, it is assumed that the stellar mass, M., of a galaxy depends on
its host halo mass, M, (e.g. Kuhlen & Faucher-Giguere 2012; Dayal
etal. 2014; Behroozi & Silk 2015; Mitra, Choudhury & Ferrara 2015;
Mutch et al. 2016; Ocvirk et al. 2016; Sun & Furlanetto 2016; Yue,
Ferrara & Xu 2016; Hutter et al. 2021) via the following relation:

- S

M. (My) = fi | = | M, (L
Qi

with f, being the fraction of galactic gas in stars and 2, and 2,

being the baryonic and total matter content of the Universe. f, also

depends on its host halo mass,

My, )a* @)
100M, )

dependent on the two free parameters, o, and its normalization,
fe10, for a dark matter halo mass of 10'°Mg. This power-law
behaviour directly follows from semi-empirical fits to observations
(e.g. Harikane et al. 2016; Tacchella et al. 2018; Behroozi et al. 2019;
Stefanon et al. 2021) and semi-analytic model predictions (e.g Mutch
et al. 2016; Yung et al. 2019; Hutter et al. 2021).

The stellar mass is then converted into a star formation rate
(SFR) by dividing by a characteristic time-scale, z,, which is a free
parameter of the model and is defined to be a fraction, z,.€ [0.05, 1],
of the Hubble time, H~'(z):

M,
LH'(2)

fe = S0 <

M. (My, 2) = 3)

3https:/github.com/21cmfast/21cmFAST
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Similarly as above, the fraction of UV photons that escape their
host galaxy and enter into the IGM, fe, also depend on their host
halo mass,

f f% (] ) ’ ( )
0 4
esc esc OIOM

giving rise to an additional two free parameters, desc and fegc, 10-

Not all dark matter haloes can contribute to reionization. Internal
feedback mechanisms and/or inefficient gas cooling can suppress
star formation in low-mass haloes. This behaviour is parametrized
via an effective duty-cycle:

Fauy = @ 5
duty = €Xp | — Mh ) ( )
with (1 — fquy) defining the fraction of star-forming galaxies that
are suppressed below a characteristic mass scale My, (e.g. Giroux,
Sutherland & Shull 1994; Shapiro, Giroux & Babul 1994; Hui &
Gnedin 1997; Barkana & Loeb 2001; Springel & Hernquist 2003;
Mesinger & Dijkstra 2008; Okamoto, Gao & Theuns 2008; Sobac-
chi & Mesinger 2013a, b).

2.2 Galaxy X-ray properties

In addition to contributing the UV photons responsible for driving
reionization, the first galaxies also emit X-ray photons which escape
and heat the cold IGM gas. The origin of the X-ray photons is
thought to be stellar remnants left over from earlier star formation
episodes. To model the X-ray heating caused by these energetic
photons 21CMFAST computes a cell-by-cell angle-averaged specific
X-ray intensity, J(x, E, z) (inerg s~ keV™' cm™2 sr™!),

1 3 dr
S B,y = L2 / a7 Y e, ©)
47 Z dz’

by integrating the co-moving X-ray specific emissivity, ex(x, E., 7'),
back along the light-cone accounting for IGM attenuation, e~ *. The
specific emitted emissivity, E. = E(1 + z')/(1 + z), is then

, Lx < o d dn .
ex(x, Ee, 2') = SFR [(1 +<3n|)/0 Mhm.fdutyM* , (N
where 3, is the mean, non-linear overdensity in a shell centred on
the simulation cell (x, z) and the quantity in square brackets is the
SFR density along the light-cone with d%h corresponding to the halo
mass function (HMF).* The quantity Lx/SFR (erg s™' keV~'M!
yr) is the specific X-ray luminosity per unit star formation escaping
the host galaxies which depends on the spectral energy distribution
describing the source of X-rays, Lx o« E~“¥. Throughout, we adopt
ax = 1, consistent with local Universe observations of high-mass
X-ray binaries (e.g. Mineo, Gilfanov & Sunyaev 2012; Fragos et al.
2013; Pacucci et al. 2014).

Finally, we normalize Lx/SFR by its integrated soft-band (< 2
keV) luminosity per SFR (in erg s~ Mg Lyr),

2keV

Lx >kev/SFR = / dE, Lx/SFR, )

Eo
with E( denoting the minimum X-ray photon energy capable of
escaping the host galaxy into the IGM.

4Throughout this work we adopt the Sheth-Tormen HMF (Sheth, Mo &
Tormen 2001) as our fiducial HMF.
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2.3 Ionization and thermal state of the IGM

The thermal state of the IGM is computed via the IGM spin tem-
perature, Ts, which is determined by self-consistently computing the
heating and ionization rates owing to structure formation, Compton
scattering off CMB photons, heating following partial ionizations,
and X-ray heating and ionizations. To calculate Ts we determine its
weighted mean,

Tonp + Yo T, + X T

Tl =
s 14+ xq + xc

: ©

where Tx, Ty, and Tevmp are the gas, Lyman o (Ly o) colour, and CMB
temperatures. T depends on the local gas density and Ly « radiation
intensity, with the Ly & background sourced by the cumulative sum
of X-ray excitations of neutral hydrogen atoms and direct stellar
emission of Lyman band photons by the first galaxies. The quantities
Xy and x. are the coupling coefficients for the Wouthuysen—Field
mechanism (Wouthuysen 1952; Field 1958) and between the free
elections and CMB photons, respectively.

Calculating the 3D ionization of the IGM requires the application
of excursion-set theory (Furlanetto, Zaldarriaga & Hernquist 2004)
on the evolved density field. This compares the cumulative number of
ionizing photons, 7.y, to the total number of neutral hydrogen atoms
plus cumulative recombinations, i, (Sobacchi & Mesinger 2014)
within spheres of decreasing radii, R, and corresponding overdensity,
Sr. Evaluated within each individual simulation voxel, a voxel is
deemed to be ionized when

fion(X, 2| R, 8g) = (1 + firec)(1 — Xe), (10)

where the (1 — X,) factor includes the contribution of X-rays to
ionizations and

R dn(My, z|R, 8%) .
Mion = P} ' / th%fdulyM*mewb. (11)
0 My

Here, p, is the mean baryon density and N, , is the total number of
ionizing photons produced per stellar baryon.’

2.4 21-cm brightness temperature

The quantity we measure observationally is the brightness tem-
perature, 87;(v), the differential intensity of the neutral hydrogen
illuminated by the CMB (Furlanetto et al. 2006),

Ts — Tems(2)

STh(v) = 1—e ™) mK, 12
b(v) e (1—e™) m (12)
and

H
o (T84t (2 ) 13
Tyy o (1 +8u)(1 + 2) T \dvjdr + H (13)

where 7,, is the optical depth of the neutral hydrogen which
depends on the local gas overdensity, 8, = p/p — 1, the neutral
hydrogen fraction, xy;, the Hubble parameter, H(z), and the line-
of-sight gradient of the peculiar velocity. For simplicity the spatial
dependence of the quantities have been omitted and it is evaluated at
the redshift z = vy /v — 1.

5By default this is assumed to be Ny /5 = 5000 consistent with a Salpeter
initial mass function (Salpeter 1955).
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3 SBI SET-UP

3.1 Parameter inference with SWYFT

In parameter inference, the quantity of interest is the posterior,
p(@] x), which describes the probability distribution of obtaining
our model parameters, #, given an observation, x. This characterizes
the best set of model parameters for describing the given data. This
posterior is computed following Bayes’ theorem,

_ px|9)

ooy 7
where p(x| @) is the likelihood to obtain our observation given our
set of model parameters, p(@) characterizes our prior knowledge of
reasonable values for our model parameters, and p(x) is the evidence
of the data.

The basic idea of SBI is to replace the explicit likelihood evaluation
with a stochastic simulator of the signal. With this, we generate a
training set of data—parameter pairs, [(x1, 0,), ...(x v, 8 5)], which are
drawn from our prior distribution and connects our model parameters
to the observed data. We then train a neural network on these data
to estimate either the posterior, the likelihood, or the likelihood-
to-evidence ratio. The advantage of these approaches is that we no
longer require any assumptions on the form of the likelihood enabling
any complex summary statistic to be explored, provided we can
compute it in our forward-modelled simulations.

In this work, we perform SBI using SWYFT (Miller et al. 2022).
Specifically, it performs MNRE (e.g. Durkan, Murray & Papa-
makarios 2020; Hermans et al. 2021) to approximate the marginal
likelihood-to-evidence ratio for any individual parameter or 2D
parameter pair [denoted 6 to signify any parameter pair; i.e (6;, 6;)
rather than the likelihood-to-evidence ratio of the entire parameter
set]. Denoting r(x, ) to be this marginal likelihood-to-evidence
ratio:

p@B]x) (©), (14)

r(x.8) = p(x|9) _ p@]x) _ p(x,0) (15)

px)  p®  px)p®)’

which is the ratio of the probability density for a jointly drawn
sample—parameter pair, x, @ ~ p(x, #) and a marginally pair x, 6 ~
p(x)p(é). This ratio is estimated by training a binary classifica-
tion network, dy(x, 0~), where ¢ describes the network parameters,
which distinguishes between two hypotheses: whether the sample—
parameter pairs are jointly (C = 1) or marginally (C = 0) drawn.
The binary classifier is trained using a binary-cross entropy loss
function:

Lldy(x,0)] = —/dxdé{p(x,é)logd¢(x,(§)

+ p(x)p@)log [1 — dy(x,8)]}, (16)

which is minimized when dy(x, 6) approximates the probability
density of the jointly drawn sample—parameter pair (e.g. C = 1).
This returns

dy(x,8) = p(C = 1|x,0)
__ pxh
P, 8) + p(x)p®)
where the last equality connects the likelihood-to-evidence ratio,
r, to the binary classifier, dy, using the sigmoid function, o (y) =
[1+e] "
As this approach only learns the marginal likelihood-to-evidence

ratio for any parameter pair, 8, for an M-dimensional model we
are required to train M 1D and M(M — 1)/2 2D networks to fully

= o[logr(x, 0)], (17)
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describe the marginal posterior distribution given an observation.
This is because the simulated training set generated by the stochastic
simulator inherently contains the variance due to all sampled model
parameters. Therefore, the marginalization over the remaining (nui-
sance) model parameters is always implicitly performed and thus the
training of the binary classifier is limited to at most two dimensions.

3.2 Simulated data

Our only requirement for SBI is that our stochastic simulator
models the complexities of the cosmic 21-cm signal including the
observational characteristics of realistic data and that our data set
contains sufficient samples. Below, we summarize the main steps
adopted for pipeline based on our previous work (e.g. Greig et al.
2022, 2023, 2024).

We generate 3D realizations of the cosmic 21-cm signal using
21CMFAST, simulated within 250° Mpc® comoving volumes on a
1503 grid. The final evolved density fields are downsampled from
an initially higher resolution grid, 4503, after applying second-
order Lagrange perturbation theory (e.g Scoccimarro 1998). We
track the evolution of the 21-cm signal from z =25 down to
z=15.2 and stitch together the comoving simulation cubes via
linear interpolation to generate a 21-cm light-cone. Using the same
training set as constructed in Greig et al. (2024) we have 150000
independent realizations of the cosmic 21-cm signal for our forward-
modelled training set.5 Note, for this work, non-linear redshift-space
distortions (RSDs) were not included in the simulated 21-cm signal
(e.g. Mao et al. 2012; Jensen et al. 2013). Primarily, these RSDs
serve to elongate the 21-cm power along the line of sight amplifying
the anisotropy of the 21-cm signal. As a result, differences between
the 2D PS and 1D PS are likely to be underestimated in this work.

Radio interferometers are only sensitive to the spatial fluctuations
in the signal and thus the observed data are zero mean distributed.
To mimic this, we first split our 21-cm light-cones into equal
comoving distance (250 Mpc) chunks. This choice is adopted in
order to measure our 1D and 2D PS using a 3D cubic volume for
computational ease. For each of these chunks we then remove the
mean signal before adding in the instrumental effects as outlined
below. Following Greig et al. (2024), we split our simulated 3D
21-cm light-cone into 10 equal co-moving chunks spanning from
z=15.7 to z = 18.1, from which we measure either the 1D or 2D
PS. Although the SKA is designed to be sensitive down to 50 MHz
(z ~ 27.8), at these redshifts the thermal noise dominates over our
fiducial model therefore we limit the redshift dimension for our data
toz < 18.

3.2.1 Instrumental noise

To add interferometric noise along with the finite resolution of the
instrument to our simulated 21-cm data we use a modified version
of the publicly available PYTHON module 21CMSENSE’ (Pober et al.
2013, 2014). Provided any antenna configuration 21CMSENSE first
generates the corresponding uv-visibility tracks for each sampled
baseline before gridding for computational efficiency. Specifically

Note this choice was deliberately chosen to be conservative and in fact we
found we could recover comparable posteriors as our main results when using
training sets up to 25-50 per cent smaller. Overall, computing the training data
used exclusively for this work (i.e. 21-cm PS and 2D PS data using only the
Sheth-Tormen HMF) took roughly 150000 CPU hours.
"https://github.com/jpober/21cmSense
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for this work, we use the SKA configuration System Baseline Design
document® which includes 512 37.5m antennae stations distributed
within a 500m core radius. These stations are modelled assuming a
system temperature, Tgy, = 1.1T4y + 40 K and a corresponding sky

temperature of Ty, = 60 (m) 2P K (Thompson, Moran &
Swenson 2007). For our set-up, we assume a total observing time of
1000 h based on a single 6-h phase-tracked scan of the sky per night.

Taking the gridded uv- visibilities as input, 21CMSENSE then

computes the total thermal noise power, Pn(k);

Q/

Py (k) ~ XZYZT;S, (18)
where X?Y performs the cosmological conversions between observ-
ing bandwidth, frequency, and co-moving distance, Q' is a beam-
dependent factor derived by Parsons et al. (2014), and ¢ is the total
observing time.

As we are interested in 3D noise realizations rather than the 1D
total noise power we perform the following modifications:

(1) We first 3D Fourier transform the input (simulated) mean
removed 21-cm data cube.

(i) We then filter this cube using the gridded uv- visibilities for
the SKA computed by 21CMSENSE. Cells with finite uv-coverage are
multiplied by unity, all others are set to zero.

(iii) At each cell we then determine the amplitude of the thermal
noise, Py(ky, ky, k;), using equation (18) where k, and k, correspond
to the two transverse (on-sky) directions and k; is the line-of-sight
direction.

(iv) We then add random noise (zero mean with variance based
on the PS amplitude in the cell) to each cell to mimic the effect of
thermal noise.

(v) Finally, we then 3D inverse Fourier transform back to obtain
our noisy 21-cm data.

3.2.2 The foreground wedge

Unfortunately, individual uv visibilities from a radio interferometer
baseline are frequency-dependent. This means that the line-of-
sight (frequency-dependent) power can leak into the transverse
(frequency-independent) Fourier modes resulting in a well-defined
contaminated ‘wedge’ in cylindrical 2D Fourier space (Datta, Bow-
man & Carilli 2010; Morales et al. 2012; Parsons et al. 2012; Trott,
Wayth & Tingay 2012; Vedantham, Udaya Shankar & Subrahmanyan
2012; Thyagarajan et al. 2013, 2015a, b; Liu, Parsons & Trott 2014a,
b; Pober et al. 2016; Murray & Trott 2018). This gives rise to two
separate philosophies for dealing with this wedge contamination:
foreground removal and foreground avoidance.

In the first case, we assume that we can mitigate or ‘clean’
these contaminated modes (see e.g. Chapman & Jeli¢ 2019 for a
review, or using machine learning Gagnon-Hartman et al. 2021)
enabling us to recover and use the entire 21-cm signal. In the latter
case, we conservatively avoid this wedge contaminated region of
Fourier space and only use the ‘clean’ Fourier modes located above
this ‘wedge’. In this work, we shall consider both scenarios when
exploring the 2D PS for parameter inference. Note, in both of these
instances, we assume that the impact of foregrounds can be perfectly
dealt with, that is, after following the removal or avoidance of the
foregrounds we are left with a clean cosmological signal. However,

8http://astronomers.skatelescope.org/wp-content/uploads/2016/09/SKA-
TEL-SKO-0000422_02_SKA1_LowConfigurationCoordinates- 1.pdf
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Figure 1. The volume-averaged IGM neutral fraction (left panel) and the mean brightness temperature signal (right panel) for our fiducial astrophysical

parameter set used for constructing our mock observation.

this will not be the case for realistic observations which will contain
some residual artefacts from the various cleaning algorithms within
the data. Currently, there has been few efforts to investigate the
consequences of imperfect foreground removal. Nasirudin et al.
(2020) demonstrated that performing astrophysical inference using
the 21-cm PS in the presence of realistic foregrounds could result
in some parameters being strongly biased. More recently, Bianco
et al. (2024) explored the ability to correctly identify ionized regions
with synthetic 2D images of 21-cm data in the presence of realistic
foreground residuals. Using a U-Net, these authors achieved high
levels of precision for the ionized region classification when the
contrast of the data relative to the noise was fairly high. Nevertheless,
considerably more work is required to study the impact of imperfect
foreground removal.

While the foreground removal case utilizes the full simulated 21-
cm data, performing wedge avoidance requires an additional step to
those discussed in the previous section. The boundary defining this
foreground ‘wedge’ in 2D Fourier space is given by

k” =ka_ +b, (19)

where k| and k, are the line-of-sight and transverse Fourier modes,
b is a additive buffer which we assume to be Ak; =0.14 Mpc™!
which accounts for bleeding of noise extending beyond the horizon
limit, and m is the gradient of this boundary given by

_ DcH()E(Z)SiH(Q)
- c(1+72)

This boundary depends on the comoving distance, D¢, the Hubble
constant, Hy, cosmological factor E(z) = \/Qm(1 + z)3 + 4, and
sin(f) denotes the observed viewing angle for our observation, for
which we assume as 6 = 7 /2 (i.e. a zenith pointing observation).

In order to account for the foreground wedge, we must remove the
Fourier modes from below the wedge. Therefore, after 3D Fourier
transforming our input 3D 21-cm data cube, we first zero all modes
that fall below this foreground ‘wedge’ before adding the thermal
noise for all modes above the wedge.

(20)

3.3 Mock 21-cm observation

Exploring the 2D PS for parameter inference requires the construc-
tion of a mock observation of the 21-cm signal. For this, we assume
the same fiducial parameter set as in Greig et al. (2024). Namely,
we select parameters for our UV galaxies in line with the recovered

model of Qin et al. (2021) based on Ly« forest observations by
Bosman et al. (2018). Below we summarize the individual model
parameter values along with their associated flat prior ranges and
in Fig. 1 we provide the volume-averaged IGM neutral fraction and
mean brightness temperature as a function of redshift:

(i) logo(fer0) = —1.10; € [—3.0,0.0]

(i) @, = 0.5; € [—0.5, 1.0]

(iii) 10g,(fase.10) = —1.30; € [—3.0, 0.0]
(iv) @, = —0.35; € [—1.0, 0.5]

(v) 10g,o(Mym) = 8.55; € [8.0, 10.0]

(vi) t, = 0.5; € [0.05, 1.0]

(vii) Lx-21ev/SFR = 40.50; € [38.0, 42.0]
(vii) Eo = 0.5; € [0.1, 1.5]

In Fig. 2 we compare the 1D and 2D PS for the first four redshift
ranges extracted from our mock observation of the 21-cm light-cone.
Additionally, we demonstrate the differences in measured PS as a
result of the two distinct treatments of the astrophysical foregrounds.
For the 1D PS demonstrated in the top row, we distinguish between
perfect foreground wedge removal (black) and wedge-avoidance
(red). The black vertical dashed lines correspond to the region of the
1D PS between which we use for performing astrophysical parameter
inference, namely k = 0.1 and 1.0 Mpc™'. The impact of ignoring
the foreground contaminated wedge region is clearly evident here,
restricting the range of Fourier modes accessible for performing our
inference. Beyond the visible removal of modes, there will also be
less spherically averaged modes per k-bin for the wedge avoidance
case, which will also lead to an increase in the corresponding sample
variance uncertainty resulting in broadened inferred astrophysical
posteriors.

In the middle panel of Fig. 2 we provide the 2D PS assuming
perfect foreground removal, whereas the bottom panel corresponds
to the wedge-avoidance scenario. The vertical and horizontal dashed
lines correspond to the boundaries for the Fourier modes we shall
consider for our parameter inference from the 2D PS. These are
selected to roughly balance modes that are adequately sampled by
our simulation volume and also to correspond to the same scales as
used in our inference pipeline for the 1D PS. Namely, we consider
k; = 0.05 and 0.9 Mpc™! and k; = 0.08 and 0.9 Mpc~!. Note,
although with these boundaries it is possible to sample modes at

k> 1 Mpc™" (where k = ,/(k1 + k})) these modes are the most
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Figure 2. Comparison of the 1D PS and the 2D PS from four different redshift ranges obtained from our simulated 21-cm light-cone. Top row: the 1D PS

assuming perfect foreground removal (black curve) and after wedge avoidance (red curve). The vertical dashed lines at k = 0.1 and 1.0 Mpc™

! correspond to

the region within which we use for parameter inference. Middle row: the 2D PS assuming perfect foreground removal. The vertical dashed lines correspond to
k; = 0.05and 0.9 Mpc~! and the horizontal dashed lines correspond to ky =0.08 and 0.9 Mpc~!. We use all 2D PS information bounded within these regions
for our parameter inference. Bottom row: the 2D PS after performing wedge avoidance (observing only modes above the wedge denoted by the diagonal black

dashed line).

severely affected by instrumental thermal noise and thus will not
provide much additional constraining power.

From these two panels it is immediately clear the significant impact
that the foreground wedge has on our ability to measure the 21-cm
signal. In terms of the 2D PS, the foreground wedge contaminates
well over 60 percent of the Fourier modes contained within our
boundaries to be used for parameter inference. Further, this only gets
worse for increasing redshifts as the wedge boundary is redshift-
dependent. However, what matters is where the information is lost.
The vast majority of the information is lost for large k,, which
is less sensitive to the astrophysical parameters. In the case of the
1D PS, most of the constraining power comes from the ‘knee’ like
feature around k ~ 0.1 Mpc™' (see Greig & Mesinger 2015) which
corresponds to the typical sizes of the ionized regions. Since the 2D
PS still has reasonable sampling of these modes, that is for low & , we
should not see such a drastic reduction in constraining power between
the two foreground mitigation scenarios as we are still sensitive to
the morphological information both during the EoR and in the epoch

MNRAS 533, 2530-2545 (2024)

of X-ray heating (EoH). It will be instructive to quantify the relative
difference between the two mitigation strategies.

Note there are several competing effects leading to our inability
to access information below k ~ 0.15 Mpc~! for the 1D PS. Simply
increasing the simulation size does not immediately alleviate the
issue. First, as we aim to mimic realistic observations of the 21-cm
signal from a radio interferometer, when computing the 1D PS we do
not consider the case when k; = 0 (i.e. k = k). These modes are not
visible to radio interferometers as the minimum available baseline
is the diameter of the receiving element (dish or antennae station).
This, coupled with the definition of the foreground wedge, severely
limits the spherically binned Fourier modes below k ~ 0.15 Mpc~'.
For instance, we have our horizon buffer at 0.1/ Mpcfl, which
sets the minimum allowed for k; (equation 19). Therefore, to obtain
k ~ 0.1 Mpc~! for wedge-avoidance, we require k; < 0.015 Mpc™!
corresponding to a simulation with side-length of at least ~420 Mpc.
However, this is for one single mode, to have a reasonable statistical
sampling of k; < 0.015 Mpc~! we would require at least 2 — 3
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times larger side-lengths, corresponding to 2 1 Gpc. Generating such
large simulation volumes for parameter inference is infeasible. Of
course, this would be less severe if we removed this additive horizon
buffer. Importantly, since we can obtain a reasonable statistical
sampling of Fourier modes for our 2D PS in the case of perfect
foreground removal, our simulation volumes are sufficient for this
analysis.

4 PARAMETER INFERENCE WITH THE 2D PS

4.1 Estimating the posteriors with SBI

In SWYFT, to obtain our desired marginal posterior distributions for
our astrophysical parameters we need to construct neural networks to
learn the likelihood-to-evidence ratios given our mock observation
of the 21-cm signal. Within each of the 10250 Mpc co-moving
chunks of the 21-cm light-cone used to mimic an observation with
the SKA we also restrict the number of Fourier modes to be used
for our inference pipeline to those between k = 0.1 Mpc~' and
k=1.0 Mpc™! for both the 1D and 2D PS. This results in a
total of 60 1D PS data points when considering wedge avoidance.
These data points are then simply taken as the input layer to
a three-layered fully connected neural network consisting of 256
neurons. That is, we do not use an embedding network to reduce
the dimensionality of the input data prior to the fully connected
neural network. For the 1D PS under perfect foreground removal,
we instead recover eight Fourier modes within our defined boundary,
resulting in a total of 80 1D PS data points. For this, we use the
same network architecture, with these 80 data points being the input
layer.

For the 2D PS, as one would expect we have considerably more
input data. Considering wedge-avoidance, and our corresponding
Fourier cuts, we obtain 161 data points for the 2D PS. This is not
overly restrictive computationally and thus we retain these data as a
linear input layer for our three-layered neural network. On the other
hand, assuming perfect foreground removal, we have a total of 900
data points. In this work, we choose to apply a linear transformation
to these data to reduce them down to 256 features with which we
take as our 1D input to our three-layered neural network, with 512
neurons per layer. That is, we adopt this linear transformation as
an embedding network. However, given that the 2D PS naturally
lends itself to a 2D image representation of the data, one could
instead apply a CNN as our embedding network to more optimally
extract the features within the data. For example, Breitman et al.
(2024) found that applying a CNN to the 1D PS data represented
as a 2D image (k, z) improved the overall performance of their
emulator, implying better relative performance at feature extraction.
Nevertheless, after exploring several different network architectures,
we found this linearization of the data to be sufficient to extract
the data, given the number of Fourier modes that are dominated by
thermal noise. However, in future we will return to this to perform
a more rigorous exploration of optimal network architectures for
extracting the relevant features of our data.

For all the above MNRE networks, the training was performed in
batches of size 64 along with an initial learning rate of 10~ that is
decayed by 0.95 after each epoch. The total training time for each
network varied between ~ 1 and 2 h using a single Nvidia A100.
Considering more aggressive learning rates, increasing the number
of neurons within each neural network layer or more advanced
embedding networks (for foreground removal with the 2D PS) did
not substantially improve the performance of the resultant MNRE
networks.

EoR parameter inference using the 2DPS 2537

4.2 Perfect foreground removal

First, we consider the somewhat optimistic case of perfectly remov-
ing foreground contamination enabling the full use of the Fourier
information (see e.g. Fig. 2). In Fig. 3, we present the 1D and 2D
marginalized posteriors following our SBI approach with SWYFT
for our mock 21-cm observation. For this we demonstrate the
resultant posteriors for the 2D (1D) PS by the black (red) curves,
respectively. Below the marginalized 1D PDFs along the diagonal
we demonstrate the 95th percentile joint 2D posteriors. In Table 1
we summarize the recovered constraints and marginalized 68th
percentile uncertainties for our eight astrophysical model parameters.
Additionally, in Appendix A we demonstrate our trained network
coverage demonstrating its convergence.

The 2D PS outperforms the 1D PS as evident by the narrower
marginalized posteriors between the two summary statistics. How-
ever, the relative improvements are relatively modest. Based on
the 68th percentile marginalized uncertainties we see on average
improvements of approximately (5, 15, 30, 30, 40, 20) per cent for
(f*‘l()y Oy, fesc,lOv Qescs Mtums LX<2keV/SFR) with no improvement
for ¢, or Ey. Recall, in this work we do not include non-linear RDSs
in our simulations of the 21-cm signal, thus these differences likely
underestimate the actual differences when RSDs are included which
serve to amplify the anisotropy of the 21-cm signal along the line
of sight, k. Nevertheless, these modest improvements are consistent
with the Fisher Matrix expectations of Prelogovi¢ & Mesinger (2024)
who predict relative improvements of 15 per cent on the variance of
the individual parameters based on the factor of ~ 2 improvement in
the total Fisher information. Note, we find little to no improvement
in the X-ray parameters between the 2D PS and 1D PS. Likely,
this is due to the selection of only two free X-ray parameters,
Ly 2kev/SFR and Ej, in our model. Lx_;y.v/SFR is constrained
by the PS amplitude and is relatively independent of the EoH
morphology. By only having one morphological X-ray parameter,
Ey, combined with the increasing thermal noise to higher redshifts
we limit the ability for the 2D PS to outperform the 1D PS. If we
were to additionally consider the spectral index of the X-ray photons,
ax, as a free parameter, which is degenerate with Ey, then we would
anticipate the 2D PS outperforming the 1D PS for this parameter
combination due to the additional 2D spatial information provided
by the 2D PS, although the relative improvement would still depend
on the thermal noise amplitude.

These improvements in the constraining power arise due to the
distinction of the Fourier information into their transverse (k)
and redshift evolving (k) components. Although the relative noise
in each individual k,, k; bin increases due to the larger sample
variance relative to the spherically averaged k-bins of the 1D PS, the
anisotropic nature of the 21-cm signal yields additional information
(see e.g. Fig. 2). By having the transverse spatial information inde-
pendent of redshift we are more sensitive to the spatial morphology
during the EoR and EoH. That is, sampling k; for a specific k|
provides unique information about the relative amplitudes of the
spatial fluctuations as a function of redshift, providing more fine-
grained detail than the 1D PS, which averages the anisotropic signal
into the ‘knee’-like feature at k ~ 0.1 Mpc™'.

For example, since we are more sensitive to the spatial morphology
(i.e. distribution of the ionized regions as a function of scale and
redshift), we recover improved constraints on the parameters that
control the typical sizes of the ionized regions. Namely My, which
defines the characteristic masses of the star-forming galaxies and
both the normalizations and mass-dependent power-law indices of
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Figure 3. The recovered one- and two-dimensional marginalized posteriors on our astrophysical parameters assuming a mock 1000 h observation of the 21-cm
signal assuming perfect foreground removal with the SKA. The black curves correspond to using the 2D cylindrically averaged PS (2D PS), whereas the red
curves correspond to the 3D spherically averaged PS (1D PS). The 2D contours below the diagonal correspond to the 95th percentiles. The vertical and horizontal

black dashed lines denote our fiducial astrophysical parameter set.

f+« and f.s which control the production of UV ionizing photons and
their escape into the IGM to drive ionizations.

4.3 Foreground avoidance

In Fig. 4, we now show the marginalized 1D and 2D posteriors
for the same mock 21-cm observation of the 1D (teal dashed) and
2D PS (magenta dashed) except when assuming foreground wedge
avoidance for a 1000 h observation with the SKA. For comparison,
we also show the posteriors for the 2D PS assuming perfect

MNRAS 533, 2530-2545 (2024)

foreground removal. Again, we provide the recovered constraints
and 68th percentile uncertainties in Table 1.

As one would expect, considering foreground avoidance results in
reduced constraining power relative to perfect foreground removal.
However, the 2D PS still outperforms the 1D PS, albeit to a slightly
lesser extent. Averaging over the marginalized 68th percentile
uncertainties, we recover improvements of approximately (40, 10,
25, 15, 15) percent for (ax, ®escs Mium, tx, Lx<2kev/SFR), with
little to no improvement for the remaining parameters. In short, the
2D PS always outperform the 1D PS irrespective of the foreground
removal strategy. Note, the slightly different selection of parameters
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Table 1. A summary of the recovered astrophysical parameter constraints plus 68th marginalized uncertainties obtained following SBI on our mock observation
of the 21-cm signal using either the 1D or 2D PS. We also consider two foreground mitigation strategies: (i) perfect foreground removal and (ii) foreground

avoidance for a 1000 h observation using the SKA. Finally, we consider the improvements in the constraining power following the inclusion of UV LFs (see the

text for further details).

10g10(f*,10) Oy loglo(fcsc,IO) Oesc lOglo(/‘/[mrn) Iy ]Oglol‘X;% Eo
Mo) (erg s~ Mg yr 1) (keV)

Mock observation —1.1 0.5 —1.30 —0.35 8.55 0.5 40.5 0.5
Foreground removal
1D PS —L128040 051550 —1.267042  —0371308 8610l 0531042 40.4819-%2 0.5159!
2D PS —11354 0557008 —131E04 —03780%1 8491008 0.54%0% 40.515002 0.50:801
ID PS + UV LFs —1.13%5:10 0.4910:0 —1.2910%8 0315552 8.571007 0.6015:13 40.50+3:91 0.51+3:91
2D PS + UV LFs —1.091919 0.4675:9 —1.327019 —0.3470:03 8.6079:97 0.4610:13 40.50+391 0.51+391
Foreground avoidance
1D PS —1.141019 0.481043 —1.257042 —0.29+0:18 8.6075-21 0.48+0-14 4047439 0.4910:03
2D P SLIOSHL oSt —r2atfll 027l sastl 0sals 4048403 0484041
1D PS 4+ UV LFs -1 0.4510:08 —1.208013  —0.3040%2 8.47+9:18 0.58101§ 40.494993 0.4970:04
2D PS + UV LFs —1.1310411 0.3610:0 -1.301342  —0.3075:93 8.4970-13 0.57+313 4051499 0.45+0:93

that recover slight improvements (e.g. fi. 10, fesc.10, and t,) between
the two foreground strategies are due to the strength of the complex
parameter degeneracies and the fairly modest actual improvements
in these specific parameters.

After considering foreground avoidance, we do not see an im-
provement in f 1o Or fesc,10, With the only improvements in f, and
fesc coming from their power-law mass dependence (e.g. o, and cesc)-
Nevertheless, we still recover improvements of ~ 10 — 40 per cent
for Mym and these power-law indices which highlights that even
when applying foreground avoidance, we still pick up additional
information from the spatial morphology of the 21-cm signal due
to how the 2D PS distinguishes the structural information from that
of redshift evolution. This is despite the fact that after applying
foreground avoidance we loose more than 60-80 percent of the
2D PS Fourier modes (see e.g. Fig. 2). However, predominately
this information loss is for larger &, ’s, with still relatively decent
sampling of k; at < 0.1 Mpc~! where we predominately extract
most of the constraining information (Greig & Mesinger 2015). At
these scales, we are still recovering the redshift evolution of the 21-
cm signal (e.g. k), therefore we remain sensitive to how the EoR
morphology evolves with redshift. This enables the still relatively
strong constraints on our astrophysical parameters.

Relative to perfect foreground removal, for the 2D PS we deter-
mine increases in the marginalized 68th percentiles of approximately
(5, 50, 30, 275, 200, 5, 70, 300) per cent for (fi 10, O, fesc.105 Xesco
My, t, Lx<2xev/SFR, Ep) by considering foreground avoidance.
Over our entire mock 21-cm observation with the 2D PS, foreground
avoidance results in a loss of ~ 60-80 per cent of the 2D Fourier
modes owing to the redshift dependence of the foreground wedge.
Therefore, despite the loss in over approximately five times the
amount of information, we do not exhibit such severe losses in
constraining power. What is important is not the total amount
of information lost, but rather where this information is lost. As
highlighted above, we still access the redshift evolution of the 21-cm
PS on those scales most sensitive to the EoR (e.g. k; ~ 0.1 Mpc™!).
As aresult, we recover relatively more modest losses in constraining
power on our EoR parameters. Nevertheless, the loss in information
below the wedge at moderate scales, k; ~ 0.5 does limit our ability
to constrain My, which drives the increased uncertainties in the
power-law indices. For the X-ray parameters, the relative losses are
more significant, and this is due to the increasing amplitude of the

wedge during the heating epoch removing more spatial information
(the wedge moves vertically upward in Fig. 2 for increasing redshift).
Thus, we have considerably less spatial information during the EoH
heating. However, despite these uncertainties increasing by up to a
factor of ~ 3 the X-ray parameters are still very strongly constrained,
highlighting how sensitive the X-ray parameters are tied to the
amplitude of the 21-cm signal.

Repeating this analysis for the 1D PS, we recover increases in
the marginalized 68th percentiles of approximately (10, 200, 10,
200, 70, 25, 60, 300) percent for (fi 10, @, fesc.100 Qescs Mium,
ti, Lx<2xev/SFR, E) by considering foreground avoidance instead
of foreground removal. These relative increases are comparable in
amplitude to those for the 2D PS, as one would expect. Again, this
highlights that it is not the amount of information lost, rather where
the information is lost relative to where the 21-cm signal is most
sensitive.

4.4 Mock 2D PS observation with UV LFs

Thus far, we have only considered the relative improvements in our
astrophysical parameter constraints when considering the 2D PS
compared to the 1D PS. However, one can also include additional
constraining information from alternative probes of the reionization
epoch, such as observed UV luminosity functions (LFs). This simply
requires concatenating the UV LF data to the existing PS data and
passing this information into SWYFT and retraining the ratio networks.
In the case of the 1D PS, the role of the UV LFs is to break the
degeneracy between f, and f. improving the constraining power
on these parameters and consequently also on My, (Park et al. 2019).
Since these same parameters are more strongly constrained with the
2D PS relative to the 1D PS, it will thus be illustrative to consider a
joint observation of the 2D PS and UV LFs.

Following Park et al. (2019), we consider a limited selection
of observed UV LFs at z = 6 (Bouwens et al. 2017), z =7 and
8 (Bouwens et al. 2015), and z = 10 (Oesch et al. 2018). This
choice is motivated by limiting the systematic differences across
the various groups within the literature and how each deals with
their observational and statistical uncertainties. Ideally, to be truly
robust (and conservative) one should average across all results in the
literature to obtain a mean UV LF with a scatter encompassing all
the differences across the various results. In future, we shall return

MNRAS 533, 2530-2545 (2024)

$20Z J8qWIBAON OE UO Jasn 1ulis4 esin Aq Zy€6E///0£52/2/SES/a10nie/seiuw/woo dnoolwepese//:sdiy woll papeojumod



2540  B. Greig et al.

== 2D PS perfect foreground-removal
== 2D PS foreground-avoidance
== 1D PS foreground-avoidance

T
—1.5-1.0-0.5 0.0 05 1.5-1.0-0.5
logio(f«.10) Qy

loglo(fcsc,lo) ege

T T
0.250.50 0.75 40.4  40.6 0.4 0.6

logIO(Mturn) [ loglo([’xs%%) EO

Figure 4. The same as Fig. 3 except now considering a 1000 h observation with the SKA assuming foreground wedge avoidance. The magenta (teal) dashed
contours correspond to the 2D (1D) PS, whereas the black contours represent the 2D PS assuming foreground removal for comparison.

to this while also extending our UV LF sampling to higher redshifts
as observed by the JWST (e.g. Castellano et al. 2022; Harikane
et al. 2022; Naidu et al. 2022; Atek et al. 2023; Bouwens et al.
2023; Donnan et al. 2023; Labbé et al. 2023; Willott et al. 2024).
Importantly, when including UV LFs into our inference pipeline, we
only consider UV magnitudes fainter that Myy < —20, for which it
is argued that these are relatively dust-free (see Park et al. 2019).

In Fig. 5 we demonstrate the 1D and 2D marginalized posteriors
for a mock 1000 h observation of the 2D PS in addition to UV LFs at
z=6,7,8, and 10. Below the diagonal the orange (black) contours
correspond to the 95th percentile joint marginalized posteriors when
considering wedge removal with (without) UV LFs. Above the

MNRAS 533, 2530-2545 (2024)

diagonal, we provide the equivalent following foreground avoidance
with the magenta (purple) dashed contours denoting with (without)
UV LFs. Finally, in Table 1 we summarize the constraints and 68th
percentile marginalized uncertainties.

In both cases, it is clear that the complimentary constraining
power from the UV LFs improves the overall constraints on our
astrophysical parameters using the 2D PS. In general, we find the
amplitude of the improvements are larger for wedge avoidance
relative to wedge removal. For example, we recover improvements
of ~ 20 and ~ 30 per cent for «, and s along with ~ 15 per cent
improvements for My, whereas for wedge removal, at most we see
improvements of ~ 10 percent for these same parameters. These
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Figure 5. The recovered one- and two-dimensional marginalized posteriors on our astrophysical parameters assuming a mock 1000 h observation of the 21-cm
signal using the 2D PS from the SKA combined with UV LFs at z = 6-10. Below the diagonal, we consider the case of perfect foreground removal, with
the orange (black) curves corresponding to with (without) the UV LFs, respectively. Above the diagonal, we present the results instead assuming foreground
avoidance, with the magenta (purple) dashed curves denoting observations with (without) the UV LFs. In all cases, the 2D contours represent the joint 95th
percentile marginalized uncertainties. The vertical and horizontal black dashed lines denote our fiducial astrophysical parameter set.

relatively larger gains for foreground wedge avoidance following the
inclusion of the UV LF information are due to the originally broader
constraints and stronger degeneracies on the UV galaxy parameters,
namely o, and fe 10. For the 2D PS with perfect foreground
removal, since we have additional structural information on the EoR
morphology through & , we are able to limit the degeneracy between
o, — fesc.10 (see Fig. 4). Therefore, since this degeneracy is already

reduced, the relative gains for the 2D PS with perfect foreground
removal with UV LFs are also reduced.

Interestingly, once we include UV LFs with the 1D and 2D
PS, the 68th percentile uncertainties become similar. That is, the
relative difference between the reported uncertainties for the 2D
PS + UV LFs and the 1D PS + UV LFs has been reduced
compared to the differences between just the 2D PS and the 1D
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PS. Now, we recover at most improvements of ~ 10 per cent when
considering the 2D PS + UV LFs relative to the 1D PS + UV
LFs (compared to up to 30 percent in the absence of the UV
LF data for the 2D PS compared to the 1D PS). This holds true
for either foreground mitigation strategy, with foreground removal
still notably outperforming foreground avoidance. The origin of this
smaller difference between the 2D PS and the 1D PS following
the inclusion of the UV LF data is due to where the additional
information is provided. As highlighted earlier, compared to the 1D
PS, the 2D PS is more sensitive to the EoR morphology as the
structural information, k| , is kept distinct from the redshift evolving
component of the 21-cm signal (kj). This enables the 2D PS to
improve over the 1D PS at constraining the EoR parameters, notably
reducing the degeneracy between o, and fesc 10-

However, including UV LF data serves a similar purpose. The
additional constraining power provided by the UV LFs adds unique
information on f, which leads to a reduction of the same degeneracy
between o, and fis 10. However, the reduction in this degeneracy
is stronger with the unique information from the UV LF data than
it is for the additional information that the 2D PS provides relative
to the 1D PS. Thus, the inclusion of the constraining power from
the UV LFs somewhat minimizes the contribution to the overall
improvements in constraining power that come from just the 2D PS
relative to the 1D PS. However, this behaviour is likely dependent
on the underlying astrophysical model parametrization. A model
with either additional astrophysical parameters or more complex
scalings with mass or redshift that are more sensitive to the EoR
morphology (e.g. the 2D PS) would more significantly benefit from
the increased information that arises from the 2D PS compared
to the 1D PS. Thus, for astrophysical models containing more
discriminating power in the 2D PS relative to the 1D PS, we would
expect that the constraints obtained from 2D PS 4 UV LFs would
more strongly outperform those from the ID PS. + UV LFs as the UV
LFs likely would add little additional information to more complex
parametrizations.

5 CONCLUSIONS

In recent years, SBI has begun to gain traction for performing
Bayesian inference from the 21-cm signal to gain insights into the
galaxies responsible for reionization (e.g. Zhao et al. 2022a, 2022b;
Prelogovi¢ & Mesinger 2023; Saxena et al. 2023; Greig et al. 2024).
The significant advantage of SBI is that it applies machine learning
principles to bypass the requirement to have an analytic expression
to describe the likelihood function to accurately describe our 21-cm
summary statistics. By removing this crucial bottleneck we are now
able to rigorously explore more complex summary statistics than
the simple, but extensively explored 1D spherically averaged power
spectrum (1D PS). As a demonstration of the power of SBI, in this
work we explore using the 2D cylindrically averaged PS (2D PS),
which has previously been overlooked owing to the complexities in
computing its likelihood.

For exploring the 2D PS we consider a mock 1000 h observation
of the 21-cm signal using the SKA. Throughout, we simulate the
21-cm signal using 21CMFAST (Mesinger & Furlanetto 2007;
Mesinger et al. 2011; Murray et al. 2020), in particular the flexible
UV galaxy parametrization introduced in Park et al. (2019). As a
result we have an eight-parameter astrophysical model to describe
the UV and X-ray properties of the first galaxies responsible for
driving reionization. Further, we consider two foreground mitigation
strategies: (i) perfect foreground removal whereby we have access
to the whole 2D information and (ii) foreground avoidance where
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we only use the pristine cosmological signal above the foreground
contaminated wedge. Throughout, we perform SBI using MNRE to
learn the likelihood-to-evidence for performing parameter inference
using SWYFT (Miller et al. 2022).

When considering perfect foreground removal, we find the 2D PS
outperforms the 1D PS by reducing the 68th percentile uncertainties
on individual parameters by up to ~ 30—40 per cent. These relative
improvements in the 2D PS over the 1D PS are consistent with
recent predictions using the amplitude of the Fisher Information
(Prelogovi¢ & Mesinger 2024). Primarily, the most significant gains
are in My,,, which effectively describes the minimum mass for star-
forming galaxies along with «, and «.s. which describe the mass
dependence of star formation efficiency, f. and IGM escape fraction,
fese. These improvements are achieved due to the 2D PS cleanly
separating the transverse information, k, , from the redshift-evolving
component of the signal, k. In this way, we are more sensitive
to the redshift evolution of the ionization morphology allowing for
improved constraints on the UV galaxy parameters. Unlike the 1D
PS which combines and averages the anisotropic information into a
single k£ when spherically averaging.

Even when performing foreground avoidance, when we lose a
large fraction of the 2D PS information relative to the case of
perfect foreground removal, the 2D PS still outperforms the 1D PS.
However, the relative boosts in performance are reduced, with only
20-30 per cent improvements on our individual model parameters.
Nevertheless, the largest gains remain for My, @, and oe. This
implies that despite the loss of a large fraction of information due to
foreground contamination, distinguishing between the spatial (k)
and frequency-dependent (k) Fourier modes still yields additional
constraining power over the 1D PS for constraining the UV galaxy
parameters during the EoR.

Comparing the two foreground mitigation strategies directly,
we find foreground avoidance results in increased 68th percentile
uncertainties of at worst ~ 2-3 compared to foreground removal.
In general, the largest increases are for the X-ray parameters,
which are due to the growth of the foreground contaminated region
towards larger redshifts, where the 21-cm signal is more sensitive
to the X-ray contribution. However, we also see increases in the
uncertainties at a similar level for o and My, owing to the loss of
a significant fraction of spatial (k) information due to foreground
wedge contamination. For the remainder, the 68th marginalized
uncertainties increase by < 70 per cent.

Finally, we also include independent astrophysical information
by considering UV galaxy LFs at z = 6 — 10. Doing so, we find
improvements of ~ 10 percent primarily on o, ®es., and My,
for foreground removal. For foreground avoidance, we find im-
provements of up to ~ 20-30 percent for these same parameters.
Generally speaking, for the 1D PS the addition of UV LFs is
to break the degeneracy between f. and f.... However, for the
2D PS, as it is more sensitive to the EoR morphology through
the distinct spatial information, the f,-f.. degeneracy is not
nearly as strong. Therefore, the UV LFs have reduced benefit
for foreground removal over foreground avoidance as we have
additional 2D spatial information to reduce this otherwise strong
degeneracy.

The power of SBI is that it enables the study of complex and
non-Gaussian summary statistics of the 21-cm signal to be explored
in the context of astrophysical parameter inference. Here, we have
demonstrated the value of SBI with the first study of the more
complex 2D PS. In future, to maximize the wealth of information
expected to be available from the 21-cm signal we will explore
alternative non-Gaussian statistics with SBI.
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APPENDIX A: ASSESSING NETWORK
COVERAGE

One of the key defining features of SBI approaches such as MNRE is
that once the network is trained they allow for the rapid recovery of
the posteriors for any new realization of the input data. In this case, we
can perform parameter inference for a large number of mock observa-
tions drawn from within our prior range to determine how frequently
they fall within their predicted posteriors. Measuring this frequency
for a sufficiently large number of models enables the computation of
the network coverage (e.g. Cole et al. 2022). This large number of
direct posterior evaluations provides a much more robust quantity to
indicate network convergence than those typically adopted by direct
MCMC approaches (e.g. Betancourt 2019; Roy 2020).

Following Cole et al. (2022), we define O (1 —a) to be a
function which determines the (1 — «) highest probability density
region (HPDR) for our estimated posterior, 13(9 |x;), given the input
model-parameter pair, x;, 87. To demonstrate, a 95 per cent HPDR
would correspond to o = 0.05. For a set of n independently drawn
model-parameter pairs we can then determine the actual error rate
1 — & of the HPDR given our estimated posterior:

c_ LS .
l—a=- ;1 07 € O, (1 —a)]. (AD)

The quantities o (&) are redefined in terms of a new variable, z,
corresponding to the 1 —«/2 (1 — &/2) quantile of the standard
normal distribution. By definition this implies the 1o, 20, 30 regions
correspond to z = 1, 2, 3 with 1 — a = 0.6827, 0.9545, 0.9997. The
uncertainties on the error rate & are determined by the Jeffreys
interval (Cole et al. 2022).° In Fig. A1 we present the empirical

9Specifically, this interval is obtained from the 68.27 per cent central interval
of a Beta distribution defined by the parameters n — k + 1/2, k + 1/2, where
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Figure Al. The empirical expected coverage probability of our trained MNRE network with SWYFT (vertical axis) as a function of the confidence level
(horizontal axis). The purple line demonstrates the coverage of our network, with the goal of perfect coverage denoted by the diagonal black dashed line. The
dotted lines indicate the coverage for the 68th, 95th, and 99.7th percentiles, whereas the shaded region corresponds to the Jeffrey’s interval (see the text for

further details).

expected coverage probability of our trained network as a function
of confidence levels for all 1D and 2D marginalized posteriors
using 5000 unique realizations drawn randomly from our posterior
volume. Optimal network performance is demonstrated by the black
dashed curves. If the coverage probability resides above the black
dashed line, the network coverage is deemed conservative (i.e. our

n is the total number of samples from the joint model and k is the number
of times the HPDR predicted by the network does not contain the true

astrophysical parameters.
© 2024 The Author(s).

actual error rate is lower than the theoretical error implying larger
than expected posteriors uncertainties), whereas if it is below the
diagonal it is considered overconfident. For the vast majority of
our astrophysical parameters, our coverage probability is aligned or
above the black dashed line indicating strong coverage performance.
Following the performance of our coverage tests we are confident
that our results are robust.
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