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A B S T R A C T 

Enlightening our understanding of the first galaxies responsible for driving reionization requires detecting the 21-cm signal 
from neutral hydrogen. Interpreting the wealth of information embedded in this signal requires Bayesian inference. Parameter 
inference from the 21-cm signal is primarily restricted to the spherically averaged power spectrum (1D PS) owing to its relatively 

straightforward deri v ation of an analytic likelihood function enabling traditional Monte Carlo Markov Chain approaches. 
Ho we ver, in recent years, simulation-based inference (SBI) has become feasible which remo v es the necessity of having an 

analytic likelihood, enabling more complex summary statistics of the 21-cm signal to be used for Bayesian inference. In this 
work, we use SBI, specifically marginal neural ratio estimation to learn the likelihood-to-evidence ratio with SWYFT , to explore 
parameter inference using the cylindrically averaged 2D PS. Since the 21-cm signal is anisotropic, the 2D PS should yield more 
constraining information compared to the 1D PS which isotropically averages the signal. For this, we consider a mock 1000 h 

observation of the 21-cm signal using the Square Kilometre Array and compare the performance of the 2D PS relative to the 1D 

PS. Additionally, we explore two separate foreground mitigation strategies, perfect foreground removal and wedge a v oidance. 
We find the 2D PS outperforms the 1D PS by improving the marginalized uncertainties on individual astrophysical parameters 
by up to ∼ 30 –40 per cent irrespective of the foreground mitigation strategy . Primarily , these improvements stem from how the 
2D PS distinguishes between the transverse, k ⊥ 

, and redshift-dependent, k ‖ , information which enables greater sensitivity to the 
complex reionization morphology. 

Key words: galaxies: high-redshift – intergalactic medium – dark ages, reionization, first stars – diffuse radiation – early Uni- 
verse – cosmology: theory. 
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 I N T RO D U C T I O N  

oughly 400 000 yr after the big bang recombination occurs,
hereby the photons and baryons of the primordial plasma decouple

nd the baryons subsequently combine to form neutral hydrogen.
fter this point the omnipresence of neutral hydrogen enshrouds the
niverse in a fog rendering it opaque to most forms of radiation.
his fog persists until the ignition of the first star formation episodes
ithin the primordial galaxies, referred to as the cosmic dawn,
hich emit copious amounts of ultraviolet (UV) photons into the

ntergalactic medium (IGM) and ionize their local neighbourhood.
ver time, as these galaxies grow and become more abundant

heir cumulative UV output accelerates the eradication of this fog,
 E-mail: brad.s.greig@gmail.com 
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Published by Oxford University Press on behalf of Royal Astronomical Socie
Commons Attribution License ( https:// creativecommons.org/ licenses/ by/ 4.0/ ), whi
endering the IGM essentially completely ionized. This process is
eferred to as the epoch of reionization (EoR). 

Directly observing these primordial galaxies is near to impossible.
heir vast distance from us makes them extremely faint, and this is
rior to the extinction of their radiation by the neutral IGM. All
o we ver is not lost. The primordial galaxies imprint their signal on
he neutral IGM, enabling us to indirectly infer their presence by

easuring the 21-cm hyperfine spin-flip transition of the neutral
ydrogen. This signal is observable by detecting the differential
ntensity of radiation emitted by the neutral hydrogen relative to
 uniform background source, for example, the cosmic microwave
ackground (see e.g. Gnedin & Ostriker 1997 ; Madau, Meiksin &
ees 1997 ; Shaver et al. 1999 ; Tozzi et al. 2000 ; Gnedin & Shaver
004 ; Furlanetto, Oh & Briggs 2006 ; Morales & Wyithe 2010 ;
ritchard & Loeb 2012 ). As this frequency (redshift) dependent sig-
al originates from the IGM, detecting it yields a three-dimensional,
© 2024 The Author(s). 
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ch permits unrestricted reuse, distribution, and reproduction in any medium, 
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1 Mondal et al. ( 2022 ) performed an initial exploratory analysis of the 
multifrequency angular power spectrum (MAPS), which has some analogies 
to the 2D PS. For a basic three-parameter astrophysical model the MAPS was 
found to outperform the 1D PS. 
2 https:// github.com/ undark-lab/ swyft
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ime-evolving picture of the thermal and ionization state of the IGM
hroughout reionization. 

Accessing the wealth of information embedded in the 3D cosmic 
1-cm signal requires large-scale radio interferometer experiments 
o pick up the spatially varying signal. Specifically, we measure 
he complex visibilities of the interference fringes from the arriving 
ignal which are naturally represented by a Fourier transform. This 
ignal can then be split into two components, k ‖ which corresponds
o the line-of-sight (frequency) dependent aspect of the signal and 
 ⊥ 

which describes the 2D spatial variation of the signal across the
ky . Typically , given the cosmic 21-cm signal is incredibly faint
elative to the bright foregrounds, in order to boost its signal to
oise we compress the available information by measuring the 1D 

pherically averaged power spectrum (PS). This characterizes the 
tatistical properties of the 21-cm signal by describing the variance as
 function of spatial scale. It is this quantity that is sought by the first-
eneration interferometer experiments such as the Low-Frequency 
rray (van Haarlem et al. 2013 ), the Murchison Wide Field Array

Tingay et al. 2013 ; Wayth et al. 2018 ), the Precision Array for
robing the Epoch of Reionization (Parsons et al. 2010 ), the Owens
alley Radio Observatory Long Wavelength Array (Eastwood et al. 
019 ), and the upgraded Giant Metrewave Radio Telescope (Gupta 
t al. 2017 ). 

Importantly, the 21-cm signal is non-Gaussian owing to the com- 
lex 3D morphology of the ionized regions. Therefore, computing the 
D PS performs suboptimal compression as we disregard valuable 
on-Gaussian information. The lower sensitivity of these first gener- 
tion of experiments necessitates the trade-off in information loss in 
rder to boost the o v erall signal to noise with the 1D PS. Ho we ver,
or the forthcoming Square Kilometre Array (SKA; Mellema et al. 
013 ; Koopmans et al. 2015 ) this should no longer be a concern
ith the increased sensitivity theoretically enabling more complex 

ummary statistics of the 21-cm signal beyond the 1D PS. In fact,
he SKA has been specifically designed with tomographic imaging 
n mind, opening up a wealth of possibilities for analysing the 21-cm
ignal. 

This has lead to the explosion of studies exploring alternative 
robes of the 21-cm signal beyond the 1D PS. For example, with
he bispectrum (e.g. Yoshiura et al. 2015 ; Shimabukuro et al. 2016 ;

ajumdar et al. 2018 , 2020 ; Watkinson et al. 2019 ; Hutter et al.
021 ; Kamran et al. 2021 ), position-dependent PS (Giri et al. 2019a ),
ne-point statistics (Watkinson & Pritchard 2014 ; Shimabukuro et al. 
015 ; Kubota et al. 2016 ; Banet et al. 2021 ; Gorce, Hutter & Pritchard
021 ), morphological and topographical coefficients extracted from 

1-cm images (e.g. Yoshiura et al. 2017 ; Bag et al. 2019 ; Chen et al.
019 ; Elbers & van de Weyg aert 2019 ; Kapahtia, Ching angbam &
ppleby 2019 ; Gazagnes, Koopmans & Wilkinson 2021 ; Giri & 

ellema 2021 ; Kapahtia et al. 2021 ), the ionized bubble size
istribution (Kakiichi et al. 2017 ; Giri et al. 2018a , 2019b ; Giri,
ellema & Ghara 2018b ; Bianco et al. 2021 ), and the compression

f 21-cm images using the wavelet scattering transform (e.g. Greig, 
ing & Kaurov 2022 ; Hothi et al. 2024 ). 
Importantly, in order to extract the astrophysical properties of these 

rst galaxies we must perform Bayesian inference. Typically, this 
emands generating 3D reionization simulations on-the-fly within 
 Monte Carlo Markov Chain (MCMC) framework (e.g. 21CMMC 

reig & Mesinger 2015 , 2017 , 2018 ; Park et al. 2019 ) to compare
gainst an observation of the 21-cm signal. Ho we ver, this approach
s extremely restrictive as it requires defining an analytic expression 
o compute the likelihood of the 21-cm signal given the model 
strophysical parameter set. As a result, essentially none of the 
forementioned alternative statistics to the 1D PS have been explored 
igorously within a Bayesian inference context. Instead, most resort 
o the Fisher information matrix (Fisher 1935 ), which still imposes
n implicit Gaussian assumption, to provide simple forecasts (e.g. 
himabukuro et al. 2017 ; Greig et al. 2022 ; Hothi et al. 2024 ) or
dopt several simplifying assumptions regarding the covariance and 
ikelihood form (Tiwari et al. 2022 ; Watkinson, Greig & Mesinger
022 ). Alternatively, instead of performing direct inference one can 
pply regression in an attempt to extract astrophysical information 
rom the 21-cm signal by bypassing the need for a summary statistic
ntirely through the application of convolutional neural networks 
CNNs) trained directly on 2D or 3D images of the 21-cm signal
o extract astrophysical information (e.g. Gillet et al. 2019 ; Hassan
t al. 2019 ; La Plante & Ntampaka 2019 ; Hassan, Andrianomena &
oughty 2020 ; Kwon, Hong & Park 2020 ; Mangena, Hassan &
antos 2020 ; Prelogovi ́c et al. 2022 ). 
Ho we ver, we can completely forego this restrictive requirement 

f an analytic likelihood through the concept of likelihood-free 
r simulation-based inference (SBI; see e.g. Cranmer, Brehmer & 

ouppe 2020 for a recent re vie w). Essentially, we apply machine
earning on a training set of simulated data to learn our likelihood
unction (neural likelihood estimation) or the likelihood-to-evidence 
atio (neural ratio estimation; NRE) after which we can perform an

CMC to obtain our posteriors or bypass the likelihood estimation 
ntirely to directly obtain our posterior distribution given our data 
neural posterior estimation). The power of such an approach is that
t enables us to e xplore an y comple x or non-Gaussian summary
tatistic or feature extraction method applied to the 21-cm signal. 
ur only requirement is the generation of the simulated training set.
ealizing this potential, in recent years SBI has been gaining traction

or tackling astrophysical inference from the cosmic 21-cm signal 
e.g. Zhao et al. 2022a ; Zhao, Mao & Wandelt 2022b ; Prelogovi ́c &

esinger 2023 ; Saxena et al. 2023 ; Greig et al. 2024 ). 
In this work we choose to explore the often o v erlooked 2D c ylin-

rically averaged (2D PS) for astrophysical parameter inference. 1 Its 
revious omission stemmed from our inability to define a robust like-
ihood function along with the additional computational o v erheads 
equired for estimating the 21-cm signal covariance. Specifically, 
e follow the approach of our companion work (Greig et al. 2024 )

nd perform our SBI using marginal neural ratio estimation (MNRE; 
iller et al. 2021 ) using the publicly available PYTHON package 

WYFT 2 (Miller et al. 2022 ) whose goal is to learn the marginal
ikelihood-to-evidence ratios for each individual parameter. Rather 
han spherically averaging over the k ‖ and k ⊥ 

components of the
ignal into a single k and losing morphological information, the 
D PS keeps these components distinct, better separating out the 2D
tructural information from the spatial fluctuations across the sky ( k ⊥ 

)
rom the frequency varying component along the line of sight, k ‖ .
urther, the 2D PS more naturally follows the signal characteristics 
btained from radio interferometry allowing us to more cleanly deal 
ith foreground contamination (e.g. the ‘wedge’). Although it is 

till a Gaussian statistic, and therefore still suboptimal, it should 
ose less information than the 1D PS. In fact, in a complimentary
tudy by Prelogovi ́c & Mesinger ( 2024 ) exploring the information
ontent of a variety of 21-cm summaries using Fisher Matrices these
uthors predict impro v ements in the variance on the astrophysical
MNRAS 533, 2530–2545 (2024) 
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arameters of ∼ 15 per cent. Further, the 2D PS is considerably
ore straightforward to measure observationally and should require

ess integration time to achieve sufficient sensitivity in comparison
o many of the aforementioned non-Gaussian approaches. Therefore,
t is an important and valuable summary statistic to explore. 

The remainder of this paper is organized as follows. In Section 2 we
ummarize our 21-cm simulations using 21CMFAST and in Section 3
e describe our SBI set-up with SWYFT including the generation of
ur data base of 21-cm simulations and our mock observation. In
ection 4 we then perform our comparison of the 2D PS to the 1D
S for different foreground mitigation strategies before concluding
ith our closing remarks in Section 5 . Unless stated otherwise, all
uantities are in co-moving units and we adopt the cosmological
arameters: ( �� 

, �M 

, �b , n , σ8 , H 0 ) = (0.69, 0.31, 0.048, 0.97,
.81, 68 km s −1 Mpc −1 ), consistent with recent results from the
lanck mission (Planck Collaboration VI 2020 ). 

 SIMULATING  T H E  2 1 - C M  S I G NA L  

o simulate the 3D cosmic 21-cm signal emanating from the neutral
ydrogen during reionization we use the seminumerical simulation
ode 21CMFAST 

3 (Mesinger & Furlanetto 2007 ; Mesinger, Furlan-
tto & Cen 2011 ). In particular, we use the latest public release,
3 (Murray et al. 2020 ), and adopt the Park et al. ( 2019 ) flexible
alaxy parametrization to describe the UV and X-ray properties of the
alaxy population. In this section we outline the main ingredients of
1CMFAST , in particular focussing on the astrophysical parameters
ithin the model we seek to constrain using parameter inference. For

dditional details and discussions we refer the reader to these earlier
ublications. 

.1 Galaxy UV properties 

irst, it is assumed that the stellar mass, M ∗, of a galaxy depends on
ts host halo mass, M h (e.g. Kuhlen & Faucher-Gigu ̀ere 2012 ; Dayal
t al. 2014 ; Behroozi & Silk 2015 ; Mitra, Choudhury & Ferrara 2015 ;
utch et al. 2016 ; Ocvirk et al. 2016 ; Sun & Furlanetto 2016 ; Yue,

errara & Xu 2016 ; Hutter et al. 2021 ) via the following relation: 

 ∗( M h ) = f ∗

(
�b 

�m 

)
M h , (1) 

ith f ∗ being the fraction of galactic gas in stars and �b and �m 

eing the baryonic and total matter content of the Universe. f ∗ also
epends on its host halo mass, 

 ∗ = f ∗, 10 

(
M h 

10 10 M �

)α∗
, (2) 

ependent on the two free parameters, α∗ and its normalization,
 ∗, 10 , for a dark matter halo mass of 10 10 M �. This power-law
ehaviour directly follows from semi-empirical fits to observations
e.g. Harikane et al. 2016 ; Tacchella et al. 2018 ; Behroozi et al. 2019 ;
tefanon et al. 2021 ) and semi-analytic model predictions (e.g Mutch
t al. 2016 ; Yung et al. 2019 ; Hutter et al. 2021 ). 

The stellar mass is then converted into a star formation rate
SFR) by dividing by a characteristic time-scale, t ∗, which is a free
arameter of the model and is defined to be a fraction, t ∗∈ [0 . 05 , 1],
f the Hubble time, H 

−1 ( z): 

˙
 ∗( M h , z ) = 

M ∗
t ∗H 

−1 ( z ) 
. (3) 
NRAS 533, 2530–2545 (2024) 

 https:// github.com/ 21cmfast/ 21cmFAST 

4

T

Similarly as abo v e, the fraction of UV photons that escape their
ost galaxy and enter into the IGM, f esc , also depend on their host
alo mass, 

 esc = f esc , 10 

(
M h 

10 10 M �

)αesc 

, (4) 

iving rise to an additional two free parameters, αesc and f esc , 10 . 
Not all dark matter haloes can contribute to reionization. Internal

eedback mechanisms and/or inefficient gas cooling can suppress
tar formation in low-mass haloes. This behaviour is parametrized
ia an ef fecti v e duty-c ycle: 

 duty = exp 

(
−M turn 

M h 

)
, (5) 

ith (1 − f duty ) defining the fraction of star-forming galaxies that
re suppressed below a characteristic mass scale M turn (e.g. Giroux,
utherland & Shull 1994 ; Shapiro, Giroux & Babul 1994 ; Hui &
nedin 1997 ; Barkana & Loeb 2001 ; Springel & Hernquist 2003 ;
esinger & Dijkstra 2008 ; Okamoto, Gao & Theuns 2008 ; Sobac-

hi & Mesinger 2013a , b ). 

.2 Galaxy X-ray properties 

n addition to contributing the UV photons responsible for driving
eionization, the first galaxies also emit X-ray photons which escape
nd heat the cold IGM gas. The origin of the X-ray photons is
hought to be stellar remnants left o v er from earlier star formation
pisodes. To model the X-ray heating caused by these energetic
hotons 21CMFAST computes a cell-by-cell angle-averaged specific
-ray intensity, J ( x , E, z) (in erg s −1 keV 

−1 cm 

−2 sr −1 ), 

 ( x , E, z) = 

(1 + z) 3 

4 π

∫ ∞ 

z 

d z ′ 
cd t 

d z ′ 
εX e 

−τ , (6) 

y integrating the co-moving X-ray specific emissivity, εX ( x , E e , z 
′ ),

ack along the light-cone accounting for IGM attenuation, e −τ . The
pecific emitted emissivity, E e = E(1 + z ′ ) / (1 + z), is then 

X ( x , E e , z 
′ ) = 

L X 

SFR 

[
(1 + δ̄nl ) 

∫ ∞ 

0 
d M h 

d n 

d M h 
f duty Ṁ ∗

]
, (7) 

here δ̄nl is the mean, non-linear o v erdensity in a shell centred on
he simulation cell ( x , z) and the quantity in square brackets is the
FR density along the light-cone with d n 

d M h 
corresponding to the halo

ass function (HMF). 4 The quantity L X / SFR (erg s −1 keV 

−1 M 

−1 
�

r) is the specific X-ray luminosity per unit star formation escaping
he host galaxies which depends on the spectral energy distribution
escribing the source of X-rays, L X ∝ E 

−αX . Throughout, we adopt
X = 1, consistent with local Uni verse observ ations of high-mass
-ray binaries (e.g. Mineo, Gilfanov & Sunyaev 2012 ; Fragos et al.
013 ; Pacucci et al. 2014 ). 
Finally, we normalize L X / SFR by its integrated soft-band ( < 2

eV) luminosity per SFR (in erg s −1 M 

−1 
� yr), 

 X < 2 keV / SFR = 

∫ 2 keV 

E 0 

d E e L X / SFR , (8) 

ith E 0 denoting the minimum X-ray photon energy capable of
scaping the host galaxy into the IGM. 
 Throughout this work we adopt the Sheth–Tormen HMF (Sheth, Mo & 

ormen 2001 ) as our fiducial HMF. 

https://github.com/21cmfast/21cmFAST
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.3 Ionization and thermal state of the IGM 

he thermal state of the IGM is computed via the IGM spin tem-
erature, T S , which is determined by self-consistently computing the 
eating and ionization rates owing to structure formation, Compton 
cattering off CMB photons, heating following partial ionizations, 
nd X-ray heating and ionizations. To calculate T S we determine its
eighted mean, 

 

−1 
S = 

T −1 
CMB + x αT 

−1 
α + x c T 

−1 
K 

1 + x α + x c 
, (9) 

here T K , T α , and T CMB are the gas, Lyman α (Ly α) colour, and CMB
emperatures. T S depends on the local gas density and Ly α radiation 
ntensity, with the Ly α background sourced by the cumulative sum 

f X-ray excitations of neutral hydrogen atoms and direct stellar 
mission of Lyman band photons by the first galaxies. The quantities 
 α and x c are the coupling coefficients for the Wouthuysen–Field 
echanism (Wouthuysen 1952 ; Field 1958 ) and between the free 

lections and CMB photons, respectively. 
Calculating the 3D ionization of the IGM requires the application 

f excursion-set theory (Furlanetto, Zaldarriaga & Hernquist 2004 ) 
n the evolved density field. This compares the cumulative number of
onizing photons, n ion , to the total number of neutral hydrogen atoms
lus cumulative recombinations, n̄ rec (Sobacchi & Mesinger 2014 ) 
ithin spheres of decreasing radii, R, and corresponding o v erdensity, 

R . Evaluated within each individual simulation voxel, a voxel is 
eemed to be ionized when 

¯ ion ( x , z| R, δR ) ≥ (1 + n̄ rec )(1 − x̄ e ) , (10) 

here the (1 − x̄ e ) factor includes the contribution of X-rays to 
onizations and 

 ion = ρ̄−1 
b 

∫ ∞ 

0 
d M h 

d n ( M h , z| R, δR ) 

d M h 
f duty Ṁ ∗f esc N γ /b . (11) 

ere, ρ̄b is the mean baryon density and N γ /b is the total number of
onizing photons produced per stellar baryon. 5 

.4 21-cm brightness temperature 

he quantity we measure observationally is the brightness tem- 
erature, δT b ( ν), the differential intensity of the neutral hydrogen 
lluminated by the CMB (Furlanetto et al. 2006 ), 

T b ( ν) = 

T S − T CMB ( z) 

1 + z 

(
1 − e −τν0 

)
mK , (12) 

nd 

ν0 ∝ (1 + δnl )(1 + z) 3 / 2 
x H I 

T S 

(
H 

d v r / d r + H 

)
, (13) 

here τν0 is the optical depth of the neutral hydrogen which 
epends on the local gas o v erdensity, δnl ≡ ρ/ ̄ρ − 1, the neutral
ydrogen fraction, x H I , the Hubble parameter, H ( z), and the line-
f-sight gradient of the peculiar v elocity. F or simplicity the spatial
ependence of the quantities have been omitted and it is e v aluated at
he redshift z = ν0 /ν − 1. 
 By default this is assumed to be N γ /b = 5000 consistent with a Salpeter 
nitial mass function (Salpeter 1955 ). 

w
r  

[

r  

a  
 SBI  SET-UP  

.1 Parameter inference with SWYFT 

n parameter inference, the quantity of interest is the posterior, 
( θ | x ), which describes the probability distribution of obtaining 
ur model parameters, θ , given an observation, x . This characterizes 
he best set of model parameters for describing the given data. This
osterior is computed following Bayes’ theorem, 

 ( θ | x ) = 

p ( x | θ ) 

p ( x ) 
p ( θ ) , (14) 

here p( x | θ ) is the likelihood to obtain our observation given our
et of model parameters, p( θ ) characterizes our prior knowledge of
easonable values for our model parameters, and p( x ) is the evidence
f the data. 
The basic idea of SBI is to replace the explicit likelihood e v aluation

ith a stochastic simulator of the signal. With this, we generate a
raining set of data–parameter pairs, [ ( x 1 , θ1 ) , ... ( x N , θN ) ] , which are 
rawn from our prior distribution and connects our model parameters 
o the observed data. We then train a neural network on these data
o estimate either the posterior, the likelihood, or the likelihood- 
o-evidence ratio. The advantage of these approaches is that we no
onger require any assumptions on the form of the likelihood enabling 
n y comple x summary statistic to be e xplored, pro vided we can
ompute it in our forward-modelled simulations. 

In this work, we perform SBI using SWYFT (Miller et al. 2022 ).
pecifically, it performs MNRE (e.g. Durkan, Murray & Papa- 
akarios 2020 ; Hermans et al. 2021 ) to approximate the marginal

ikelihood-to-evidence ratio for any individual parameter or 2D 

arameter pair [denoted ˜ θ to signify any parameter pair; i.e ( θi , θj )
ather than the likelihood-to-evidence ratio of the entire parameter 
et]. Denoting r( x , ˜ θ ) to be this marginal likelihood-to-evidence 
atio: 

( x , ˜ θ ) ≡ p( x | ˜ θ ) 

p( x ) 
= 

p( ̃  θ | x ) 
p( ̃  θ) 

= 

p( x , ˜ θ ) 

p ( x ) p ( ̃  θ) 
, (15) 

hich is the ratio of the probability density for a jointly drawn
ample–parameter pair, x , ˜ θ ∼ p( x , ˜ θ ) and a marginally pair x , ˜ θ ∼
 ( x ) p ( ̃  θ). This ratio is estimated by training a binary classifica-

ion network, d φ( x , ˜ θ ), where φ describes the network parameters,
hich distinguishes between two hypotheses: whether the sample–
arameter pairs are jointly ( C = 1) or marginally ( C = 0) drawn.
he binary classifier is trained using a binary-cross entropy loss 

unction: 

 [ d φ( x , ˜ θ )] = −
∫ 

d x d ̃  θ
{
p( x , ˜ θ ) log d φ( x , ˜ θ ) 

+ p ( x ) p ( ̃  θ) log 
[
1 − d φ( x , ˜ θ ) 

]}
, (16) 

hich is minimized when d φ( x , ˜ θ ) approximates the probability
ensity of the jointly drawn sample–parameter pair (e.g. C = 1).
his returns 

 φ( x , ˜ θ ) = p( C = 1 | x , ˜ θ ) 

= 

p( x , ˜ θ ) 

p( x , ˜ θ ) + p( x ) p( ̃  θ) 
≡ σ [ log r( x , ˜ θ )] , (17) 

here the last equality connects the likelihood-to-evidence ratio, 
, to the binary classifier, d φ , using the sigmoid function, σ ( y) =
1 + e −y ] −1 . 

As this approach only learns the marginal likelihood-to-evidence 
atio for any parameter pair, ˜ θ , for an M-dimensional model we
re required to train M 1D and M( M − 1) / 2 2D networks to fully
MNRAS 533, 2530–2545 (2024) 



2534 B. Greig et al. 

M

d  

T  

s  

p  

s  

t  

3

O  

m  

o  

c  

a  

2
 

2  

1  

a  

o  

t  

z  

l  

t  

i  

m  

d  

(  

s  

t  

t
 

i  

T  

c  

o  

c  

m  

b  

2  

z  

P  

(  

fi  

t

3

T  

i  

o  

2  

g  

b  

6

f
t
u
S
7

f  

d  

w  

s  

t  

S  

1  

 

c

P

w  

i  

d  

o
 

t

 

r
 

t  

m
 

n  

t  

d
 

o  

t
 

o

3

U  

b  

s  

(  

c  

m  

W  

2  

b  

s  

f
 

t  

r  

e  

c  

F  

t  

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/533/2/2530/7735342 by Luisa Ferrini user on 30 N
ovem

ber 2024
escribe the marginal posterior distribution given an observation.
his is because the simulated training set generated by the stochastic
imulator inherently contains the variance due to all sampled model
arameters. Therefore, the marginalization o v er the remaining (nui-
ance) model parameters is al w ays implicitly performed and thus the
raining of the binary classifier is limited to at most two dimensions.

.2 Simulated data 

ur only requirement for SBI is that our stochastic simulator
odels the complexities of the cosmic 21-cm signal including the

bservational characteristics of realistic data and that our data set
ontains suf ficient samples. Belo w, we summarize the main steps
dopted for pipeline based on our previous work (e.g. Greig et al.
022 , 2023 , 2024 ). 
We generate 3D realizations of the cosmic 21-cm signal using

1CMFAST , simulated within 250 3 Mpc 3 comoving volumes on a
50 3 grid. The final evolved density fields are downsampled from
n initially higher resolution grid, 450 3 , after applying second-
rder Lagrange perturbation theory (e.g Scoccimarro 1998 ). We
rack the evolution of the 21-cm signal from z = 25 down to
 = 5 . 2 and stitch together the comoving simulation cubes via
inear interpolation to generate a 21-cm light-cone. Using the same
raining set as constructed in Greig et al. ( 2024 ) we have 150 000
ndependent realizations of the cosmic 21-cm signal for our forward-

odelled training set. 6 Note, for this work, non-linear redshift-space
istortions (RSDs) were not included in the simulated 21-cm signal
e.g. Mao et al. 2012 ; Jensen et al. 2013 ). Primarily, these RSDs
erve to elongate the 21-cm power along the line of sight amplifying
he anisotropy of the 21-cm signal. As a result, differences between
he 2D PS and 1D PS are likely to be underestimated in this work. 

Radio interferometers are only sensitive to the spatial fluctuations
n the signal and thus the observed data are zero mean distributed.
o mimic this, we first split our 21-cm light-cones into equal
omoving distance (250 Mpc) chunks. This choice is adopted in
rder to measure our 1D and 2D PS using a 3D cubic volume for
omputational ease. For each of these chunks we then remo v e the
ean signal before adding in the instrumental effects as outlined

elo w. Follo wing Greig et al. ( 2024 ), we split our simulated 3D
1-cm light-cone into 10 equal co-moving chunks spanning from
 = 5 . 7 to z = 18 . 1, from which we measure either the 1D or 2D
S. Although the SKA is designed to be sensitive down to 50 MHz
 z ∼ 27 . 8), at these redshifts the thermal noise dominates o v er our
ducial model therefore we limit the redshift dimension for our data

o z ≤ 18. 

.2.1 Instrumental noise 

o add interferometric noise along with the finite resolution of the
nstrument to our simulated 21-cm data we use a modified version
f the publicly available PYTHON module 21CMSENSE 7 (Pober et al.
013 , 2014 ). Pro vided an y antenna configuration 21CMSENSE first
enerates the corresponding uv-visibility tracks for each sampled
aseline before gridding for computational efficiency. Specifically
NRAS 533, 2530–2545 (2024) 

 Note this choice was deliberately chosen to be conserv ati ve and in fact we 
ound we could reco v er comparable posteriors as our main results when using 
raining sets up to 25–50 per cent smaller. Overall, computing the training data 
sed e xclusiv ely for this work (i.e. 21-cm PS and 2D PS data using only the 
heth-Tormen HMF) took roughly 150 000 CPU hours. 
 https:// github.com/ jpober/ 21cmSense 

e  

i  

d  

f  

8

T

or this work, we use the SKA configuration System Baseline Design
ocument 8 which includes 512 37.5m antennae stations distributed
ithin a 500m core radius. These stations are modelled assuming a

ystem temperature, T sys = 1 . 1 T sky + 40 K and a corresponding sky

emperature of T sky = 60 
(

ν
300 MHz 

)−2 . 55 
K (Thompson, Moran &

wenson 2007 ). For our set-up, we assume a total observing time of
000 h based on a single 6-h phase-tracked scan of the sky per night.
Taking the gridded uv- visibilities as input, 21CMSENSE then

omputes the total thermal noise power, P N ( k); 

 N ( k) ≈ X 

2 Y 

�′ 

2 t 
T 2 sys , (18) 

here X 

2 Y performs the cosmological conversions between observ-
ng bandwidth, frequenc y, and co-mo ving distance, �′ is a beam-
ependent factor derived by Parsons et al. ( 2014 ), and t is the total
bserving time. 
As we are interested in 3D noise realizations rather than the 1D

otal noise power we perform the following modifications: 

(i) We first 3D Fourier transform the input (simulated) mean
emo v ed 21-cm data cube. 

(ii) We then filter this cube using the gridded uv- visibilities for
he SKA computed by 21CMSENSE . Cells with finite uv-co v erage are

ultiplied by unity, all others are set to zero. 
(iii) At each cell we then determine the amplitude of the thermal

oise, P N ( k x , k y , k z ), using equation ( 18 ) where k x and k y correspond
o the two transverse (on-sky) directions and k z is the line-of-sight
irection. 
(iv) We then add random noise (zero mean with variance based

n the PS amplitude in the cell) to each cell to mimic the effect of
hermal noise. 

(v) Finally, we then 3D inverse Fourier transform back to obtain
ur noisy 21-cm data. 

.2.2 The foreground wedge 

nfortunately, individual uv visibilities from a radio interferometer
aseline are frequency-dependent. This means that the line-of-
ight (frequency-dependent) power can leak into the transverse
frequenc y-independent) F ourier modes resulting in a well-defined
ontaminated ‘wedge’ in c ylindrical 2D F ourier space (Datta, Bow-
an & Carilli 2010 ; Morales et al. 2012 ; Parsons et al. 2012 ; Trott,
ayth & Tingay 2012 ; Vedantham, Udaya Shankar & Subrahmanyan

012 ; Th yag arajan et al. 2013 , 2015a , b ; Liu, Parsons & Trott 2014a ,
 ; Pober et al. 2016 ; Murray & Trott 2018 ). This gives rise to two
eparate philosophies for dealing with this wedge contamination:
ore ground remo val and fore ground a v oidance. 

In the first case, we assume that we can mitigate or ‘clean’
hese contaminated modes (see e.g. Chapman & Jeli ́c 2019 for a
e vie w, or using machine learning Gagnon-Hartman et al. 2021 )
nabling us to reco v er and use the entire 21-cm signal. In the latter
ase, we conserv ati vely a v oid this wedge contaminated region of
ourier space and only use the ‘clean’ Fourier modes located above

his ‘wedge’. In this work, we shall consider both scenarios when
xploring the 2D PS for parameter inference. Note, in both of these
nstances, we assume that the impact of foregrounds can be perfectly
ealt with, that is, after following the removal or a v oidance of the
oregrounds we are left with a clean cosmological signal. Ho we ver,
 http:// astronomers.skatelescope.org/ wp-content/ uploads/ 2016/ 09/ SKA- 
EL- SKO- 0000422 02 SKA1 LowConfigurationCoordinates-1.pdf

https://github.com/jpober/21cmSense
http://astronomers.skatelescope.org/wp-content/uploads/2016/09/SKA-TEL-SKO-0000422_02_SKA1_LowConfigurationCoordinates-1.pdf


EoR parameter inference using the 2DPS 2535 

Figure 1. The v olume-a veraged IGM neutral fraction (left panel) and the mean brightness temperature signal (right panel) for our fiducial astrophysical 
parameter set used for constructing our mock observation. 
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his will not be the case for realistic observations which will contain
ome residual artefacts from the various cleaning algorithms within 
he data. Currently, there has been few efforts to investigate the 
onsequences of imperfect fore ground remo val. Nasirudin et al. 
 2020 ) demonstrated that performing astrophysical inference using 
he 21-cm PS in the presence of realistic foregrounds could result
n some parameters being strongly biased. More recently, Bianco 
t al. ( 2024 ) explored the ability to correctly identify ionized regions
ith synthetic 2D images of 21-cm data in the presence of realistic

oreground residuals. Using a U-Net, these authors achieved high 
evels of precision for the ionized region classification when the 
ontrast of the data relative to the noise was fairly high. Nevertheless,
onsiderably more work is required to study the impact of imperfect 
ore ground remo val. 

While the foreground removal case utilizes the full simulated 21- 
m data, performing wedge a v oidance requires an additional step to
hose discussed in the previous section. The boundary defining this 
oreground ‘wedge’ in 2D Fourier space is given by 

 ‖ = mk ⊥ 

+ b, (19) 

here k ‖ and k ⊥ 

are the line-of-sight and transv erse F ourier modes,
 is a additive buffer which we assume to be �k ‖ = 0 . 1 h Mpc −1 

hich accounts for bleeding of noise extending beyond the horizon 
imit, and m is the gradient of this boundary given by 

 = 

D C H 0 E( z) sin ( θ ) 

c(1 + z) 
. (20) 

his boundary depends on the comoving distance, D C , the Hubble 
onstant, H 0 , cosmological factor E( z) = 

√ 

�m 

(1 + z) 3 + �� 

, and 
in ( θ ) denotes the observed viewing angle for our observation, for
hich we assume as θ = π/ 2 (i.e. a zenith pointing observation). 
In order to account for the foreground wedge, we must remo v e the

ourier modes from below the wedge. Therefore, after 3D Fourier 
ransforming our input 3D 21-cm data cube, we first zero all modes
hat fall below this foreground ‘wedge’ before adding the thermal 
oise for all modes abo v e the wedge. 

.3 Mock 21-cm obser v ation 

xploring the 2D PS for parameter inference requires the construc- 
ion of a mock observation of the 21-cm signal. For this, we assume
he same fiducial parameter set as in Greig et al. ( 2024 ). Namely,
e select parameters for our UV galaxies in line with the reco v ered
odel of Qin et al. ( 2021 ) based on Ly α forest observations by
osman et al. ( 2018 ). Below we summarize the individual model
arameter values along with their associated flat prior ranges and 
n Fig. 1 we provide the v olume-a veraged IGM neutral fraction and
ean brightness temperature as a function of redshift: 

(i) log 10 ( f ∗, 10 ) = −1 . 10; ∈ [ −3 . 0 , 0 . 0] 
(ii) α∗ = 0 . 5; ∈ [ −0 . 5 , 1 . 0] 
(iii) log 10 ( f esc , 10 ) = −1 . 30; ∈ [ −3 . 0 , 0 . 0] 
(iv) α∗ = −0 . 35; ∈ [ −1 . 0 , 0 . 5] 
(v) log 10 ( M turn ) = 8 . 55; ∈ [8 . 0 , 10 . 0] 
(vi) t ∗ = 0 . 5; ∈ [0 . 05 , 1 . 0] 
(vii) L X < 2 keV / SFR = 40 . 50; ∈ [38 . 0 , 42 . 0] 
(viii) E 0 = 0 . 5; ∈ [0 . 1 , 1 . 5] 

In Fig. 2 we compare the 1D and 2D PS for the first four redshift
anges extracted from our mock observation of the 21-cm light-cone. 
dditionally, we demonstrate the differences in measured PS as a 

esult of the two distinct treatments of the astrophysical foregrounds. 
or the 1D PS demonstrated in the top row, we distinguish between
erfect foreground wedge removal (black) and wedge-a v oidance 
red). The black vertical dashed lines correspond to the region of the
D PS between which we use for performing astrophysical parameter 
nference, namely k = 0 . 1 and 1.0 Mpc −1 . The impact of ignoring
he foreground contaminated wedge region is clearly evident here, 
estricting the range of Fourier modes accessible for performing our 
nference. Beyond the visible removal of modes, there will also be
ess spherically averaged modes per k-bin for the wedge a v oidance
ase, which will also lead to an increase in the corresponding sample
ariance uncertainty resulting in broadened inferred astrophysical 
osteriors. 
In the middle panel of Fig. 2 we provide the 2D PS assuming

erfect fore ground remo val, whereas the bottom panel corresponds 
o the wedge-a v oidance scenario. The vertical and horizontal dashed
ines correspond to the boundaries for the Fourier modes we shall
onsider for our parameter inference from the 2D PS. These are
elected to roughly balance modes that are adequately sampled by 
ur simulation volume and also to correspond to the same scales as
sed in our inference pipeline for the 1D PS. Namely, we consider
 ⊥ 

= 0 . 05 and 0.9 Mpc −1 and k ‖ = 0 . 08 and 0.9 Mpc −1 . Note,
lthough with these boundaries it is possible to sample modes at

 > 1 Mpc −1 (where k = 

√ 

( k 2 ⊥ 

+ k 2 ‖ ) ) these modes are the most
MNRAS 533, 2530–2545 (2024) 
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M

Figure 2. Comparison of the 1D PS and the 2D PS from four different redshift ranges obtained from our simulated 21-cm light-cone. Top row: the 1D PS 
assuming perfect foreground removal (black curve) and after wedge a v oidance (red curve). The vertical dashed lines at k = 0 . 1 and 1.0 Mpc −1 correspond to 
the region within which we use for parameter inference. Middle row: the 2D PS assuming perfect foreground removal. The vertical dashed lines correspond to 
k ⊥ = 0 . 05 and 0.9 Mpc −1 and the horizontal dashed lines correspond to k ‖ = 0 . 08 and 0.9 Mpc −1 . We use all 2D PS information bounded within these regions 
for our parameter inference. Bottom row: the 2D PS after performing wedge a v oidance (observing only modes abo v e the wedge denoted by the diagonal black 
dashed line). 
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e verely af fected by instrumental thermal noise and thus will not
rovide much additional constraining power. 
From these two panels it is immediately clear the significant impact

hat the foreground wedge has on our ability to measure the 21-cm
ignal. In terms of the 2D PS, the foreground wedge contaminates
ell o v er 60 per cent of the Fourier modes contained within our
oundaries to be used for parameter inference. Further, this only gets
orse for increasing redshifts as the wedge boundary is redshift-
ependent. Ho we ver, what matters is where the information is lost.
he vast majority of the information is lost for large k ⊥ 

, which
s less sensitive to the astrophysical parameters. In the case of the
D PS, most of the constraining power comes from the ‘knee’ like
eature around k ∼ 0 . 1 Mpc −1 (see Greig & Mesinger 2015 ) which
orresponds to the typical sizes of the ionized regions. Since the 2D
S still has reasonable sampling of these modes, that is for low k ⊥ 

, we
hould not see such a drastic reduction in constraining power between
he two foreground mitigation scenarios as we are still sensitive to
he morphological information both during the EoR and in the epoch
NRAS 533, 2530–2545 (2024) 
f X-ray heating (EoH). It will be instructive to quantify the relative
ifference between the two mitigation strategies. 
Note there are several competing effects leading to our inability

o access information below k ∼ 0 . 15 Mpc −1 for the 1D PS. Simply
ncreasing the simulation size does not immediately alleviate the
ssue. First, as we aim to mimic realistic observations of the 21-cm
ignal from a radio interferometer, when computing the 1D PS we do
ot consider the case when k ⊥ 

= 0 (i.e. k = k ‖ ). These modes are not
isible to radio interferometers as the minimum available baseline
s the diameter of the receiving element (dish or antennae station).
his, coupled with the definition of the foreground wedge, severely

imits the spherically binned Fourier modes below k ∼ 0 . 15 Mpc −1 .
or instance, we have our horizon buffer at 0 . 1 h Mpc −1 , which
ets the minimum allowed for k ‖ (equation 19 ). Therefore, to obtain
 ∼ 0 . 1 Mpc −1 for wedge-a v oidance, we require k ⊥ 

� 0 . 015 Mpc −1 

orresponding to a simulation with side-length of at least ∼420 Mpc.
o we ver, this is for one single mode, to have a reasonable statistical

ampling of k ⊥ 

� 0 . 015 Mpc −1 we would require at least 2 − 3
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imes larger side-lengths, corresponding to � 1 Gpc. Generating such 
arge simulation volumes for parameter inference is infeasible. Of 
ourse, this would be less severe if we remo v ed this additiv e horizon
uffer. Importantly, since we can obtain a reasonable statistical 
ampling of Fourier modes for our 2D PS in the case of perfect
ore ground remo v al, our simulation volumes are suf ficient for this
nalysis. 

 PARAMETER  INFERENCE  WITH  T H E  2 D  PS  

.1 Estimating the posteriors with SBI 

n SWYFT , to obtain our desired marginal posterior distributions for
ur astrophysical parameters we need to construct neural networks to 
earn the likelihood-to-evidence ratios given our mock observation 
f the 21-cm signal. Within each of the 10 250 Mpc co-moving
hunks of the 21-cm light-cone used to mimic an observation with 
he SKA we also restrict the number of Fourier modes to be used
or our inference pipeline to those between k = 0 . 1 Mpc −1 and
 = 1 . 0 Mpc −1 for both the 1D and 2D PS. This results in a
otal of 60 1D PS data points when considering wedge a v oidance.
hese data points are then simply taken as the input layer to
 three-layered fully connected neural network consisting of 256 
eurons. That is, we do not use an embedding network to reduce
he dimensionality of the input data prior to the fully connected 
eural network. For the 1D PS under perfect foreground removal, 
e instead reco v er eight F ourier modes within our defined boundary,

esulting in a total of 80 1D PS data points. For this, we use the
ame network architecture, with these 80 data points being the input 
ayer. 

For the 2D PS, as one would expect we have considerably more
nput data. Considering wedge-a v oidance, and our corresponding 
ourier cuts, we obtain 161 data points for the 2D PS. This is not
 v erly restrictiv e computationally and thus we retain these data as a
inear input layer for our three-layered neural network. On the other 
and, assuming perfect foreground removal, we have a total of 900 
ata points. In this work, we choose to apply a linear transformation
o these data to reduce them down to 256 features with which we
ake as our 1D input to our three-layered neural network, with 512
eurons per layer. That is, we adopt this linear transformation as
n embedding network. Ho we ver, gi ven that the 2D PS naturally
ends itself to a 2D image representation of the data, one could
nstead apply a CNN as our embedding network to more optimally 
xtract the features within the data. For example, Breitman et al. 
 2024 ) found that applying a CNN to the 1D PS data represented
s a 2D image ( k, z) impro v ed the o v erall performance of their
mulator, implying better relative performance at feature extraction. 
ev ertheless, after e xploring sev eral different network architectures, 
e found this linearization of the data to be sufficient to extract

he data, given the number of Fourier modes that are dominated by
hermal noise. Ho we ver, in future we will return to this to perform
 more rigorous exploration of optimal network architectures for 
xtracting the rele v ant features of our data. 

For all the above MNRE networks, the training was performed in 
atches of size 64 along with an initial learning rate of 10 −3 that is
ecayed by 0.95 after each epoch. The total training time for each
etwork varied between ∼ 1 and 2 h using a single Nvidia A100. 
onsidering more aggressive learning rates, increasing the number 
f neurons within each neural network layer or more advanced 
mbedding networks (for foreground removal with the 2D PS) did 
ot substantially impro v e the performance of the resultant MNRE
etworks. 
.2 Perfect for egr ound r emo v al 

irst, we consider the somewhat optimistic case of perfectly remov- 
ng foreground contamination enabling the full use of the Fourier 
nformation (see e.g. Fig. 2 ). In Fig. 3 , we present the 1D and 2D
arginalized posteriors following our SBI approach with SWYFT 

or our mock 21-cm observation. For this we demonstrate the 
esultant posteriors for the 2D (1D) PS by the black (red) curves,
especti vely. Belo w the marginalized 1D PDFs along the diagonal
e demonstrate the 95th percentile joint 2D posteriors. In Table 1
e summarize the reco v ered constraints and marginalized 68th 
ercentile uncertainties for our eight astrophysical model parameters. 
dditionally, in Appendix A we demonstrate our trained network 

o v erage demonstrating its convergence. 
The 2D PS outperforms the 1D PS as e vident by the narro wer
arginalized posteriors between the two summary statistics. How- 
 ver, the relati ve improvements are relatively modest. Based on
he 68th percentile marginalized uncertainties we see on average 
mpro v ements of approximately (5, 15, 30, 30, 40, 20) per cent for
 f ∗, 10 , α∗, f esc , 10 , αesc , M turn , L X< 2 keV / SFR ) with no impro v ement
or t ∗ or E 0 . Recall, in this work we do not include non-linear RDSs
n our simulations of the 21-cm signal, thus these differences likely
nderestimate the actual differences when RSDs are included which 
erve to amplify the anisotropy of the 21-cm signal along the line
f sight, k ‖ . Nevertheless, these modest impro v ements are consistent
ith the Fisher Matrix expectations of Prelogovi ́c & Mesinger ( 2024 )
ho predict relativ e impro v ements of 15 per cent on the variance of

he individual parameters based on the factor of ∼ 2 impro v ement in
he total Fisher information. Note, we find little to no impro v ement
n the X-ray parameters between the 2D PS and 1D PS. Likely,
his is due to the selection of only two free X-ray parameters,
 X< 2 keV / SFR and E 0 , in our model. L X< 2 keV / SFR is constrained
y the PS amplitude and is relatively independent of the EoH
orphology. By only having one morphological X-ray parameter, 
 0 , combined with the increasing thermal noise to higher redshifts
e limit the ability for the 2D PS to outperform the 1D PS. If we
ere to additionally consider the spectral index of the X-ray photons,
X , as a free parameter, which is degenerate with E 0 , then we would
nticipate the 2D PS outperforming the 1D PS for this parameter
ombination due to the additional 2D spatial information provided 
y the 2D PS, although the relative improvement would still depend
n the thermal noise amplitude. 
These impro v ements in the constraining power arise due to the

istinction of the Fourier information into their transverse ( k ⊥ 

)
nd redshift evolving ( k ‖ ) components. Although the relative noise
n each individual k ⊥ 

, k ‖ bin increases due to the larger sample
 ariance relati v e to the spherically av eraged k-bins of the 1D PS, the
nisotropic nature of the 21-cm signal yields additional information 
see e.g. Fig. 2 ). By having the transverse spatial information inde-
endent of redshift we are more sensitive to the spatial morphology
uring the EoR and EoH. That is, sampling k ⊥ 

for a specific k ‖ 
rovides unique information about the relative amplitudes of the 
patial fluctuations as a function of redshift, providing more fine- 
rained detail than the 1D PS, which averages the anisotropic signal
nto the ‘knee’-like feature at k ∼ 0 . 1 Mpc −1 . 

F or e xample, since we are more sensitiv e to the spatial morphology
i.e. distribution of the ionized regions as a function of scale and
edshift), we reco v er impro v ed constraints on the parameters that
ontrol the typical sizes of the ionized regions. Namely M turn which
efines the characteristic masses of the star-forming galaxies and 
oth the normalizations and mass-dependent power-law indices of 
MNRAS 533, 2530–2545 (2024) 
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M

Figure 3. The reco v ered one- and two-dimensional marginalized posteriors on our astrophysical parameters assuming a mock 1000 h observation of the 21-cm 

signal assuming perfect fore ground remo val with the SKA. The black curves correspond to using the 2D c ylindrically av eraged PS (2D PS), whereas the red 
curves correspond to the 3D spherically averaged PS (1D PS). The 2D contours below the diagonal correspond to the 95th percentiles. The vertical and horizontal 
black dashed lines denote our fiducial astrophysical parameter set. 
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 ∗ and f esc which control the production of UV ionizing photons and
heir escape into the IGM to drive ionizations. 

.3 For egr ound avoidance 

n Fig. 4 , we no w sho w the marginalized 1D and 2D posteriors
or the same mock 21-cm observation of the 1D (teal dashed) and
D PS (magenta dashed) except when assuming foreground wedge
 v oidance for a 1000 h observation with the SKA. For comparison,
e also show the posteriors for the 2D PS assuming perfect
NRAS 533, 2530–2545 (2024) 

r  
ore ground remo val. Again, we pro vide the reco v ered constraints
nd 68th percentile uncertainties in Table 1 . 

As one would e xpect, considering fore ground a v oidance results in
educed constraining power relative to perfect foreground removal.
o we ver, the 2D PS still outperforms the 1D PS, albeit to a slightly

esser e xtent. Av eraging o v er the marginalized 68th percentile
ncertainties, we reco v er impro v ements of approximately (40, 10,
5, 15, 15) per cent for ( α∗, αesc , M turn , t ∗, L X< 2 keV / SFR ), with
ittle to no impro v ement for the remaining parameters. In short, the
D PS al w ays outperform the 1D PS irrespective of the foreground
emo val strate gy. Note, the slightly different selection of parameters
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Table 1. A summary of the reco v ered astrophysical parameter constraints plus 68th marginalized uncertainties obtained following SBI on our mock observation 
of the 21-cm signal using either the 1D or 2D PS. We also consider two foreground mitigation strategies: (i) perfect foreground removal and (ii) foreground 
a v oidance for a 1000 h observation using the SKA. Finally, we consider the impro v ements in the constraining power following the inclusion of UV LFs (see the 
text for further details). 

log 10 ( f ∗, 10 ) α∗ log 10 ( f esc , 10 ) αesc log 10 ( M turn ) t ∗ log 10 
L X< 2 keV 

SFR E 0 

(M �) (erg s −1 M 

−1 
� yr −1 ) (keV) 

Mock observation −1.1 0.5 −1.30 −0.35 8.55 0.5 40.5 0.5 

F ore ground remo val 
1D PS −1.12 + 0 . 10 

−0 . 11 0.51 + 0 . 07 
−0 . 08 −1.26 + 0 . 12 

−0 . 16 −0.37 + 0 . 06 
−0 . 06 8.61 + 0 . 14 

−0 . 11 0.53 + 0 . 12 
−0 . 12 40.48 + 0 . 02 

−0 . 02 0.51 + 0 . 01 
−0 . 01 

2D PS −1.13 + 0 . 11 
−0 . 11 0.55 + 0 . 06 

−0 . 07 −1.31 + 0 . 11 
−0 . 09 −0.37 + 0 . 04 

−0 . 04 8.49 + 0 . 08 
−0 . 07 0.54 + 0 . 09 

−0 . 14 40.51 + 0 . 02 
−0 . 01 0.50 + 0 . 01 

−0 . 01 

1D PS + UV LFs −1.13 + 0 . 10 
−0 . 11 0.49 + 0 . 05 

−0 . 06 −1.29 + 0 . 08 
−0 . 10 −0.31 + 0 . 04 

−0 . 04 8.57 + 0 . 07 
−0 . 07 0.60 + 0 . 13 

−0 . 09 40.50 + 0 . 01 
−0 . 01 0.51 + 0 . 01 

−0 . 01 

2D PS + UV LFs −1.09 + 0 . 10 
−0 . 10 0.46 + 0 . 06 

−0 . 05 −1.32 + 0 . 10 
−0 . 12 −0.34 + 0 . 03 

−0 . 04 8.60 + 0 . 07 
−0 . 07 0.46 + 0 . 13 

−0 . 13 40.50 + 0 . 01 
−0 . 01 0.51 + 0 . 01 

−0 . 01 

F ore ground a v oidance 
1D PS −1.14 + 0 . 10 

−0 . 13 0.48 + 0 . 13 
−0 . 19 −1.25 + 0 . 12 

−0 . 14 −0.29 + 0 . 14 
−0 . 08 8.60 + 0 . 27 

−0 . 15 0.48 + 0 . 14 
−0 . 15 40.47 + 0 . 03 

−0 . 03 0.49 + 0 . 03 
−0 . 02 

2D PS −1.10 + 0 . 11 
−0 . 12 0.51 + 0 . 08 

−0 . 11 −1.24 + 0 . 11 
−0 . 15 −0.27 + 0 . 10 

−0 . 11 8.43 + 0 . 18 
−0 . 15 0.53 + 0 . 16 

−0 . 10 40.48 + 0 . 03 
−0 . 02 0.48 + 0 . 04 

−0 . 03 

1D PS + UV LFs −1.11 + 0 . 13 
−0 . 13 0.45 + 0 . 08 

−0 . 09 −1.20 + 0 . 13 
−0 . 11 −0.30 + 0 . 05 

−0 . 05 8.47 + 0 . 16 
−0 . 12 0.58 + 0 . 16 

−0 . 12 40.49 + 0 . 03 
−0 . 02 0.49 + 0 . 04 

−0 . 03 

2D PS + UV LFs −1.13 + 0 . 11 
−0 . 13 0.36 + 0 . 09 

−0 . 06 −1.30 + 0 . 12 
−0 . 11 −0.30 + 0 . 05 

−0 . 05 8.49 + 0 . 15 
−0 . 13 0.57 + 0 . 15 

−0 . 11 40.51 + 0 . 03 
−0 . 03 0.45 + 0 . 03 

−0 . 03 
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hat reco v er slight impro v ements (e.g. f ∗, 10 , f esc , 10 , and t ∗) between
he two foreground strategies are due to the strength of the complex
arameter degeneracies and the fairly modest actual impro v ements 
n these specific parameters. 

After considering foreground a v oidance, we do not see an im-
ro v ement in f ∗, 10 or f esc , 10 , with the only impro v ements in f ∗ and
 esc coming from their power-law mass dependence (e.g. α∗ and αesc ). 
evertheless, we still recover improvements of ∼ 10 − 40 per cent 

or M turn and these power-law indices which highlights that even 
hen applying foreground a v oidance, we still pick up additional 

nformation from the spatial morphology of the 21-cm signal due 
o how the 2D PS distinguishes the structural information from that 
f redshift evolution. This is despite the fact that after applying 
oreground a v oidance we loose more than 60–80 per cent of the
D PS Fourier modes (see e.g. Fig. 2 ). Ho we ver, predominately
his information loss is for larger k ⊥ 

’s, with still relatively decent
ampling of k ⊥ 

at � 0 . 1 Mpc −1 where we predominately extract
ost of the constraining information (Greig & Mesinger 2015 ). At 

hese scales, we are still reco v ering the redshift evolution of the 21-
m signal (e.g. k ‖ ), therefore we remain sensitive to how the EoR
orphology evolves with redshift. This enables the still relatively 

trong constraints on our astrophysical parameters. 
Relative to perfect foreground removal, for the 2D PS we deter- 
ine increases in the marginalized 68th percentiles of approximately 

5, 50, 30, 275, 200, 5, 70, 300) per cent for ( f ∗, 10 , α∗, f esc , 10 , αesc ,
 turn , t ∗, L X< 2 keV / SFR , E 0 ) by considering foreground a v oidance.
ver our entire mock 21-cm observation with the 2D PS, foreground 
 v oidance results in a loss of ∼ 60 –80 per cent of the 2D Fourier
odes owing to the redshift dependence of the foreground wedge. 
herefore, despite the loss in o v er approximately five times the
mount of information, we do not exhibit such severe losses in 
onstraining power. What is important is not the total amount 
f information lost, but rather where this information is lost. As
ighlighted abo v e, we still access the redshift evolution of the 21-cm
S on those scales most sensitive to the EoR (e.g. k ⊥ 

∼ 0 . 1 Mpc −1 ).
s a result, we reco v er relativ ely more modest losses in constraining
ower on our EoR parameters. Nevertheless, the loss in information 
elow the wedge at moderate scales, k ⊥ 

∼ 0 . 5 does limit our ability
o constrain M turn which drives the increased uncertainties in the 
ower-la w indices. F or the X-ray parameters, the relativ e losses are
ore significant, and this is due to the increasing amplitude of the
edge during the heating epoch removing more spatial information 
the wedge mo v es v ertically upward in Fig. 2 for increasing redshift).
hus, we have considerably less spatial information during the EoH 

eating. Ho we ver, despite these uncertainties increasing by up to a
actor of ∼ 3 the X-ray parameters are still very strongly constrained,
ighlighting how sensitive the X-ray parameters are tied to the 
mplitude of the 21-cm signal. 

Repeating this analysis for the 1D PS, we reco v er increases in
he marginalized 68th percentiles of approximately (10, 200, 10, 
00, 70, 25, 60, 300) per cent for ( f ∗, 10 , α∗, f esc , 10 , αesc , M turn ,
 ∗, L X< 2 keV / SFR , E 0 ) by considering foreground a v oidance instead
f foreground removal. These relative increases are comparable in 
mplitude to those for the 2D PS, as one would expect. Again, this
ighlights that it is not the amount of information lost, rather where
he information is lost relative to where the 21-cm signal is most
ensitive. 

.4 Mock 2D PS obser v ation with UV LFs 

hus far, we have only considered the relative improvements in our
strophysical parameter constraints when considering the 2D PS 

ompared to the 1D PS. Ho we ver, one can also include additional
onstraining information from alternative probes of the reionization 
poch, such as observed UV luminosity functions (LFs). This simply 
equires concatenating the UV LF data to the existing PS data and
assing this information into SWYFT and retraining the ratio networks. 
n the case of the 1D PS, the role of the UV LFs is to break the
e generac y between f ∗ and f esc improving the constraining power
n these parameters and consequently also on M turn (Park et al. 2019 ).
ince these same parameters are more strongly constrained with the 
D PS relative to the 1D PS, it will thus be illustrative to consider a
oint observation of the 2D PS and UV LFs. 

F ollowing P ark et al. ( 2019 ), we consider a limited selection
f observed UV LFs at z = 6 (Bouwens et al. 2017 ), z = 7 and
 (Bouwens et al. 2015 ), and z = 10 (Oesch et al. 2018 ). This
hoice is moti v ated by limiting the systematic differences across
he various groups within the literature and how each deals with
heir observational and statistical uncertainties. Ideally, to be truly 
obust (and conserv ati ve) one should average across all results in the
iterature to obtain a mean UV LF with a scatter encompassing all
he differences across the various results. In future, we shall return
MNRAS 533, 2530–2545 (2024) 
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M

Figure 4. The same as Fig. 3 except now considering a 1000 h observation with the SKA assuming foreground wedge a v oidance. The magenta (teal) dashed 
contours correspond to the 2D (1D) PS, whereas the black contours represent the 2D PS assuming foreground removal for comparison. 
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o this while also extending our UV LF sampling to higher redshifts
s observed by the JWST (e.g. Castellano et al. 2022 ; Harikane
t al. 2022 ; Naidu et al. 2022 ; Atek et al. 2023 ; Bouwens et al.
023 ; Donnan et al. 2023 ; Labb ́e et al. 2023 ; Willott et al. 2024 ).
mportantly, when including UV LFs into our inference pipeline, we
nly consider UV magnitudes fainter that M UV < −20, for which it
s argued that these are relatively dust-free (see Park et al. 2019 ). 

In Fig. 5 we demonstrate the 1D and 2D marginalized posteriors
or a mock 1000 h observation of the 2D PS in addition to UV LFs at
 = 6 , 7 , 8, and 10. Below the diagonal the orange (black) contours
orrespond to the 95th percentile joint marginalized posteriors when
onsidering wedge removal with (without) UV LFs. Above the
NRAS 533, 2530–2545 (2024) 
iagonal, we provide the equi v alent follo wing foreground a v oidance
ith the magenta (purple) dashed contours denoting with (without)
V LFs. Finally, in Table 1 we summarize the constraints and 68th
ercentile marginalized uncertainties. 
In both cases, it is clear that the complimentary constraining

ower from the UV LFs impro v es the o v erall constraints on our
strophysical parameters using the 2D PS. In general, we find the
mplitude of the impro v ements are larger for wedge a v oidance
elative to wedge removal. For example, we recover improvements
f ∼ 20 and ∼ 30 per cent for α∗ and αesc along with ∼ 15 per cent
mpro v ements for M turn , whereas for wedge removal, at most we see
mpro v ements of ∼ 10 per cent for these same parameters. These
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Figure 5. The reco v ered one- and two-dimensional marginalized posteriors on our astrophysical parameters assuming a mock 1000 h observation of the 21-cm 

signal using the 2D PS from the SKA combined with UV LFs at z = 6 –10. Below the diagonal, we consider the case of perfect foreground removal, with 
the orange (black) curves corresponding to with (without) the UV LFs, respectiv ely. Abo v e the diagonal, we present the results instead assuming foreground 
a v oidance, with the magenta (purple) dashed curves denoting observations with (without) the UV LFs. In all cases, the 2D contours represent the joint 95th 
percentile marginalized uncertainties. The vertical and horizontal black dashed lines denote our fiducial astrophysical parameter set. 
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elatively larger gains for foreground wedge a v oidance following the 
nclusion of the UV LF information are due to the originally broader
onstraints and stronger degeneracies on the UV galaxy parameters, 
amely α∗ and f esc , 10 . For the 2D PS with perfect foreground 
emo val, since we hav e additional structural information on the EoR
orphology through k ⊥ 

, we are able to limit the de generac y between
∗ − f esc , 10 (see Fig. 4 ). Therefore, since this de generac y is already
educed, the relative gains for the 2D PS with perfect foreground
emoval with UV LFs are also reduced. 

Interestingly, once we include UV LFs with the 1D and 2D
S, the 68th percentile uncertainties become similar. That is, the 
elati ve dif ference between the reported uncertainties for the 2D
S + UV LFs and the 1D PS + UV LFs has been reduced
ompared to the differences between just the 2D PS and the 1D
MNRAS 533, 2530–2545 (2024) 
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S. Now, we reco v er at most impro v ements of ∼ 10 per cent when
onsidering the 2D PS + UV LFs relative to the 1D PS + UV
Fs (compared to up to 30 per cent in the absence of the UV
F data for the 2D PS compared to the 1D PS). This holds true

or either foreground mitigation strategy, with foreground removal
till notably outperforming foreground a v oidance. The origin of this
maller difference between the 2D PS and the 1D PS following
he inclusion of the UV LF data is due to where the additional
nformation is provided. As highlighted earlier, compared to the 1D
S, the 2D PS is more sensitive to the EoR morphology as the
tructural information, k ⊥ 

, is kept distinct from the redshift evolving
omponent of the 21-cm signal ( k ‖ ). This enables the 2D PS to
mpro v e o v er the 1D PS at constraining the EoR parameters, notably
educing the de generac y between α∗ and f esc , 10 . 

Ho we ver, including UV LF data serves a similar purpose. The
dditional constraining power provided by the UV LFs adds unique
nformation on f ∗ which leads to a reduction of the same de generac y
etween α∗ and f esc , 10 . Ho we ver, the reduction in this de generac y
s stronger with the unique information from the UV LF data than
t is for the additional information that the 2D PS provides relative
o the 1D PS. Thus, the inclusion of the constraining power from
he UV LFs somewhat minimizes the contribution to the o v erall
mpro v ements in constraining power that come from just the 2D PS
elative to the 1D PS. However, this behaviour is likely dependent
n the underlying astrophysical model parametrization. A model
ith either additional astrophysical parameters or more complex

calings with mass or redshift that are more sensitive to the EoR
orphology (e.g. the 2D PS) would more significantly benefit from

he increased information that arises from the 2D PS compared
o the 1D PS. Thus, for astrophysical models containing more
iscriminating power in the 2D PS relative to the 1D PS, we would
xpect that the constraints obtained from 2D PS + UV LFs would
ore strongly outperform those from the 1D PS. + UV LFs as the UV
Fs lik ely w ould add little additional information to more complex
arametrizations. 

 C O N C L U S I O N S  

n recent years, SBI has begun to gain traction for performing
ayesian inference from the 21-cm signal to gain insights into the
alaxies responsible for reionization (e.g. Zhao et al. 2022a , 2022b ;
relogovi ́c & Mesinger 2023 ; Saxena et al. 2023 ; Greig et al. 2024 ).
he significant advantage of SBI is that it applies machine learning
rinciples to bypass the requirement to have an analytic expression
o describe the likelihood function to accurately describe our 21-cm
ummary statistics. By removing this crucial bottleneck we are now
ble to rigorously explore more complex summary statistics than
he simple, but e xtensiv ely e xplored 1D spherically av eraged power
pectrum (1D PS). As a demonstration of the power of SBI, in this
ork we explore using the 2D cylindrically averaged PS (2D PS),
hich has previously been o v erlooked owing to the complexities in

omputing its likelihood. 
F or e xploring the 2D PS we consider a mock 1000 h observation

f the 21-cm signal using the SKA. Throughout, we simulate the
1-cm signal using 21CMFAST (Mesinger & Furlanetto 2007 ;
esinger et al. 2011 ; Murray et al. 2020 ), in particular the flexible
V galaxy parametrization introduced in Park et al. ( 2019 ). As a

esult we have an eight-parameter astrophysical model to describe
he UV and X-ray properties of the first galaxies responsible for
riving reionization. Further, we consider two foreground mitigation
trate gies: (i) perfect fore ground remo val whereby we have access
o the whole 2D information and (ii) foreground a v oidance where
NRAS 533, 2530–2545 (2024) 
e only use the pristine cosmological signal abo v e the fore ground
ontaminated wedge. Throughout, we perform SBI using MNRE to
earn the likelihood-to-evidence for performing parameter inference
sing SWYFT (Miller et al. 2022 ). 
When considering perfect foreground removal, we find the 2D PS

utperforms the 1D PS by reducing the 68th percentile uncertainties
n individual parameters by up to ∼ 30 –40 per cent. These relative
mpro v ements in the 2D PS o v er the 1D PS are consistent with
ecent predictions using the amplitude of the Fisher Information
Prelogovi ́c & Mesinger 2024 ). Primarily, the most significant gains
re in M turn which ef fecti vely describes the minimum mass for star-
orming galaxies along with α∗ and αesc which describe the mass
ependence of star formation efficiency, f ∗ and IGM escape fraction,
 esc . These impro v ements are achiev ed due to the 2D PS cleanly
eparating the transverse information, k ⊥ 

, from the redshift-evolving
omponent of the signal, k ‖ . In this way, we are more sensitive
o the redshift evolution of the ionization morphology allowing for
mpro v ed constraints on the UV galaxy parameters. Unlike the 1D
S which combines and averages the anisotropic information into a
ingle k when spherically averaging. 

Even when performing foreground a v oidance, when we lose a
arge fraction of the 2D PS information relative to the case of
erfect foreground removal, the 2D PS still outperforms the 1D PS.
o we ver, the relati ve boosts in performance are reduced, with only
0 –30 per cent impro v ements on our individual model parameters.
evertheless, the largest gains remain for M turn , α∗, and αesc . This

mplies that despite the loss of a large fraction of information due to
oreground contamination, distinguishing between the spatial ( k ⊥ 

)
nd frequency-dependent ( k ‖ ) Fourier modes still yields additional
onstraining power o v er the 1D PS for constraining the UV galaxy
arameters during the EoR. 
Comparing the two foreground mitigation strategies directly,

e find foreground a v oidance results in increased 68th percentile
ncertainties of at worst ∼ 2 –3 compared to fore ground remo val.
n general, the largest increases are for the X-ray parameters,
hich are due to the growth of the foreground contaminated region

owards larger redshifts, where the 21-cm signal is more sensitive
o the X-ray contribution. Ho we ver, we also see increases in the
ncertainties at a similar level for αesc and M turn , owing to the loss of
 significant fraction of spatial ( k ⊥ 

) information due to foreground
edge contamination. For the remainder, the 68th marginalized
ncertainties increase by ≤ 70 per cent. 
Finally, we also include independent astrophysical information

y considering UV galaxy LFs at z = 6 − 10. Doing so, we find
mpro v ements of ∼ 10 per cent primarily on α∗, αesc , and M turn 

or foreground removal. For foreground a v oidance, we find im-
ro v ements of up to ∼ 20 –30 per cent for these same parameters.
enerally speaking, for the 1D PS the addition of UV LFs is

o break the de generac y between f ∗ and f esc . Ho we ver, for the
D PS, as it is more sensitive to the EoR morphology through
he distinct spatial information, the f ∗- f esc de generac y is not
early as strong. Therefore, the UV LFs have reduced benefit
or fore ground remo val o v er fore ground a v oidance as we ha ve
dditional 2D spatial information to reduce this otherwise strong
e generac y. 
The power of SBI is that it enables the study of complex and

on-Gaussian summary statistics of the 21-cm signal to be explored
n the context of astrophysical parameter inference. Here, we have
emonstrated the value of SBI with the first study of the more
omplex 2D PS. In future, to maximize the wealth of information
xpected to be available from the 21-cm signal we will explore
lternative non-Gaussian statistics with SBI. 
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9 Specifically, this interval is obtained from the 68.27 per cent central interval 
of a Beta distribution defined by the parameters n − k + 1 / 2 , k + 1 / 2, where 
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PPENDI X  A :  ASSESSING  N E T WO R K  

OV E R AG E  

ne of the key defining features of SBI approaches such as MNRE is
hat once the network is trained they allow for the rapid reco v ery of
he posteriors for any new realization of the input data. In this case, we
an perform parameter inference for a large number of mock observa-
ions drawn from within our prior range to determine how frequently
hey fall within their predicted posteriors. Measuring this frequency
or a sufficiently large number of models enables the computation of
he network co v erage (e.g. Cole et al. 2022 ). This large number of
irect posterior e v aluations provides a much more robust quantity to
ndicate network convergence than those typically adopted by direct

CMC approaches (e.g. Betancourt 2019 ; Roy 2020 ). 
Following Cole et al. ( 2022 ), we define � ˆ p ( ̂ θ | x i ) (1 − α) to be a

unction which determines the (1 − α) highest probability density
egion (HPDR) for our estimated posterior, ˆ p ( ̂ θ | x i ), given the input
odel-parameter pair, x i , θ

∗
i . To demonstrate, a 95 per cent HPDR

ould correspond to α = 0 . 05. For a set of n independently drawn
odel-parameter pairs we can then determine the actual error rate
 − ˆ α of the HPDR given our estimated posterior: 

 − ˆ α = 

1 

n 

n ∑ 

i= 1 

1 

[
θ∗

i ∈ � ˆ p ( ̂ θ | x i ) (1 − α) 
]
. (A1) 

he quantities α ( ̂  α) are redefined in terms of a ne w v ariable, z,
orresponding to the 1 − α/ 2 (1 − ˆ α/ 2) quantile of the standard
ormal distribution. By definition this implies the 1 σ , 2 σ , 3 σ regions
orrespond to z = 1 , 2 , 3 with 1 − α = 0 . 6827 , 0 . 9545 , 0 . 9997. The
ncertainties on the error rate ˆ α are determined by the Jeffreys
nterval (Cole et al. 2022 ). 9 In Fig. A1 we present the empirical
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Figure A1. The empirical expected coverage probability of our trained MNRE network with SWYFT (vertical axis) as a function of the confidence level 
(horizontal axis). The purple line demonstrates the co v erage of our network, with the goal of perfect co v erage denoted by the diagonal black dashed line. The 
dotted lines indicate the co v erage for the 68th, 95th, and 99.7th percentiles, whereas the shaded region corresponds to the Jeffrey’s interval (see the text for 
further details). 
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 xpected co v erage probability of our trained network as a function
f confidence levels for all 1D and 2D marginalized posteriors 
sing 5000 unique realizations drawn randomly from our posterior 
olume. Optimal network performance is demonstrated by the black 
ashed curves. If the coverage probability resides above the black 
ashed line, the network co v erage is deemed conserv ati ve (i.e. our

 is the total number of samples from the joint model and k is the number
f times the HPDR predicted by the network does not contain the true
strophysical parameters. 
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ctual error rate is lower than the theoretical error implying larger
han expected posteriors uncertainties), whereas if it is below the 
iagonal it is considered o v erconfident. F or the vast majority of
ur astrophysical parameters, our co v erage probability is aligned or
bo v e the black dashed line indicating strong co v erage performance.
ollowing the performance of our co v erage tests we are confident

hat our results are robust. 
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