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Human mobility data are an important proxy to understand human mobility dynamics, develop analytical
services, and design mathematical models for simulation and what-if analysis. Unfortunately mobility data
are very sensitive since they may enable the re-identification of individuals in a database. Existing frame-
works for privacy risk assessment provide data providers with tools to control and mitigate privacy risks,
but they suffer two main shortcomings: (i) they have a high computational complexity; (ii) the privacy risk
must be recomputed every time new data records become available and for every selection of individuals,
geographic areas, or time windows. In this article, we propose a fast and flexible approach to estimate pri-
vacy risk in human mobility data. The idea is to train classifiers to capture the relation between individual
mobility patterns and the level of privacy risk of individuals. We show the effectiveness of our approach by
an extensive experiment on real-world GPS data in two urban areas and investigate the relations between
human mobility patterns and the privacy risk of individuals.
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1 INTRODUCTION

Human mobility analysis has attracted in the past decade a growing interest from different dis-
ciplines due to its importance in a wide range of applications, ranging from urban planning
and transportation engineering (Wang et al. 2012; Pappalardo et al. 2015; Marchetti et al. 2015;
Pappalardo et al. 2016) to public health (Colizza et al. 2007; Tizzoni et al. 2014). The availabil-
ity of massive collections of mobility data and the development of sophisticated techniques for
their analysis and mining (Zheng and Zhou 2011; Zheng 2015) have offered the unprecedented
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opportunity to observe human mobility at large scales and in great detail, leading to the discovery
of the fundamental quantitative patterns of human mobility (Gonzalez et al. 2008; Pappalardo et al.
2013; Song et al. 2010b; Pappalardo et al. 2015), accurate predictions of future human whereabouts
(Gambs et al. 2012; Lu et al. 2013), and the mathematical modeling of the main aspects of human
mobility dynamics (Jiang et al. 2016; Pappalardo et al. 2016; Pappalardo and Simini 2016; Song
et al. 2010a). These analyses are generally conducted on large datasets storing detailed informa-
tion about the spatio-temporal points visited by individuals in a territory, like GPS tracks (Bazzani
et al. 2010; Giannotti et al. 2011; Pappalardo et al. 2013, 2015) or mobile phone data (Gonzalez
et al. 2008; Song et al. 2010b; Simini et al. 2012; Pappalardo et al. 2015). It goes without saying
that mobility data are sensitive because people’s whereabouts might reveal intimate personal in-
formation or allow the reidentification of individuals in a database, creating serious privacy risks
(Rubinstein 2013). For example it has been shown that just four spatio-temporal points can be
enough to uniquely identify 95% of individuals in a mobility dataset (de Montjoye et al. 2013).
Therefore, if mobility data are analyzed with malicious intent, there can be a serious violation of
the privacy rights of the individuals involved.
Driven by these sensitive issues, in recent years, researchers from different disciplines have

developed algorithms, methodologies, and frameworks to mitigate the individual privacy risks
associated with the analysis of GPS trajectories, mobile phone data, and Big Data in general (Abul
et al. 2008a; Monreale et al. 2014b; Wong et al. 2007). These tools aim at preserving both the right
to privacy of individuals and the quality of the analytical results. However, to enable a practical
application of the privacy-preserving techniques proposed in the literature, it is necessary to find
a trade-off between privacy protection and data quality. To this aim Pratesi et al. (2016) proposes a
framework for the privacy risk assessment of individuals in a mobility dataset. This framework is
compliant with the new EU General Data Protection Regulation, which explicitly imposes on data
controllers an assessment of the impact of data protection for the most risky processes.1

Although frameworks like the one presented in Pratesi et al. (2016) are proved to be effective in
many mobility scenarios, they suffer a major limitation: The privacy risk assessment has a high
computational complexity because it requires a computation of the maximum risk of reidenti-
fication (or privacy risk) given the external knowledge that a malicious adversary might use in
conducting an attack. The generation of the external knowledge is nonpolynomial in time since
it considers all the possible ways the adversary can try to reidentify an individual in a mobility
dataset. The computational complexity is a severe limitation because the privacy risks must be re-
computed every time new data become available and for every selection of individuals, geographic
areas, and periods of time.
In this article, we propose a data mining approach for privacy risk assessment that overcomes

the computational shortcomings of existing frameworks. We first introduce a repertoire of rei-
dentification attacks on mobility data and then use a data mining classifier to predict the level of
privacy risk for an individual based solely on her mobility patterns. We evaluate our approach on
real-world mobility data with an extensive experiment. Starting from a dataset of around 1 mil-
lion GPS tracks produced by 12,000 private vehicles traveling in two urban areas in Italy during
one month, we extract individual mobility patterns and compute the privacy risk level associated
with vehicles according to the repertoire of reidentification attacks. We then train data mining
classifiers and use them to determine (in polynomial time) the privacy risk level of previously
unseen vehicles whose data were not used in the learning phase, based just on their individual
mobility patterns. In a scenario where a Data Analyst requests a Data Provider for mobility data to
develop an analytical service, the Data Provider (e.g., a mobile phone carrier) can use the classifiers

1The EU General Data Protection Regulation can be found at http://bit.ly/1TlgbjI.
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to immediately identify risky individuals (i.e., individuals with a high level of privacy risk). Then,
the Data Provider can select the most suitable privacy-preserving technique (e.g., k-anonymity,
differential privacy) to reduce their privacy risk and release safe data to the Data Analyst. Although
our approach is constrained to a fixed set of re-identification attacks, it can be easily extended to
any type of attack defined on human mobility data.
Our experiments on GPS data show two main results. First, the classifiers are accurate in classi-

fying the privacy risk level of unseen individuals in the two urban areas. The classifiers’ predictions
are particularly accurate in classifying the lowest and the highest levels of privacy risk, allowing
an immediate distinction between safe individuals and risky individuals. In particular, we observe
a high recall (99%) on the class of maximum privacy risk, meaning that the probability of misclas-
sifying a high-risk individual as a low-risk individual is negligible. The second remarkable result
is that the classifiers built on one urban area are effective when used to determine the privacy risk
level of individuals in the other urban area. This suggests that the predictive models are able to
infer rather general relationships between mobility patterns and privacy risk, which are indepen-
dent of the number of individuals, the width of the geographic area, and the length of the period of
observation. This means that the Data Provider can reuse the same classifiers for every selection
of the dataset without the need to redo the training process every time. Finally, we quantify the
impact of every individual mobility measure on the classifiers, observing that it changes with the
type of re-identification attack considered (i.e., different attacks are based on gathering informa-
tion about different mobility patterns). Based on the results, we think our work provides two main
contributions. First, we show that we can effectively use data mining to estimate the privacy risk of
individuals in a fast, accurate, and precise way, overcoming the computational issues related to ex-
isting frameworks. Second, we shed light on the relationships between individual human mobility
patterns and risk of re-identification, which was not clearly investigated in the literature.
The article is organized as follows. In Section 2, we define the data structures to describe human

mobility data according to different data aggregations. In Section 3, we introduce the framework
used for the privacy risk assessment, while Section 4 describes the data mining approach we pro-
pose. In Section 5, we show the results of our experiments, and we discuss them in Section 6.
Section 7 presents the main works related to our article, and, finally, Section 8 concludes the arti-
cle by proposing some lines of new research.

2 DATA DEFINITIONS

The approach we present in this article is tailored for human mobility data: data describing the
movements of a set of individuals during a period of observation. This type of data is generally
collected in an automatic way through electronic devices (e.g., mobile phones, GPS devices) in the
form of raw trajectory data. A raw trajectory of an individual is a sequence of records identifying
the movements of that individual during the period of observation (Zheng and Zhou 2011; Zheng
2015). Every record has the following fields: the identifier of the individual, a geographic location
expressed in coordinates (generally latitude and longitude), and a timestamp indicating when the
individual stopped in or went through that location. Depending on the specific application, a raw
trajectory can be aggregated into different mobility data structures:

Definition 2.1 (Trajectory). The trajectoryTu of an individualu is a temporally ordered sequence
of tuples Tu = 〈(l1, t1), (l2, t2), . . . , (ln , tn )〉, where li = (xi ,yi ) is a location, xi and yi are the coor-
dinates of the geographic location, and ti is the corresponding timestamp, ti < tj if i < j.

Definition 2.2 (Frequency vector). The frequency vectorWu of an individual u is a sequence of
tuplesWu = 〈(l1,w1), (l2,w2), . . . , (ln ,wn )〉 where li = (xi ,yi ) is a location, wi is the frequency of
the location (i.e., howmany times location li appears in the individual’s trajectoryTu ), andwi > w j

if i < j. A frequency vectorWu is hence an aggregation of a trajectory Tu .
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Definition 2.3 (Probability vector). The probability vector Pu of an individual u is a sequence of
tuples Pu = 〈(l1,p1), (l2,p2), . . . , (ln ,pn )〉, where li = (xi ,yi ) is a location, pi is the probability that
location li appears inWu (i.e., pi =

wi∑
li ∈Wu

wi
), and pi > pj if i < j. A probability vector Pu is hence

an aggregation of a frequency vectorWu .

Definition 2.4 (Mobility Dataset). A mobility dataset is a set of mobility data structures D =
{S1, S2, . . . , Sn } where Su (1 ≤ u ≤ n) is the mobility data structure of individual u. For example, a
mobility dataset can be a set of trajectories {T1, . . . ,Tn }, a set of frequency vectors {W1, . . . ,Wn } ,
or a set of probability vectors {P1, . . . , Pn }. Note that the three sets have the same size n.

In the following, using the terms visit or point, we refer indifferently to a tuple in a trajectory,
a tuple in a frequency vector, or a tuple in a probability vector. In other words, a visit vi indicates
a pair consisting of a location li and a supplementary information (e.g., the timestamp ti , the
frequencywi , or the probability pi of the location). Moreover, we denote byUset = {u1, . . . ,un } the
set of distinct individuals and by Lset = {l1, . . . , lm } the set of distinct locations in amobility dataset
D. In this article, we assume that mobility data are represented with one of the data structures just
described.

3 PRIVACY RISK ASSESSMENT FRAMEWORK

Several methodologies have been proposed in the literature for privacy risk assessment. In this ar-
ticle, we consider the framework proposed in Pratesi et al. (2016), which allows for the assessment
of the privacy risk inherent to human mobility data. The framework considers a scenario where
a Data Analyst requests a Data Provider human mobility data in order to develop an analytical
service. For its part, the Data Provider has to guarantee the right to privacy of the individuals
whose data are recorded. As a first step, the Data Analyst communicates to the Data Provider the
data requirements for the analytical service. Assuming that the Data Provider stores a database
D, it aggregates, selects, and filters the dataset D to meet the requirements of the Data Analyst
and produces a set of mobility datasets {D1, . . . ,Dz } each with a different data structure and/or
aggregation of the data. The Data Provider then reiterates a four-step procedure until it considers
the data delivery safe:

ACM Transactions on Intelligent Systems and Technology, Vol. 9, No. 3, Article 31. Publication date: December 2017.
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In this article, we focus on improving Step (2) of the Data Delivery Procedure (i.e., Privacy Risk
Computation), which is the most critical one from a computational point of view. Computing the
privacy risk of an individual means simulating several possible attacks that a malicious adversary
can perform and computing the privacy risks associated with each attack. The privacy risk of an
individual is related to her probability of re-identification in a mobility dataset with respect to a
set of re-identification attacks. A re-identification attack assumes that an adversary gains access
to a mobility dataset. On the basis of some background knowledge about an individual (i.e., the
knowledge of a subset of her mobility data), the adversary tries to reidentify all the records in the
dataset regarding the individual under attack. In this article, we use the definition of privacy risk (or
re-identification risk) introduced in Samarati and Sweeney (1998a), Samarati (2001), and Sweeney
(2002) and widely used in the literature. There can be many background knowledge categories,
every category may have several background knowledge configurations, and every configuration
may have many instances.
A background knowledge category is a kind of information known by the adversary about a

specific set of dimensions of an individual’s mobility data. Typical dimensions in mobility data are
space, time, frequency of visiting a location, and probability of visiting a location (Section 2). Two
examples of background knowledge categories are a subset of the locations visited by an individual
(spatial dimension) and the specific times an individual visited those locations (spatial and tempo-
ral dimensions). The number k of the elements of a category known by the adversary is called the
background knowledge configuration. An example of background knowledge configuration is the
knowledge by the adversary of k = 3 locations of an individual. Finally, an instance of background
knowledge is the specific information known by the adversary, such as a visit in a specific location.
We formalize these concepts as follows:

Definition 3.1 (Background knowledge configuration). Given a background knowledge category
B, we denote with Bk ∈ B = {B1,B2, . . . ,Bn } a specific background knowledge configuration,
where k represents the number of elements in B known by the adversary. We define an element
b ∈ Bk as an instance of background knowledge configuration.

Example 3.2. Suppose a trajectory Tu = 〈v1,v2,v3,v4〉 of an individual u is present in the Data
Provider’s dataset D, where vi = (li , ti ) is a visit, li is a location, and ti the time when u vis-
ited location li , with i = 1, . . . , 4 and ti < tj if i < j. Based on Tu , the Data Provider can gener-
ate all the possible instances of a background knowledge configuration that an adversary might
use the re-identify the whole trajectory Tu . Considering the knowledge by the adversary of or-
dered subsequences of locations and k = 2, we obtain the background knowledge configuration
B2 = {(v1,v2), (v1,v3), (v1,v4), (v2,v3), (v2,v4), (v3,v4)}. The adversary, for example, might know
instance b = (v1,v4) ∈ B2 and aim at detecting all the records in D regarding individual u in order
to reconstruct the whole trajectory Tu .

Let D be a database, D a mobility dataset extracted from D as an aggregation of the data on
specific dimensions (e.g., an aggregated data structure and/or a filtering on time and/or space), and
Du the set of records representing individual u in D; we define the probability of re-identification
as follows:

Definition 3.3 (Probability of re-identification). Given an attack, a function matching(d, b) indi-
cating whether or not a record d ∈ D matches the instance of background knowledge configura-
tion b ∈ Bk , and a function M (D,b) = {d∈D |matchinд(d,b) = True}, we define the probability of

re-identification of an individual u in dataset D as:
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PRD (d = u |b) = 1

|M (D,b) |,
that is the probability to associate a record d ∈ D to an individual u, given instance b ∈ Bk .
Note that PRD (d=u |b) = 0 if the individualu is not represented in D. Since each instance b ∈ Bk

has its own probability of re-identification, we define the risk of re-identification of an individual as
the maximum probability of re-identification over the set of instances of a background knowledge
configuration:

Definition 3.4 (Risk of re-identification or privacy risk). The risk of re-identification (or privacy

risk) of an individual u given a background knowledge configuration Bk is her maximum probability

of re-identification Risk (u,D) = max PRD (d = u |b) for b ∈ Bk . The risk of re-identification has the

lower bound |Du |
|D | (a random choice in D), and Risk (u,D) = 0 if u � D.

To clarify the concepts of probability of re-identification and privacy risk, we provide the fol-
lowing example that, given a mobility dataset D of trajectories, shows how we can compute the
two measures for a specific attack.

Example 3.5. Consider a set of individuals Uset={u1,u2,u3,u4,u5,u6} and the corresponding
dataset D of trajectories:

D = {
Tu1 = 〈(2011/02/03,Lucca), (2011/02/03,Leдhorn), (2011/02/03, Pisa), (2011/02/04, Florence )〉
Tu2 = 〈(2011/02/03,Lucca), (2011/02/03, Pisa), (2011/02/04,Lucca), (2011/02/04,Leдhorn)〉
Tu3 = 〈(2011/02/03,Leдhorn), (2011/02/03, Pisa), (2011/02/04,Lucca), (2011/02/04, Florence )〉
Tu4 = 〈(2011/02/04, Pisa), (2011/02/04,Leдhorn), (2011/02/04, Florence )〉
Tu5 = 〈(2011/02/04, Pisa), (2011/02/04, Florence ), (2011/02/05,Lucca)〉
Tu6 = 〈(2011/02/04,Lucca), (2011/02/04,Leдhorn)〉
}

Assume an adversary wants to perform an attack on individual u1 knowing only the locations
she visited (without any information about the time), with background knowledge configuration
B2 (i.e., the adversary knows two of the locations visited by individual u1). We compute the risk
of re-identification of individual u1, given the dataset D of trajectories and the knowledge of the
adversary, in two steps:

(1) We compute the probability of re-identification for every possible instance b∈B2. Instance
b={Lucca,Leдhorn} has a probability of re-identification PRD (d=u1 |{Lucca,Leдhorn})= 1

4
because the pair {Lucca,Leдhorn} appears in trajectories Tu1 , Tu2 , Tu3 , and Tu6
(i.e., in a total of four trajectories). Instance {Lucca, Pisa} has a probability of re-
identification PRD (d=u1 |{Lucca, Pisa})= 1

4 because the pair appears in four trajectories
Tu1 , Tu2 , Tu3 , and Tu5 . Instance {Lucca, Florence} has a probability of re-identification
PRD (d=u1 |{Lucca, Florence})= 1

3 because the pair appears in three trajectories Tu1 , Tu3 ,
and Tu5 . Analogously, we compute the probability of re-identification for the other three
possible instances: PRD (d=u1 |{Leдhorn, Pisa})= 1

4 , PRD (d=u1 |{Leдhorn, Florence})= 1
3 ,

PRD (d=u1 |{Pisa, Florence})= 1
4 ;

(2) We compute the risk of re-identification of individual u1 as the maximum of the probabil-
ities of re-identification among all instances in B2: Risk (u1)=max ( 14 ,

1
4 ,

1
3 ,

1
4 ,

1
3 ,

1
4 ) =

1
3 .

We remark that the Data Provider does not know in advance the instance associated with the high-
est probability of re-identification of individual u1 (i.e., the “best” combination of points from the
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perspective of the malicious adversary). The Data Provider can use the preceding computation in
a preventive manner to identify the instance yielding the highest probability of re-identification,
which is, for individual u1, instance {Leдhorn, Florence}. Due to the definition of risk, which de-
pends on both an attacked individual’s structure and the structures of all the other individuals in
the dataset, identifying a priori an attack where the adversary has access to the best k-combination
of points is difficult for the Data Provider. A particular case where the Data Provider can imme-
diately recognize the best k-combination of points is a scenario where the adversary knows a
location visited only by the individual under attack. Since the Data Provider has a view of the
entire dataset, she can simulate such an attack by selecting the locations visited by just one indi-
vidual (i.e., with number of visits equal to 1). In such a case, computing the privacy risk for the
individuals visiting those locations does not require any combinatorial computation because the
privacy risk is 1 for any value of k .

An individual is hence associated with several privacy risks, each for every background knowl-
edge configuration of an attack. Every privacy risk of an individual can be computed using the
following procedure (see also Section 1 in Supplementary Material):

3.1 Computational Complexity of Privacy Risk Computation

The procedure of privacy risk computation has a high computational complexity. We assume that
the adversary uses all the information available to her when conducting a re-identification attack
on an individual. Since it is unlikely that an adversary knows the complete movements of an
individual (i.e., all the points), we introduced the concept of background knowledge configuration
Bk , which indicates the portion of points k known by the adversary when performing an attack
on an individual. The higher the k, the higher is the number of points known by the adversary
about the individual’s movement. The maximum possible value of k is len, the length of the data
structure of an individual.
The bestk-combination of points is the one leading to the highest probability of re-identification

of the individual under attack. However, we do not know such a best combination in advance. For
this reason, given k , when we simulate an attack, we compute all the possible k-combinations of
points an adversary could know. Given a combination of k points, we assume that the adversary
uses all these k points to conduct the attack. This leads to a high overall computational com-
plexity O (( len

k
) × N ), since the framework generates ( len

k
) background knowledge configuration

instances and, for each instance, it executesN matching operations by applying functionmatchinд.
In the extreme case where the adversary knows the complete movement of an individual (i.e.,

she knows all the points), we have k = len and the computational complexity is O (N ). In general,
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in the range k ∈ [1, len2 ] of the computational complexity of the attack simulation increases with k ,

while for k ∈ [ len2 ,n] the computational complexity decreases with k . While all the ( len
k
) possible

instances must be necessarily considered since, as already stated, we cannot exclude any of them
a priori, we can reduce the number N of matching operations between a single instance and the
data structures in the dataset by eliminating unnecessary comparisons. To clarify the point, con-
sider an attack where we try to match an instance b = (l1, t1), (l2, t2) against a trajectoryT starting
with the visit (l3, t3), with t1 < t2 < t3. Since T is temporally ordered (see Definition 2.1), we can
immediately exclude that b can be found in T . Although the overall worst-case complexity of the
attack remains ( len

k
), in practice, this optimization speeds up the execution by skipping unnec-

essary comparisons during the matching between an instance and a trajectory. However, as we
will show in Section 5, in practice, the matching optimizations do not eliminate the computational
problem, and the simulation of the attacks can take up to 2 weeks to compute the privacy risks of
individuals in our datasets.

Example 3.6. Consider the following scenario where an adversary knows 5 locations of an indi-
vidual with a trajectory length len = 50. Computing the privacy risk of an individual with respect
to the background knowledge configuration B5 requires the generation of the ( 505 ) = 2,118,760
background knowledge instances. In a dataset of N = 100,000 individuals, each with len = 50, the
overall simulation of the attack would take around 210 billions of matching operations.

4 A DATA MINING APPROACH FOR PRIVACY RISK ASSESSMENT

Given its computational complexity, Procedure 3.2 (Privacy Risk Computation) becomes unfeasible
as the size of the dataset increases since it requires enormous time and computational costs. This
drawback is even more serious if we consider that the privacy risks must be necessarily recom-
puted every time the mobility dataset is updated with new data records and for every selection of
individuals, geographic areas, and periods of time. To overcome these problems, we propose a fast
and flexible data mining approach. The idea is to train a predictive model to predict the privacy
risk of an individual based solely on her individual mobility patterns. The predictive model can be
either a regression model, if we want to predict the actual value of privacy risk, or a classification
model, if we want to predict the level of privacy risk. The training of the predictive model uses
a training dataset where every example refers to a single individual and consists of (i) a vector
of the individual’s mobility features and (ii) the privacy risk value or the privacy risk level of the
individual, depending on whether we perform a regression or a classification task, respectively.
Formally, we define a regression training dataset as a tuple TR = (F ,R) where F is the set of the
individual’s mobility feature vectors and R is the vector of the individual’s privacy risk. Similarly,
we define a classification training dataset as a tuple TC = (F ,C ) where C is the vector of the in-
dividual’s privacy risk level (e.g., from level 1 indicating no risk to level 10 indicating maximum
privacy risk). We define a possible set F of mobility features in Section 4.1, and we introduce a
repertoire of attacks on mobility data that can be used to assess privacy risks in Section 4.2. We
describe how to construct the regression training dataset and the classification training dataset in
Section 4.3. In Section 4.4, we describe how a Data Provider can use our approach in practice to
determine the privacy risk of individuals in her database. We make our approach parametric with
respect to the predictive algorithm: In our experiments, we use a Random Forest regressor and a
Random Forest classifier for the regression and classification experiments, respectively (Section 5),
but every algorithm available in the literature can be used for the predictive tasks. Note that our
approach is constrained to the fixed well-defined set of attacks introduced in Section 4.2, which is
a representative set of nine sufficiently diverse attacks tailored for the data structures required to
compute standard individual human mobility measures. Our approach can be easily extended to
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any type of attack defined on human mobility data by using the privacy framework proposed by
Pratesi et al. (2016).

4.1 Individual Mobility Features

The mobility dynamics of an individual can be described by a set of measures widely used in the
literature. Some measures describe specific aspects of an individual’s mobility; other measures
describe an individual’s mobility in relation to collective mobility.
A subset of these measures can be simply obtained as aggregation of an individual’s trajectory

or frequency vector. The number of visits V of an individual is the length of her trajectory (i.e.,
the sum of all the visits she did in any location during the period of observation (Gonzalez et al.
2008; Pappalardo et al. 2015)). By dividing this quantity by the number of days in the period of
observation, we obtain the average number of daily visits V , which is a measure of the erratic
behavior of an individual during the day (Pappalardo and Simini 2016). The length Locs of the
frequency vector of an individual indicates the number of distinct places visited by the individual
during the period of observation (Gonzalez et al. 2008; Song et al. 2010a). Dividing Locs by the
number of available locations in the considered territory, we obtain Locsratio , which indicates the
fraction of territory exploited by an individual in her mobility behavior. The maximum distance
Dmax traveled by an individual is defined as the length of the longest trip of the individual during
the period of observation (Williams et al. 2015), while Dtr ip

max is defined as the ratio between Dmax

and the maximum possible distance between the locations in the area of observation. The sum of
all the trip lengths traveled by the individual during the period of observation is defined as Dsum

(Williams et al. 2015). It can be also averaged over the days in the period of observation, thus
obtaining Dsum .
In addition to these simple quantities, more complex measures can be computed based on an

individual’s mobility data, such as the radius of gyration (Gonzalez et al. 2008; Pappalardo et al.
2013) and the mobility entropy (Eagle and Pentland 2009; Song et al. 2010b). The radius of gyration
rд is the characteristic distance traveled by an individual during the period of observation, formally
defined by Gonzalez et al. (2008) and Pappalardo et al. (2013, 2015) as:

rд =

√
1

V

∑
i ∈L

wi (ri − rcm )2,

wherewi is the individual’s visitation frequency of location i ,V is the total number of visits of the
individual, ri is a bi-dimensional vector describing the geographical coordinates of location i , and
rcm =

1
V

∑
i ∈L ri is the center of mass of the individual (Gonzalez et al. 2008; Pappalardo et al. 2013).

The mobility entropy E is a measure of the predictability of an individual’s trajectory. Formally, it
is defined as the Shannon entropy of an individual’s movements (Eagle and Pentland 2009; Song
et al. 2010b):

E = −
∑
i ∈L

pi log2 pi ,

where pi is the probability of location i in an individual’s probability vector.
Also, for each individual, we keep track of the characteristics of three different locations: the

most visited location, the secondmost visited location, and the least visited location. The frequency
wi of a location i is the number of times an individual visited location i during the period of
observation, while the average frequency w i is the daily average frequency of location i . We also
define wpop

i as the frequency of a location divided by the popularity of that location in the whole
dataset. The quantityU ratio

i is the number of distinct individuals who visited a location i divided by
the total number |Uset | of individuals in the dataset, whileUi is the number of distinct individuals
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Table 1. The Individual Mobility Measures Used in Our Work

Symbol Name Structures Attacks

V visits

trajectory
Location

Location Seqence
Visit

V daily visits
Dmax max distance
Dsum sum distances
Dsum Dsum per day

D
tr ip
max Dmax over area

trajectory
location set

Locs distinct locations frequency vector
Freqent Location

Freqent Loc. SeqenceLocsratio Locs over area
frequency vector

location set

Rд radius of gyration
probability vector

Probability
E mobility entropy

Ei location entropy
probability vector

probability vector dataset

Ui individuals per
location

frequency vector,
frequency vector dataset

Freqency
Proportion

Home and Work

U ratio
i Ui over individuals
wi location frequency
w
pop
i wi over overall

frequency
w i daily location

frequency

For every mobility measure, we indicate the minimal data structures (among those presented in Section 2) needed to
compute it and the attacks that can be performed on the corresponding data structures.

who visited location i during the period of observation. Finally, the location entropy Ei is the
predictability of location i , defined as:

Ei = −
∑
u ∈Ui

pu log2 pu ,

where pu is the probability that individual u visits location i .
Table 1 indicates, for every mobility measure, the minimal data structures (among those pre-

sented in Section 2) required for its computation and the possible re-identification attacks that
can be conducted on these structures. Every individual u in the dataset is described by a mobil-
ity vectormu of the 16 mobility features described earlier. The vectors of all the mobility vectors
of individual u1, . . . ,un is the mobility matrix F = (mu1 , . . . ,mun ). It is worth noting that all the
measures can be computed in linear time on the size of the corresponding data structure.

4.2 Privacy Attacks on Mobility Data

In this section, we describe the attacks we use in this article: the Proportion and Probability attacks
are a novel contribution, while the others are attacks already existing in the literature. In Section 2
of the Supplementary Material, we provide the pseudocode to reproduce the attacks and some toy
examples that illustrate how the attacks work.2

2We also provide the Python code we use for the simulation of the attacks at https://github.com/pellungrobe/privacy-lib.
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4.2.1 Location Attack. In a Location attack, the adversary knows a certain number of locations
visited by the individual, but she does not know the temporal order of the visits. Since an individual
might visit the same locationmultiple times in a trajectory, the adversary’s knowledge is a multiset
thatmay containmore occurrences of the same location. This is similar to considering the locations
as items of transactions. Similar attacks on transactional databases are used in Terrovitis et al.
(2008), Xu et al. (2008a), and Xu et al. (2008b) with the difference that a transaction is a set of
items and not a multiset. Given an individual s , we denote by L(Ts ) the multiset of locations li ∈ Ts
visited by s . The background knowledge category of a Location attack is defined as follows:

Definition 4.1 (Location background knowledge). Let k be the number of locations li of an indi-
vidual s known by the adversary. The Location background knowledge is a set of configurations
based on k locations, defined as Bk = L(Ts )

[k]. Here, L(Ts )[k] denotes the set of all the possible
k-combinations of the elements in set L(Ts ).

Since each instance b ∈ Bk is a subset of locations Xs ⊆ L(Ts ) of length k , given a record d ∈ D
and the corresponding individual u, we define the matching function as:

matchinд(d,b) =

{
true b ⊆ L(Tu )
f alse otherwise

(1)

4.2.2 Location Sequence Attack. In a Location Sequence attack, introduced in Mohammed et al.
(2009) and Monreale et al. (2014a), the adversary knows a subset of the locations visited by the
individual and the temporal ordering of the visits. Given an individual s , we denote by L(Ts ) the
sequence of locations li ∈ Ts visited by s . The background knowledge category of a Location Se-
quence attack is defined as follows:

Definition 4.2 (Location sequence background knowledge). Let k be the number of locations li of
a individual s known by the adversary. The Location Sequence background knowledge is a set of
configurations based on k locations, defined as Bk = L(Ts )

[k], where L(Ts )[k] denotes the set of all
the possible k-subsequences of the elements in set L(Ts ).

We indicate with a � b that a is a subsequence of b. Each instance b ∈ Bk is a subsequence of
location Xs � L(Ts ) of length k . Given a record d ∈ D and the corresponding individual u, we
define the matching function as:

matchinд(d,b) =

{
true b � L(Tu )
f alse otherwise

(2)

4.2.3 Visit Attack. In a Visit attack, introduced in Abul et al. (2008b), Yarovoy et al. (2009),
Monreale et al. (2010a), and de Montjoye et al. (2013), an adversary knows a subset of the loca-
tions visited by the individual and the time the individual visited these locations. The background
knowledge category of a Visit attack is defined as:

Definition 4.3 (Visit based background knowledge). Let k be the number of visitsv of a individual
s known by the adversary. The Visit background knowledge is a set of configurations based on

k visits, defined as Bk = T
[k]
s where T [k]

s denotes the set of all the possible k-subsequences of the
elements in trajectory Ts .

Each instance b ∈ Bk is a spatio-temporal subsequence Xs of length k . The subsequence Xs has
a positive match with a specific trajectory if the latter supports b in terms of both spatial and
temporal dimensions. Thus, given a record d ∈ D, we define the matching function as:

matchinд(d,b) =

{
true ∀(li , ti ) ∈ b,∃(ldi , tdi ) ∈ d | li = ldi ∧ ti = tdi
f alse otherwise

(3)
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4.2.4 Frequent Location and Sequence Attack. We also introduce two attacks based on the
knowledge of the location frequency. In the Frequent Location attack, the adversary knows a num-
ber of frequent locations visited by an individual, while in the Frequent Location Sequence attack,
the adversary knows a subset of the locations visited by an individual and the relative ordering
with respect to the frequencies (from most frequent to least frequent). The Frequent Location at-
tack is similar to the Location attack with the difference that, in frequency vectors, a location can
appear only once. As a consequence, this attack follows the same principle of Terrovitis et al. (2008)
and Xu et al. (2008a, 2008b). The Frequent Location Sequence attack is similar to the Location Se-
quence attack, with two differences: first, a location can appear only once in the vector; second,
locations in a frequency vector are ordered by descending frequency and not by time. Thus, the
locations/sequenceXs of length k cannot contain repetitions of locations.We omit the definition of
the matching functions because they are similar to those of the attacks conducted on trajectories:
They must only consider the absence of location repetitions.

4.2.5 Frequency Attack. We introduce an attackwhere an adversary knows the locations visited
by the individual, their reciprocal ordering of frequency, and the minimum number of visits of the
individual to the locations. Thus, when searching for specific subsequences, the adversary must
consider also subsequences containing the known locations with a greater frequency. We recall
that, in the case of frequency vectors, we denotewith visitv ∈W the pair composed by the frequent
location and its frequency.We also recall that we denote withWs the frequency vector of individual
s . The background knowledge category of a Frequency attack is defined as follows:

Definition 4.4 (Frequency background knowledge). Letk be the number of visitsv of the frequency
vector of individual s known by the adversary. The Frequency background knowledge is a set of

configurations based on k visits, defined as Bk =W
[k]
s whereW [k]

s denotes the set of all possible
k-combinations of frequency vectorWs .

Each instance b ∈ Bk is a frequency vector, and, given a record d ∈ D, we define the matching
function as:

matchinд(d,b) =

{
true ∀(li ,wi ) ∈ b,∃(ldi ,wd

i ) ∈W | li = ldi ∧wi ≤ wd
i

f alse otherwise
(4)

4.2.6 Home And Work Attack. In the Home and Work attack introduced in Zang and Bolot
(2011), the adversary knows the twomost frequent locations of an individual and their frequencies.
It essentially assumes the same background knowledge of the Frequency attack but related only to
two locations. This is the only attack where the background knowledge configuration is composed
of just a single 2-combination for each individual. Mechanically, thematching function for this type
of attack is identical to the matching function of the Frequency attack.

4.2.7 Proportion Attack. We introduce an attack assuming that an adversary knows a subset of
locations visited by an individual and also the relative proportion between the number of visits to
these locations. In particular, the adversary knows the proportion between the frequency of the
most frequent known location and the frequency of the other known locations. This means that the
candidate set of possible matches consists of all the set of locations with similar proportions. Given
a set of visitsX ⊂W ,we denote with l1 the most frequent location ofX and withw1 its frequency.
We also denote with pri the proportion between wi and w1 for each vi � v1 ∈ X . We then denote
with LR a set of frequent locations li with their respectivepri . The background knowledge category
for this attack is defined as follows:

Definition 4.5 (Proportion background knowledge). Let k be the number of locations li of an indi-
vidual s known by the adversary. The Proportion background knowledge is a set of configurations
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based on k locations, defined as Bk = LR[k]
s where LR[k]

s denotes the set of all possible k-
combinations of the frequent locations li with associated pri .

Each adversary’s knowledge b ∈ Bk is a LR structure, as previously defined. Given a record d ∈ D,
we define the matching function as:

matchinд(d,b) =

{
true ∀(li ,pri ) ∈ b,∃(ldi ,prdi ) ∈ LRd | li = ldi ∧ pri ∈ [prdi − δ ,prdi + δ]
f alse otherwise

(5)

In the equation, δ is a tolerance factor for the matching of proportions. In our experiments, δ = 0.1.

4.2.8 Probability Attack. In a Probability attack an adversary knows the locations visited by
an individual and the probability of that individual to visit each location. This attack is similar to
the one introduced by Unnikrishnan and Naini (2013), where the goal is to match m users with
m public statistics, like empirical frequencies. However, there are some differences between the
two attacks: The attack proposed in Unnikrishnan and Naini (2013) works on two sets of data,
called strings. One of the sets represents the published aggregated data of individuals, the other
represents the auxiliary information known by the adversary about the individuals in the data. The
two sets are equal in size, and also all the strings in the two sets have the same length. Given these
assumptions, Unnikrishnan and Naini (2013) propose an attack based on the minimum weight
bipartite matching. Conversely, in our Probability attack, we try to match a single background
knowledge instance with the set of probability vectors. Therefore, we cannot rely on matching
algorithms on a bipartite graph because we can not make assumptions regarding the length of
the sets or the length of the data: In general, the length of the probability vectors is not the same
among the individuals and is greater than the length of the background knowledge configuration
instances.
We recall that, in the case of probability vectors, we denote with visit v ∈ P the pair composed

of the frequent location and its probability. We also recall that we denote with Ps the probability
vector of individual s . The background knowledge category for this attack is defined as follows:

Definition 4.6 (Probability background knowledge). Let k be the number of visits v of the proba-
bility vector of individual s known by the adversary. The Probability-based background knowledge

is a set of configurations based on k visits, defined as Bk = P [k]
s where P [k]

s denotes the set of all
possible k-combinations of probability vector Ps .

Each adversary’s knowledge b ∈ Bk is a probability vector, and, given a record d ∈ D, we define
the matching function as:

matchinд(d,b) =

{
true ∀(li ,pi ) ∈ b,∃(ldi ,pdi ) ∈ d | li = ldi ∧ pi ∈ [pdi − δ ,pdi + δ]
f alse otherwise

(6)

In the equation, δ is a tolerance factor for the matching of probabilities. In our experiments,
δ = 0.1.

4.3 Construction of Training Dataset

Given an attack i based on a specific background knowledge configuration Bij , the regression train-

ing dataset TRij and the classification training dataset TCi
j can be constructed by the following

three-step procedure:

(1) Given a mobility dataset D, for every individual u we compute the set of individual mo-
bility features described in Section 4.1 based on her mobility data. Every individual u is
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hence described by a mobility feature vectormu . All the individuals’ mobility feature vec-
tors compose mobility matrix F=(m1, . . . ,mn ), where n is the number of individuals in
D;

(2) For every individual, we simulate the attack with background knowledge configuration
Bij on D in order to compute a privacy risk value for every individual. We obtain a privacy

risk vector Rij = (r1, . . . , rn ). The regression training set is hence TRij = (F ,Rij );

(3) We transform the regression training set TRij into a classification training set TCi
j by dis-

cretizing vector Rij on the intervals [0.0], (0, 0.1], (0.1, 0.2], (0.2, 0.3], (0.3, 0.5], (0.5, 1.0].

We obtain in this way a privacy risk level vectorCi
j = (c1, . . . , cn ). The classification train-

ing set is hence TCi
j = (F ,Ci

j ).

Every regression classification dataset TRij or classification training dataset TCi
j is used to train

a predictive modelM i
j . The predictive model will be used by the Data Provider to immediately es-

timate the privacy risk value or the privacy risk level of previously unseen individuals whose data
were not used in the learning process, with respect to attack i , background knowledge configura-
tion Bij , and dataset D.

Example 4.7 (Construction of classification training set). Consider a mobility dataset of trajec-
tories D={Tu1 ,Tu2 ,Tu3 ,Tu4 ,Tu5 } corresponding to five individuals u1,u2,u3,u4, and u5. Given an
attack i , a background knowledge configuration Bij , and dataset D, we construct the classification

training set TCi
j as follows:

(1) For every individual ui , we compute the 16 individual mobility measures based on her
trajectory Tui . Every individual ui is hence described by a mobility feature vector of

length 16mui = (m(ui )
1 , . . . ,m

(ui )
16 ). All the mobility feature vectors compose mobility ma-

trix F=(mu1 ,mu2 ,mu3 ,mu4 ,mu5 );
(2) We simulate the attack with configuration Bij on dataset D and obtain a vector of five

privacy risk values Rij = (ru1 , ru2 , ru3 , ru4 , ru5 ), each for every individual;
(3) Suppose that the actual privacy risks resulting from simulation are

Rij=(1.0, 0.5, 1.0, 0.25, 0.03). We discretize the values of the privacy risk vector Rij
on the intervals [0.0], [0, 0.1], (0.1, 0.2], (0.2, 0.3], (0.3, 0.5], (0.5, 1.0]. We hence obtain
a privacy risk level vector Ci

j = ((0.5, 1.0], (0.3, 0.5], (0.5, 1.0], (0.2, 0.3], [0, 0.1]) and the

classification training dataset TCi
j = (F ,Ci

j ).

4.4 Usage of the Data Mining Approach

The Data Provider can use a classifierM i
j to determine the level of privacy risk with respect to an

attack i and background knowledge configuration Bij for: (i) previously unseen individuals whose
data were not used in the learning process or (ii) a selection of individuals in the database already
used in the learning process. It is worth noting that, with existing methods, the privacy risk of
individuals in scenario (ii) must be recomputed by simulating attack (i ) from scratch. In contrast,
the usage of classifier M i

j allows us to obtain the privacy risk of the selected individuals immedi-
ately. The computation of the mobility measures and the classification of privacy risk level can be
done in polynomial time as a one-off procedure.
To clarify this point, consider the following scenario. A Data Analyst requests the Data Provider

for updated mobility data about a new set of individuals with the purpose of studying their charac-
teristic traveled distance (radius of gyration rд) and the predictability of their movements (mobility
entropy E). Since both measures can be computed by using a probability vector (see Table 1), the
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Data Provider can release just the probability vectors of the individuals requested. Before that,
however, the Data Provider wants to determine the level of privacy risk to the individuals with re-
spect to the Probability attack (P ) and several background knowledge configurations BPj . The Data

Provider uses classifier MP
j previously trained to obtain the privacy risk level of the individuals.

On the basis of privacy risks obtained fromMP
j , the Data Provider can immediately identify risky

individuals (i.e., individuals with a high level of privacy risk). She then can decide to either filter
out the risky individuals or to select suitable privacy-preserving techniques (e.g., k-anonimity or
differential privacy) and transform their mobility data in such away that their privacy is preserved.
In the next section, we present an extensive evaluation of our methodology on real-world mobility
data and show the effectiveness of the proposed data mining approach.

5 EXPERIMENTS

For all the attacks defined except the Home andWork attack, we consider four background knowl-
edge configurations Bk with k = 2, 3, 4, 5, where configuration Bk corresponds to an attack where
the adversary knows k locations visited by the individual. For the Home andWork attack, we have
just one possible background knowledge configuration, where the adversary knows the most fre-
quent location and the second most frequent location of an individual.
We use a dataset provided by Octo Telematics3 storing the GPS tracks of private vehicles travel-

ing in two Italian urban areas, Florence and Pisa, from May 1, 2011, to May 31, 2011. In particular,
we have 9,715 private vehicles in the Florence dataset and 2,280 vehicles in the Pisa dataset. The
GPS device embedded in a vehicle automatically turns onwhen the vehicle starts, and the sequence
of GPS points that the device produces every 30 seconds forms the global GPS track of a vehicle.
When the vehicle stops, no points are logged or sent. We exploit these stops to split the global GPS
track of a vehicle into several subtracks, corresponding to the trips performed by the vehicle. To
ignore small stops like traffic lights and gas stations, we follow the strategy commonly used in the
literature (Pappalardo et al. 2013, 2015) and choose a stop duration threshold of at least 20 minutes:
If the time interval between two consecutive GPS points of the vehicle is larger than 20 minutes,
the first point is considered as the end of a trip and the second one as the start of another trip.4 We
assign each origin and destination point of the obtained subtracks to the corresponding census cell
according to the information provided by the Italian National Statistics Bureau (ISTAT) in order to
assign every origin and destination point to a location (Pappalardo et al. 2015). This allows us to
describe the mobility of every vehicle in the Florence or the Pisa datasets in terms of a trajectory,
in compliance with the definition introduced in Section 2. Since our purpose is to provide a tool to
immediately discriminate between individuals with low risk and individuals with high risk, in this
section, we show the results of classification experiments.We also perform regression experiments
where we predict the exact value of privacy risk and show the corresponding results in Section 3.4
of the Supplementary Material.
We construct a classification training dataset TCi

j for every distinct background knowledge

configuration Bij of the attacks described in Section 4.2. This means that, in our experiments, we
build a total of 33 distinct classification training datasets for 33 distinct classification experiments.
This is because we consider four background knowledge configurations (k=2, 3, 4, 5) for eight
attacks (Visit, Frequency, Location, Frequent Location Sequence, Frequent Location, Probability,
Proportion, Sequence), and just one background knowledge configuration for the Home and
Work attack. So we construct a total of (8 × 4) + 1 = 33 distinct classification training datasets.

3https://www.octotelematics.com/.
4We also performed the extraction of the trips using different stop duration thresholds (5, 10, 15, 20, 30, 40 minutes), without
finding significant differences in the sample of short trips and in the statistical analysis we present in this article.
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Every classification dataset TCi
j is used to train a classifier M i

j using Random Forest (Hastie et al.
2009).5 We evaluate the overall performance of a classifier by two metrics (Tan et al. 2005): (i) the

accuracy of classification ACC = |f̂ (xi )=f (xi ) |
n

, where f (xi ) is the actual label of individual i , f̂ (xi )
is the predicted label, and n is the number of individuals in the training dataset; and (ii) the

weighted average F-measure, defined as F =
∑
c ∈C |c | 2TP

2TP+FP+FN, where TP, FP, FN stand for
the numbers of true positives, false positives, and false negatives resulting from classification; C
is the set of labels; and |c | is the support of a label. All the experiments are performed using a
k-fold cross validation procedure with k=10. We also perform a holdout-validation finding similar
results in terms of accuracy and the F-measure with respect to the cross-validation method (see
Supplementary Material, Section 3.3).6

Table 2 (columns Florence and Pisa) summarizes the results of the 33 classification tasks for
both the Florence and Pisa datasets. We compare the performance of a classifier M i

j with the per-
formance of a baseline classifier which generates predictions by respecting the distribution of pri-
vacy risk labels inCi

j .
5 In Table 2, we observe a significant gain in both accuracy and F-measure of

the classifiers over the baseline. For example, in predicting the Probability privacy risk levels, the
classifier reaches maximum performance values of ACC = 0.95 and F-measure = 0.95 (configura-
tion k=4, Florence), a significant improvement with respect to the baseline model with ACC = 0.56
and F = 0.56. The Home and Work variable has the weakest relation with the individual mobility
features, reaching the lowest performance values: ACC = 0.62 and F = 0.59 (where the baseline
has ACC = 0.37 and F = 0.37). Finally, the classification results for Florence and Pisa are compara-
ble, with slightly better performances for the Florence dataset (see Table 2). It is worth noting that,
for some attacks such as the Visit attack, we have very similar performances in terms of both ac-
curacy and F-measure for any k . This is due to the fact that the privacy risk distributions resulting
from simulating the attack are similar for any k ≥ 2 (Figure 1(c) and 4(c) in the Supplementary Ma-
terial). In contrast, for the Location Sequence attack, we observe that the distribution of privacy
risk for k=2 differs from the distributions of privacy risk for k ≥ 3 (Figures 1(b) and 4(b) in the
Supplementary Material). In our classification results, this results in a difference between k=2 and
k ≥ 3: The classification performances become stable for k ≥ 3. Since the classifiers are accurate
especially for the class of maximum risk (0.5, 1], and since for k ≥ 3 the number of individuals
with maximum privacy risk increases, as a consequence, the performance of classifiers improve.
It is important to highlight that classifying a high-risk individual as a low-risk individual can be

a major issue. For our application, the recall is important to evaluate the performance of a classi-
fier: A high recall on the highest risk class (0.5, 1.0] indicates that a very low number of high-risk
individuals are misclassified as low-risk individuals. To be usable in practice, classifiers need to
have a high recall on the highest risk class. Figure 1(a)-(b) show a matrix representing the clas-
sification error for every label of background knowledge configuration k = 4 of the Probability
attack, for Florence (a) and Pisa (b). An element i, j in the matrix indicates the fraction of instances
for which the actual label j is classified as label i by the classifier. The diagonal of the matrix,
hence, indicates the classifier’s recall for every label. We observe that the recall of the highest risk
class (0.5, 1.0] is 99% for Florence and 98% for Pisa. In particular, we observe that all the misclas-
sifications of the classifiers for the highest risk class are made predicting class (0.3, 0.5] (i.e., the
second highest class of risk). So there is a zero probability of misclassifying high-risk individuals

5We use the implementation provided by the scikit-learn package in Python (Pedregosa et al. 2011).
6The Python code for attacks simulation and classification tasks is available at https://github.com/pellungrobe/
privacy-mobility-lib.
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Table 2. Results of the 33 Classification Experiments for the Florence and the Pisa Datasets

The classification performance is evaluated by the overall accuracy (ACC) and the weighted F-measure (F) by using a k-fold
cross validation with k=10. In columns FI→ PI and PI→ FI, where FI indicates Florence and PI indicates Pisa, we show
the results of classification where we train the classifiers on the first urban area and try to predict the privacy risks of
individuals in the second urban area.

as low-risk individuals (i.e., classes [0.0] and (0.0, 0.1]). Similarly, in Figure 1(c)-(d), an element i, j
in the matrix indicates the fraction of instances for which the predicted label j is actually label i in
the dataset. The diagonal matrix indicates in this case the classifier’s precision for every label. We
observe that the classifier is very precise for the two lowest (risk ∈ [0.0] and risk ∈ (0.0, 0.1]) and
the highest (risk ∈ (0.5, 1.0]) privacy risk labels: Both the recall and the precision of these labels
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Fig. 1. Classification error per class for classifierMP
4 Probability attack P and background knowledge config-

uration BP4 , for Florence (a, c) and Pisa (b, d). An element i, j in the matrices (a) and (b) indicates the fraction

of instances for which the actual class j is classified as class i . The diagonal of the matrices (a) and (b), hence,

indicates the classifier’s recall for every class. An element i, j in the matrices (c) and (d) indicates the fraction

of instances for which the predicted class j is actually class i in the dataset. The diagonal of matrices (c) and

(d) indicates in this case the classifier’s precision for every class. We observe that the classifier has both high

recall and high precision on the first two classes (low risk) and the last class (maximum risk). We provide the

matrices for all the other classifiers in Section 3.6 of the Supplementary Material.

are close to 1. Even on the labels where recall and precision are lower (i.e., (0.1, 0.2], (0.2, 0.3],
(0.3, 0.5]), the classifier is more prone to predict a higher level of risk than a lower level of risk.
These conservative choices allow the Data Provider to limit the privacy violation of individuals:
It is hence unlikely that a classifier assigns to an individual a privacy risk label that is lower than
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Fig. 2. The distribution of average importance of the mobility features for all 33 classifiers (Florence dataset).

her actual privacy risk label. We report in Section 3.6 of the Supplementary Material the matrices
corresponding to the classification results of all the other background knowledge configurations.
In Table 2 (columns FI → PI and PI → FI), we also show the results of other classification ex-

periments where we train a classifier on the Florence dataset and use it to classify the privacy risk
label of vehicles in the Pisa dataset, and vice versa. Even if the two datasets cover disjoint sets of
vehicles, we observe good predictive performance, comparable to the performance of classifiers
where the training set and the test set belong to the same original dataset.

Importance of Mobility Features. We quantify the importance of every mobility feature in a clas-
sifier M i

j by taking its average importance in the decision trees of the resulting random forest.
The importance of a feature in a decision tree is computed as the (normalized) total reduction
of classification entropy brought by that feature in the tree (Hastie et al. 2009). Figure 2 shows
a heatmap representing the average importance of every mobility feature to the 33 classifiers in
Florence, where every column corresponds to a classifier and every row corresponds to a mobility
feature. We report the same heatmap for Pisa in Section 3.5 of the Supplementary Material. We
observe the following results. First, while classifiers corresponding to different configurations of
the attack show similar distributions of importances, classifiers corresponding to configurations
of different attacks produce different distributions. For example, in the classifiers corresponding
to the four configurations of the Visit attack, the average number of visits V is, not surprisingly,
the most important mobility feature (Figure 2). In contrast, in the classifiers corresponding to the
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Table 3. The Average Importance of Every Mobility Feature Computed Over All

33 Classifiers for Florence and Pisa

Florence Pisa Florence Pisa

measure impo. measure impo. measure impo. measure impo.

1 V 3.66 Locsratio 3.24 15 U ratio
2 0.96 U ratio

2 0.92
2 E 2.92 Dsum 3.22 16 Un 0.88 Un 0.88
3 Dsum 2.75 V 2.87 17 w

pop
n 0.83 rд 0.87

4 Locsratio 2.51 E 2.62 18 En 0.79 En 0.79
5 V 1.91 V 1.69 19 E2 0.74 E2 0.75
6 w

pop
1 1.77 Locs 1.66 20 Dmax 0.68 w

pop
n 0.73

7 Locs 1.67 w
pop
1 1.62 21 D

tr ip
max 0.63 D

tr ip
max 0.67

8 U1 1.44 U1 1.46 22 rд 0.61 Dmax 0.58
9 U ratio

1 1.32 U ratio
1 1.40 23 w1 0.42 w1 0.48

10 Dsum 1.19 U2 1.16 24 w2 0.40 w1 0.44
11 U2 1.12 U ratio

n 1.09 25 w1 0.36 w2 0.36
12 w

pop
2 1.07 w

pop
2 1.07 26 wn 0.13 wn 0.15

13 E1 1.05 E1 1.06 27 wn 0.12 w2 0.13
14 U ratio

n 0.99 Dsum 0.98 28 w2 0.10 wn 0.13

We observe a correlation r = 0.96 between the importance of the mobility features in Florence and Pisa.

Table 4. Comparison of Execution Times of Attack Simulations and Classification

Tasks on Florence and Pisa

Variable (
∑5

2 k)
Florence Pisa

simulation classifier simulation classifier

Home and Work 149s (2.5m) 7s 5s 3s
Frequency 645s (10m) 22s 20s 10s

Frequent Location Sequence 846s (14m) 22s 23s 10s
Proportion 900s (15m) 24s 30s 10s

Frequent Location 997s (10m) 22s 30s 10s
Probability 1,165s (20m) 22s 37s 10s

Visit 2,274s (38m) 16s 95s (1.5m) 9s
LocationSequence >168h (1week) 22s >168h (1week) 10s

Location >168h (1week) 22s >168h (1week) 10s

total >2weeks 172s >2weeks 79s

four configurations of the Proportion attack,V has a low importance while Dsum , E, and Locsratio
have the highest importance. A second result is that the distribution of the average importances
for Florence and Pisa are similar: We observe a Pearson correlation r = 0.96 between the two im-
portances of the same variables in the two urban areas. Table 3 shows a ranking of the average
importance the mobility features have in the classifiers, for Florence and Pisa. Here, we observe
that individual measures (e.g., E, V , V ) tend to be the most important ones, while location-based
features (e.g.,Wi , Ei ) tend to be less important.

Execution Times. We show the computational improvement of our approach in terms of execu-
tion time by comparing in Table 4 the execution times of the attack simulations and the execution
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times of the classification tasks.7 The execution time of a single classification task is the sum of
three subtasks: (i) the execution time of training the classifier on the training set, (ii) the execution
time of using the trained classifier to predict the classes on the test set, and (iii) the execution time
of evaluating the performance of classification (i.e., computing accuracy and F-measure). Table 4
shows that the execution time of attack simulations is low for the Frequency, Frequent Location
Sequence, Proportion, Frequent Location, Probability, and Visit attacks (a few seconds for Pisa and
a fewminutes for Florence). However, for Location Sequence and Location, the execution times are
huge: more than 1 week each. In contrast, the classification tasks have constant execution times
of around 10s for Pisa and 22s for Florence. In summary, our approach can compute the risk levels
for all 33 attacks in both Florence and Pisa in 250 seconds (less than 5 minutes), while the attack
simulations require more than 2 weeks of computation.

6 DISCUSSION

The implementation of our data mining approach on real mobility data produces three remarkable
results. First, the classifiers provide precise estimates of individuals’ privacy risk, especially for the
lowest privacy risk level and the highest privacy risk levels (Table 2). Moreover, the classifiers built
on a given dataset (e.g., Florence) can be effectively used to estimate the privacy risks in a different
dataset (e.g., Pisa; Table 2). These outcomes suggest that the classifiers can be a valid and fast
alternative to existing privacy risk assessment tools. Instead of recomputing all the privacy risks
when new data records become available and for every selection of individuals and geographic
areas or periods of time, which would result in high computational costs, a Data Provider can
effectively use the classifiers to obtain immediate and reliable estimates for every individual.
Second, different types of attacks generate different distributions of importance of the mobility

measures in the classifiers (Figure 2). In particular, while some mobility measures are irrelevant
for determining the privacy risk of an individual regardless the type of the risk (e.g., wn and wn ),
other mobility measures are very relevant to determine the privacy risk of an individual (e.g., V
and E). In other words, while some mobility measures provide a high predictive power, others
are irrelevant and cannot be used alone to determine the privacy risk level of an individual. This
suggests that both the learning phase and the predictive task should be done by computing the
extensive set of mobility measures by using the maximal data structure (trajectory), even when
a more aggregated data structure (e.g., a frequency vector) is sufficient for the Data Analysts’
needs. However, this is not a problem in terms of computational costs because all the measures
can be computed in linear time of the size of the dataset. It is worth noting that our approach can
easily deal with changes in the long-term mobility patterns of an individual due, for example, to
migration or changes in home/workplace. Every time new mobility data for an individual become
available, the Data Provider can recompute her mobility features. To take into account long-term
changes in mobility patterns, the recomputation of mobility measures can be done at regular time
intervals (e.g., every month) by considering a time window with the most recent data (e.g., the last
6 months of data). The regular updates and the time window allow the Data Provider to consider
the recent mobility history of an individual and obtain up-to-date individual mobility patterns.
A third remarkable result is that on both datasets the mobility measures describing aspects

related to the individual alone, such as the number of visits V in the individual’s trajectory and
the mobility entropy E, are the most important features with which to classify the privacy risk
of individuals (Table 3), far larger than the location-based measures (e.g., w1, w2, wn) and the
ones comparing individual mobility to collective mobility patterns (e.g., Dtr ip

max , w
pop
m ). This result

7For a given type of attack, we report the sum of the execution times of the attacks for configurations k = 2, 3, 4, 5. We
perform the experiments on Ubuntu 16.04.1 LTS 64 bit, 32GB RAM, 3.30GHz Intel Core i7.
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is important because, in contrast with existing privacy risk assessment frameworks, it allows for
estimating the privacy risk of an individual based on a limited amount of information about the
collectivity. Since every individual can obtain an estimate of her own privacy risk based just on
her mobility data, this increases awareness about personal data and helps her in deciding whether
or not to share mobility data with third parties. This is compliant with a user-centric ecosystem
(Forum 2013) like the one implemented by the personal data store (de Montjoye et al. 2012), where
each individual has the full control of her personal data life-cycle. For this reason, our data mining
approach can be integrated into the personal data store as a further tool available to the data owner.

7 RELATEDWORKS

This article focuses on the mobility data of individuals traveling by car. An overview on the prob-
lems, techniques, and methodologies related to urban mobility data and urban computing can be
found in Zheng et al. (2014). Human mobility data contain personal, sensitive information and can
reveal many facets of the private life of individuals, leading to the possibility of a serious privacy
violation. Nevertheless, in the past years, many techniques for privacy-preserving analysis on hu-
man mobility data have been proposed in the literature (Giannotti et al. 2013) showing that it is
possible to design analytical mobility services where the quality of results coexists with the pro-
tection of personal data. A widely used privacy-preserving model is k-anonymity (Samarati and
Sweeney 1998a, 1998b), which requires that an individual should not be identifiable from a group
of size smaller than k based on their quasi-identifiers (QIDs), a set of attributes that can be used to
uniquely identify individuals. Abul et al. (2008b) propose the (k,δ )-anonymity model, which takes
advantage of the inherent uncertainty of the moving object’s whereabouts, where δ represents
the location precision. Assuming that different adversaries own disjoint parts of an individual’s
trajectory, Terrovitis and Mamoulis (2008) reduce privacy risk by relying on the suppression of
the dangerous observations from each individual’s trajectory. Yarovoy et al. (2009) propose the
attack-graphs method to defend against attacks, based on k-anonymity. Monreale et al. (2010b)
illustrate a generalized approach to achieve k-anonymity.
Other works are based on the so-called differential privacy model (Dwork et al. 2006). Monreale

et al. (2013), for example, consider a privacy-preserving distributed aggregation framework for
movement data, proposing the application of a ϵ-differential privacy model. Cormode et al. (2012)
propose to publish a contingency table of trajectory data, where each cell in the table contains
the number of individuals commuting from the given source location to the given destination
location. Sebastien Gambs (2014) proposes a mobility model called Mobility Markov Chain, built
upon mobility traces to re-identify an individual, while Ji et al. (2014) defines several similarity
metrics which can be combined in a unified framework to provide de-anonymization of mobility
and social network data.
One of themost importantworks on privacy risk assessment is the Linddunmethodology (Deng

et al. 2011), a privacy-aware threat analysis framework based on Microsoft’s Stride methodology
(Swiderski and Snyder 2004), useful for modeling privacy threats in software-based systems. In the
past years, different techniques for risk management have been proposed, such as the OWASP’s
Risk Rating Methodology (OWASP 2016), NIST’s Special Publication 800-30 (Stoneburner et al.
2002), SEI’s OCTAVE (Alberts et al. 1999), and Microsoft’s DREAD (Meier and Corporation 2003).
Unfortunately, many of these works do not consider privacy risk assessment and simply include
privacy considerations when assessing the impact of threats. Trabelsi et al. (2009) elaborate an
entropy-based method to evaluate the disclosure risk of personal data, trying to manage quanti-
tatively privacy risks. The unicity measure proposed in Song et al. (2014) and Achara et al. (2015)
evaluates privacy risk as the number of records/trajectories which are uniquely identified.
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Basu et al. (2014) propose an empirical riskmodel for the estimation of privacy risk for trajectory
data and a framework to improve privacy risk estimation for mobility data, evaluating their model
using k-anonymized data. Armando et al. (2015) propose a risk-aware framework for information
disclosurewhich supports runtime risk assessment. In this framework, access-control decisions are
based on the disclosure-risk associated with a data access request, and adaptive anonymization is
used as a risk-mitigation method. Unfortunately, this framework only works on relational datasets
since it needs to discriminate between QIDs and sensitive attributes.
Other works in the literature study the re-identification risk as a privacy measure in the context

of network and social media data (Narayanan and Shmatikov 2009; Ramachandran et al. 2014) or
combine network data and mobile phone data to re-identify people (Cecaj et al. 2016). The com-
bination of multiple data sources for the attack and considering network data instead of mobility
data in our methodology is one of the most interesting extensions that we intend to investigate as
future work.
In this article, we use the privacy risk assessment framework introduced by Pratesi et al. (2016)

(Section 3) to calculate the privacy risks of each individual in a mobility dataset. Our novel con-
tribution is to overcome the inherent computational complexity of this framework by proposing a
data mining approach that uses data mining classifiers to predict the privacy risk of an individual
based solely on her mobility patterns.

8 CONCLUSION

Human mobility data are a precious proxy to improve our understanding of human dynamics, as
well as to improve urban planning, transportation engineering, and epidemic modeling. Neverthe-
less, human mobility data contain sensitive information which, if analyzed with malicious intent,
can lead to a serious violation of the privacy of the individuals involved. In this article, we pro-
posed a fast and flexible data mining approach for estimating the privacy risk in human mobility
data, one that overcomes the computational issues of existing privacy risk assessment frameworks.
We validated our approach with an extensive experimentation on real-world GPS data, showing
that we can achieve accurate estimations of privacy risks. In particular, the results showed that
(i) the classifiers are accurate, especially on the highest and the lowest privacy risk classes; and
(ii) the classifiers have a conservative behavior (i.e., misclassified individuals are assigned more
likely to classes of higher risk than to classes of lower risk with respect to the actual class of pri-
vacy risk). Moreover, we observed that a classifier trained on data related to a specific urban area
can be effectively used to predict the privacy risk of individuals in another urban area.
We want to highlight some limitations of the article that we plan to overcome in future works.

First, we do not investigate Step (3) and Step (4) of the Data Delivery Procedure (Procedure 3.1), that
is, the most suitable techniques to reduce the privacy risk of individuals in the dataset while still
guaranteeing data quality for mobility analytics. Diverse techniques are proposed in the literature,
such as k-anonymity (Samarati and Sweeney 1998b) or differential privacy (Dwork et al. 2006),
ranging from removing a fraction of the records or individuals, to injecting artificial records to
hide risky individuals, to modifying the data structures of the most risky individuals. Our approach
provides a fast tool to immediately obtain the privacy risks of individuals, leaving to the Data
Provider the choice of the most suitable privacy-preserving techniques to manage and mitigate
the privacy risks of individuals. In future works, we plan to perform an extensive experimentation
to select the best techniques to reduce the privacy risk of individuals in mobility datasets while at
same time ensure high data quality for analytical services.
Our approach can be extended in several directions. First, we plan to apply our data mining

approach to mobility datasets with different characteristics, such as mobile phone data which
generally cover a larger geographic area (e.g., an entire country). This would allow us to deeply
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investigate the “portability” of our approach (i.e., at what extent the classifiers trained on a geo-
graphic zone can be used to predict the privacy risk of individuals in another geographic zone).
Second, the repertoire of attacks can be extended by adding new attacks or by defining “multi-
attacks” (i.e., combining multiple existing attacks). For example, a powerful “multi-attack” would
be a combination of Proportion and Probability: An adversary would know a set of k locations
and the corresponding probabilities and relative proportions. Many other multi-attacks can be de-
signed, and we leave this interesting line of research for future work. Third, we plan to investigate
whether our approach can be extended to contexts other than human mobility, such as the estima-
tion of privacy risk in social networks. It would be indeed interesting to investigate at what extent
data mining classifiers are able to infer the relations between social networkmetrics and individual
risk of re-identification in social network data. Last, it would be interesting to repeat the experi-
ments with a larger repertoire of machine learning algorithms and identify the best performer, or
to combine themwith boosting or bagging techniques to further improve the classification results.
We leave these interesting tasks for future work.
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