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0 Singular solutions of the Yamabe problem in the

Heisenberg group and their bifurcation

Claudio Afeltra∗

Abstract

We prove the existence of a homogeneous singular solution of the crit-

ical equation

−∆u = u
Q+2
Q−2

on the Heisenberg group Hn, where Q is the homogeneous dimension. In

order to do this, we introduce a suitable concept of normal curvature for

hypersurfaces. Furthermore we study the bifurcation of non-homogeneous

solutions from the homogeneous one.

1 Introduction

The Yamabe problem has drawn a large interest in Riemannian geometry. Its
solution in the compact case (due to the works of Yamabe, Trudinger, Aubin
and Schoen) has constituted a major advance in the fields of geometric analysis
and partial differential equations, and it has been drawing attention until today
(on this topic see, for example, [A] for a general treatment).

In the field of CR geometry, the analogous problem of finding a conformal
metric with constant Webster curvature (the analogous of scalar curvature).

On the Heisenberg group, which is the “model” CR manifold, the Yamabe
problem is equivalent to finding the positive solutions of the equation

−∆u = u
Q+2

Q−2 , (1)

where ∆ is the sublaplacian and Q is the homogeneous dimension (precise defi-
nitions are given later).

The positive solutions of this equation satisfying some integrability hypothe-
ses were classified by Jerison and Lee [JL]; geometrically they correspond to con-
formal factors that trasform the standard pseudohermitian structure of Hn into
the push-forward of the pseudohermitian structure of the sphere S2n+1 ⊂ Cn+1

with respect to the Cayley transform, up to translations and dilations. This
classification plays an important role in the solution of the CR Yamabe prob-
lem, see [JL2], [GY], [Gam] and [CMY].
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Additionally to this, it is interesting to study the problem onHn\{0}. In the
Riemannian case all the solutions singular at a point were classified by Caffarelli,
Gidas and Spruck (see [CGS]). These form a continuous one-parameter family
of radially periodic metrics depending on a parameter τ ∈ (0, 1], called Delaunay
metrics: for τ = 1 the metric is homogeneous and corresponds to the cylindrical
metric, and for τ → 0 tends to a superposition of regular solutions. This
classification has been useful in the study of the profiles of general singular
solutions (see [KMPS]), as well as in the study of blow-ups in the problem of
prescribed curvature (see [Li1], [Li2], [CL]).

The author of this article proved (see [Af]) the existence of analogues of the
Delaunay metrics for small values of τ , constructed by perturbing an approx-
imated solution consisting of a series of regular solutions suitable dilated. In
this article, it is proved the existence of a homogeneous solution analogous to
the Euclidean one:

Theorem 1.1. There exists a solution Ψ of the equation

−∆Ψ = Ψ
Q+2

Q−2 ,

defined on Hn \ {0}, such that Ψ ◦ δλ = λ
Q−2

2 Ψ and Ψ(z, t) = Ψ(|z|, t).

The above result is proved by posing the problem in a variational form, and
then performing a conformal change that trasforms Hn \ {0} in a pseudohermi-
tian cylinder, and imposing symmetries in order to reduce the problem to an
ODE with variational structure.

The main difficulty is that, because of the non compactness of Hn \ {0}, the
problem has to be formulated on a closed annulus {1 ≤ |x| ≤ r} (where | · | is the
homogeneous norm), and so one has to put boundary conditions that, under a
conformal change, behave in a treatable way. It is known that the mean curva-
ture behaves in such a way, indeed the prescription of the mean curvature of the
boundary is considered the most natural boundary condition in the prescribed
curvature problem for manifolds with boundary (see, for example, [E]). In our
case there is not such a concept, except in dimension three (see [CHMY]). So
we introduce, in arbitrary dimension, the notion of canonical pseudohermitian
normal curvature. In such a way we can formulate variationally the problem
of the prescription of the Webster curvature with boundary conditions, with a
functional that is conformally invariant.

In the second part of the article, we study the problem of the bifurcation
of radially periodic solutions from the homogeneous one we found. That is,
considering a parameter T , we want to prove that solutions to equation (1) such

that u◦δT = T−
Q−2

2 bifurcate from the homogeneous solution for infinitely many
values of T . This problem has a variational structure: the radially periodic
solutions are critical points of a certain functional JT : XT → R whose Morse
index tends to infinity for T → ∞, and so, such that its second differential is
singular for infinitely many values of T . We prove the following result.

Theorem 1.2. There exists arbitrarily large values of T for which d2JT is
singular, and every such value is a bifurcation value.
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The article is structured as follows. After the preliminaries of Section 2,
in Section 3 we introduce a notion of curvature of a hypersurface in a pseudo-
hermitian manifold that serves our purposes. In Section 4 we prove Theorem
(1.1) solve the problem by a conformal change of pseudohermitian metric, and
through the imposition of natural simmetries. In Section 5 we study the problem
of bifurcation.

2 Preliminaries and notation

For a general introduction to CR manifolds we refer to [DT], but we recall here
some basic concepts.

A CR manifold is a real smooth manifold M endowed with a subbundle
H of the complexified tangent bundle of M , TCM , such that H ∩ H = {0}
and [H ,H ] ⊆ H . We will assume M to be of hypersurface type, that is
that dimM = 2n + 1 and that dimH = n. There exists a non-zero real
differential form θ that is zero on Re(H ⊕ H ); it is unique up to scalar mul-
tiple by a function. Such a form is called pseudohermitian or contact form.
On a pseudohermitian manifold, the Levi form on H is defined as the 2-form
Lθ(V,W ) = −idθ(V,W ) = idθ([V,W ]). A CR manifold is said to be pseudo-
convex if it admits a positive definite Levi form (this implies every Levi form
to be definite), it is said nondegenerate if it admits a nondegenerate Levi form.
An almost complex structure J can be defined on H(M) = Re(H + H ) in a
natural way, by J(V + V ) = i(V − V ). There exists a unique vector field T
such that θ(T ) = 1 and iTdθ = 0. This permits to define a natural Riemannian
metric gθ, which coincides with the metric Gθ associated to Lθ on H(M), and
such that gθ(T, T ) = 1 and T is orthogonal to H(M).

On a nondegenerate pseudohermitian manifold one can define a connection,
the Tanaka-Webster connection. This allows to define curvature operators in an
analogous manner as in Riemannian geometry: the pseudohermitian curvature
tensor is the curvature of the Tanaka-Webster connection, the Ricci tensor is

Ric(X,Y ) = trace(Z 7→ R(Z,X)Y ),

and the Webster scalar curvature is the trace of the Ricci tensor with respect
to the Levi form.

If θ̃ = u2/nθ, the transformation law of the Webster curvature is

W̃ = u−1−2/n

(
−
2n+ 2

n
∆bu+Wu

)
, (2)

(see [DT]), where ∆b is the sublaplacian, which can be defined as the divergence
of the subgradient with respect to the natural volume form in such context,
θ ∧ (dθ)n. So the Yamabe problem leads to the equation

−
2n+ 2

n
∆bu+Wu = λu1+2/n.
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The model pseudohermitian manifold, and the one we will study, is the
Heisenberg group Hn, that is the Lie group Cn ×R with the product

(z1, t1) · (z2, t2) = (z1 + z2, t1 + t2 + 2 Im(z1 · z2)),

endowed with the subbundle spanned by the standard left invariant vector fields

Zα =
∂

∂zα
+ izα

∂

∂t
,

and with the unique left invariant pseudohermitian with respect to this CR
structure. In this case the sublaplacian coincides with the group sublaplacian
given by

∆ = 2

n∑

α=1

(ZαZα + ZαZα).

We will use also the Koranyi norm, given by

|(z, t)| =
(
|z|4 + t2

)1/4
,

and the dilations given by

δλ(z, t) = (λz, λ2t)

for λ > 0. Notice that, in the above notation, |δλx| = λ|x|.
It turns out that Hn has zero Webster curvature, and so, up to an inessential

constant, the Yamabe problem is equivalent to find positive solution to equation

−∆u = u
Q+2

Q−2 ,

(where Q = 2n+ 2 is the homogeneous dimension).
An important transformation in the Heisenberg group is the Kelvin inversion

K : H \ {0} → H \ {0}

given by

K (z, t) =

(
−iz

t+ i|z|2
,−

t

ρ4

)
.

K leaves the unit sphere invariant, but, unlike its analogous on the Euclidean
space, it does not fix the unit sphere pointwise.

We recall the following formulas from [L] for conformal changes of pseudo-
hermitian metric, to which we refer also for the notation.

Proposition 2.1. If Z1, . . . , Zn are . . . and ∇Zα = ωβ
α ⊗ Zβ and θα..., then,

under the conformal change θ 7→ θ̃ = e2fθ, the Tanaka-Webster connection
trasforms as

ω̃β
α = ωβ

α + 2(fβθ
α − fαθ

β) + δβα(fγθ
γ − fγθγ) + F · θ

(where F is a function of f explicitly known, but whose expression is irrelevant
for our purposes).
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3 The canonical pseudohermitian normal curva-

ture

Let Σ be a two-sided hypersurface inM such that V = dim(TΣ∩H(M)) = 2n−1
at every point. If N is a normal vector field to Σ with respect to gθ, the
normalization of his orthogonal projection on H(M), ν, is normal to V . Let
ξ = −Jν. This is a canonical direction (given an orientation on Σ). So we define
the canonical pseudohermitian normal curvature of Σ as

κ = gθ(∇ξξ, ν).

Proposition 3.1. Under the conformal change θ 7→ θ̃2/nθ, κ the canonical
pseudohermitian normal curvature of the new pseudohermitian metric is given
by the formula

κu−
3

n
ν(u) = u1+

1
n κ̃.

Proof. Let us choose a frame Z1, . . . , Zn for H such that Z1 + Z1 = ξ and
Z2, . . . , Zn form a frame for (TΣ ⊗ C) ∩ H . Because of formula (4.2) in [L],

ω1
1
= −ω1

1 . Then, since ν = i(Z1 − Z1),

κ = gθ(∇ξξ, ν) = igθ(∇ξZ1 +∇ξZ1, Z1 − Z1) =

= igθ(ω
α
1 (ξ)Zα + ωα

1
(ξ)Zα, Z1 − Z1) =

= −iω1
1(ξ)gθ(Z1, Z1)− iω1

1(ξ)gθ(Z1, Z1) = −iω1
1(ξ).

Applying Lee’s formula, since h11 = 1 we obtain that

ω̃1
1 = ω1

1 + 2(f1θ
1 − f1θ

1) + δ11(f1θ
1 − f1θ1) + F · θ =

= ω1
1 + 3(Z1fθ

1 + Z1fθ
1
) mod θ.

Considering that after the conformal change the Levi form is multiplied by e2f ,
and so the canonical tangent vector becomes ξ̃ = e−fξ, we obtain that

κ̃ = −iω̃1
1(ξ̃) = −ie−f(ω1

1 + 3(Z1fθ
1 − Z1fθ

1
))(ξ) =

= e−fκ− 3i(Z1fθ
1 − Z1fθ

1
))(Z1 + Z1) = e−fκ− 3i(Z1 − Z1)f =

= e−fκ− 3ν(f).

This concludes the proof.

Recall that the Webster curvature transforms by the formula

−bn∆bu+Wu = W̃u1+
2
n ,

where bn = 2 + 2
n . Now let us pick a frame of H(M), e1, . . . , e2n such that

e2n−1 = ξ, e2n = ν, and such that it is orthonormal with respect to the Levi
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form. Let e1, . . . , e2n be the dual basis thereof. Then, if Zα = 1
2 (e2α−1 − ie2α)

and Zα = 1
2 (e2α−1 + ie2α), the dual basis thereof, θ1, . . . , θn is given by the

formula θα = e2α−1 + ie2α. It holds that

θα ∧ θα = (e2α−1 + ie2α) ∧ (e2α−1 − ie2α) = −2ie2α−1 ∧ e2α.

By the definition of the Levi form we have

dθ = i

n∑

α=1

θ2α−1∧θ2α = i

n∑

α=1

(e2α−1+ ie2α)∧ (e2α−1− ie2α) = 2

n∑

α=1

e2α−1∧e2α,

so

θ ∧ (dθ)n = 2nθ ∧

(
n∑

α=1

e2α−1 ∧ e2α

)n

= 2nn!θ ∧ e1 ∧ . . . ∧ en = 2nn! volgθ .

We want to give a variational formulation to the problem of the prescription
of the Webster curvature and the prescription of the canonical pseudohermitian
normal curvature on the boundary.

Proposition 3.2. The functional

Q(v) =

∫

M

(bn|∇v|
2 +Wv2)θ ∧ (dθ)n − cn

∫

∂M

κv2σ ∧ θ,

where cn = bn
3 n2

nn! and σ = e1 ∧ e2 ∧ . . . ∧ e2n−1, is invariant by the transfor-
mation

θ 7→ θ̃ = u2/nθ, v 7→ ṽ = vu−1.

Proof. Under this conformal change Gθ 7→ u2/nGθ, and so ∇̃ = u−2/n∇. There-
fore

∫

M

|∇̃ṽ|2θ̃ ∧ (dθ̃)n =

∫

M

u−2/n|∇(u−1v)|2u2(n+1)/nθ ∧ (dθ)n =

= u2
∫

M

|u−1∇v − u−2v∇u|2θ ∧ (dθ)n =

=

∫

M

(
|∇v|2 + u−2v2|∇u|2 − 2u−1v∇u · ∇v

)
θ ∧ (dθ)n =

=

∫

M

|∇v|2 +

∫

M

(
v2|∇ log u|2 −∇ log u · ∇(v2)

)
θ ∧ (dθ)n =

=

∫

M

|∇v|2+

∫

M

v2
(
|∇ log u|2 +∆b log u

)
θ∧(dθ)n−2nn!

∫

∂M

v2gθ(∇ log u, ξ)V ,

where V is the volume form associated to the restiction of gθ. It is easy to
verify that for every X in H(M), the restriction of gθ(ξ,X)V is equal to the
restriction of e2n(X)σ ∧ θ. So

∫

M

|∇̃ṽ|2θ̃ ∧ (dθ̃)n =

6



=

∫

M

|∇v|2 +

∫

M

v2
(
|∇ log u|2 +∆b log u

)
θ∧ (dθ)n − 2nn!

∫

∂M

v2ν(log u)σ ∧ θ.

Thanks to the conformal change formula,
∫

M

W̃ ṽ2θ̃ ∧ (dθ̃)n =

∫

M

(−bnu
−1−2/n∆bu+Wu−2/n)v2u−2u2+2/nθ ∧ (dθ)n =

=

∫

M

(−bnu
−1∆bu+W )v2θ ∧ (dθ)n.

It holds that

∆b log u = div(∇ log u) = div

(
∇u

u

)
=

∆bu

u
−

|∇u|2

u2
=

∆bu

u
− |∇ log u|2,

and so
∫

M

W̃ ṽ2θ̃∧ (dθ̃)n =

∫

M

Wv2θ∧ (dθ)n − bn

∫

M

(∆b log u+ |∇ log u|2)v2θ∧ (dθ)n.

Finally

∫

∂M

κ̃ṽ2σ̃ ∧ θ̃ =

∫

∂M

(
u−1/nκ−

3

n
u−1−1/nν(u)

)
v2u−2u2+1/nσ ∧ θ =

=

∫

∂M

κv2σ ∧ θ −
3

n

∫

∂M

ν(log u)v2σ ∧ θ.

By summing the above identities we get the desired result.

One can easily check the following Proposition

Proposition 3.3. A conformal change has Webster curvatureW1 and canonical
pseudohermitian normal curvature κ1 if and only if it is a stationary point of
the functional

IW1,κ1
(v) = Q(v)−

n

n+ 1

∫

M

W1v
2+2/nθ ∧ (dθ)n +

ncn
2n+ 1

∫

∂M

κ1v
2+1/nσ ∧ θ,

that is invariant for the same transformation of Q.

4 Proof of Theorem 1.1

Now that we have a variational and conformally covariant formulation of the
problem of prescribed curvature with boundary conditions, thanks to Proposi-
tion 3.3, we study this problem on suitable annuli, imposing that the boundary
has zero curvature, a natural condition because of the simmetry given by the
Cayley transform. So let us study the problem

{
−bn∆bu = u1+2/n on Ar

− 3
nν(u) + κAr

u = 0 on ∂Ar
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where Ar = Br \ B1, and Br = Br(0) with respect to the Koranyi norm. The
latter problem is equivalent to find the critical points of

I(v) = bn

∫

M

|∇v|2θ ∧ (dθ)n − cn

∫

∂M

κv2σ ∧ θ −
n

n+ 1

∫

M

v2+2/nθ ∧ (dθ)n.

We restrict the functional to functions such that u(x, t) = u(|x|, t).
Let us consider the conformal change

θ 7→ θ̃ = ρ−2θ,

where ρ = |x|.

Lemma 4.1. The Webster curvature of θ̃ is

W̃ = −bnu
−1− 2

n∆bu = −bnρ
n+2∆b(ρ

−n) = bnn
2 |x|

2

ρ2
,

and the mean curvature of the boundary of Ar is zero.

Proof. We have

Xα(ρ
4) =

(
∂

∂xα
+ 2yα

∂

∂t

)
(|x|4 + t2) =

= 4(x3α + (|x|2 − x2α)xα + yαt) = 4(|x|2xα + yαt);

Yα(ρ
4) =

(
∂

∂yα
− 2xα

∂

∂t

)
(|x|4 + t2) = 4(|x|2yα − xαt);

X2
α(ρ

4) = 4

(
∂

∂xα
+ 2yα

∂

∂t

)
(x3α + |yα|

2xα + yαt) = 4(|x|2 + 2|xα|
2 + 2|yα|

2);

Y 2
α (ρ

4) = 4

(
∂

∂yα
− 2xα

∂

∂t

)
(y3α + |xα|

2yα − xαt) = 4(|x|2 + 2|xα|
2 + 2|yα|

2).

X2
α(ρ

−n) = Xα(Xα((ρ
4)−n/4)) = −

n

4
Xα(ρ

−n−4Xα(ρ
4)) =

=
n(n+ 4)

16
ρ−n−8|Xα(ρ

4)|2 −
n

4
ρ−n−4X2

α(ρ
4) =

=
n(n+ 4)

16
ρ−n−816(|x|2xα + yαt)

2 −
n

4
ρ−n−44(|x|2 + 2|xα|

2 + 2|yα|
2) =

= n(n+ 4)ρ−n−8(|x|2xα + yαt)
2 − nρ−n−4(|x|2 + 2|xα|

2 + 2|yα|
2),

and analogously

Y 2
α (ρ

−n) = n(n+ 4)ρ−n−8(|x|2yα − xαt)
2 − nρ−n−4(|x|2 + 2|xα|

2 + 2|yα|
2),
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so

∆b(ρ
−n) =

n∑

α=1

(X2
α + Y 2

α )(ρ
−n) =

= n(n+ 4)ρ−n−8(|x|6 + |x|2t2)− 2n(n+ 2)ρ−n−4|x|2 = −n2ρ−n−4|x|2.

Since u = ρ−n, by formula (2) we get the desired result.
It can be readily verified that the Kelvin transform is isopseudohermitian

with respect to θ̃ (that is, it preserves the pseudohermitian structure). Also
the transformations of Hn of the form (z, t) 7→ (Az, t) with A unitary, and
the dilations, are isopseudohermitian. So, for every point x of ∂Ar, there is
a isopseudohermitian transformation that fixes x, leaves its component of ∂Ar

invariant, but reverses the orientation. Since reversing the orientation changes
sign to κ̃, it follows that κ̃ = 0.

Since the Cayley transform is isopseudohermitian with respect to θ̃ (that
is, it preserves the pseudohermitian structure), and that the transformations of
Hn of the form (z, t) 7→ (Az, t) with A unitary also are, it can be proved by
simmetry that κ̃ = 0.

Therefore, thanks to Proposition 3.3,

Ĩ(v) = bn

∫

Ar

(
|∇̃v|2

θ̃
+ n2 |x|

2

ρ2
v2
)
θ̃ ∧ (dθ̃)n −

n

n+ 1

∫

Ar

v2+2/nθ̃ ∧ (dθ̃)n.

We want to impose that the solution is homogeneous and symmetric, in the

sense that u ◦ δλ = λ
Q−2

2 u and u(x, t) = u(|x|, t).
We want to express this functional in suitable coordinates.

Lemma 4.2. If v = v(|x|, t), in the coordinates l = 1
n log ρ ∈ R, τ = t/ρ2 ∈

[−1, 1] and γ = x/|x| ∈ S2n−1, it holds that

|∇̃v|2
θ̃
= (1− τ

2)3/2
∣∣∣∣
∂v

∂τ

∣∣∣∣
2

+
1

4n2
(1− τ

2)1/2
∣∣∣∣
∂v

∂l

∣∣∣∣
2

.

Proof. A transformation of Hn of the form (x, t) 7→ (Ax, t) with A linear is an
isomorphism of the pseudohermitian structure if and only if A is unitary. Since
this kind of transformations preserves the sphere of unit radius, and since the
action of the unitary group is transitive between vectors of the same length, we
can calculate |∇̃v|2

θ̃
in the points of the curve

(
4
√

1− t2, 0, . . . , 0, t).

At such points

Xα =
∂

∂xα

for every α = 1, . . . , n,

Yα =
∂

∂yα

9



for every α 6= 1, and

Y1 =
∂

∂y1
− 2

4
√
1− t2

∂

∂t
.

Using the symmetry of v in x, we get

|∇̃v|2
θ̃
= v−2/n|∇v|2θ =

1

4
|X1u|

2 +
1

4
|Y1u|

2 =

=
1

4

∣∣∣∣
∂v

∂x1

∣∣∣∣
2

+ (1 − t)1/2
∣∣∣∣
∂v

∂t

∣∣∣∣
2

.

Since
∂τ

∂x1
= −

1

2
τ
3 ∂(τ

−2)

∂x1
= −

1

2

τ
3

t2
∂

∂x1
(x41 + t2) = −2tx31;

∂l

∂x1
=

1

n

∂ log ρ

∂x1
=

1

4n

∂ρ4

∂x1
=

1

n
x31;

∂τ

∂t
=

1

2
τ
−1 ∂(τ

2)

∂t
=

1

2
t−1(2t− 2t3) = (1− t2);

∂l

∂t
=

1

4n

∂ρ4

∂t
=

1

2n
t,

we obtain

|∇̃v|2
θ̃
=

1

4

∣∣∣∣
∂v

∂x1

∣∣∣∣
2

+ (1− t2)1/2
∣∣∣∣
∂v

∂t

∣∣∣∣
2

=

=
1

4

∣∣∣∣−2tx31
∂v

∂τ
+
x31
n

∂v

∂l

∣∣∣∣
2

+ (1 − t2)1/2
∣∣∣∣|x|

4 ∂v

∂τ
+

t

2n

∂v

∂l

∣∣∣∣
2

=

= t2(1− t2)3/2
∣∣∣∣
∂v

∂τ

∣∣∣∣
2

+
1

4n2
(1− t2)3/2

∣∣∣∣
∂v

∂l

∣∣∣∣
2

−
1

n
t(1− t2)3/2

∂v

∂τ

∂v

∂l
+

+(1− t2)5/2
∣∣∣∣
∂v

∂τ

∣∣∣∣
2

+
1

4n2
t2(1− t2)1/2

∣∣∣∣
∂v

∂l

∣∣∣∣
2

+
1

n
(1− t2)3/2t

∂v

∂τ

∂v

∂l
=

= (1− t2)3/2
∣∣∣∣
∂v

∂τ

∣∣∣∣
2

+
1

4n2
(1− t2)1/2

∣∣∣∣
∂v

∂l

∣∣∣∣
2

.

By the dilation invariance of θ̃ we obtain the formula in the general case

Now we compute the volume form.

Lemma 4.3. In the coordinates of Lemma 4.2

θ̃ ∧ (dθ̃)n = 2nn!(1− τ
2)(n−2)/2dl ∧ dγ ∧ dτ.

10



Proof. The volume form becomes

θ̃ ∧ (dθ̃)n = ρ−2(n+1)θ ∧ (dθ)n =
2nn!

ρ2(n+1)
volgθ =

2nn!

ρ2(n+1)
|x|2n−1d|x| ∧ dγ ∧ dt.

By an easy computation

d|x| =
1

4|x|3
d(ρ4 − t2) =

1

4|x|3
d(e4ln(1− τ

2)) =

=
1

4(1− τ
2)3/4e3nl

e4ln(4n(1− τ
2)dl − 2τdτ) =

= eln
(
n(1− τ

2)1/4dl −
τ

2(1− τ
2)3/4

dτ

)
;

dt = d(e2nlτ) = e2nl(2nτdl + dτ);

d|x| ∧ dt = e3nl
1

(1− τ
2)3/4

dl ∧ dτ,

so

θ̃ ∧ (dθ̃)n = −
2nn!

ρ2(n+1)
(1− τ

2)(2n−1)/4ρ2n−1d|x| ∧ dt ∧ dγ =

= −
2nn!

e3nl
(1− τ

2)(2n−1)/4e3nl
1

(1− τ
2)3/4

dl ∧ dτ ∧ dγ =

= 2nn!(1− τ
2)(n−2)/2dl ∧ dγ ∧ dτ,

as desired.

Using Lemmas 4.2 and 4.3 we have that

Ĩ(v) = bn

∫

Ar

(
(1− τ

2)3/2
∣∣∣∣
∂v

∂τ

∣∣∣∣
2

+
1

4n2
(1− τ

2)1/2
∣∣∣∣
∂v

∂l

∣∣∣∣
2

v2+

+n2(1− τ
2)1/2

)
2nn!(1− τ

2)(n−2)/2dl ∧ dγ ∧ dτ+

−
n

n+ 1

∫

Ar

v2+2/n2nn!(1− τ
2)(n−2)/2dl ∧ dγ ∧ dτ =

= bn2
nn!

∫ log r

n

0

∫ 1

−1

(
(1− τ

2)(n+1)/2

∣∣∣∣
∂v

∂τ

∣∣∣∣
2

+
1

4n2
(1− τ

2)(n−1)/2

∣∣∣∣
∂v

∂l

∣∣∣∣
2

v2+

+n2(1− τ
2)(n−1)/2

)
dl ∧ dτ−

n2nn!

n+ 1

∫ log r

n

0

∫ 1

−1

v2+2/n(1− τ
2)(n−2)/2dl ∧ dτ.

If τ = sin s, then

Ĩ(v) = bn2
nn!

∫ log r
n

0

∫ π
2

−
π
2

(
(cos s)n+1

(cos s)2

∣∣∣∣
∂v

∂s

∣∣∣∣
2

+
1

4n2
(cos s)n−1

∣∣∣∣
∂v

∂l

∣∣∣∣
2

+

11



+n2(cos s)n−1v2
)
dl(cos s)ds−

n2nn!

n+ 1

∫ log r

n

0

∫ π
2

−
π
2

v2+2/n(cos s)n−2dl(cos s)ds =

= bn2
nn!

∫ log r

n

0

∫ π
2

−
π
2

(cos s)n

(∣∣∣∣
∂v

∂s

∣∣∣∣
2

+
1

4n2

∣∣∣∣
∂v

∂l

∣∣∣∣
2

+ n2v2

)
dlds+

−
n2nn!

n+ 1

∫ log r

n

0

∫ π
2

−
π
2

v2+2/n(cos s)n−1dlds.

Now let us look for homogeneous solutions. Homogeous solutions in the original
setting correspond to solutions invariant by translation (in the l direction), and
so let us set ∂v

∂l = 0, and v = v(s). In this special case we have

Ĩ(v) = bn2
nn!

log r

n

∫ π
2

−
π
2

(cos s)n
(
(v′)2 + n2v2

)
ds+

−
n2nn!

n+ 1

log r

n

∫ π
2

−
π
2

v2+2/n(cos s)n−1ds.

The Euler-Lagrange equation for this functional is

−
d

ds
((cos s)nv′(s)) + n2(cos s)nv(s) =

n

2(n+ 1)
(cos s)n−1v(s)1+2/n,

or equivalently

− cos sv′′(s) + n sin sv′(s) + n2 cos sv(s) =
n

2(n+ 1)
v(s)1+2/n,

on the interval
(
−π

2 ,
π
2

)
, with Neumann boundary conditions, that is also the

Euler-Lagrange equation (up to rescaling, thanks to homogeneity) of

J(v) =

∫ π
2

−
π
2

(cos s)n
(
(v′)2 + n2v2

)
ds

∫ π
2

−
π
2

v2+2/n(cos s)n−1ds
.

Let us define the weighted Sobolev and Lebesgue spaces

X =

{
u ∈ H1

loc

(
−
π

2
,
π

2

) ∣∣∣∣∣

∫ π
2

−
π
2

(cos s)n
(
(v′)2 + v2

)
ds <∞

}
,

Y =

{
u ∈ L1

loc

(
−
π

2
,
π

2

) ∣∣∣∣∣

∫ π
2

−
π
2

(cos s)n−1v2+2/nds <∞

}
.

Proposition 4.4. X embeds compactly in Y .
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Proof. Let Z be the subspace of H1(Sn+1) formed by functions invariant by
rotation around the last coordinate axis. Every such function is of the form
v(x) = u(cosxn+2), and it is easy to verify thar under such an identification

‖v‖Z = ‖u‖X .

So this is an isometric isomorphism between X and Z. By Rellich-Kondrachov’s
theorem, Z embeds compactly into Lp(Sn) for every p ∈ [1, 2n+1

n−1 ), which by sim-

ilar arguments is isometrically isomorphic to Lp
(
(
(
−π

2 ,
π
2

)
, (cos s)nds

)
. Given

α > 0, q > 1,
∫

−
π
2

−
π
2

(cos s)n−1v2+2/nds =

∫
−

π
2

−
π
2

(cos s)n−1+α

(cos s)α
ds ≤

≤

(∫
−

π
2

−
π
2

v(2+2/n)q(cos s)(n− 1 + α)qds

)1/q (∫
−

π
2

−
π
2

(cos s)−αq′ds

)1/q′

.

If we impose that (n − 1 + α)q = n, then taking α small enough, we can find
that p =

(
2 + 2

nq
)
< 2n+1

n−1 and αq′ < n, getting that

∫
−

π
2

−
π
2

(cos s)n−1v2+2/nds ≤ C

∫
−

π
2

−
π
2

(vp(cos s)nds)1/q ,

that is
‖v‖Y ≤ C ‖v‖Lp((cos s)nds) ,

and so Lp
((

π
2 ,

π
2

)
(cos s)nds

)
embeds into Y . So we get the thesis.

Now Theorem 1.1 can be proved, in a standard way, by the direct meth-
ods of the calculus of variation. Since the solution does not depend on r, by
homogeneity this defines a solution on the whole Hn \ {0}.

5 Proof of Theorem 1.2

Let Øt = {1 ≤ |x| ≤ T } be a cylinder in the Heisenberg group. In the following,
all integrals are meant with respect to the Haar measure and volume elements
will be omitted.

Let

JT (u) =

∫

ΩT

(
|∇Hnu|2 −

1

2∗
|u|2

∗

)

be defined on the space

XT =
{
u ∈ S1

loc(H
n) | u ◦ δT = T−

Q−2

2 u
}
,

where S1
loc(H

n) is the Stein-Folland space (see [F]). Let Ψ be the homogeneous
solution of the PDE

−∆u = u2
∗
−1

found in the previous section, that is, a stationary point of JT .
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Proposition 5.1. The Morse index of JT at Ψ is finite and tends to infinity
as T → ∞.

Proof. The Morse index is finite because the operator on XT associated to the
bilinear form

d2JT (Ψ)[u, v] =

∫

ΩT

(
∇u∇v − (2∗ − 1)Ψ2∗−2uv

)

is of the sum of the identity and a compact operator (thanks to the Rellich-
Kondrachov theorem for the Stein-Folland space).

The signature of a simmetric bilinear form remains invariant passing to the
complexification and extending it to a hermitian form. So let us take

u(x) = exp

(
i
1

M
log |x|

)
Ψ(x),

where
logT

2πM
∈ Z.

Then

d2JT (Ψ)[u, u] =

∫

ΩT

(∣∣∣∣∇
(
exp

(
i
1

M
log |x|

)
Ψ

)∣∣∣∣
2

− (2∗ − 1)Ψ2∗−2Ψ2

)
=

=

∫

ΩT

(
1

M2|x|2
Ψ2 + |∇Ψ|2 + 2

1

M |x|
Ψ∇Ψ · ∇|x| − (2∗ − 1)Ψ2∗

)
=

=

∫

ΩT

(
1

M2|x|2
Ψ2 + 2

1

M |x|
Ψ∇Ψ · ∇|x| − (2∗ − 2)Ψ2∗

)
=

= −(2∗ − 2)

∫

ΩT

Ψ2∗ +

∫

ΩT

(
1

M2|x|2
Ψ2 + 2

1

M |x|
Ψ∇Ψ · ∇|x|

)
.

By homogeneity the three integrals

∫

ΩT

Ψ2∗ ,

∫

ΩT

1

|x|2
Ψ2,

∫

ΩT

1

|x|
Ψ∇Ψ · ∇|x|

are constant multiples of logT , so there exists a constant C such that if M ≥ C
then d2JT (Ψ)[u, u] is negative. Given k ∈ N, let T be big enough so that

2πk

logT
≤

1

C
.

Then the functions

um(x) = exp

(
i
2πm

logT
log |x|

)
Ψ(x)
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with m = 1, . . . , k, are such that d2JT (Ψ)[um, um] ≤ −ε logT is negative. If f
is a homogeneous function of degree zero and m 6= 0 then

∫

ΩT

exp

(
i
2πm

logT
log |x|

)
f(x)

|x|Q
=

∫

S1

dσf

∫ T

1

dr
exp

(
i 2πmlog T log r

)

r
= 0.

When calculating
d2JT (Ψ)[um, uj]

with m 6= j, the result is a sum of terms of this kind, so it is zero. So the
functions um span a vector space of dimension k on which d2JT (Ψ) is negative
definite.

In order to apply bifurcation theory, let us rewrite the functional with respect
to the pseudohermitian form given by the conformal change corresponding to
Ψ. So we get the functional

J̃T (u) =

∫

ΩT

(
|∇̃Hnu|2 +

1

2
u2 −

1

2∗
|u|2

∗

)
,

defined on the space

YT =

{
u ∈ S1

loc(H
n) | u ◦ δT = u,

∫

ØT

u = 0

}
.

Let Σ be the sphere with respect to the Euclidean metric 1. Let φk be a complete
set in L2(Σ) consisting of analytic functions. So

γk,m,T (x) = φk

(
x

|x|eucl

)
sin

(
i
2πm

logT
log |x|eucl

)

is a complete set of functions in H1(ØT ), analytic with respect to the couple
(x, T ). SO it is complete also in S1(ØT ). With the Gram-Schmidt algorithm, we
can obtain a family of Hilbert bases ψk,T of S1(ØT ), and preserve the analyticity
property. Let us define the isometry ΨT between YT and Y2 obtained sending
ψk,T into ψk,2. Let us call

LT = ΨT ◦ J̃ ′′

T (1) ◦Ψ
−1
T .

Then, for every l, k,

〈LTu2,k, u2,k〉Y2
=
〈
J̃ ′′

T (1)uk,T , ul,T

〉
YT

=

=

∫

ØT

∇̃uk,T ∇̃ul,T + uk,Tul,T − (2∗ − 1)uk,Tul,T .

It is an analytic function by the following lemma of immediate proof.

1this is necessary to perform the next steps of the proofs because the sphere with respect
to the Heisenberg metric is not smooth
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Lemma 5.2. If S : I → X, T : I → Y are two analytic vector valued functions
and L : X × Y → Z is a bilinear continuous form, then t 7→ B(S(t), T (t)) is
analytic.

So LT is an analytic operator-valued function.
It holds that

〈
J̃ ′′

T (1)u, v
〉
=

∫

ØT

∇̃u∇̃v+uv−(2∗−1)uv =

∫

ØT

∇̃u∇̃v−(2∗−2)∆(GTu)v =

=

∫

ØT

∇̃u∇̃v + (2∗ − 2)∇̃(GTu)∇̃v,

where GT : YT → YT is the Green’s operator, so

J̃ ′′

T (1) = I + (2∗ − 2)GT .

Since LT is, by definition, conjugated to J̃ ′′

T (1), it is of the form I − K(T ),
where K(T ) is an analytic operator-valued function of compact operators.

Now, by means of known results in bifurcation theory, we can prove Theorem
1.2.

Proof of Theorem 1.2. It suffices to apply Theorem 8.9 in [MW]. In our case
the hypotheses of that Theorem are all either trivial or standardly verifiable,
with exception of hypothesis γ, that is consequence of Corollary 8.3 in the same
book.
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