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ABSTRACT: The present paper is devoted to the implementation and
validation of a second-order perturbative approach to anharmonic
vibrations, followed by variational treatment of strong couplings
(GVPT2) based on curvilinear internal coordinates. The main
difference with respect to the customary Cartesian-based formulation
is that the kinetic energy operator is no longer diagonal, and has to be
expanded as well, leading to additional terms which have to be taken
into proper account. It is, however, possible to recast all the equations as
well-defined generalizations of the corresponding Cartesian-based
counterparts, thus achieving a remarkable simplification of the new
implementation. Particular attention is paid to the treatment of Fermi
resonances with significant number of test cases analyzed fully, validating the new implementation. The results obtained in this work
confirm that curvilinear coordinates strongly reduce the strength of inter-mode couplings compared to their Cartesian counterparts.
This increases the reliability of low-order perturbative treatments for semi-rigid molecules and paves the way toward the reliable
representation of more flexible molecules where small- and large-amplitude motions can be safely decoupled and treated at different
levels of theory.

1. INTRODUCTION
Thanks to significant developments in both software and
hardware in the last few decades, computational spectroscopy
has become an invaluable tool for both experimentally and
theoretically oriented research works.1,2 In the specific case of
vibrational and ro-vibrational spectroscopy, the basic rigid
rotor/harmonic oscillator (RRHO) model is implemented in all
major quantum chemistry programs. However, more sophisti-
cate models are needed in several circumstances [e.g., high-
resolution spectroscopy, large-amplitude motions (LAM), and
so forth], which should possibly couple accuracy and feasibility
for medium- to large-size systems.3

Among the different approaches available for going beyond
the RRHO approximation,4−28 those based on low-order
perturbation theory applied to the Watson Hamiltonian (i.e., a
fourth-order polynomial expansion of the potential energy
expressed in Cartesian normal modes) are particularly appealing
for their remarkable cost/performance balance, at least for semi-
rigid molecular systems.29−40

Moreover, a very general and robust model (referred to as
GVPT232) can be built, which involves the diagonalization of
relatively small Hamiltonians coupling a reduced number of
strongly interacting states and including the second-order
perturbative contributions of all the other ones.41,42 A number
of other models have been introduced (e.g., the so-called VPT2
+ F43 and VPT2 + K44 methods), which can be seen as particular
cases of the GVPT2 approach and allow, in principle, the
inclusion of any type of coupling, irrespective of resonance

conditions. Although the conventional implementations of these
models employ different equations for spherical, linear,
symmetric, and asymmetric tops,45 it has been recently shown
that the canonical representation used for the development of
VPT2 equations of asymmetric tops can be extended to linear
and symmetric tops, provided that a series of a posteriori
transformations are performed.46

Further improvements can be obtained resorting to higher-
order (usually sextic) anharmonic force fields coupled with
variational [e.g., vibrational configuration interaction
(VCI)6,8,14] or more accurate (e.g., VPT447) perturbative
developments. Unfortunately, this kind of approaches converges
slowly, and their cost becomes rapidly prohibitive as the
dimension of the molecular system increases. An alternative
route is based on reduced-dimensionality Hamiltonians tailored
to describe a limited number of LAMs. Approaches belonging to
this category are the internal coordinate path Hamiltonian
(ICPH)48 and the reaction path Hamiltonian (RPH),49−52

aimed at describing single LAMs or the reaction surface
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Hamiltonian (RSH)53 and reaction volume Hamiltonian
(RVH),54 for the case of two or three LAMs, respectively.
Whenever the couplings between small-amplitude motions

(SAMs) and LAMs are small, the SAMs (and, possibly, the
SAMs−LAMs couplings) can be treated by the GVPT2 model,
whereas the sub-problem of LAMs can be solved, for instance, by
the so-called discrete variable representation (DVR), which is a
quasi-variational, numerical method, introduced by Light and
co-workers55 and later re-derived by Colbert and Miller.56

Unfortunately, normal modes based on Cartesian coordinates
often give rise to non-negligible couplings, whereas internal
(curvilinear) coordinates can strongly reduce the couplings
between different classes of vibrations.57 Onemajor drawback of
internal coordinates is that their definition is not unique, and
their construction can be quite involved, especially when
targeting medium-to-large systems. This problem is solved by
the redundant set of internal coordinates composed of all the
bond lengths, valence, and dihedral angles, which is uniquely
defined by the molecular topology.58,59 Thus, the route is paved
toward the development of a general and robust GVPT2
platform employing curvilinear coordinates.
The basic equations of VPT2 in curvilinear coordinates have

been derived by Quade60 and reworked more recently by
Isaacson.57 The main difference between rectilinear (Cartesian)
and curvilinear (internal) coordinates stems from the expansion
of the kinetic energy operator, which introduces additional,
possibly resonant, terms. However, full re-derivation of the
equations allowed us to recast them in terms of quite
straightforward generalizations of those based on Cartesian
coordinates, so that it has been possible to extend the already
available GVPT2 engine to curvilinear coordinates. Of course,
kinetic energy contributions must be computed, but this does
not involve additional quantum chemical computations, so that
GVPT2 remains extremely effective in this context as well. Since
the new formulation incorporates the recent generalization of
the asymmetric-top equations to non-Abelian groups,46 all kinds
of molecules can be treated with the same formalism.
This paper is organized as follows. We start with a discussion

of the main features of the new GVPT2 engine, emphasizing the
differences and similarities with the well-known equations for
Cartesian coordinates. A robust strategy for the identification
and treatment of Fermi resonances is also presented, followed by
some technical aspects of the general implementation. After
sketching the essential computational details, a number of test
cases are analyzed to validate the new engine for semi-rigid
molecules and to define the most suitable routes for coupling
accuracy with effectiveness. As expected, inter-mode couplings
are significantly smaller for curvilinear internal coordinates than
for their Cartesian counterparts, paving the way toward
achieving effective models enforcing the separation between
SAMs and LAMs. The main conclusions and most promising
perspectives are given in the last section.

2. THEORY
2.1. Framework. The simplest set of internal coordinates is

represented by the so-called primitive internal coordinates
(PICs), which are composed of all bond lengths, valences, and
dihedral angles and are uniquely defined by the molecular
topology.61,62 While this set is generally redundant, this does not
cause any problem (in analogy with translation and rotations
when employing Cartesian coordinates) since all eigenvectors
with vanishing eigenvalues can be removed after the harmonic
problem is solved (vide infra). Next, PICs can be expressed in

terms of their Cartesian counterparts by means of a Taylor series
expansion
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where Na is the number of atoms, s is the vector containing the
internal coordinates, whose values at the equilibrium geometry
are collected in the vector seq, and x contains the atomic
Cartesian coordinates. When the interest is focused on relatively
low-vibrational excitations (i.e., close to the bottom of the
potential energy surface (PES) well), eq 1 can be safely
truncated at the second order and rewritten in a more compact
form
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The elements of the so-called Wilson B matrix63 and its first
derivative, B′, are

B
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and have well-known analytical expressions.61 By construction,
only the indices j and k of the B′ tensor commute, whereas the B
matrix is not symmetric or necessarily square, since the number
of internal coordinates can be different from that of Cartesian
coordinates.

2.2. Vibrational Hamiltonian in Curvilinear Coordi-
nates. The starting point of the derivation is the definition of
the expression of the kinetic-energy operator T in terms of the
so-called Wilson G matrix

G BM B1 T= (4)

where M is the diagonal matrix of the nuclear masses, while B is
defined in eq 3. As a result, the vibrational kinetic energy is
given by64−66
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where GG det( )= . A more convenient form of eq 5 has been
proposed by Podolosky,64 further discussed by Lauvergnat,66

and re-derived in this work (see Section S1 of the Supporting
Information), leading to the following expression
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where the last term corresponds to a purely quantum-
mechanical contribution to the kinetic energy, usually referred
to as the extra-potential term.67 Equation 6 represents the
kinetic energy operator in terms of curvilinear coordinates s.
However, application of perturbation theory to solve the
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vibrational problem requires a set of suitable reference wave
functions too. In analogy with the treatment based on Cartesian
coordinates, the harmonic oscillator model is employed to this
end, by means of the so-called Wilson GF method (see Section
S2 of the Supporting Information),68

GFL L= (7)

where F is the Hessian matrix of the potential energy with
respect to the internal coordinates, L is the matrix containing the
normal coordinates, and Λ is the diagonal matrix of squared
harmonic frequencies (ω).
One of the advantages of a polynomial expansion in the

normal-mode basis is that it leads to analytic integrals for both
coordinate and momentum operators, together with a
particularly simple second-quantization formulation, with
these features strongly simplifying the identification of non-
vanishing contributions in the perturbative expansion.
Equation 6 can be rewritten in terms of the dimensionless

normal coordinates q and their conjugate momenta p
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where g, g , and g are the G matrix, its determinant, and the
extra-potential term expressed in wavenumbers, respectively
(see Section S3 of the Supporting Information)
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The potential energy (expressed in terms of dimensionless
coordinates q) must be added to the kinetic energy in order to
complete the vibrational Hamiltonian . Since the extra-
potential term is well approximated by its value at the
equilibrium configuration,57,69 it does not play any role in the
calculation of transition energies. As a consequence, it will be
neglected from now on, leading to the following expression of
the vibrational Hamiltonian
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2.3. Perturbative Expansion of the Vibrational
Hamiltonian. The perturbative treatment of is carried out
by expanding both the kinetic and potential energies up to the
second order. From here on, the symbol will be used to
indicate the first term of eq 10, so that

= + (11)

The g matrix entering the kinetic energy expression can be
expanded to the second order
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where gijeq =ωiδij at the equilibrium configuration (see Section S3
of the Supporting Information) and δij is the Kronecker delta.
By inserting eq 12 in the definition of and introducing the

following notation
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the kinetic energy can be written as a perturbative series
(0) (1) 2 (2)= + + (14)
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We recall that only the first and second indices of gij k,

commute, while i only commutes with j and k only commutes
with l in gij kl, .
The expansion of the potential energy is analogous to its

Cartesian counterpart
(0) (1) 2 (2)= + + (18)

where (0) is the harmonic potential, while (1) and (2)

contain, respectively, the cubic- and quartic-order contributions
to the PES
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The only difference with respect to Cartesian coordinates is
the absence of the Coriolis term and the form of normal modes,
which are now expressed in terms of internal (curvilinear)
coordinates.
The full vibrational Hamiltonian can be written as follows
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The curvilinear coordinate version of VPT2 requires not only
the cubic and quartic force constants but also the first and
second derivatives of the g (or G) matrix, whose calculation will
be discussed in Section 3.

2.4. Vibrational Energies. In analogy with the treatment
based on Cartesian coordinates, the anharmonic energies can be
obtained through either canonical van Vleck (CV) or Rayleigh−
Schrödinger (RS) perturbation theory (PT), which lead to the
same final expressions. As already mentioned, the main
difference with respect to the Cartesian-based framework is
the presence, together with potential energy contributions, of
additional terms arising from the kinetic energy. In order to
clarify this point, let us recall the expression of the energy of the
Rth vibrational state expanded up to the second order

R R R R
(0) (1) 2 (2)= + + (27)

The form of the harmonic Hamiltonian (0) is equivalent in
Cartesian- and curvilinear-based formulations, so that both
eigenvalues and eigenvectors are given by the customary
expressions, and the first-order correction to the energy (eq
25) always vanishes
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since both (1) and (1) are odd operators in terms of normal
coordinates and their conjugate momenta.
Finally, the second-order correction to the energy, εR(2), is

given by
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Inspection of eq 29 shows that the anharmonic correction to

each energy level is composed of three contributions, namely,

potential (first line), kinetic (second line), and a cross term

(third line). In the Cartesian version, only the potential term

(albeit including Coriolis contributions) is present, so that the

development becomes more complex when employing curvi-

linear internal coordinates. In order to accelerate the develop-

ment stage, as well as reduce the possibility of errors, the

derivation of εR(2) has been carried out by a multi-step procedure,
with the help of ad hoc programs employing the second-

quantization formalism followed by a manual post-processing.
The final expression of εR can be recast in the customary form
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where vR represents the vector of vibrational quantum numbers

for the R-th state and ε0 is the zero-point vibrational energy

(ZPVE), which will not be considered in the following because it

does not affect energy differences between vibrational states.

The χ matrix is given by the sum of three distinct contributions

= + + × (31)

where the superscripts , , and × indicate the potential,

kinetic, and a cross term, respectively. The form of the potential

contribution is the same for Cartesian and curvilinear

coordinates (see Section S4 of the Supporting Information),

except for the presence of Coriolis contributions in the former
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while the purely kinetic contribution is
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Finally, the cross term is
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While the above expressions (fully equivalent to those
reported in refs 57 and 60) permit us to obtain the transition
energies, a further algebraic manipulation leads to a more
convenient form. By applying the partial fraction decomposition
to eq 32 through eq 37 (see Section S5 of the Supporting
Information for more details) and introducing the tensors ηijkl,
σijk, and ρijk, we get

f g gijkl ijkl ij kl kl ij, ,= + + (38)

f (g g g )ijk ijk ij k ik j jk i, , ,= + + (39)

f (g g g )ijk ijk ij k ik j jk i, , ,= (40)

Equation 31 can be rewritten as
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Comparison of eqs 41 and 42 with their Cartesian
counterparts (see eqs S33 and S34 of the Supporting
Information) shows that the general form of the χ matrix does
not change. More specifically, by reintroducing the Coriolis
contribution and setting the derivatives of the g matrix to zero
(ηijkl = fijkl and σijk = ρijk = fijk) in eqs 41 and 42, S36 and S37 are
recovered. A similar procedure can be carried out to perform the
inverse transformation. Note that, while the Coriolis term is
absent in the internal-based VPT2 Hamiltonian, the perturba-
tive development of the kinetic energy operator yields
contributions formally equivalent to it. Therefore, the internal-
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based expression can be interpreted as a generalization of the
Cartesian-based one. This formal equivalence presents twomain
advantages:

• Implementation of eqs 41 and 42 into an existing code
based on the Cartesian-based formulation is quite
straightforward;

• Analysis of Fermi resonances, which is the object of the
next section, can be directly extended to curvilinear
coordinates.

2.5. Fermi Resonances. Equations 41 and 42 show that the
calculation of energy levels at the VPT2 level is plagued by Fermi
resonances, irrespective of the use of rectilinear or curvilinear
coordinates.38 Furthermore, the form of the perturbed vibra-
tional Hamiltonian (eq 23) does not affect the nature of the
contact transformation. As a consequence, the definition of the
interaction terms of the contact-transformed Hamiltonian
between interacting states can be directly generalized to the
use of curvilinear coordinates. This premise is of fundamental
importance for the analysis of Fermi resonances, the redefinition
of suitable tests for their detection, and the variational correction
at the basis of the GVPT2 approach.
2.5.1. Internal-Based Contact-Transformed Vibrational

Hamiltonian. The off-diagonal elements of the contact-
transformed Hamiltonian between two interacting states

R
(0)| and S

(0)| can be written in terms of different orders of the
original Hamiltonian .44
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In analogy with the expressions for the energy levels, the
interaction element (eq 43) can also be partitioned into three
contributions, which arise from the insertion of eq 23 in the
above expression
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(0)
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has been introduced for the sake of readability. Let us recall that
one of the advantages of separating the contributions of different
terms relies on the fact that the potential term is formally
equivalent, except for the Coriolis couplings, to the expression
derived in the Cartesian-based formulation. Equation 44 has
been used to derive the interaction terms corresponding to
Fermi resonances, which are discussed in the next section.
2.5.2. Diagnostic of Fermi Resonances: Extension of the

Martin Test. The close correspondence between the χ matrix for
different sets of coordinates allows a straightforward extension
to curvilinear coordinates of the so-called Martin test for the
identification of Fermi resonances.70 By switching back to
Dirac’s notation, the matrix elements coupling the states |vR +
1k⟩ with |vR + 2i⟩ or |vR + 1i + 1j⟩ are

v v

v v v

Type I
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+ | | +
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+ + | | +

=
+ + +

(48)

which are obtained from the corresponding Cartesian-based
expressions replacing fiik and fijk by ρiik and ρijk, respectively. As a
consequence, for all kinds of coordinates, the identification of
Fermi resonances can be carried out by the same two-step
procedure relying on the thresholdsΔω1−2 andK1−2 with default
values of 200 and 1 cm −1, respectively.71

Once the set of Fermi resonances has been identified, the
corresponding terms in eqs 41 and 42 are discarded, and the
resulting χ matrix is used for the calculation of the energy levels
within the so-called deperturbed (DVPT2) scheme. The
interaction terms corresponding to Fermi resonances can be
treated in a successive variational step (leading to a model
broadly referred to as GVPT2) by diagonalizing small matrices,
whose diagonal elements are the deperturbed energies, while off-
diagonal elements can be obtained from eqs 47 and 48 (Table
1).

3. IMPLEMENTATION
The implementation of the new engine can be split into three
main steps. In the first one, the set of internal coordinates is
defined starting from the reference geometry and used to build

Table 1. Formulation of the Test for the Identification of
Fermi Resonances in Both Cartesian- and Internal-Based
Formulations of VPT2

type I type II

step 1a |2ωi − ωk| ≤ Δω1−2 |ωi + ωj − ωk| ≤ Δω1−2

step 2b ρiik
4 /256|2ωi − ωk|3 ≥ K1−2 ρiik

4 /64|ωi + ωj − ωk|3 ≥ K1−2

aStep 1 is the same regardless of the formulation of VPT2. bρijk = f ijk
in the Cartesian-based VPT2 framework.
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the B matrix and the B′ tensor, with the former being also used
to calculate the G matrix. To this end, we have implemented a
new code for the analytical computation of B, B′, G, and G′
matrices for bond lengths, valences (linear and non-linear), and
dihedral angles. It is also possible to use different curvilinear
coordinates by reading the B and B′matrices generated by other
programs. In both cases, the first derivative gij,k can be simply
computed from Gij,k (see Section S3 of the Supporting
Information), with the latter being given by

Q
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whereG′ is the tensor collecting the first Cartesian derivatives of
theWilsonGmatrix and can be further expanded by introducing
the B′ tensor,

x

B B
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3
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3a a

= =
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which, in matrix form, becomes

G BM B B M B1 1= + (51)

Figure 1. Flowchart describing the new workflow for the anharmonic calculations in curvilinear coordinates, where the tasks performed by a generic
quantum chemical code, the Gaussian package, and the novel external program are highlighted. M represents the number of active modes.

Figure 2. Structures of all the studiedmolecules. (a) Formaldehyde, (b)
acetylene, (c) cyclopropane, (d) methane, (e) ethylene, (f) oxirane, (g)
acetic acid, (h) uracil, and (i) Ip conformer of glycine.
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The terms gij,kl are obtained from their mass-weighted
counterparts Gij,kl using an expression similar to eq 49
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In the above expression, G″ collects the second-order
Cartesian derivatives of the G matrix,

B B B B B B B B

m
Gijab

c

N
icb jca icb jcab ica jcb icab jcb

c1

3 a

=
+ + +

= (53)

in matrix form, it becomes

G B M B B M B BM B21 1 1= + + (54)

where B″ is the second-order Cartesian derivative of the B
matrix. Consequently, the analytical calculation of the termsGij,kl
relies on the four-dimensional tensor B″, which presents some
difficulties. In the first place, it is composed of all third-order
derivatives of the internal coordinates with respect to Cartesian
coordinates, whose derivation and implementation involve a
significant effort. Furthermore, the use of the four-dimensional
tensor B″ with one dimension equal to N and the other three
equal to 3Na may imply additional concerns in terms of both
computer time and memory storage. For these reasons, a more
viable strategy is the analytical computation of the first
derivatives Gij,k, followed by their use in the finite-difference
calculation of second derivatives.
The second step is the definition of the displacements along

the curvilinear normal modes, the computation of Hessians at
these geometries, and the assembly of potential and kinetic

Table 2. Comparison of the Cartesian and Curvilinear VPT2, DVPT2, and GVPT2 Wavenumbers (in cm−1) of Formaldehyde at
the MP2/junTZ Level

Cartesian curvilinear

assignment symm. ω νVPT2a νDVPT2 νGVPT2 νVPT2 νDVPT2 νGVPT2
1 CH2 s str. A1 2975 2829 (2827) 2820 2829 2829 2829 2829
2 C�O str 1756 1724 (1723) 1724 1724 1724 1724 1724
3 HCH s bend 1545 1512 (1510) 1512 1512 1512 1512 1512
4 HCH op wag B1 1203 1183 (1169) 1183 1183 1183 1183 1183
5 CH2 a str. B2 3051 3029 (3017) 2897 2866 3029 2902 2869
6 HCH a bend 1271 1250 (1246) 1250 1250 1250 1250 1250
2 + 6 comb. band 2975 2835 2967 2999 2835 2962 2995

aIn parenthesis, the VPT2 frequencies obtained without including Coriolis couplings have been reported.

Table 3. Comparison of Cartesian and Curvilinear VPT2
Fundamental Wavenumbers (in cm−1) of Acetylene at the
MP2/junTZ Level

Cartesian curvilinear

assignment symmetry ω νVPT2 νVPT2
CH s str. Σg 3525 3397 3397
CC str 1969 1931 1931
CH a str Σu 3437 3317 3317
HCC s bend Πg 592 609 609
HCC a bend Πu 748 739 739

Table 4. Comparison of the Cartesian and Curvilinear VPT2, DVPT2, and GVPT2 Fundamental Wavenumbers (in cm−1) of
Cyclopropane at the MP2/junTZ Level

Cartesian curvilinear

assignment symmetry ω νVPT2 νDVPT2 νGVPT2 νVPT2 νDVPT2 νGVPT2
CH2 s str. A1′ 3196 3075 3075 3075 3074 3074 3074
CH2 sciss. 1533 1504 1485 1515 1501 1484 1506
ring str. 1231 1203 1203 1203 1201 1201 1201
CH2 twist A1″ 1166 1131 1131 1131 1128 1128 1128
CH2 wagg. A2′ 1085 1057 1057 1057 1054 1054 1054
CH2 a str. A2″ 3298 3154 3154 3154 3154 3154 3154
CH2 rock. 869 863 863 863 857 857 857
CH2 s str. E′ 3187 3067 3067 3068 3067 3067 3067
CH2 def. 1485 1440 1444 1443 1436 1439 1440
CH2 wagg. 1050 1022 1022 1022 1017 1017 1017
ring def. 905 878 878 878 876 876 876
CH2 a str. E″ 3279 3135 3135 3135 3135 3135 3135
CH2 twist + rock 1220 1192 1192 1192 1190 1190 1190
twist + rock. 747 741 741 741 734 734 734

Table 5. Comparison of the Cartesian and Curvilinear VPT2
Fundamental Wavenumbers (in cm−1) of Methane at the
MP2/junTZ Level

Cartesian curvilinear

assignment symmetry ω νVPT2 νVPT2
CH str. A1 3073 2953 2953
bend. E 1586 1549 1549
CH str. T2 3209 3074 3074
bend 1352 1318 1318
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contributions to cubic and quartic force constants. This task is
performed by a script, which calls an external quantum chemical
package to compute the gradients and Hessians in Cartesian
coordinates at suitable geometries. An external implementation
has the advantage that the most computer-intensive (but
embarassingly parallel) step can be performed in the most
effective way, namely, distributed among different computing
nodes. The calculation of the Hessian matrix F in internal
coordinates can be carried out using the following expression72

gF B H B B( ) ( )x s
T= † †

(55)

where the internal-based gradient gs can be easily obtained
starting from its Cartesian counterpart gx as

g gB( )s x
T= †

(56)

Furthermore, the overall contribution due to translations and
rotations can be factored out by replacing (Hx − gsB′) and gx by
P(Hx − gsB′)P and Pgx, respectively, where P = B†B represents
the projection matrix.
Second derivatives of the G matrix are also obtained from

finite-difference expressions

Figure 3. Comparison of the number of cubic (fijk (i ≠ j ≠ k)) and quartic (fijkk (i ≠ j)) force constants of ethylene above a given threshold (in cm−1)
computed at the MP2/junTZ level with Cartesian or curvilinear coordinates.

Table 6. Comparison of the Cartesian and Curvilinear VPT2, DVPT2, and GVPT2 Wavenumbers (in cm−1) of Oxirane at the
MP2/junTZ Level with the Experimental Data

Cartesian curvilinear

assign. symm. ω νVPT2 νDVPT2 νGVPT2 νVPT2 νDVPT2 νGVPT2 exp.a

1 (CH2 s-str) A1 3160 3057 3030 3058 3057 3034 3057 3006
2 (CH2 scis) 1552 1503 1503 1503 1504 1504 1504 1498
3 (ring str) 1310 1279 1279 1279 1279 1279 1279 1271
4 (CH2 wag) 1155 1125 1125 1125 1125 1125 1125 1120
5 (ring def.) 902 880 880 880 880 880 880 877
6 (CH2 a-str) A2 3264 3119 3119 3119 3119 3119 3119 3065
7 (CH2 twist) 1175 1151 1151 1151 1151 1151 1151 1142
8 (CH2 rock) 828 815 815 815 816 816 816 822
9 (CH2 s-str) B1 3153 3045 3014 3050 3045 3021 3048 3006
10 (CH2 scis) 1519 1480 1480 1480 1480 1480 1480 1472
11 (CH2 wag) 1171 1143 1143 1143 1143 1143 1143 1151
12 (ring def) 851 822 822 822 822 822 822 892
13 (CH2 a-str) B2 3250 3106 3106 3106 3106 3106 3106 3063
14 (CH2 twist) 1186 1163 1163 1163 1164 1164 1164 1142
15 (CH2 rock) 1059 1032 1032 1032 1033 1033 1033 822
2 + 2 overtone A1 3103 2979 3005 2977 2980 3003 2979
2 + 10 comb. band 3070 2951 2981 2945 2952 2976 2949

aRef 87.
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Figure 4. Comparison of the number of cubic (fijk (i ≠ j ≠ k)) and quartic (fijkk (i ≠ j)) force constants of oxirane above a given threshold (in cm−1)
computed at the MP2/junTZ level with Cartesian or curvilinear coordinates.

Figure 5. Number of three-mode first- and second-order g matrix derivatives of oxirane above a given threshold (in cm−1) computed at the MP2/
junTZ level with curvilinear coordinates.
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Equation 57 includes, of course, the termsGii,kk andGii,ii, while
eq 58 includes Gij,ij, Gii,kl and Gij,kj.
As mentioned above, these computations have been always

performed by a new script preparing the input stream and
submitting harmonic computations for the different geometries
needed in the finite-difference evaluation. Although different
electronic structure codes could be employed in this step, all the
computations reported in this work have been performed by the
G16 package.73 Atomic units are used systematically together
with angles in radians. On the basis of previous experience and
several new numerical tests, a default step (δQ) of 0.02 amu1/2
Bohr has been chosen for all kinds of coordinates.
The third step involves the implementation of the GVPT2

equations for curvilinear coordinates discussed in Section 2.
This has been accomplished by extending the general platform
for Cartesian coordinates already available in the Gaussian code.
A flowchart describing the whole workflow is sketched in

Figure 1.

4. COMPUTATIONAL DETAILS
In light of previous experience, hybrid density functionals
B3PW9174 and PW6B9575 were used in conjunction with the
jul-cc-pVDZ (hereafter julDZ) basis set,76 whereas double-
hybrid functionals B2PLYP77,78 and revDSD-PBEP8679 togeth-
er with second-order Møller−Plesset PT (MP2)80 were
employed in conjunction with the jun-cc-pVTZ (hereafter
junTZ) basis set.76 Furthermore, empirical dispersion con-
tributions were systematically added in DFT computations by
means of Grimme’s D3 model with Becke−Johnson damp-
ing.81,82 The above computational levels will be denoted in the
following as B3, PW6, B2, rDSD, and MP2, respectively.

5. RESULTS AND DISCUSSION
In this section, we will present a number of results obtained by
the new VPT2 engine with the objective of validating its
implementation and highlighting the advantages of curvilinear
over Cartesian coordinates concerning both effectiveness and
accuracy. After considering semi-rigid systems, where different
sets of coordinates provide comparable results (but the number
and strength of inter-mode couplings are very different), we will

consider some prototypical flexible systems, where the
advantages of curvilinear coordinates become more apparent.
The structures of all the studiedmolecules are sketched in Figure
2.

5.1. Validation of VPT2 in Curvilinear Coordinates.The
new VPT2 implementation has been validated for the
asymmetric (formaldehyde), linear (acetylene), symmetric
(cyclopropane), and spherical (methane) tops shown in Figure
2a−d. Comparison between VPT2 results in Cartesian and
curvilinear coordinates permits us to test the correctness of both
the VPT2 equations (also in the presence of Fermi resonances)
and the elements of the G matrix and its derivatives. All the
computations have been performed at the MP2/junTZ level,
which couples semi-quantitative accuracy with the lack of any
numerical noise, as it would be the case for DFT methods. Note

Figure 6. Comparison of the Cartesian (top panel) and curvilinear (bottom panel) quartic force constants of the Ip conformer of glycine involving
modes 23 and 24 at the rDSD/junTZ level of theory.

Table 7. Comparison of the Cartesian and Curvilinear
GVPT2 Fundamental Wavenumbers (in cm−1) of Acetic Acid
at the MP2/junTZ Level with the Experimental Data

assignment symmetry ω Cartesian curvilinear exp.a

OH str. A′ 3760 3575 3575 3583
CH3 a str. 3227 3083 3084 3051
CH3 s str. 3101 2992 2992 2944
C�O str. 1812 1782 1782 1788
CH3 a def. 1490 1450 1448 1430
CH3 s def. 1421 1380 1377 1383
OH bend 1342 1324 1322 1264
C−O str. 1206 1161 1159 1182
CH3 rock. 1007 988 986 989
CC str. 875 856 856 847
OCO bend 583 576 577 657
CCO bend 423 424 422 581
CH3 a str. A″ 3184 3044 3044 2996
CH3 a def. 1498 1440 1437 1430
CH3 rock. 1074 1049 1045 1048
C�O op bend 663 644 643 642
C−O torsion 552 538 537 534
CH3 torsion 75 85 85 93

(−5213) (68)
aRef 87.
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that, in the absence of numerical errors, harmonic frequencies
are identical for any set of coordinates.
The results collected in Tables 2−5 show that for small semi-

rigid molecules Cartesian and curvilinear coordinates provide
equivalent results, irrespective of the symmetry (Abelian or non-
Abelian point group) of the system. Furthermore, in the case of
formaldehyde, Coriolis couplings are not negligible, especially
for the wagging and CH2 asymmetric stretching, and the
curvilinear results are much closer to the Cartesian counterparts
including Coriolis couplings than to those neglecting them (see
Table 2). This shows that some terms in the development of
kinetic energy in curvilinear coordinates are equivalent to
Coriolis couplings in Cartesian coordinates.

5.2. Reconciling Accuracy and Feasibility. For small
semi-rigid molecules, the accuracy of state-of-the-art quantum-
chemical methodologies can rival that of experimental
techniques.83−85 However, their extension to large (possibly
flexible) systems faces a number of difficulties ranging from the
very unfavorable scaling of such methods with the number of
basis functions to the proper description of flat PESs.3,86 A viable

route to obtain accurate results, even for relatively large
molecular systems (a few dozens of atoms), is provided by
dual-level models, which combine accurate calculations of
molecular structures and harmonic force fields to cheaper yet
reliable approaches for taking into account anharmonic
contributions resulting from SAMs and, possibly, a small
number of LAMs. The role of curvilinear coordinates in
improving these aspects is analyzed in the next subsections.

5.3. Coupling Issue. The accuracy of low-level perturbative
treatments is, of course, related to the number and strength of
couplings between different modes and, especially, to the
relative role played by two- and three-mode interactions.We will
use ethylene (see Figure 2e) to analyze this aspect. As amatter of
fact, GVPT2 results obtained employing Cartesian or curvilinear
coordinates are virtually indistinguishable (as expected for semi-
rigid molecules), but the number and strength of couplings
determining the final result are different in the two cases.
Furthermore, the terms neglected in VPT2 energies but actually
computed in the numerical differentiation of analytical Hessians
(i.e., three-mode quartic force constants) are significantly

Table 8. Comparison of Harmonic Frequencies and Curvilinear GVPT2 Fundamental Wavenumbers (in cm−1) of Uracil with
Experimental Data

B3 rDSD//B3 best//B3

assignment symm. ωa νa ωb addc subd ωe addf subg exp.h

N1−H str A′ 3654 3485 3661 3492 3493 3653 3484 3483 3485
N3−H str 3612 3442 3612 3442 3442 3602 3432 3428 3435
C5−H str 3265 3125 3265 3125 3125 3253 3113 3103
C6−H str 3219 3074 3223 3078 3089 3218 3073 3069
C�O str 1815 1785 1807 1777 1775 1790 1760 1762 1764
C4�O str 1781 1767 1774 1760 1741 1762 1748 1728 1706
C5�C6 str 1688 1652 1684 1648 1650 1678 1642 1642 1646
N1−H bend 1510 1464 1512 1466 1468 1505 1459 1460 1472
C6−H bend 1420 1387 1429 1396 1393 1427 1394 1397 1400
N3−H bend 1404 1370 1418 1384 1386 1414 1380 1381 1389
C5−H bend 1382 1347 1395 1360 1360 1394 1359 1362 1359
ring str def 1236 1204 1243 1211 1211 1248 1216 1214 1217
ring str def 1203 1177 1212 1186 1185 1205 1179 1178 1185
ring str def 1091 1073 1093 1075 1074 1084 1066 1063 1075
ring str def 992 977 997 982 980 995 980 978 980
ring str def 973 951 975 953 931 968 946 954 958
ring str def 779 755 774 750 749 773 749 766 759
ring bend def 558 555 560 557 551 545 542 541 562
ring bend def 541 532 542 533 533 541 532 536 537
ring bend def 519 512 519 512 512 517 510 510 516
C�O bend 385 384 388 387 385 387 386 374 391
C6−H op bend A″ 970 925 979 934 963 973 928 954 987
C5−H op bend 815 798 822 805 806 814 797 796 804
C2�O op bend 766 751 767 752 752 765 750 750 757
C4�O op bend 728 714 735 721 721 728 714 713 718
N3−H op bend 695 657 683 645 645 670 632 630 662
N1−H op bend 578 538 556 516 514 559 519 517 551
ring op def 397 384 395 382 381 388 375 385 411
ring op def 168 159 163 154 154 159 150 150 185
ring op def 151 143 146 138 138 140 132 132
MAE 13 12 11 13 11

aB3/julDZ. brDSD/junTZ. cHybrid model based on the additive approach employing harmonic frequencies at the rDSD/junTZ level in
conjunction with anharmonic corrections at the B3/julDZ level. dHybrid model based on the substitution approach employing harmonic
frequencies at the rDSD/junTZ level in conjunction with anharmonic corrections at the B3/julDZ level. eBest estimate (ref 92). fHybrid model
based on the additive approach employing best-estimate harmonic frequencies in conjunction with anharmonic corrections at the B3/julDZ level.
gHybrid model based on the substitution approach employing best-estimate harmonic frequencies in conjunction with anharmonic corrections at
the B3/julDZ level. hRefs 93−95.
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different in the two implementations. This is well evidenced in
Figure 3, which shows that both the number and strength of all
three-mode couplings are strongly reduced when using
curvilinear internal coordinates.
Another example is offered by oxirane (see Figure 2f), whose

computed vibrational energies are collected in Table 6. While
more accurate results can be obtained increasing the computa-
tional level, all the experimental trends are correctly reproduced
and, once again, the use of curvilinear coordinates strongly
reduces the role of three-mode couplings (see Figure 4), which
can thus be safely neglected with a few exceptions.
While only potential couplings involve an increased computa-

tional cost of the underlying electronic computations, a fully
unbiased comparison between Cartesian and curvilinear
implementations requires the evaluation of the role of kinetic
couplings. Figure 5 shows that, as expected, three-mode kinetic
contributions are essentially negligible.
An even more vexing problem is related to the presence of

LAMs like, for example, methyl rotations. The situation is
illustrated in Table 7 for the specific example of acetic acid (see
Figure 2g). Although VPT2 results are very close for different
sets of coordinates, the Cartesian description shows comparable
contributions from the one-dimensional anharmonicity of the
CH3 rotation and its coupling with other modes. As a
consequence, any separation between LAMs and SAMs faces
against severe difficulties. For example, neglecting inter-mode
couplings, the computed frequency of CH3 torsion becomes
completely unrealistic when employing Cartesian coordinates

(−5213 cm−1), whereas the value issuing from curvilinear
coordinates (68 cm−1) remains reasonable.

5.4. Dual-Level Methods. It is well known that harmonic
frequencies are more sensitive to the level of the underlying
electronic Hamiltonian than higher-order force constants. The
most important reason for this is the increased importance of the
nuclear repulsion contribution for higher-order derivatives, with
this term being always treated exactly.88 Furthermore, the
computational cost of a full quartic force field is much higher
than that of the harmonic part at the same level of theory.
Finally, the whole foundation of any perturbative treatment is
that the final results are more sensitive to the quality of the zero-
order (harmonic) contribution than to that of the first- and
second-order corrections. These considerations lead to the
development of the so-called dual-level (or hybrid) methods,
with the simplest one (referred to as additive approach, Add)89

solving the VPT2 equations employing the low-level harmonic
frequencies and higher-order derivatives. Then, the results are
corrected for the difference between high- and low-level
harmonic frequencies. This approach is not recommended
because the denominators of the perturbative contributions are
evaluated by low-level harmonic frequencies, which can lead to
non-negligible distortions of the results. A simple recipe for
solving this problem is offered by the so-called substitution
(Sub) approach32 in which the VPT2 equations are solved
employing low-level anharmonic couplings, but high-level
harmonic frequencies are used to compute the denominators.
The quality of the results obtainable by dual-level methods is

analyzed in some detail for the case of uracil (see Figure 2h).

Table 9. Comparison of the Cartesian and Curvilinear Harmonic and GVPT2 Fundamental Wavenumbers (in cm−1) of the Ip
Conformer of Glycine with the Experimental Data

ω Cartesian curvilinear

assignment symm. B3a rDSDb rDSDb B3a addc subd rDSDb exp.

OH str A′ 3767 3766 3581 3572 3570 3571 3579 3585e

NH2 s str 3514 3521 3377 3356 3373 3366 3370 3359f

CH2 s str 3057 3068 2953 2920 2949 2938 2947 2943f

C�O str 1825 1817 1786 1790 1775 1783 1788 1779g

NH2 bend 1668 1682 1627 1574 1630 1616 1603 1608f

CH2 bend 1439 1472 1435 1404 1470 1437 1436 1429f,g

CH2 bend 1400 1417 1387 1362 1396 1379 1407 1405f

(OH + CH2) bend 1301 1317 1295 1271 1301 1285 1299 1297f

CN str + OH bend 1177 1176 1134 1140 1147 1148 1135 1136f,g

C�O str + OH bend 1143 1137 1102 1100 1091 1097 1103 1101f,g

CC str + NH2 bend 927 937 888 868 893 883 892 883f,g

CC str 832 834 808 798 803 801 811 801f,g

(NH2 + OCO) bend 634 637 633 624 630 627 636 619f,g

CCO(H) bend 464 467 462 451 457 454 464 458h

CCN bend 255 259 255 239 248 244 261 250h

NH2 a str A″ 3590 3599 3428 3425 3423 3414 3428 3410f,g

CH2 a str 3100 3109 2965 2957 2981 2972 2965 2969
CH2 bend 1376 1397 1357 1333 1377 1356 1360 1340
CH2 NH2 twist 1174 1194 1164 1145 1176 1156 1167 1166f

CH2 NH2 twist 913 923 911 899 918 908 913 907f,g

OH op bend 653 649 619 602 594 598 623 615f

OH op bend 509 511 495 478 483 481 499 500g

CN tors (ϕ) 210 217 203 151 168 161 232 204h

CC tors (ψ) 67 68 64 20 21 21 90
MAE 8 16 13 11 8

ajulDZ basis set. bjunTZ basis set. cHybrid model based on the additive approach, employing harmonic frequencies at the rDSD/junTZ level in
conjunction with anharmonic corrections at the B3/julDZ level. dHybrid model based on the substitution approach, employing harmonic
frequencies at the rDSD/junTZ level in conjunction with anharmonic corrections at the B3/julDZ level. eRef 97. fRef 98. gRef 99. hRef 100.
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Inspection of Table 8 confirms that among hybrid density
functionals, the B3PW91/julDZ model represents the best
compromise between accuracy and feasibility for molecules too
large to be treated by state-of-the-art post-Hartree−Fock
methods.71

The double hybrid rDSD functional in conjunction with a
partially augmented triple-zeta basis set can be generally used to
improve the harmonic part of the force field.90,91 In the case of
uracil, B3, rDSD, and, even, coupled cluster harmonic
frequencies are quite close, so that the dual-level approach
does not improve the results in a significant way, but the
situation is different in several other cases (e.g., glycine discussed
below). From a more general perspective, the results show that
the GVPT2 model is capable of providing remarkably accurate
results for semi-rigid molecules plagued by significant
resonances, as is the case for uracil.
As a second example, we consider the Ip conformer of glycine

(see Figure 2i).96 The computed vibrational frequencies are
compared in Table 9 with their experimental counterparts. The
agreement is remarkable for all the tested computational models
and, in particular, dual-level rDSD//B3 approaches reduce the
average error getting closer to the results obtained at the much
more expensive rDSD level. Although the results are similar for
Cartesian and curvilinear coordinates, they show a very different
pattern when one tries to disentangle the contribution of LAMs
(ϕ and ψ torsions, modes 23 and 24 at about 200 and 90 cm−1).
As a matter of fact, Figure 6 shows that both diagonal and off-

diagonal potential anharmonic contributions are very large in
Cartesian coordinates, whereas this is not the case when
employing curvilinear coordinates. As a consequence, separation
between SAMs and LAMs should be safer in the context of
curvilinear coordinates.
Deeper insights on the role of different couplings can be

obtained by comparing the results of a series of computations in
which one- two- and three-mode anharmonic contributions
(both potential and kinetic) are progressively added to the
starting harmonic model. As already mentioned, the computa-
tional effort of electronic structure computations increases
sharply with the number of differentmodes taken into account at
the same time for potential couplings. The results collected in
Table 10 show that, when employing curvilinear internal
coordinates, the HCAM (harmonic coupled anharmonic
modes) model has already performed a remarkable job, and
inclusion of two-mode anharmonic couplings provides semi-
quantitative results. These findings pave the way toward the
implementation of very effective reduced-dimensionality
approaches, in which only a few key anharmonic contributions
are taken into account.

6. CONCLUSIONS
In this work, we have shown how the VPT2 equations for
Cartesian coordinates can be extended to curvilinear internal
coordinates without any additional computational bottleneck.

Table 10. Comparison of the Cartesian and Curvilinear Harmonic and GVPT2 Fundamental Wavenumbers (in cm−1) of the Ip
Conformer of Glycine at the rDSD/junTZ Level of Theory Starting from Diagonal Anharmonic Couplings and Then Adding
Two- and Three-Mode Couplings in a Stepwise Mannera

Cartesian curvilinear

assignment symm. ω diagonalb two-modec three-moded diagonalb two-modec three-moded

OH str A′ 3766 3604 3527 3581 3603 3577 3579
NH2 s str 3521 3453 3309 3377 3449 3368 3370
CH2 s str 3068 3015 2914 2953 3013 2947 2947
C�O str 1817 1806 1785 1786 1806 1788 1788
NH2 bend 1682 1681 1732 1627 1676 1621 1603
CH2 bend 1472 1471 1475 1435 1470 1440 1436
CH2 bend 1417 1421 1391 1387 1418 1386 1407
(OH + CH2) bend 1317 1322 1366 1295 1315 1307 1299
CN str + OH bend 1176 1177 1162 1134 1174 1151 1135
C�O str + OH bend 1137 1149 1123 1102 1142 1111 1103
CC str + NH2 bend 937 946 1017 888 929 902 892
CC str 834 844 874 808 836 822 811
(NH2 + OCO) bend 637 639 645 633 639 638 636
CCO(H) bend 467 468 471 462 467 470 464
CCN bend 259 264 284 255 261 273 261
NH2 a str A″ 3599 3683 3297 3428 3683 3423 3428
CH2 a str 3109 3181 2907 2965 3181 2958 2969
CH2 bend 1397 1401 1378 1357 1395 1377 1340
CH2 NH2 twist 1194 1201 1188 1164 1193 1175 1167
CH2 NH2 twist 923 937 961 911 926 920 913
OH op bend 649 838 712 619 633 626 623
OH op bend 511 607 616 495 511 509 499
CN tors (ϕ) 217 1302 755 203 209 238 232
CC tors (ψ) 68 839 579 64 76 94 90
MAE 138e 94e 45f 8f

aKinetic and potential terms are added at the same time in the case of curvilinear coordinates. bCalculation performed by including only diagonal
terms. cCalculation performed by including up to two-mode vibrational couplings. dCalculation performed by including up to three-mode
couplings. eMean absolute error computed with respect to the three-mode Cartesian-based fundamental wavenumbers. fMean absolute error
computed with respect to the three-mode internal-based fundamental wavenumbers.
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The results for several test cases point out the generality and
robustness of the new GVPT2 engine employing curvilinear
coordinates, which allows the effective treatment of medium-to-
large-sized molecules for all electronic structure methods for
which analytical Hessians are available. Dual-level methods
combining high-level harmonic terms with lower-level anhar-
monic contributions further widen the range of application of
the general platform.
The new development offers a number of advantages with

respect to previous, ad hoc procedures. The first aspect concerns
the ease of implementation since the new approach does not
require any heavy modification of the codes already supporting
VPT2 for asymmetric tops and Cartesian coordinates. However,
the most important advantage is that the intrinsic problems of a
low-order perturbative treatment based on Cartesian normal
modes are strongly reduced. As a matter of fact, as clearly stated
by Stanton and co-workers in connection with higher-order
perturbative treatments (e.g., VPT4),47 VPT based on a
rectilinear Hamiltonian is simply poorly suited to the problem
of floppy molecular systems, and approaches such as VPT2 in
curvilinear coordinates are to be preferred. While work aimed at
developing more refined models for the treatment of LAMs is
underway in our laboratory, we think that already the present
implementation offers a number of interesting perspectives for
the study of molecular systems of current scientific and
technological interest.
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